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1 OVERVIEW

In our experience, the study of statistical mechanics elicits a transition
from a phase of ignorance to a phase of bliss.

The existence of phase transitions is a remarkable fact of nature. Unlike most other
phenomena in physics, phase transitions can involve a dramatic change in the prop-
erties of a material. Water can boil. Steam can condense back into water. A piece of
iron can becomemagnetized. Andmost pure metals, when cooled sufficiently close
to absolute zero, gain the ability to superconduct—to conduct electricity without
any resistance at all.
Phase transitions are among the clearest and best understood examples of emer-

gent properties—properties that involve the collective behavior of many constituent
parts. When water boils, nothing intrinsic about its molecules is affected. Studying
the details of the molecular interaction does not lead to insight about the nature
of boiling. To properly appreciate the striking transformation from liquid to gas, a
macroscopic point of view is required—a view that takes into account the statistical
properties of the vast numbers of water molecules and their interactions with one
another. This is the approach we will take in this book.
In this chapter, we will start with a bird’s-eye overview about phases of matter,

their transitions, and the way they are characterized. We begin with a qualitative
description. Along the way, we will see how ideas from statistical mechanics can
help us build an understanding of these phenomena. We assume that students have
already been introduced to the basic ideas of statistical mechanics—the prerequisite
knowledge is reviewed in Chapter 2.

1.1 Phases

In childhood we are taught of three phases of matter: solid, liquid, and gas. Each of
these phases is characterized by a distinct set of physical properties: a gas is highly
compressible, a liquid has fixed volume but still can flow, and a solid is rigid.1 These
physical qualities are emergent—an individualmolecule cannot “flow” or “be rigid”;

1. As we will discuss in Section 1.2.2, liquids and gases are not truly distinct phases of matter.

1



2 chapter 1 . overv iew

only a large collection of molecules can. A phase of matter is a collective effect that
only makes sense if there are a lot of particles.
There are, in fact, many more phases of matter beyond these three, each with

its own fascinating and mysterious properties. The superconducting phase has zero
electrical resistance; a superfluid flows without any viscous damping. In ferromag-
nets, the spins of the electrons align preferentially in one direction, giving rise to an
overall magnetic dipole moment. In a nematic liquid crystal (the material behind
many modern-day digital screens), rod-like molecules are oriented preferentially
in one direction, yet they freely flow past one another. All these ordered phases of
matter share the same property that their individual constituents are organized with
some form of collective “long-range order.”

1.1.1 Phase Diagrams

The phase diagram of water is shown in Figure 1.1. A phase diagram maps out the
equilibriumphases of a system as a function of a set of external control parameters—
in this case, the temperature T and the pressure P. Depending on the control
parameters, the properties of the material, such as its density ρ and its compress-
ibility κ, will vary. By measuring these properties at different points on the phase
diagram, we can obtain equations of state such as ρ=ρ(T,P) describing how a

Critical point

Temperature T

PHASE DIAGRAM OF WATER

A

Pr
es
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B

Liquid

GasSolid
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figure 1.1. A schematic phase diagram of water. Note that the region of the phase diagram
labeled “solid” actually comprises many structurally distinct crystalline phases. The colored dotted
lines represent distinct “trajectories” through the phase diagram. Trajectory B represents the heat-
ing of water past its boiling point; a phase transition from liquid to gas occurs where it intersects the
phase boundary, indicated by the magenta line. There is no phase transition encountered along tra-
jectories A and C.
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figure 1.2. At a phase transition, observable properties have nonanalytic behavior. At atmo-
spheric pressure, water boils at 100○C, hence both the density (A) and the compressibility (B) change
discontinuously as a function of temperature. At the critical pressure, Pc, the density (C) varies con-
tinuously through the transition, whereas the compressibility (D) diverges.

material’s observable quantities depend on the control parameters. Similarly, other
thermodynamic quantities such as the free energy F(T,P) may be obtained as
functions of the control parameters.

1.1.2 Phase Transitions

Within a phase, all observables change smoothly as the control parameters are var-
ied. To be precise, the equations of state are analytic functions. (An analytic function
is one which is well behaved in the sense that it is continuous, has derivatives to all
orders, and converges to its Taylor expansion.) This is the case, for example, along
the blue path A in Figure 1.1.
In contrast, at phase boundaries, material properties can undergo discontinu-

ous changes. One dramatic (yet familiar) example is the boiling of water, the brown
path B in Figure 1.1. At atmospheric pressure, a minute change in temperature from
99.999○C to 100.001○C causes a sudden, striking transformation: the molecules fly
apart, the density plummets by a thousand-fold, and the essentially incompressible
water becomes highly compressible steam.
Such changes in the material properties are illustrated in Figures 1.2A and B,

where we show the density ρ and the compressibility κ along a path through the
phase diagram corresponding to the brown path B in Figure 1.1.The discontinuities
in ρ(P,T) and κ(P,T) occur at the liquid-gas phase boundary. In contrast, along
any path on the phase diagram that avoids all phase boundaries, such as the blue path
A or the green path C, the evolution of physical quantities is everywhere smooth,
without discontinuities in any thermodynamic observable.

1.1.3 The Critical Point

A particularly interesting feature of the phase diagram of water is the critical point
at (Pc,Tc) = (218 atm, 374○C), where the liquid-gas phase boundary ends. Across
any point on the phase boundary, there is a discontinuous jump in the density
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Δρ≡ρliquid −ρgas between the liquid and gas phase, as illustrated in Figure 1.2A.
At successively higher points along the phase boundary, the liquid and gas become
more similar in density, i.e., Δρ becomes smaller and smaller, eventually reaching
zero at the critical point (Figure 1.2C). Beyond this point, the distinction between
the liquid and the gas disappears.
The critical point exhibits many unusual properties. For instance, upon

approaching the critical point, the density becomes extremely susceptible to
even slight variations in pressure, i.e., the compressibility diverges (Figure 1.2D).
Additionally, a fluid near its critical point appears turbid, like a saturated cul-
ture of bacteria. This is visible evidence that the fluctuations in density become
extremely pronounced near the critical point; when local regions of higher or
lower density grow so large that they scatter visible light, this gives rise to a milky
appearance.

