CONTENTS

Acknowledgments vii

	Introduction: Sex Biology Is Interesting	1
1	The Evolution of Sex	5
2	Animal Sex Biology: Mixing It Up	22
3	Humans Are Messy	38
4	Humans Then	48
5	Humans Now	74
6	No Biological Battle of the Sexes	109
7	Why the Binary View Is a Problem	125
	Notes 151 Index 193	

Introduction

SEX BIOLOGY IS INTERESTING

IMAGINE YOU are a fish called the bluehead wrasse, living off the coast of Florida. As you grow up, you, just like all to the other bluehead wrasse your age and size, develop one set of reproductive organs. You are what we'd call female, so you produce eggs. There is only one very large member of your group, and they are the group male, so produce sperm. But over the next few weeks you grow really fast, becoming the second-largest fish on your reef. Then the male gets eaten. Almost immediately your body starts to change, your reproductive organs mold, shift, and alter their form. *You* become the group's sperm producer. As a bluehead wrasse, you can have one body and one set of DNA, but multiple forms of reproductive biology across your lifetime.

Bluehead wrasse reproductive biology is not the most common pattern in the animal kingdom, but it's also not that weird. When most people think of the biology of reproduction, they typically envision two fixed kinds in each species: female and male. This is (mostly) right when it comes to the reproductive organs themselves, but not accurate for entire bodies and lives.

1

2 INTRODUCTION

Most species do have two types of reproductive organs, and they are often found in two slightly different forms of that species' body plan. But not always. As with the wrasse, many fish start out with one set of reproductive organs, and once they grow to a certain size, they redo their anatomy and develop a new set of reproductive organs. Each earthworm's body has both types of its species' reproductive organs. Bees have two kinds of reproductive organs across three kinds of bodies. All mammal mothers lactate, but in some species of bat, fathers do too. And, as in the two different types of orangutan male, one with big face flanges and the other without, there can also be quite a bit of variation in bodies and behavior even among those individuals within the same species that have the same reproductive organs.

There is an explosion in research on the biology of reproduction—what we'll call sex biology—in the animal kingdom. While we continue to find that there are important differences in reproductive biology producing female, male, and sometimes intersex bodies in any given species, there is also a lot of variation, and overlap, in the actual biology and behavior that make up these categories. The variation we observe across the animal kingdom doesn't represent unusual exceptions to some kind of rule of sex; rather, this spectrum of variation tells us that females and males are not two different kinds of thing. Sex biology is not about two distinct kinds, a binary; instead, it's about patterns of variation in bodies, behavior, and lives that differ, overlap, and intertwine. Sex biology, as it turns out, makes life quite interesting.

The explosion in research is not limited to how other animals "do sex." There is also enormous investigation into human bodies, reproductive processes and patterns, health, hormones, genitals, genetics, behavior, and other related topics. For

INTRODUCTION 3

example, we now know that human brains don't come in "male" and "female" versions. Also, unlike some other mammals, all human caretakers (regardless of their reproductive organs) can undergo changes in their brains, bodies, and behavior when they take care of babies. Fascinatingly, human sexual behavior, including the targets of attraction and arousal, is not necessarily linked to what kind of reproductive organs one has. And, most importantly, human sex is never just about biology; we have gender too.

In short, there is a lot going on in science regarding sex and gender in humans. Unfortunately, there is also a ton of misunderstanding in society about what biology, especially sex biology, tells us and what it doesn't tell us. And there is lack of awareness of just how diverse and variable humans are. To better understand biology and sex in humans, we need to learn about our bodies, histories, cultures, and behavior. We have to understand what it means that everything about humans is a supercomplicated blend of biology and culture. We need to combine our knowledge of biology, sex, and the human experience into a new narrative. My goal in this book is to put forward this new narrative and show how the biology of sex actually works, what it does and does not tell us, and how we might incorporate this knowledge into our education, lives, and laws.

