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Chapter One

Introduction

We consider the homogeneous incompressible Euler equations

∂tv + div (v ⊗ v) +∇p = 0 (1.1a)

div v = 0 (1.1b)

for the unknown velocity vector field v and scalar pressure field p, posed on the
three-dimensional box T3 = [−π, π]3 with periodic boundary conditions. We
consider weak solutions of (1.1), which may be defined in the usual way for
v ∈ L2

tL
2
x.

We show that within the class of weak solutions of regularity C0
tH

1/2−
x , the

3D Euler system (1.1) is flexible.1 An example of this flexibility is provided by:

Theorem 1.1 (Main result). Fix β ∈ (0, 1/2). For any divergence-free vec-
tor fields vstart, vend ∈ L2(T3) which have the same mean, any T > 0, and any
ϵ > 0, there exists a weak solution v ∈ C([0, T ];Hβ(T3)) to the 3D Euler equa-
tions (1.1) such that ∥v(·, 0)− vstart∥L2(T3) ≤ ϵ and ∥v(·, T )− vend∥L2(T3) ≤ ϵ.

Since the vector field vend may be chosen to have a much higher (or much
lower) kinetic energy than the vector field vstart, the above result shows the
existence of infinitely many non-conservative weak solutions of 3D Euler in the

regularity class C0
tH

1/2−
x . Theorem 1.1 further shows that the set of so-called

wild initial data is dense in the space of L2 periodic functions of given mean. The
novelty of this result is that these weak solutions have more than 1/3 regularity,
when measured on a L2

x-based Banach scale.

Remark 1.2. We have chosen to state the flexibility of the 3D Euler equations
as in Theorem 1.1 because it is a simple way to exhibit weak solutions which are
non-conservative, leaving the entire emphasis of the proof on the regularity class
in which the weak solutions lie. Using by now standard approaches encountered
in convex integration constructions for the Euler equations, we may alternatively

establish the following variants of flexibility for (1.1) within the class of C0
tH

1/2−
x

weak solutions:

1Loosely speaking, we consider a system of partial differential equations of physical origin
to be flexible in a certain regularity class if at this regularity level the PDEs are not anymore
predictive: there exist infinitely many solutions, which behave in a non-physical way, in stark
contrast to the behavior of the PDE in the smooth category. We refer the interested reader to
the discussion in the surveys of De Lellis and Székelyhidi Jr. [30, 32], which draw the analogy
with the flexibility in Gromov’s h-principle [40].
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1. The proof of Theorem 1.1 also shows that given any β < 1/2, T > 0,
and E > 0, there exists a weak solution v ∈ C(R, Hβ(T 3)) of the 3D
Euler equations such that supp tv ⊂ [−T, T ], and ∥v(·, 0)∥L2 ≥ E. Such
weak solutions are nontrivial and have compact support in time, thereby
implying the non-uniqueness of weak solutions to (1.1) in the regularity

class C0
tH

1/2−
x . The argument is sketched in Remark 3.7 below.

2. The proof of Theorem 1.1 may be modified to show that given any β ∈
(0, 1/2), and any C∞ smooth function e : [0, T ] → (0,∞), there exists a
weak solution v ∈ C0([0, T ];Hβ(T3)) of the 3D Euler equations, such
that v(·, t) has kinetic energy e(t), for all t ∈ [0, T ]. In particular, the

flexibility of 3D Euler in C0
tH

1/2−
x may be shown to also hold within the

class of dissipative weak solutions, by choosing e to be a non-increasing
function of time. This is further discussed in Remark 3.8 below.