1.1.4 Continuous and Discontinuous Transitions

The two cases we have described—the liquid-gas transition and the critical point—
are examples of a discontinuous and a continuous phase transition, respectively.
This classification of phase transitions, after Ehrenfest, stems from the fact that the
free energy is always a continuous function of parameters, even at the point of a
phase transition.2 Transitions are classified as either discontinuous or continuous
depending on whether or not any first derivatives of F (e.g., density or entropy) are
discontinuous.
Continuous phase transitions share many properties with the critical point of

water. There is a divergence in a susceptibility, indicating extreme sensitivity to
external perturbations. Additionally, fluctuations (such as those responsible for
critical opalescence) become relevant on all lengthscales.
Discontinuous phase transitions, such as a liquid-gas transition, have a host of

different properties. The defining characteristic is that there is a discontinuity in
a first derivative of the free energy, e.g., as water vaporizes its density plummets
discontinuously (Figure 1.2A). Another characteristic of a discontinuous transi-
tion is a nonzero latent heat: upon crossing the phase transition, a particular
amount of heat per unit volume is absorbed or released.3 Furthermore, discontin-
uous transitions can exhibit metastability: water can be chilled below its freezing
point without the formation of any ice crystals, which is known as supercooling
(Section 4.4.3).

2. Formally, the continuity of the free energy follows from the fact that it is a bounded, convex
function. Physically, since its derivatives are state functions (such as the entropy or themagnetization),
these must everywhere be well-defined (although possibly themselves discontinuous) functions.

3. The latent heat of water vapor is the reason why the steam over a pot of soup feels so hot: the
water vapor releases heat as it condenses. It is also why it feels so cold to get out of a swimming
pool on a windy day: the water absorbs heat as it evaporates off your skin, a process accelerated by
the wind!
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For historical reasons, discontinuous and continuous transitions are also known
as 1st-order and 2nd-order transitions, respectively.This nomenclature comes from
thermodynamics: the density ρ is a first derivative of the free energy, whereas the
compressibility κ is a second derivative. At a 1st-order (discontinuous) transition
such as the boiling of water, the first derivative ρ jumps discontinuously, whereas at
a 2nd-order (continuous) transition such as the critical point, the second derivative
κ diverges.

1.1.5 Distinction between Phases

In the phase diagram of water (Figure 1.1), the liquid-gas phase boundary does not
extend indefinitely: there is no phase boundary past the critical point. This means
the liquid and gas phases are not truly distinct. By choosing a path in the T −P
plane that circles beyond the critical point (e.g., the green path C in Figure 1.1),
it is possible to start in the “liquid” phase and end in the “gas” phase without ever
crossing a phase boundary. In this sense, the two are really part of the same fluid
phase! In contrast, the solid phase is distinct from the fluid phase because the two
are always separated by a phase boundary.
In order to classify the phases of matter in an unambiguous way, a clear dis-

tinguishing criterion must be established. It may be tempting to define a gas as
a “highly compressible” fluid, but since even liquids are somewhat compressible,
there is no clear threshold number that can be used to make this definition precise.
Phases must be defined by a clear-cut property—something which is either present
or absent, with no in-between. To this end, phases are often classified on the basis
of symmetry.4

1.2 Symmetries

Symmetry can seem abstract, but we will come to appreciate it as a powerful and
precise way to make sense of the phases of matter. As you may recall, the very laws
of physics have a set of fundamental symmetries. For example, when light passes
through empty space, its speed is the same regardless of the direction of propagation.
This reflects the rotational symmetry of space. Likewise, there is translation and
reflection symmetry of space, and translation and reversal symmetry of time.
Phases ofmatter, however, are often less symmetric than are the laws of physics. If

light passes through a piece of ice, its speed depends on the direction of propagation:

4. Any property that is binary, in the sense that a phase either exhibits it or does not, can in principle
be used to distinguish phases of matter. As an aside, we list (without explanation) some examples of
other features that can characterize a phase ofmatter other than its symmetries: A system can be a fluid
(able to flow) or a solid (able to support a shear). A collection of electrons can form a “metal” (with a
finite resistance in the limit T→ 0), an “insulator” (with a diverging resistance in the limit T→ 0), or a
“superconductor” (with a vanishing resistance for T <Tc). In gauge theories, for instance of the strong
interaction, there are “confining” phases (in which quarks are confined), and “deconfined” phases,
which are distinguished by a form of “topological order.”
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Tetragonal

Cubic

figure 1.3. An illustration of cubic symmetry (above) and tetragonal symmetry (below). In
both cases the action of three transformations is depicted, corresponding to a 90 degree rotation
about each of the three axes. A check mark or a cross indicates whether or not a transformation is a
symmetry.

the index of refraction depends on how the beam of light is oriented with respect
to the axes of the crystal. Crystalline solids such as ice, manifestly, do not have the
same rotational symmetry as empty space.