To do so, I will first summarize what is currently known about the biology of sex in animals and how, and why, that relates to humans. This is important because understanding animal biology is at the heart of understanding human biology (we are, after all, animals). From there, I will illustrate what we know about sex, in biology and behavior, in the human past and present, across the last two million years of our lineage's existence and among the eight billion humans living today. What this knowledge from the animal world, the human past, and the

4 INTRODUCTION

human present shows us is that biology as it relates to sex is not binary, meaning that it does not come in two distinct kinds: male and female. This is not to say that females and males are the same. They aren't. Nor is it that biological variation related to sex does not matter. It does. It's just that not all humans fit neatly into the categories of female or male, and biological measures of human bodies rarely segregate into two non-overlapping categories. Neither "female" nor "male" describes a uniform or distinct biological type.

I will conclude by discussing why a binary view is a detrimental way to think, and talk, about sex biology and the human experience. Reproductive biology is an important structuring part of human lives; however, producing ova or sperm, having XX or XY chromosomes, or having a clitoris or a penis, does not tell us nearly as much biologically as many believe. Nor does it consistently or accurately inform us about an individual's childcare capacity, homemaking tendencies, interest in literature, engineering and math capabilities, or tendencies toward gossip, violence, compassion, or a love of sports. By contrast, placing reproductive biology in the context of the rest of the body, and in relation to behavior, history, society, and experience, we are much better prepared to ask, and answer, questions about health, habits, proclivities, happiness, and the many ways to successfully be human.

However, at its core, biology is about evolution, and evolutionarily speaking there is a lot of variation in sex biology and behavior, both across and within species. So, to really understand how biology and sex work in humans, we need to start not with us today but right back near the start of life on earth, with the evolution of sex.

INDEX

ACTH (adrenocorticotropic hormone), 93 activation differences, 101 ADHD (attention deficit hyperactivity disorder), 135 adipose tissues, 87-88; deposition of, 88. See also fat adrenal glands, 91-92, 93 adverse drug events (ADEs), 186n23 age, correlation of sexual activity with, 127 aggression, 112–13; battle of the sexes argument on, 119, 121; participation in antisocial, 120; testosterone and, 96; variations in, 118-20 agreeableness, 113 algae, blue-green, 5 allocare, 60-61, 164n35. See also childcare altricial offspring, 30 Ambien (zolpoidem), 132–33, 140 amphibians, 13, 20 anal sex, 115-16 androgens, 89, 92; concentrations of, 33; hormone exposure and, 33 andropause, 94 anemonefish, 27 animals: evolution of, 152n12; problems with testing of, 186n14;

sex biology of, 3-4, 22-37, 47; study of sex and variability in, 125. See also specific animals anisogamy, 9-10, 11, 63, 73, 152n12; assumptions about, 116; classic position in biology in, 110; emergence of, 7–8; original model of, 51; parental care and, 10, 19; simplistic view of, 19 anti-Mullerian hormones (AMHs), 172n24, 174n43 antiplatelet therapy, 136 ants, 24 anxiety, 135 apes, 52-56; sexual activity in, 64-65; tool use of, 69 aquatic species, 13. See also fish Aristotle, 9 arousal, physiological system of, 127 art, 60, 71, 72 asexual reproduction, 5, 6, 7, 25, 127 Australopithecines, 57-58, 59 autistic spectrum, 135 baboons, 51

bacteria, 5; division of, into archaebac-

Bateman, Angus, 9-11, 63, 109, 152n12,

teria and eubacteria, 151n2

152n14

194 INDEX

"battle of the sexes" concept, 110, 121, 122-23 Beauvoir, Simone de, 42-43 bees, 24, 35, 155n5; reproductive organs in, 2 behavioral diversity, 54 bimodal definition of sex, 39-40 binary view of sex biology, 4, 84-85, 125-50; cardiac disease in, 135-36; inadequacy of, 3-4, 21, 39-40, 149-50; making family as part of, 129-31; in medical research and treatment, 131–35; organ transplant as aspect of, 136-37; pervasiveness of, 125; pregnancy in, 137-39; sex contextualism in, 139-40; sexuality and sexual orientation in, 126-29; sports and, 141-47 biocultural framing, 45, 46 biocultural view: of humans, 40-42, 47, 109; of organs, 90-91 biological binary, 8 biological differences in communication, 109 biological sex, 158n1; gonads and, 86 biology, 11, 40; animal, 3-4, 22-37, 47; gender and, 45; human, 84-86; reproductive, 1-2, 3-4, 11, 12. See also sex biology biomedical research, 140 biopsies, 85 bipedalism, 88 birds, 16, 23; heterosexuality in, 128; parental care by, 18, 19-20, 30-31, 161n2. See also particular species birth mothers, reproductive process in, 130 bisexuality, 127 Bitch: On the Female of the Species (Cooke), 36