1.1 CONTEXT AND MOTIVATION

Classical solutions of the Cauchy problem for the 3D Euler equations (1.1) are
known to exist, locally in time, for initial velocities which lie in C1,α for some
α > 0 (see, e.g., Lichtenstein [48]). These solutions are unique, and they conserve
(in time) the kinetic energy E(t) = 1

2

´
T3 |v(x, t)|2dx, giving two manifestations

of rigidity of the Euler equations within the class of smooth solutions.
Motivated by hydrodynamic turbulence, it is natural to consider a much

broader class of solutions to the 3D Euler system; these are the distributional
or weak solutions of (1.1), which may be defined in the natural way as soon as
v ∈ L2

tL
2
x, since (1.1) is in divergence form. Indeed, one of the fundamental

assumptions of Kolmogorov’s ’41 theory of turbulence [46] is that in the infinite
Reynolds number limit, turbulent solutions of the 3D Navier-Stokes equations
exhibit anomalous dissipation of kinetic energy; by now, this is considered to be
an experimental fact; see, e.g., the book of Frisch [39] for a detailed account. In
particular, this anomalous dissipation of energy necessitates that the family of
Navier-Stokes solutions does not remain uniformly bounded in the topology of
L3
tB

α
3,∞,x for any α > 1/3, as the Reynolds number diverges, as was alluded to

in the work of Onsager [58].2 Thus, in the infinite Reynolds number limit for
turbulent solutions of 3D Navier-Stokes, one expects the convergence to weak
solutions of 3D Euler, not classical ones.

It turns out that even in the context of weak solutions, the 3D Euler equa-

2Onsager did not use the Besov norm

∥v∥Bα
p,∞

= ∥v∥Lp + sup
|z|>0

|z|−α ∥v(·+ z)− v(·)∥Lp ;

here we use this modern notation and the sharp version of this conclusion, cf. Constantin, E,
and Titi [22], Duchon and Robert [35], and Drivas and Eyink [34].
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tions enjoy some conditional variants of rigidity. An example is the classical
weak-strong uniqueness property.3 Another example is the question of whether
weak solutions of the 3D Euler equation conserve kinetic energy. This is the
subject of the Onsager conjecture [58], one of the most celebrated connections
between phenomenological theories in turbulence and the rigorous mathemati-
cal analysis of the PDEs of fluid dynamics. For a detailed account we refer the
reader to the reviews [37, 21, 61, 30, 64, 32, 33, 12, 14] and mention here only
a few of the results in the Onsager program for 3D Euler.

Constantin, E, and Titi [22] established the rigid side of the Onsager con-

jecture, which states that if a weak solution v of (1.1) lies in L3
tB

β
3,∞,x for some

β > 1/3, then v conserves its kinetic energy. The endpoint case β = 1/3 was
addressed by Cheskidov, Constantin, Friedlander, and Shvydkoy [16], who es-
tablished a criterion which is known to be sharp in the context of 1D Burgers.
By using the Bernstein inequality to transfer information from L2

x into L3
x , the

authors of [16] also prove energy-rigidity for weak solutions based on a regularity
condition for an L2

x-based scale: if v ∈ L3
tH

β
x with β > 5/6, then v conserves

kinetic energy (see also the work of Sulem and Frisch [63]). We emphasize the
discrepancy between the energy-rigidity threshold exponents 5/6 for the L2-based
Sobolev scale, and 1/3 for Lp-based regularity scales with p ≥ 3.

The first flexibility results were obtained by Scheffer [59], who constructed
nontrivial weak solutions of the 2D Euler system, which lie in L2

tL
2
x and have

compact support in space and time. The existence of infinitely many dissipative
weak solutions to the Euler equations was first proven by Shnirelman in [60],
in the regularity class L∞

t L
2
x. Inspired by the work [53] of Müller and Šverak

for Lipschitz differential inclusions, in [29] De Lellis and Székelyhidi Jr. have
constructed infinitely many dissipative weak solutions of (1.1) in the regularity
class L∞

t L
∞
x and have developed a systematic program towards the resolution

of the flexible part of the Onsager conjecture, using the technique of convex
integration. Inspired by Nash’s paradoxical constructions for the isometric em-
bedding problem [54], the first proof of flexibility of the 3D Euler system in
a Hölder space was given by De Lellis and Székelyhidi Jr. in the work [31].
This breakthrough or crossing of the L∞

x to C0
x barrier in convex integration

for 3D Euler [31] has in turn spurred a number of results [8, 6, 9, 27] which
have used finer properties of the Euler equations to increase the regularity of
the wild weak solutions being constructed. The flexible part of the Onsager
conjecture was finally resolved by Isett [43, 42] in the context of weak solutions
with compact support in time (see also the subsequent work by the first and last
authors with De Lellis and Székelyhidi Jr. [11] for dissipative weak solutions),
by showing that for any regularity parameter β < 1/3, the 3D Euler system (1.1)

is flexible in the class of Cβt,x weak solutions. We refer the reader to the review