1.2.1 The Cubic-to-Tetragonal Transition

As a first example of how symmetry can differentiate phases of matter, consider a
crystal with cubic symmetry, such as common table salt. On amicroscopic level, the
atoms in a crystal are arranged in a regular lattice with a basic repeating unit, known
as a unit cell. In a cubic lattice, the unit cell is a cube, as shown in Figure 1.3. The
three axes of the crystal are equivalent and mutually perpendicular, and the lengths
of the sides of the unit cell (lattice parameters) are identical.
If a crystal is heated, it undergoes thermal expansion (until at high enough tem-

peratures it melts). On the basis of symmetry, the three axes in a cubic crystal
should each lengthen in exactly the same way. If a cubic crystal is cooled, we might
expect it to also contract isotropically—but this is not always the case! Rather, in
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certain crystals, one of the lattice parameters can become distinct from the other
two, transforming the lattice from cubic symmetry to tetragonal symmetry. This
shape-shifting behavior is illustrated in Figure 1.3. In a tetragonal crystal, two of
the three axes are identical and the third one is either longer or shorter. All axes are
perpendicular.
The transition from a cubic to a tetragonal phase involves a change in the sym-

metry of the crystal. As such, it must occur at a well-defined critical temperature,
Tc, because symmetry is crisply defined: either all three axes are equivalent, or only
two of them are. (You could also imagine that at an even lower temperature, T′c ,
the two equivalent axes in a tetragonal crystal could become different, yielding an
orthorhombic crystal with three distinct axes. We will return to this point when we
discuss other sorts of structural phase transitions in Section 5.2.2).
Intuitively it is pretty clear that some sort of symmetry has been lost in going from

the cubic to the tetragonal phase. What this means mathematically is the following:
there are certain transformations which preserve the symmetry of the cubic lattice.
Such a transformation, when applied to a cubic lattice, leave the system indistin-
guishable from its initial state. For example, if we chose one of the three axes and
rotated the crystal by 90 degrees around that axis, the lattice would look exactly
the same after the rotation, as illustrated in the top right of Figure 1.3. However,
this is not the case for a tetragonal lattice. As illustrated in the bottom right of
Figure 1.3, only for one of the three axes is a rotation by 90 degrees a symmetry
transformation. Evidently, a tetragonal lattice has a smaller set of symmetry trans-
formations than a cubic lattice.Wewill come to see this as a general pattern of phases
of matter: low-temperature phases tend to have reduced symmetry compared to
high-temperature phases.
Finally, observe that there was nothing intrinsic in the cubic crystal about which

of the three axes becomes unique—after all, above Tc, the three axes are equivalent
in every conceivable manner. Rather, it is a random occurrence as to which axis will
become distinct as the crystal is cooled below Tc. The symmetry is broken sponta-
neously. However, it is possible to force one axis to become the longer one by pulling
the crystal along that axis as it is cooled. Such an external perturbation which favors
one symmetry-broken state over the others is called a symmetry-breaking field.5
Even if a symmetry-breaking field is then removed after the system is below Tc, that
axis will remain elongated; the system remembers its thermal history.

1.2.2 Solids, Liquids, and Gases

From the perspective of symmetry, we can explain why the liquid and gas “phases”
are actually the same phase of matter while the solid phase is definitively distinct.

5. Here a “field” refers to a physical quantity that acts over a region of space, such as elec-
tric/magnetic fields or more general quantities such as strain.
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The question to ask is “what symmetry transformations leave these phases of matter
invariant?”
The solid state is invariant under a smaller set of spatial translations than the

liquid or the gas. A spatial translation is a transformation in which all the atoms
in a material are uniformly shifted by a displacement, r⃗→ r⃗+ R⃗. Since liquids and
gases are homogeneous in space, they are invariant under translations of arbitrary
magnitude and direction, i.e. R⃗ can be any three-dimensional vector. In contrast,
in a crystalline solid, only certain translations are symmetries. Because the average
position of atoms in a crystal is regular and periodic, a translation will leave a crystal
invariant only if it places each unit cell in a new location where it overlaps with an
identical copy. Consequently, in a crystal, R⃗must be a lattice vector of the form R⃗=
naa⃗+nbb⃗+nc⃗c, where a⃗, b⃗, c⃗ are basis vectors of the lattice, and na,nb,nc are integers
representing the number of units to translate along each direction. The translation
symmetry of free space is spontaneously broken in a crystal.
Stated more precisely, in a crystal, the probability of finding an atom at a given

point in space is a periodic function of position, with a periodicity represented by
the crystalline lattice. In contrast, in a fluid state, the probability of finding an atomat
any point in space is the same as at any other (indeed, all thermodynamic quantities
are independent of position). Therefore the symmetry of the crystal is lower than
that of liquids and gases: a fluid is invariant with respect to any translation, while
the crystal is invariant only with respect to a discrete subset of translations.There is
no symmetry-based distinction between a liquid and a gas.
Beyond the translational symmetries we have discussed, a crystal also sponta-

neously breaks the rotational symmetry of free space. For example, if a liquid were
to freeze into a tetragonal crystal, it would no longer be invariant under arbitrary
rotations—it would have a reduced, 4-fold discrete rotational symmetry (rotations
by 0○, 90○, 180○, and 270○ about the tetragonal axis). The transition from a liquid
to a crystal is an example where a continuous symmetry is spontaneously bro-
ken. If, upon further cooling, the tetragonal crystal were to enter an orthorhombic
phase (where all three axes are distinct), the rotational symmetry would be reduced
to an even smaller subset (0○ and 180○). In this example a discrete symmetry is
spontaneously broken.

1.2.3 Ferromagnets

Ferromagnets are materials that spontaneously develop a net magnetization below
a certain temperature (known as the Curie point). Since the north pole of a ferro-
magnet points in a particular direction, the ferromagnetic phase manifestly breaks
the rotational symmetry of space. If ferromagnetic order develops in a liquid (a fer-
rofluid), it will break the continuous rotational symmetry of free space; if it develops
in a crystal, it will break the discrete rotational symmetry of the crystal. As discussed
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Table 1.1. Names of a few common models of
ferromagnets where the magnetization is an
N-dimensional vector.