bonobos, 54, 55, 56, 64, 128 brains, 3, 100-104; size of human, 41 California sheepshead fish, 27 canine teeth, 50, 53, 70; dimorphism in, 57, 163n25 cardiac disease, binary view of, 135-36 cetaceans (whales and dolphins), 18 childcare: animals and, 18-20, 32, 49; humans and, 55, 66, 110; role of group in 59-63, 68, 71 chimpanzees, 54-55, 56, 64; sexual behavior in, 64; subspecies of, 165n51 chromosomes, 4, 5, 158n1; multiple sets of, 25, 155n8; sex, 104; twenty-third, 44, 46, 85, 99, 104, 106; X, 38, 88, 95, 104-5, 108; XX, 85, 95, 105, 158n1; XY, 46, 99, 105, 106, 137; Y, 38, 88, 104-5 clitoris, 16, 17, 33, 45, 86, 114 cloaca, 16, 30 clothing, 41, 43 cognition: battle of the sexes argument on, 121; differences between males and female in, 111-12; as nonbinary, 113 "Cohens d" measure, 112–13 communication: biological differences in, 109; dynamics in, 112 comparative approach, defined, 48 connectome, 100 coprodeum, 16 cortisol, 98 crocodilians: infant care by, 18, 30; sex biology in, 28-29 cultural meaning, assignation of, 67 cyanobacteria, 5 Cytochrome P450 (CYP), 134

body size and strength, 110-11

INDEX 195

Darwin, Charles, 9, 14, 109, 152n12; on extroversion, 112 sexual selection, 50-51 EXX, gene, 172n24 DAX1 (nuclear receptor protein), 106 dementia, 135 fallopian tubes, 97 family, making of, as binary view depression, 135 developmental dynamics, 108 problem, 129-31 DHEA (dehydroepiandrosterone), 93 fat, 86, 87-88; brown, 87; variation in DHT (dihydrotosterone), 53 deposition, 88. See also adipose dimorphism, 55, 155n1; sexual, 30-31, tissues Fausto-Sterling, Anne, 115 51, 53, 55, 59, 101, 108, 17915 dinosaurs, 30 females, 1, 12, 42-43, 50, 108; discontinuity, evolutionary 56 biologists' use of term, 12, 39; body diversity in sex biology, 149-50 size of, 134; brains in, 120; childcare DNA, 1, 8, 104-7, 110, 151n1; in and, 19; cognition in, 111-12; eukaryotes, 5; information revealed communication between males and, 109; in dominance, 162n14; by, 77 dolphins, 18 height distribution in, 74–75; physical skills of, 113; relationships drones, 24 with males, 109; sexual activity by, drugs: effect on 3G males and 3G females, 132-33. See also specific 127-28; Sociosexual Orientation Inventory (SOI) measure of, 117; names duck-billed platypus, 14 variation between males and, 109, ducts, Mullerian and Wolffian, 124. See also 3G females; women female/woman distinction, 42, 122-23, 85-86,99 dyslexia, 135 170n1 femininity, 33, 42, 43, 83, 103, 123 eagles, 31 fetuses, 14, 17-18, 20, 28, 97; fetal eating disorders, 135 development, 17, 153n21 fish: anemonefish, 27; bluehead eggs, 14, 16-17, 29. See also ova wrasse, 1-2, 26-27; California elephants, 18, 23 embryos, development of zygotes sheepshead as, 27; caretaking in, into, 18, 20, 21 19-20; female-mimics, 26-27; endocrine system, 91-92, 185n7 gobies, 27-28; sex biology change in, 27; teleost, 26 endometrium, 98 estradiol, 94 fixed sex differences, 22 estrogen, 92, 99 flanges, 53, 54 eubacteria, 151n2 follicle-stimulating hormone (FSH), eukaryotes, 5-6 53, 94, 97-98 evolution, 11, 56; animal, 152n12; of sex, fossil record, 48, 56, 59, 62, 68, 69-70, 122 4, 5-21