3If v is a strong solution of the Cauchy problem for (1.1) with initial datum v0 ∈ L2,
and w ∈ L∞

t L2
x is merely a weak solution of the Cauchy problem for (1.1), which has the

additional property that its kinetic energy E(t) is less than the kinetic energy of v0, for a.e.
t > 0, then in fact v ≡ w. See, e.g., the review [66] for a detailed account.
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papers [30, 64, 32, 33, 12, 14] for more details concerning convex integration
constructions in fluid dynamics, and for open problems in this area. We note
that the situation in two dimensions appears considerably more difficult, as the
full flexible side of the Onsager conjecture remains open in this setting [56]. Suc-
cessfully extending either the homogeneous C

1/3− constructions, or the present
construction, to the 2D Euler equations appears to require new ideas.

Since the aforementioned convex integration constructions are spatially ho-
mogenous, they yield weak solutions whose Hölder regularity index cannot be
taken to be larger than 1/3 (recall that weak solutions in L3

tC
β
x with β > 1/3

must conserve kinetic energy). However, the exponent 1/3 is not expected to be a
sharp threshold for energy rigidity/flexibility if the weak solutions’ regularity is
measured on an Lpx-based Banach scale with p < 3. This expectation stems from
the measured intermittent nature of turbulent flows; see, e.g., Frisch [39, Figure
8.8, page 132]. In broad terms, intermittency is characterized as a deviation
from the Kolmogorov ’41 scaling laws, which were derived under the assump-
tions of homogeneity and isotropy (for a rigorous way to measure this deviation,
see Cheskidov and Shvydkoy [20]). A common signature of intermittency is
that for p ̸= 3, the pth order structure function4 exponents ζp deviate from
the Kolmogorov-predicted values of p/3. We note that the regularity statement
v ∈ C0

tB
s
p,∞ corresponds to a structure function exponent ζp = sp; that is, Kol-

mogorov ’41 predicts that s = 1/3 for all p. The exponent p = 2 plays a special
role, as it allows one to measure the intermittent nature of turbulent flows on the
Fourier side as a power-law decay of the energy spectrum. Throughout the last
five decades, the experimentally measured values of ζ2 (in the inertial range, for
viscous flows at very high Reynolds numbers) have been consistently observed
to exceed the Kolmogorov-predicted value of 2/3 [1, 50, 62, 45, 15, 44, 55], thus
showing a steeper decay rate in the inertial range power spectrum than the one
predicted by the Kolmogorov-Obhukov 5/3 law. Moreover, in the mathematical
literature, Constantin and Fefferman [23] and Constantin, Nie, and Tanveer [24]
have used the 3D Navier-Stokes equations to show that the Kolmogorov ’41
prediction ζ2 = 2/3 is only consistent with a lower bound for ζ2, instead of an
exact equality.

Prior to this work, it was not known whether the 3D Euler equation can
sustain weak solutions which have kinetic energy that is uniformly bounded in
time but not conserved, and which have spatial regularity equal to or exceeding

H
1/3
x , corresponding to ζ2 ≥ 2/3; see [12, Open Problem 5] and [14, Conjecture

2.6]. Theorem 1.1 gives the first such existence result. The solutions in Theo-

4In analogy with Lp-based Besov spaces, absolute pth order structure functions are typi-

cally defined as Sp(ℓ) =
ffl T
0

ffl
T3

ffl
S2 |v(x + ℓz, t) − v(x, t)|pdzdxdt. The structure function ex-

ponents in Kolmogorov’s ’41 theory are then given by ζp = lim supℓ→0+
log Sp(ℓ)

log(ϵℓ)
, where ϵ > 0

is the postulated anomalous dissipation rate in the infinite Reynolds number limit. Of course,

for any non-conservative weak solution we may define a positive number ϵ =
ffl T
0 | d

dt
E(t)|dt as

a substitute for Kolmogorov’s ϵ, which allows one to define ζp accordingly.
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rem 1.1 may be constructed to have second-order structure function exponent ζ2
an arbitrary number in (0, 1), showing that (1.1) exhibits weak solutions which
severely deviate from the Kolmogorov-Obhukov 5/3 power spectrum.