N = 1 N = 2 N = 3
Ising XY Heisenberg

in Section 5.2.5, the ferromagnetic phase also spontaneously breaks time-reversal
symmetry.
The microscopic origin of ferromagnetism comes from quantum mechanics. At

a cartoon level, each atom can be thought of as having a miniature magnetic dipole
moment, arising from the quantum mechanical spin of an unpaired electron (see
Section 5.2.5). In a ferromagnetic material, the spins of neighboring atoms have a
strong enough tendency to align in the same direction that, at low temperatures,
the spins are aligned over macroscopic scales. At high temperatures, the thermal
energy always randomizes the spin orientations so that on average there is no net
magnetization.
There are a handful of common models to describe different categories of ferro-

magnets, summarized in Table 1.1.The simplest one is an Ising6 ferromagnet, where
the spins preferentially point along an “easy axis”; below the Curie point, the aver-
age spin is either up or down along this axis. In an XY ferromagnet, the spins are
confined to lie in an “easy plane”; in this case, for T <Tc the magnetization is a two-
dimensional vector in the easy plane. In a Heisenberg ferromagnet, the spins are
free to point in all directions equivalently, and so the magnetization is specified by
a three-dimensional vector. In all these cases, the magnetization is representable by
an N-dimensional vector.
In many ferromagnetic crystals, including the strong rare earth magnets, the

spins are Ising-like because of the strong, anisotropic interactions between the spins
and the crystal lattice (known as spin-orbit coupling). There are no real examples
of XY ferromagnets—though, remarkably, a superfluid can be thought of as some
kind of XY ferromagnet (see Section 5.2.6). A ferrofluid has Heisenberg symmetry.
The connection between these models and real ferromagnets is discussed more in
depth in Chapter 5.

1.3 Universality

The overall features of the phase diagram of water are not unique to water. They
are common to many fluids. For instance, xenon also exhibits a liquid-gas phase
boundary terminating at a critical point. The difference is that the critical pressure

6. Named after theGerman physicist Ernst Ising (1900-1998), who apparently did little physics after
working on his eponymous model.
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Table 1.2. The critical temperature and pressure of a selection of fluids.

Ne Ar Kr Xe N2 O2 CO CH4

Tc (K) 44.8 150.7 209.4 289.8 126.0 154.3 133.0 190.3
Pc (atm) 26.9 48.0 54.1 58.2 33.5 49.7 34.5 45.7

and temperature of xenon are Pc = 58 atm andTc = 290 K.The critical points of some
common fluids are listed in Table 1.2.
In Figure 1.4, we have plotted the phase diagramof a number of fluids in the ρ−T

plane, with a special choice of units: for each fluid, we have divided ρ by ρc and T by
Tc.7 Astoundingly, if we do this, the shape of the phase boundary is almost exactly
the same for all fluids!This is especially remarkable considering how thesematerials
differ in other respects—carbon monoxide is poisonous, methane flammable, and
neon inert. Despite this, they share a qualitative similarity—in terms of the existence
of a critical point—and a semi-quantitative one as well, in the shape of the phase
boundary. As far as phases are concerned, the only differences between these fluids
seem to be their numerical values of ρc and Tc.
Even more remarkably, a completely different physical system, a uniaxial ferro-

magnet (or Ising ferromagnet), has a phase diagram similar enough to the fluid
phase diagram to warrant a comparison. Its phase diagram in the T −H plane is
shown in the right panel of Figure 1.5. Here H is the strength of an external mag-
netic field applied along the easy axis of the sample. The magnetic field gives the
spins an energetic bias to align in the same direction as H. At low temperature,
this effect leads to a discontinuous phase boundary between the “up phase” and the
“down phase.” (This is analogous to the liquid-gas phase boundary.)However, the up
and down phases are not truly distinct phases in the T −H phase diagram because
the distinction between them disappears above the Curie point. Above this tem-
perature, the magnetization encounters no abrupt jump as the sign of the external
magnetic field is changed. Comparing the schematic phase diagrams in Fig. 1.5, it is
apparent that the fluid and the uniaxial ferromagnet share a topological similarity.

1.3.1 Critical Exponents

The correspondence between these two seemingly unrelated systems extends
beyond qualitative similarities. Consider measuring the fluid density in the vicinity
of the liquid-gas critical point. At temperatures slightly below Tc, the density of the
two coexisting phases varies as

ρ(T)−ρc ∼±∣Tc −T∣β , β ≃ 1/3, (1.1)

7. For any T <Tc, there are two “phases”—the liquid phase and the vapor phase—with densi-
ties ρliquid(T) and ρgas(T), respectively. The critical temperature is the point at which ρliquid(Tc)=
ρgas(Tc)≡ρc.
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FEROMAGNETFLUID

T

P H

T“Spin-down”

“Spin-up”

“Liquid”“G
as”

figure 1.5. Schematic phase diagrams of a fluid (left) and a ferromagnet (right) near their critical
points. The pressure P exerted on a fluid is analogous to the external magnetic field H applied to a
ferromagnet. In both cases there is a discontinuous phase boundary which terminates at a critical
point.

with a + for the liquid phase and − for the gaseous phase. The small value of
β is reflected in the very flat top of the phase boundary in the top panel of
Figure 1.4. As illustrated in the bottom panel of Figure 1.4, the analogous measure-
ment for a uniaxial ferromagnet—measuring the magnetization m as a function of
the temperature below the critical point—yields

m(T)∝ ∣T −Tc∣β , β ≃ 1/3, (1.2)

with the same critical exponent β within experimental error!
The commonality between the liquid-gas and the uniaxial ferromagnet critical

points extends further. If a fluid is held at its critical pressure, the compressibility κ
diverges (Figure 1.2D) as the critical temperature is approached from above, with a
functional dependence of

κ∝∣T −Tc∣−γ , γ = 1.24. (1.3)

This is the same power law observed for the magnetic susceptibility in a uniaxial
ferromagnet,

χ∝∣T −Tc∣−γ , γ = 1.24 (1.4)

as T→T+c !
Not all continuous phase transitions have exactly these same exponents. For

instance, for an XY ferromagnet the exponent β is 0.35. Mysteriously, this value of
β is identical to an analogous exponent observed in the transition to the superfluid
phase of Helium-4!
In general, physical quantities in the vicinity of a critical point often take the form

of power laws
y∝∣x∣z, (1.5)
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where x is a control parameter (like T −Tc) and y is a measurable thermodynamic
quantity (such as a susceptibility).The critical exponent z describes the nature of the
singularity.8 In Worksheet W1.1, you get to work through some examples of power
laws.
Certainly, we will want to understand the origin of these power laws at critical

points, why they are so universal, and why certain transitions have the same or dif-
ferent critical exponents. Ideally, we would like to be able to predict the values of
these critical exponents.