196 INDEX

frogs, 13	hair, 88, 89–90, 173n34	
fruit flies, 10, 152n12	Haldane, J. B. S., 36	
	hawks, 31	
galactorrhea, 99	hearts, 90, 98, 136; transplantation of,	
gall bladders, 90	137	
gametes, 7–8, 15, 36, 39; fusion of,	height distribution in men and	
14, 16, 20, 24, 28, 31–32, 153118;	women, 74–75, 76	
getting together, 11-15; large, 50;	helping, 112	
large versus small producers of,	hematopoietic stem cell transplanta-	
23–24, 50, 121; production of, 40;	tion, 135, 137	
types of, 8	Hemiptera, 24–25	
gametogenesis, 85	hermaphrodites, 153n17	
gay gene, quest for, 126	heteronormativity, 116	
gender, 42–45, 67–73; behavior	heterosexuality: aggression between	
patterns in, 120; binary views of, 123,	partners in, 119; in mammals and	
126; biology and, 3, 45; as a cultural	birds, 128; as natural mode of sexual	
experience, 44; defined, 68;	behavior in humans, 127; sex binary	
expectations and experiences in,	and, 126	
159n8; global dynamics in, 44;	Hippocrates, 9	
multidimensionality of, 123; in	hirsutism, 89	
neurobehavioral disorders, 135;	homicide, patterns of, 120	
norms in, 43–44; relationship with	hominins 48; lack of canine dimor-	
biology, 45; roles in, 43, 159n13.	phism in, 163n25	
See also under sports	hominoids (apes), 48, 56–58; humans	
"gender/sex" term, 45–46	as, 52–56	
genetic processes, 108, 151111	Homo: humans as genus, 58–60; social	
genital-genital contact, 63	organization in, 122; two-adults-	
genitals: animal, 32–33; human, 16–17,	plus-offspring as core social	
18, 84–86, 114	structure for, 122	
genital tubercle, 85	Homo sapiens, 123	
gestation, 14, 23	homosexuality, 116, 126, 127	
gibbons, 53	hormones, 91–97; gonadal production	
Gila monsters, 29	of, 92; luteinizing, 53, 54, 94, 97–98.	
gonadal ridge, 85	See also specific hormones	
gonadarche, 93	HOXA ₁₃ gene, 172n24	
gonads, 15–16, 108; biological sex and,	human(s), 38-47; biocultural view of,	
86; formation of, 85	40–42, 108, 109, 118; biological	
gorillas, 51, 52, 54, 64	variation of traits in, 107–8;	
gynecomastia, 87	development of genitals in, 85;	

INDEX 197

kangaroos, 12

kidneys, 90, 136

evolutionary history of, 49, 73; as genus Homo, 58-60; as hominoids, 52-56; level of sex in, 118; makeup of families among, 130-31; as primates, 48; sexual behavior in, 3; shaping of, 73; social pair bonding in, 67 human biology, genitals and, 84-86 human bodies: material structures of, 40-41; variation in, 78-80, 125 human brain, size of, 41 human evolution, 49f, 111; heterosexual, 66; pair bonds in, 66 human sex biology, 48-49, 75-76; complications of, 39-40 human transcriptome, 106-7 hunting, 70 hyenas, 12, 32-33, 36, 96 Hymenoptera (bees, ants, and wasps), 24 hypercooperation, 59 hypertensive disorders, 138 hypothalamic-pituitary axis (HPA), 85 hypothalamic-pituitary-gonadal (HPG) axis, 93 hypothalamic-pituitary-ovarian (HPO) axis, 93, 97-98 hypothalamus, 91