We note that in a recent work [18], Cheskidov and Luo established the sharp-
ness of the L2

tL
∞
x endpoint of the Prodi-Serrin criteria for the 3D Navier-Stokes

equations, by constructing non-unique weak (mild) solutions of these equations
in LptL

∞
x , for any p < 2.5 As noted in [18, Theorem 1.10], their approach also

applies to the 3D Euler equations, yielding weak solutions that lie in L1
tC

β
x for

any β < 1, and thus these weak solutions also have more than 1/3 regularity.
The drawback is that the solutions constructed in [18] do not have bounded (in
time) kinetic energy, in contrast to Theorem 1.1, which yields weak solutions
with kinetic energy that is continuous in time.

Theorem 1.1 is proven by using an intermittent convex integration scheme,
which is necessary in order to reach beyond the 1/3 regularity exponent, uni-
formly in time. Intermittent convex integration schemes have been introduced
by the first and last authors in [13] in order to prove the non-uniqueness of weak
(mild) solutions of the 3D Navier-Stokes equations with bounded kinetic energy,
and then refined in collaboration with Colombo [7] to construct solutions which
have partial regularity in time. Recently, intermittent convex integration tech-
niques have been used successfully to construct non-unique weak solutions for
the transport equation (cf. Modena and Székelyhidi Jr. [52, 51], Brué, Colombo,
and De Lellis [5], and Cheskidov and Luo [17]), the 2D Euler equations with
vorticity in a Lorentz space (cf. [4]), the stationary 4D Navier-Stokes equations
(cf. Luo [49]), the α-Euler equations (cf. [3]), and the MHD equations and re-
lated variants (cf. Dai [26], the first and last authors with Beekie [2]), and the
effect of temporal intermittency has recently been studied by Cheskidov and
Luo [18]. We refer the reader to the reviews [12, 14] for further references, and
for a comparison between intermittent and homogenous convex integration.

When applied to three-dimensional nonlinear problems, intermittent convex
integration has insofar only been successful at producing weak solutions with
negligible spatial regularity indices, uniformly in time. As we explain in Sec-
tion 1.2, there is a fundamental obstruction to achieving high regularity: in
physical space, intermittency causes concentrations that result in the formation
of intermittent peaks, and to handle these peaks the existing techniques have
used an extremely large separation between the frequencies in consecutive steps
of the convex integration scheme.6 This book is the first to successfully imple-
ment a high-regularity (in L2), spatially intermittent, temporally homogenous,
convex integration scheme in three space dimensions, and shows that for the 3D
Euler system any regularity exponent β < 1/2 may be achieved.7 In fact, the

5See also [19] for a proof that the space C0
t L

p
x is critical for uniqueness at p = 2, in two

space dimensions.
6This becomes less of an issue when one considers the equations of fluid dynamics in very

high space dimensions; cf. Tao [65].
7It was known within the community (see Section 2.4.1 for a detailed explanation) that
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techniques developed in this book are the backbone for the recent work [57] of
the last two authors, which gives an alternative, intermittent, proof of the On-
sager conjecture. In general, we expect the framework developed in the present
work to inspire future iterations requiring a combination of intermittency and
sharp regularity estimates.