1.3.2 Universality Classes

In the 1970s and 1980s, many of the mysteries of continuous transitions came to be
successfully understood. Today, we have a unified framework for understanding a
variety of phase transitions.
Phase transitions can be classified into various universality classes. All the phase

transitions within a universality class share the same values of critical exponents
and share additional universal features. For instance, the uniaxial ferromagnet and
the liquid-gas transition both fall into the 3D Ising universality class. Other phase
transitions in this universality class, such as the order-disorder transition of β-brass
(see Section 5.2.1), have the same 3D Ising critical exponents.The easy-plane ferro-
magnet and the superfluid, on the other hand, fall in the 3D XY class and have their
own set of exponents. The transition to a ferromagnetic state in a ferrofluid falls in
yet another class, the 3D Heisenberg class.
What determines the universality class of a transition is somewhat abstract. We

will return to this topic throughout the book. In the end we will find that it depends
on some very general features of the broken symmetries and on the dimension of
space, but on no other details of the system involved.
One of the shared properties within a universality class is the exponents of vari-

ous power laws (Eq. 1.5). Conventionally, the critical exponents are represented by
various Greek letters. We will encounter a whole bunch of other critical exponents
throughout the text, summarized in Table 1.3.The values of these critical exponents
have been determined theoretically, either by exact solution ofmodel problems or by
extensive numerical simulation of such models. They are summarized in Table 1.4.
Notice that the values depend on both the symmetry index N as well as the spa-
tial dimensionality d. In many cases these theoretical predictions agree well with
experiments in a variety of systems.
One of our goals in the book, in addition to understanding the existence of dis-

tinct phases of matter and sharply defined phase transitions between them, is to
understand the origin of these critical exponents and why they are universal.

8. A singularity is a point where a function is nonanalytic—a cusp, a discontinuity, a
divergence, . . . .
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Table 1.3. A summary of the critical exponents discussed in this
text. The reduced temperature t = (T −Tc)/Tc is a dimensionless
measure of distance from a critical point. Exponents δ and η are
defined for t =0. G(r) is the correlation function (Eq. 2.28) and ξ is
the correlation length (Eq. 2.31).

Exponent Definition Name First Seen

α c∼ ∣t∣−α specific heat Eq. 10.8
β m∼ ∣t∣β magnetization Eq. 1.1
γ χ∼ ∣t∣−γ susceptibility Eq. 1.3
δ m∼h1/δ magnetization Eq. 4.39
η G(r)∼ r−(d−2+η) anomalous dimension Eq. 10.1
ν ξ ∼ ∣t∣−ν correlation length Eq. 7.28

Table 1.4. Critical exponents of various models in different numbers of spatial
dimensions. Numbers given as rational fractions are obtained from exact
analytic approaches while those given as decimals are from accurate numerical
simulations, rounded to two decimal places.

Universality Class α β γ δ η ν

2D Ising 0 1/8 7/4 15 1/4 1
3D Ising 0.11 0.32 1.24 4.79 0.04 0.63
4D Ising 0 1/2 1 3 0 1/2
3D XY −0.01 0.35 1.32 4.78 0.04 0.67
4D XY 0 1/2 1 3 0 1/2
3D Heisenberg −0.12 0.36 1.39 4.91 0.04 0.71
4D Heisenberg 0 1/2 1 3 0 1/2

1.4 Problems

1.1. Phase diagram of simple polynomials.The qualitative properties of a
polynomial—for instance, the number of distinct real-valued roots—depend
on the values of its coefficients.
(a) Draw a phase diagram that maps out the number of real-valued roots

of the polynomial f (x)= x2 −ax+ b as a function of a and b. How many
phases are there? What is the functional form of the phase boundary?

(b) Now consider the polynomial g(x)= x3 − cx+d. Draw a phase diagram in
the c−d plane displaying the number of real-valued roots, and determine
the functional form of the phase boundary. There is a special point on the
phase boundary; what is special about it? Hint: At the special point on
the phase boundary, the extremum of the function is simultaneously a
root: g(x∗)= g′(x∗)= 0.
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(c) We can draw a different (more interesting!) phase diagram with the same
polynomial, g(x)= x3 − cx+d. Consider the largest real root of g(x),

xmax =maxx {x∣g(x)= 0}, (1.6)

as a function of the control parameters c and d. Draw the phase diagram
of xmax. What is different about this phase boundary compared to parts
(a) and (b)? Does the overall topology of the phase diagram resemble any
of the physical systems discussed in this chapter?

Remarkably, the phase diagrams of many physical systems can be approx-
imately determined using simple polynomials, as we have done here. The
reason is that, near to a critical point, the free energy may be approximated
by a Taylor expansion, i.e., a simple polynomial. We discuss this concept in
Chapter 6.

1.2. Power laws and universality. Near critical points, thermodynamic quantities
are often well described by power laws of the form y=axz. The pre-factor
a depends on the details of the physical system, but the exponent z is
universal.
(a) Give a few examples of power laws from prior physics classes.
(b) What is the area of a square with side length 
? Of a triangle? Of a circle

with diameter 
? What is common among these formulas, and what is
different?

(c) What is the volume of a cube with side length 
? Of a sphere with
diameter 
? What is different from part (b)?

(d) In d dimensions, what is the formula for a shape’s hypervolume V as
a function of its side length? You may leave the answer in terms of an
arbitrary constant a which depends on the details of the shape.