INAH-3 nucleus, 101, 126
infants. See childcare
inhibin, 94, 174n43
insects, scale, 24
insomnia, battling, 133
internal fusion systems, 16–18
International Olympic Committee
and World Athletics, 141
intersex category, 12, 25, 153n17
introversion, 112
isogamy, 7

labia, 33, 45, 85, 86
labioscrotal/urogenital fold, 17
lactation, 14, 18, 19, 23, 99
large-gamete production, 50
leadership, 112
lemurs, 52, 162n14
LeVay, Simon, 126
LGBTQ families, prejudice against, 129–30
limbic system, 185n7
LIM1 gene, 172n24
Lion King, The, 32

Lion King, The, 32
liver, 90, 98; transplantation of, 137
lizards, 28–29
lungs, 90; transplantation of, 137
luteinizing hormone (LH), 53, 54, 94, 97–98
macaque monkeys, 51
male/man distinction, 42, 122–24,

170n1 males, 1, 12, 50, 108; biologists' use of term, 12, 39; body size in dominating group, 50; brains in, 120; cognition in, 111-12; communication styles of, 109; conflict between females and, 111; flanged and unflanged, 54; height distribution in, 74-75; mammal, 155n1; one-to-one universal truths in, 149; oral sex and masturbation in, 115; physical skills of, 113; promiscuity and, 124; relationships with females, 109; size of INAH-3 in gay versus straight, 126; Sociosexual Orientation Inventory (SOI)

198 INDEX

males (continued) measure of, 117; universal dominance of, 109; variation between females and, 109, 124. See also 3G males; men mammals, 17, 18, 31, 48-49; core premise of the battle of sexes and, 110; gametic fusion in reproduction, 129-30; heterosexuality in, 128; internal gestation in, 28; male, 155n1; marsupial, 153n21; masturbation in, 114-15; pair bonds in, 67; physiological and behavioral care of, 161n2; placental, 153n21; postbirth care in, 32; reproductive biology in, 20; reproductive physiology in, 23-24; sex biology for, 33; social, 164n35 mammary glands, 18 mandibular ramus, 80 "man's mind," differences between "woman's mind" and, 113-14 marsupials, 153n21, 161n1 masculinity, 42, 44, 95, 103, 123; clothing and, 43 masturbation, 113-15; self-reported, 127 mating types (aka sexes), 6 medical research: binary view bias in, 131-35; sex contextualism in, 139-40 men: biocultural makeup of, 41; common assertions about, 109, 124; gender classification of, 42-44, 69, 124; sexual activity of, 115-17; social roles of, 38; 3G categories and, 47, 69, 136. See also males; testosterone; 3G males menarche, 93-94 Men Are from Mars, Women Are from Venus (Gray), 109-10, 17911 menopause, 94; physiological changes in, 128; sex biology of, 116 menstruation, 97-98

meta-analyses, 18on8 minds, difference between men's and women's, 113 "mind" studies, 112-13 mole rats, naked, 12, 35, 36, 96 monkeys: baboons, 51; macaques, 51; tamarins, 12; titis, 96 monogamy: in animals, 34-35, 36; in humans, 66, 122, 157n32, 166n66 motor behaviors, 112 Mullerian ducts, 85-86 muscles: concentric versus eccentric contractions of, 171111; factors in performance of, 83; relationship between strength and architecture of, 80-81; in shaping human bodies, 80-84; strength of, 80-81; 3G assessments of, 82-83; in 3G females versus 3G males, 81; variation in, 81-83 myotonia, 185n7