1.2 IDEAS AND DIFFICULTIES

As alluded to in the previous paragraph, the main difficulty in reaching a high
regularity exponent for weak solutions of (1.1) is that the existing intermittent
convex integration schemes do not allow for consecutive frequency parameters
λq and λq+1 to be close to each other. In essence, this is because intermittency
smears out the set of active frequencies in the approximate solutions to the
Euler system (instead of concentric spheres, they are more akin to thick con-
centric annuli), and several of the key estimates in the scheme require frequency
separation to achieve Lp-decoupling (see Section 2.4.1). Indeed, high regularity
exponents necessitate an almost geometric growth of frequencies (λq = λq0), or
at least a barely super-exponential growth rate λq+1 = λbq with 0 < b − 1 ≪ 1
(in comparison, the schemes in [13, 7] require b ≈ 103). Essentially every new
idea in this manuscript is aimed either directly or indirectly at rectifying this
issue: how does one take advantage of intermittency, and at the same time keep
the frequency separation nearly geometric?

The building blocks used in the convex integration scheme are intermittent
pipe flows,8 which we describe in Section 2.3. Due to their spatial concentration
and their periodization rate, quadratic interactions of these building blocks pro-
duce both the helpful low frequency term which is used to cancel the previous
Reynolds stress R̊q, and a number of other errors which live at intermediate fre-
quencies. These errors are spread throughout the frequency annulus with inner
radius λq and outer radius λq+1, and may have size only slightly less than that of

R̊q. If left untreated, these errors only allow for a very small regularity parame-
ter β. In order to increase the regularity index of our weak solutions, we need to
take full advantage of the frequency separation between the slow frequency λq
and the fast frequency λq+1. As such, the intermediate-frequency errors need
to be further corrected via velocity increments designed to push these residual
stresses towards the frequency sphere of radius λq+1. The quadratic interactions
among these higher order velocity corrections themselves, and in principle also

there is a key obstruction to reaching a regularity index in L2 for a solution to the Euler
equations larger than 1/2 via convex integration.

8The moniker used in [27] and the rest of the literature for these stationary solutions has
been “Mikado flows.” However, we rely rather heavily on the geometric properties of these
solutions, such as orientation and concentration around axes, and so to emphasize the tube-like
nature of these objects, we will frequently use the term “pipe flows.”
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with the old velocity increments, in turn create higher order Reynolds stresses,
which live again at intermediate frequencies (slightly higher than before), but
whose amplitude is slightly smaller than before. This process of adding higher
order velocity perturbations designed to cancel intermediate-frequency higher
order stresses has to be repeated many times until all the resulting errors are
either small or live at frequency ≈ λq+1, and thus are also small upon inverting
the divergence. See Sections 2.4 and 2.6 for a more thorough account of this
iteration.

Throughout the process described in the above paragraph, we need to keep
adding velocity increments, while at the same time keeping the high-high-high
frequency interactions under control. The fundamental obstacle here is that
when composing the intermittent pipe flows with the Lagrangian flow of the slow
velocity field, the resulting deformations are not spatiotemporally homogenous.
In essence, the intermittent nature of the approximate velocity fields implies that
a sharp global control on their Lipschitz norm is unavailable, thus precluding
us from implementing a gluing technique as in [42, 11]. Additionally, we are
faced with the issue that pipe flows which were added at different stages of the
higher order correction process have different periodization rates and different
spatial concentration rates, and may a priori overlap. Our main idea here is to
implement a placement technique which uses the relative intermittency of pipe
flows from previous or same generations, in conjunction with a sharp bound on
their local Lagrangian deformation rate, to determine suitable spatial shifts for
the placement of new pipe flows so that they dodge all other bent pipes which
live in a restricted space-time region. This geometric placement technique is
discussed in Section 2.5.2.