1.3. Scale invariance and fractals. Consider the effect of a scale transformation

↦b
, whereby all lengths are scaled up by a factor of b, akin to the action of
a magnifying glass.
(a) What happens to the hypervolume of a d-dimensional shape upon a

rescaling 
↦b
?
Remarkably, a physical system at its critical point remains unchanged upon
a change of scale: it is scale invariant. This property is reminiscent of the
self-similarity of fractals, which are sometimes encountered in recreational
mathematics. An example is the Sierpinski triangle, which is formed by start-
ing with an equilateral triangle, dividing it into four equally sized equilateral
triangles, removing the central triangle, and repeating the process for each of
the remaining triangles ad infinitum.
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(a) The Sierpinski triangle is not scale invariant, but it is self-similar: there
are particular values of b which leave the shape unchanged under 
↦b
.
What are they?

(b) What is the dimensionality of the Sierpinski triangle? Hint: Under a scal-
ing by b, the triangle generates c copies of itself. Find b and c, and use the
relation from part (a).

A system at a critical point exhibits patterns with fractal-like shapes, with
structures on all lengthscales. The dimension of a fractal need not be an
integer; it can even be an irrational number.

1.4. Universality in a random walk. Consider a particle on a 1D line which starts
at x= 0. Suppose that at each time step, it can either step to the left, si =−a,
with probability 1/2, or it can step to the right, si =+a, with probability 1/2.
After N steps, the position of the particle is S=∑N

i=1 si.
(a) How does the mean squared displacement, ⟨S2⟩, depend on the number

of steps N?
(b) For large N, what is the probability distribution of S? Hint: Consider the

central limit theorem.
Now consider a different random walk where each step is distributed as

ri =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−2a with probability 1/2;
a with probability 1/4;
3a with probability 1/4.

(1.7)

(c) After many steps N≫ 1, what is the distribution of the position of the
particle, R=∑N

i=1 ri?
(d) Compare and contrast the distributions of the R random walk and the S

random walk after a few steps and after very many steps.
This is an example of universality: the R and S random walks have different
microscopic behaviors, but after very many steps, they converge to the same
asymptotic behavior.

1.5 Worksheets for Chapter 1

W1.1 Critical Exponents

If we plot certain properties of materials as a function of a tuning parameter close
to a phase transition, the functional dependence can often be described by some
power law. Here let us gain some familiarity with the shapes of various power laws,
and identify the correct power laws from real experimental data.

1. Sketch the following power laws:
(a) m∝(TC −T)β , where 0<β < 1.
(b) c∝∣T −TC∣−α, where 0<α< 1.
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When you have access to graphing tools, try plotting out these power laws
and observe how they change as you vary α and β!

2. A phase transition is considered “continuous” if the first derivative of the free
energy is continuous across the phase boundary. Are the above transitions
continuous given that:
(a) m is a first derivative of the free energy with respect to an applied field, h?
(b) c is a second derivative of the free energy with respect to temperature T?

3. A critical exponent and the associated power law describe the behavior of var-
ious physical quantities close to the critical point. Let us see what this means in
practice.
Suppose we have a magnet whose normalized magnetization close to T =Tc

behaves as:
m(T)=

√
1−(T/Tc)2 for T <Tc. (1.8)

(a) What is the meaning of the temperature scale Tc?
(b) Close to the phase boundary (0< 1− ∣T/Tc∣≪ 1), the normalized magneti-

zation can be written as:
m(T)=a(Tc −T)β . (1.9)

Find the value of the constant of proportionality a and the critical expo-
nent β such that Eq. 1.9 correctly describes the behavior of Eq. 1.8 close to
the phase boundary (see Figure W1.1).

Hint: Find the quantity that is small close to Tc, and expand Eq. 1.8 w.r.t.
that quantity.
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With the correct values for a and β, the power-law description very accu-
rately describes the behavior near the phase boundary, but deviates quickly
away from it. Moving forward, we must remember that many descrip-
tions of critical phenomena are (approximately) correct only near phase
boundaries!

4. Below is a plot of the superconducting gap energy of Tantalum close
to the critical temperature as a function of the rescaled temperature
t =T/Tc.

Measurement
Theory

.900 .980.960.940.920 001.

Normalized temperature T/Tc

.0 0

.10

.20

.30

.40

.50

.60

N
o

rm
a

liz
e

d
 g

a
p

 Δ
(T

)/
Δ

( 
  ) 0

Superconducting gap of Ta close to Tc

figure W1.2. Superconducting gap of Tanta-
lum close Tc.

Table 1.5. Tantalum gap energy
temperature dependence.

T/Tc Δ(T)/Δ(0)

0.9904 0.1833
0.9895 0.1522
0.9858 0.2112
0.9843 0.2485
0.9781 0.2718
0.9689 0.3013
0.9674 0.3339
0.9612 0.3478
0.9542 0.3711
0.9458 0.4084
0.9349 0.4394
0.9249 0.4580

(a) Judging from the plot, what is the form of the normalized gapΔ(T)/Δ(0)
close to t = 1?

(b) Plotting the data on log-log axes, estimate the critical exponent, as well as
the constant of proportionality.
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Is the theory a good description close to criticality? Close to Tc the
theoretical value isΔ(T)/Δ(0)= 1.74

√
1−T/Tc.
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for calculating the Ornstein-Zernicke law,
267–71; convention, xv; for defining plane
wave modes of the Gaussian model, 185; for-
mal definitions and key results, 261–64; of a
probability distribution, 274–75

fractal, 15–16, 180

free energy
analyticity of, 108, 133
at a 1st-order transition, 34
configuration-averaged, 206 (see also
quenched disorder)
continuity of, 4n2
in the continuum limit (see Ginzburg-Landau
free energy)
density, 23, 81, 133
derivatives of, 5, 23–24; for the Ising model,
41–42; the order parameter, 123; with spatial
variation, 153–54
dimensionless form of the nonanalytic part,
222
functional (see Ginzburg-Landau free energy)
Helmholtz versus Gibbs, xv, 21n2, 22
interpretation of, 22, 34
relation to partition function, 22, 35, 294
variational (see variational principle)
frustration, 40–41, 63, 215–16, 302–4,
415–16