National Academies of Science,
Engineering, and Medicine, 138
National Health and Nutrition
Examination Survey (NHANES),
78–79
natural selection, 9
Neanderthals, 70, 165n44; teeth in, 70
negotiation, 112
neurobehavioral disorders, 135; gender in, 135
neurobiology, 100–104
niche construction, 154n29
nonlinear scaling relationship between region and brain size, 177n71

obstructive coronary artery disease (CAD), 135–36 one sex model, 9

INDEX 199

orangutans, 53-54, 64; sex biology of, biology and behavior in, 49-50; 54; social lives of, 54; types of, 2 sexual behavior of, 128; sexual organs: sex biology and, 90-91; selection in, 51; shapes and sizes of, 52; social behavior and relationships transplants of, as aspect of binary view problem, 136-37 among, 33-34, 50; social sex in, 63 proctodeum, 16 ova, 8, 13, 15 ovaries, 15-16, 17, 92, 94 progesterone, 92, 94, 97 prokaryotes, 5, 6 ovotestis, 16, 153n17 prolactin, 99 ovulation, 97-98 protobirds, 30 oxytocin, 185n7 pseudogynecomastia, 87 pair bonds, 52, 53, 65-67, 122, 130, pseudopenis, 33 psychiatric conditions, 135 167n70 psychological states and behaviors, 112 pancreas, 92 Pan genus, 54-55, 64 puberty, 87, 93, 94-95; mini puberty, parathyroid glands, 91 93, 94 Parker, G. A., 10, 152n14 parthenogenesis, 12, 25 race, 91, 186n19 PAX2 gene, 172n24 religious beliefs, 44, 129 peafowl, 110 reproduction: asexual, 2, 5, 6, 7, 28, 127; pelvic girdle, 59, 79 organs in, 1-2; patterns and trends penis. See genitals associated with, 23; sexual, 6, 7, 8; periodic table of elements, 22-23 sexually dimorphic patterns Phelps, Michael, 145 associated with, 32; types of organs phenotypes, development of bodily, 91 in, 2 physiology, reproductive, 23, 156n26 reproductive biology, 11, 20; differpituitary gland, 91, 92 ences in, 2, 4 reproductive physiology, 23, 156n26 placenta, 17 placental mammals, 153n21 reproductive skew, 63 polycystic ovary syndrome (PCOS), 95 reptiles: infant care by, 29-30; sex polyploidy, 25 biology in, 28-30 power-lifting competitions, 82 pregnancy, 98-100, 108; binary view salamanders, 13 scrotum, 33, 85 of, 137-39 primates, 48-52; father as caretaker in, sea horses, 13 49; humans as, 48; masturbation in, Semenya, Caster, 141, 143 114-15; monogamy in, 34, 35, 36; sensory stimulus, 185n7 sex: as bimodal, 39-40; evolution of, mother as caretaker in, 49; 4, 5-21; purposes of, 6-7, 11, 63-65; pair-living, 52; patterns of care in, 52; reproductive sex in, 64; sex self-reported, 161n23

200 INDEX

"sex at birth" term, 46, 47, 77 problem, 126-29; gender/ sex binary, 36-37, 97; as tied to sex-related variation in selfheterosexual reproduction, 126 reported perspectives, 118; sex biology, 1-4, 5-21, 54, 65, 76-77, 127; responding to questions about, basic animal, 22-37, 47; binary views 182n26; self-reporting on, 113; as of, 4, 39-40, 84, 126; climatesomatic fact and cultural effect, influenced, 28-29; copulation, 13, 14; 115 as culturally contextualized pattern, sexual orientation, 116, 129 139; diversity in, 149-50; human sexual pair bond, 67 experience of, 39-40, 42; imporsexual reproduction, 7, 8, 63-64; evolution of, 6 tance of, 45; mammalian, 36; medical binary view of, 131; of sexual selection, 9, 50-51 sexual violence: initiation of, 127; menopause, 116; misunderstandings of, 22; niche construction in, 154n29; patterns of, 120 sex uniformity, 22 organs and, 90-91; patterns in, 23, 110, 124; triggers for change in fish, siamangs, 53 27; typical, 39; variations in, 4, 18, skeletons, patterns of variation in, 79 26-27, 29, 77, 110, 124, 130. See also skulls, 80 biology social pair bond, 67 social sex, 64 sex chromosomes, 104 sociosexuality, 118 sex confirmation testing, 141 sex contextualism, 189n44; in binary Sociosexuality index (SOI), 127 view problem, 139-40 songs, 53 sex differences, 76-77 SOX9, 106 sex diversity and variability, 125 spatial-ability skills, 112 sexism, 136, 186n19 spawning, 13 sex organs. See genitals sperm, 8, 15, 131 sports: binary view problem and, sex reproduction, 39 sexual activity: age and, 127; difficulty 141–47; gender-uniform, 145; impact of sex categories in, 83, 140; in collecting data on, 115; as social tool, 64; women's participation in, running, 143-44; testosterone and, 127-28 141, 142 sexual arousal, 117-18 SRY gene, 105 sexual assault, 182n32 strength training, 80, 82–83 sexual behavior of primates, 128 sexual dimorphism, 30–31, 51, 53, 55, 59, teeth: canine, 50, 53, 70; Neanderthal, 101, 108, 17915 sexual interactions, 55 testes, 15–16, 92, 94, 114; undescended, sexuality, 112, 115; battle of the sexes 141 argument on, 121; as binary view testes determining factor (TDF), 105