A rigorous mathematical implementation of the heuristic ideas described in
the previous two paragraphs, which crucially allows us to slow down the fre-
quency growth to be almost geometric, requires extremely sharp information on
all higher order errors and their associated velocity increments. For instance, in
order to take advantage of the transport nature of the linearized Euler system
while mitigating the loss of derivatives issue which is characteristic of convex in-
tegration schemes, we need to keep track of essentially infinitely many sharp
material derivative estimates for all velocity increments and stresses. Such
estimates are naturally only attainable on a local inverse Lipschitz timescale,
which in turn necessitates keeping track of the precise location in space of the
peaks in the densities of the pipe flows, and performing a frequency localiza-
tion with respect to both the Eulerian and the Lagrangian coordinates. In
order to achieve this, we introduce carefully designed cutoff functions, which
are defined recursively for the velocity increments (in order to keep track of
overlapping pipe flows from different stages of the iteration), and iteratively
for the Reynolds stresses (in order to keep track of the correct amplitude of
the perturbation which needs to be added to correct these stresses); see Sec-
tion 2.5. The cutoff functions we construct effectively play the role of a joint
Eulerian-and-Lagrangian Littlewood-Paley frequency decomposition, which in
addition keeps track of both the position in space and the amplitude of var-



8

main˙PUP˙single˙spaced March 21, 2023 6.125x9.25

CHAPTER 1

ious objects (akin to a wavelet decomposition). The analysis of these cutoff
functions requires estimating very high order commutators between Lagrangian
and Eulerian derivatives (see Chapter 6 and Appendix A). Lastly, we mention
an additional technical complication: since the sharp control of the Lipschitz
norm of the approximate velocities in our scheme is local in space and time, we
need to work with an inverse divergence operator (e.g., for computing higher
order stresses) which, up to much lower order error terms, maintains the spatial
support of the vector fields that it is applied to. Additionally, we need to be
able to estimate an essentially infinite number of material derivatives applied
to the output of this inverse divergence operator. This issue is addressed in
Section A.8.

1.3 ORGANIZATION OF THE BOOK

The goal of this book is to prove Theorem 1.1 through an explicit construction
of satisfactory weak solutions of the 3D Euler equations. Many aspects of this
construction are in fact predicated on several recent advancements in the field
of convex integration, particularly for the Euler and Navier-Stokes equations.
Readers wishing to familiarize themselves with the important concepts can con-
sult the survey paper [12], which provides an excellent overview of the relevant
literature, along with essentially complete proofs of some fundamental results.
We also refer the reader to the foundational papers [31, 8, 43, 11, 13], in which
much of the aforementioned theory for the Euler and Navier-Stokes equations
was developed.

As the complete proof of Theorem 1.1 is quite intricate, we have provided
in Chapter 2 a broad overview of the main ideas, and how they tie together in
order to prove the end result. Any path through this book, whether a short
sojourn or a deep dive, should begin here. Specifically, Chapter 2 contains an
outline of the convex integration scheme, in which we replace some of the actual
(and more complicated) estimates and definitions appearing in the proof with
heuristic ones in order to highlight the new ideas at an intuitive level. Readers
familiar with the aforementioned literature may read only this chapter and still
encounter the inspiration behind every new idea in the proof.

For those readers wishing to move past heuristics, the proof of Theorem 1.1
is given in Chapter 3, assuming that a number of estimates hold true inductively
for the solutions of the Euler-Reynolds system at every step of the convex inte-
gration iteration. The remainder of the book is dedicated to showing that the
inductive bounds stated in Section 3.2 may indeed be propagated from step q
to step q+1. Chapter 4 contains the construction of the intermittent pipe flows
used in this book and describes the careful placement required to show that these
pipe flows do not overlap on a suitable space-time set. The mollification step of
the proof is performed in Chapter 5. Chapter 6 contains the definitions of the
cutoff functions used in the proof and establishes their properties. Readers may
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skip the proofs in Chapters 5 and 6, simply take the results for granted, and read
the rest of the book successfully. Chapter 7 breaks down the main inductive
bounds from Section 3.2 into components which take into account the higher
order stresses and perturbations. Chapter 8 then proves the constituent parts
of the inductive bounds outlined in Chapter 7. Chapter 9 carefully defines the
many parameters in the proof, states the precise order in which they are chosen,
and lists a few consequences of their definitions. Finally, Appendix A contains
the analytical toolshed to which we appeal throughout the book. Readers may
also wish to read the proofs in the appendix sparingly, as the statements are
generally sufficient for understanding most of the arguments.
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