functional, 156, 264–65. See also Ginzburg-
Landau free energy

gauge theory, 5n4, 121n18, 173, 240–41
Gaussian fixed point, 238–40
Gaussian integrals, 199–202, 401–9
Gaussian model, 184–91; in the N→∞ limit,
195; correlation function of, 186; decom-
position into independent modes, 186,
188; definition of, 184–85; dependence on
dimensionality, 189–90; as a fixed point in
the renormalization group, 235–39; lack of
a phase transition, 188; with a random field,
209–14; with a symmetry-breaking field, 187;
as a variational ansatz, 191–94

generating function, 34–35
geometric series, 65
Ginzburg-Landau free energy: bottom-up
derivation of, 81, 102–4, 152–53, 156–57,
349–51; generic expression for, 156; interpre-
tation of, 82; symmetry-based restrictions on
coefficients, 158, 177–79, 382–89; top-down
derivation of, 157–58, 177–79, 382–89

group theory, 33, 280–85

Hartree-Fock approximation, 73
heat capacity, 23. See also specific heat
Heisenberg model, 7, 119, 126–27
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Helmholtz free energy. See free energy,
Helmholtz

high-temperature expansion, 57–58
holographic model, 29
homotopy, 170

imaginary time, 276–77
impurities. See quenched disorder
Imry-Ma Argument, 211–12
ineluctable, 164
infrared convergence versus divergence,
190

intensive quantity, 22–23
internal energy, 21
internal symmetry, 120. See also rotational
symmetry in spin space

invariance, 32, 121–22, 136
irrelevant perturbations, 223–25, 230
Ising model
anisotropic square-lattice, 88–90
critical temperature of, 54–55, 88
definition of, 39–40
ground state of, 40–41
Hamiltonian of, 62, 301–2
with long-range interactions, 285–87
low-energy excitations of, 44, 70, 324
low-energy temperature expansion of (see
low-temperature expansion)
mean-field approximation of, 77–80, 100–101,
339–47
physical realizations of, 60, 111–12, 124
qualitative behavior of, 42–43, 79–81
with random field disorder, 211–12
relation to ferromagnetism, 40, 116–19
solution in 0D, 49
solution in 1D: with combinatorics, 50–51,
66, 310–11; lack of a phase transition, 46,
48, 53; with transfer matrices, 51–53, 66–72,
312–28
solution in 2D, 53–54
with spatially varying fields, 152–55
symmetry of, 106
variations on, 54–55

Jensen’s inequality, 75, 95, 331–33

K-L divergence, 91–92
kinks. See domain walls
Kubo formula, 31

Landau free energy, 132
Landau theory, 132–50; derivation from sym-
metry considerations, 147–48, 364–67; of
the q-state clock model, 136–37; of the XY
model, 136–37

Larkin-Ovchinikov-Lee-Rice Argument,
212–14

latent heat, 4, 140
lattice: bipartite, 111–12; Bravais, 113–14; dual,
56; hexagonal, 56, 61; hypercubic, 41; struc-
ture, effects of, 41, 54–55, 155; structure,
encoded in g(k), 188; triangular, 41, 56, 61,
92, 130; vector, 8

lengthscales. See correlation length, coherence
length

linear response function, 31, 159
liquid crystals, 27n8, 114–16, 127–29, 353–57
local field, 73, 77, 86–87
long-range order, 2, 42, 116n9, 211–14; formal
definition of, 109

longitudinal and transverse fluctuations: in the
O(N)model, 197; in the XY model, 163–64,
181–82, 393–97

loops, 56–58
Lorentzian, 188, 242, 267–70, 275n4
low-temperature expansion, 46–48, 55–57;
detailed calculation, 69–72, 323–28; formal
presentation, 259–60

lower critical dimension. See critical dimension

macroscopic wavefunction, 120–21, 126,
288–89

magnetic moment, 41
magnetization: of classical systems, 118, 127;
definition of, 41–42; notation for, xv

marginal interactions, 230
mean-field equations. See self-consistency
relations

mean-field theory
of 3-state clock model, 92–93 (see also clock
model, 3-state)
calculation of critical exponents, 83–85,
104–5, 352–53
intuition for, 73
of Ising model, 77–80, 100–101, 339–47; low-
temperature asymptotic analysis, 81, 102,
347–49
justification via variational principle,
95–100
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validity of, 86–87, 140n5, 285–87
of XY model, 92
Meissner effect, 121
Mermin-Wagner theorem, 196–99
mesoscopic systems, 109, 152, 207
metastability, 4, 85–86, 93; in the 3-state
clock model, 139–40, 148–50, 367–72; at
a tricritical point, 146; of a domain wall,
164–67

microcanonical ensemble, 34
modes (of the Gaussian model). See plane
waves

moment of a probability distribution, 34–35,
274–75

monoclinic, 113–14
multi-valued functions, 171
multicritical point, 141–46

nematic. See liquid crystals
nonanalyticity, 13n8, 84–85
noncommuting Hamiltonians, 75n2, 275–78
noninteracting spins, 50, 77, 188, 233
nonlocal susceptibility. See correlation function
nucleation, 86

order parameter: definition of, 106–9, 122–24;
examples of, 124; thermodynamic role of,
122–23

order-disorder transitions, 111–12
Ornstein-Zernicke law, 159, 188, 196; asymp-
totic form of, 159, 270–71; derivation of,
267–72

orthorhombic, 7–8, 113, 117–19, 124

paradigmatic models, 124–27
partition function, 20; relation to free energy,
22, 35, 294