INDEX 201

testosterone, 53, 54, 91, 92, 94-97, 119, 185n7; range of functions in, 146-47; sexual arousal and, 117-18; sports and, 141, 142, 144; variation in circulating levels of, 134, 141-42, 146 3G categories, 46-47, 161n23 3G females, 46-47, 50, 56-57, 186n22; battle of the sexes argument and, 122; biology associated with, 50; bodies of, 62; brains of, 100; cardiac disease in, 135-36; as correct nucleus of family, 130; defined, 46; differences from 3G males, 62, 65; effect of drugs on, 132-33; height of, 74-75, 112; human hair in, 89, 90; infant care by, 110; in laboratory research, 131-32; muscle strength in, 80-84; nutritional and caloric needs of, 68; organs in, 90; organ transplants in, 136-37; pelvic girdle in, 79; physical description of, 68; pregnancy and related physiological changes in, 137-39; sexual nature of, 109-10. See also females: women 3G males, 46-47, 56-57; battle of the sexes argument and, 122; biology associated with, 50; bodies of, 62; brains of, 100; cardiac disease in, 135-36; as correct nucleus of family, 130; defined, 46; differences from 3G females, 62, 65; DNA in, 110; effect of drugs on, 132-33; height of, 74-75, 112; hyperaggression in, 120; initiation of homicide and sexual assault by, 119-20; in laboratory research, 131-32; muscle strength in, 80-84; organs in, 90-91; organ transplants in, 136-37; pelvic girdle in, 79; physical description of, 68;

reproductive strategy of "more sex, less investment," 113; sexual nature of, 109-10; testosterone in, 111; types of, 53. See also men; males thyroid glands, 91 tissues, adipose, 87-88 transgender individuals: early acceptance of, 43-44; growth in legislation against, 147; restroom prohibitions and, 147-49; sporting events and, 144-45 transplantation: heart, 137; hematopoietic stem cell, 135; liver, 137; lung, 137 Trivers, R. L., 10, 152n14 turtles, 28 two sex model, 9

UK Biobank dataset, 102–3 undescended testes, 141 unflanged males (orangutan), 54 urodeum, 16

vaginas, 16, 45 vasocongestion, 185n7 vasopressin, 185n7 vellus hair, 89 vertebrates: egg laying in, 16–17; gonads in, 15–16 vocalizations, 53 voluntary activation, 81, 83

wasps, 24
WEIRD (Western, Educated,
Industrialized, Rich, Democratic)
nations, 84
Wilson, E. O., 10, 109, 152n14
Wnt4, 106
WNT gene, 172n24

202 INDEX

women: biocultural makeup of, 41; common assertions about, 109, 124; gender classification of, 42–44, 69, 124, 143; sexual activity of, 115–17; social roles of, 38; 3G categories and, 47, 136. *See also* females worms, sex biology of, 2, 25, 26 X and Y chromosomes. *See under* chromosomes

zolpidem (Ambien), 132–33, 140 zygotes, 12, 13, 14, 17, 24, 153n18; development into embryos of, 20, 21