Pauli matrix, 257–58
Peierls droplet argument, 43–46, 63–65,
304–9

perturbation, effect on equilibrium state. See
susceptibility, nonlocal susceptibility

phase diagram: of 3-state clock model, 138–40,
148–50, 367–72; of mean-field Ising model,
78–81, 85–86; with multicritical points,
141–46; of water, 2

phase transition: 1st- versus 2nd-order, 4–5,
123; cubic-to-tetragonal, 6–7; in the Ising
model, 43–46, 78–81; structural, 6–7, 113–14

phases: classification of, 5, 217–19; examples of,
2, 111–21

phenomenological, 132, 151
plane waves, 185, 188
plaquette, 56, 215, 261
Pomarenhcuk effect, 107
power law, 10–13, 15; decay of correlations at a
critical point, 160, 180, 220, 229, 393; decay
of transverse correlations in the ordered
phase, 164

principle of least action, 156
probability: conditional, 42, 273; review of,
272–75

pseudo-vector, 119, 156

quantum coherence length, 152n1, 207
quantum critical points, 151n1
quantum mechanical: origin of magnetism,
9, 116–21; phase (of of matter), 116–21,
151n1, 242; phase (of the wavefunction), 38,
116–21

quenched disorder, 205–16. See also random
field disorder, random Tc disorder, spin
glass

radial-distribution function, 27
random Tc disorder, 215
random field disorder, 209–11; effect on a bro-
ken continuous symmetry, 212–14; effect on
a broken discrete symmetry, 211–12

random walk, 16
reduced temperature, 14, 148, 366
regularization, 236
relevant and irrelevant interactions, 223–25,
230

renormalization group
for the 1D Ising chain, 243–46, 416–22
for the central limit theorem, 232–34
flow, definition of, 226
intuitive explanation of, 225–26
near a fixed point, 229–32
in slightly less than 4D: detailed calculations,
246–56, 422–39; main results, 234–40
transformation, definition of, 226–28
what it is useful for, 217, 224–25
rescaling (renormalization group), 227
rotational symmetry: in real space, 5–8,
27, 114–16, 157; in spin space, 125–27,
194
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scalar (invariant), 136
scale invariance, 15
scaling dimension, 223–24
scaling function, 222, 224–25
scaling relation, 219–23; list of equations,
219

self-averaging, 206–7
self-consistency relations, 73–74; continuum
version of, 158; derivation of, 96–97; in the
Gaussian model, 192; graphical solution
to, 79

self-consistent Gaussian approximation,
191–99

singularity, 13n8, 84–85
smectic. See liquid crystals
space of Hamiltonians, 217–19
spatial variation, 82, 151–83. See also domain
walls, vortices, Ginzburg-Landau theory

specific heat: of 1D Ising model, 72, 327–28;
divergence at the superfluid transition, 120;
in Landau theory, 135

spin glass, 215–16
spin liquid, 242
spin space, 125–27, 196
spontaneously broken symmetry, 7–9, 42, 83.
See also broken symmetry

statistical mechanics: of phases and phase
transitions, 1–440; review of, 20–28

stiffness (of a mode in the Gaussian model),
188

stiffness (parameter in the free energy
functional), 157, 165

sublattice symmetry, 111–12
superconductors, 2, 120–21, 241–42
supercooling, 85–86
superextensive, 23n4, 47n12
superfluids, 2, 119–20; broken symmetry of,
287–89; compared to superconductors, 121;
relation to XY model, 9, 12, 126

surface tension of domain walls, 166, 170
susceptibility: definition of, 24; in the mean-
field Ising model, 80; relation to fluctuations,
25, 160, 173–74

symmetry: -breaking field, 7, 123; meaning
of, 31–33; operations (see symmetry trans-
formations); in statistical mechanics, 33;
transformations, 31–33, 37–38, 299–300

Taylor expansion, 82, 133
tetracritical point, 144–46
tetragonal, 6–8, 113, 119, 130, 157, 300,
361–62

textures. See domain walls, vortices,
Ginzburg-Landau theory

thermal average, 21; versus quenched average,
21, 207–9

thermodynamic limit, 22–23, 107–9, 152
thermodynamics and its relation to statistical
mechanics, 21–22, 28–29

time-reversal symmetry, 9, 32, 116–19
timescales, 29–31, 110–11, 205–7. See also
quenched disorder, metastability

top-down versus bottom-up approach,
132–33

topological order, 240; in gauge theories, 5n4;
in the XY model, 170–73

transfer matrix, 51–53; calculating eigenvalues
and eigenvectors, 319; relation to Markov
chains, 53; relation to spin-half, 60

translational symmetry, 8; spontaneously
broken, 111–12, 114–16, 164–70

transverse and longitudinal fluctuations: in the
O(N)model, 197; in the XY model, 163–64,
181–82, 393–97

trial Hamiltonian, 74–75; for φ4 theory, 191;
for anisotropic Ising model, 88–90; for Ising
model, 77; suitability of, 75, 88–90

tricritical point, 134, 142–44
two-phase coexistence, 85–86, 144–46

ultraviolet convergence versus divergence, 189,
236

uniaxial ferromagnet, 10–13. See also Ising
model

unit cell, 6, 113–14
universality, 9–14, 84–85, 218–19; and diver-
gence of the correlation length, 152, 219; in
the renormalization group viewpoint, 224,
231

universality class, 13–14
upper critical dimension. See critical
dimension

van der Waals theory of gases, 88
variance, 24
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variational principle, 74–75, 95, 331–33; K-L
divergence and, 91–92; for noncommut-
ing Hamlitonians, 75n2, 275–78; relation to
mean-field theory, 95–100

vortices, 170–73

wavevector, 185
weakly 1st-order transition, 144
Weiss mean-field theory, 73–82, 94–95, 329–31;
comparison to the self-consistent Gaussian
approximation, 195–96

Wick’s theorem, 191–94, 199–202, 278–80,
401–8, 433, 437

Wilson-Fisher fixed point, 238–40

winding number, 173
wine bottle potential, 137

XY model
absence of domain walls, 168–69
Ginzburg-Landau theory of, 162–64, 168–73
interpolation to: clock model, 129–30,
357–61; Ising model, 169–70
Landau theory of, 136–37
solution in 1D, 60–61
symmetry of, 120, 125–26
transverse and longitudinal perturbations,
163–64
vortices and, 170–73




