© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CONTENTS

Acknowledgements vi
Preface 1
Chapter 1 What is Africa? 15
Chapter 2 Gondwana's Core 43
Chapter 3 Dawn and Consequences from Chance 61
Chapter 4 Afloat on Planet Ocean (Adrift and Heading North) 79
Chapter 5 Global Wobbles and Climate Change 99
Chapter 6 Habitats Defined by Plants 115
Chapter 7 Emigration and Immigration 139
Chapter 8 Diversity - Highs and Lows 159
Chapter 9 Succession 177
Chapter 10 Diseases and Plagues 199
Chapter 11 Louder, Softer, Bigger, Smaller, Faster, Slower, Duller, Brighter 213
Chapter 12 Behaviour Drives Morphology 229
Chapter 13 Ecological Elders 251
Chapter 14 Import and Export of Primates 269
Chapter 15 Slow but Smart 287
Chapter 16 The Boreal, Latitudinal Realm 301
Chapter 17 The Austral, Longitudinal Realm 323
Chapter 18 Niche-thieves 351
Chapter 19 Out of Africa and Back Again - the Banda Strandlopers 367
Chapter 20 Translating Nature 387
Chapter 21 Mind and Memory 419
Chapter 22 Process as Principle 437
Further Reading 457
Index 459

If the contemporary fauna and flora of tropical Africa include some of the earliest inhabitants of our small blue planet, they are but yesterday's children compared with its fabric of minerals, rocks and soils.

This was impressed upon me by our family friend, geologist 'Great Dane' Max Coster. Singida town, where my father was District Commissioner, sits between two soda lakes, and its buildings, roads, trees and gardens fit in among great outcroppings of rock. Shortly after his arrival I found myself sharing the top of a giant boulder with Max as we watched a flight of flamingos cross a near-setting sun. Our dusk perch was one of many eroded rock formations on the outskirts of the town and we were close to the promise of sundowners at the Boma, the massive German-built fort that our family called home. 'The parent gneiss for the rock we're sitting on could go down, say, 40,000 feet beneath us, and it became rock some two billion years ago,' Max explained. The fact that our sandals and trousered butts rested on such venerable material was a routine observation for Max, but a big imaginative challenge for me.

The one constant is that our planet has always had a relatively warmer atmospheric girdle, between two cold poles where the regular, periodic absence of sunshine returns each polar surface to something like Earth's lifeless beginnings. Meanwhile, Africa's equatorial belt harvests evaporation from two oceans, resulting in rain that falls all year, or in two wet seasons in quick succession. Max invoked the example of a boiling kettle that evaporates a lot more water than a cold one. Africa was dry and cold during the Ice Ages and hot and wet during thermal maxima, while over the last few millennia it has been about as ideally suited to humans as it ever could be - something that should never be taken for granted or assumed to be permanent.

The slow wars of jostling continents have spilt magma at weak points, on land or over the sea floor. Wounds that begin white-hot, quickly cool. They may form conical pustules which come and go as storms, waves and deluges wash them away. These are volcanoes - ecological islands on land, physical islands in the sea (remember that among the tens of thousands of marine mountains, at least one rises 9 km above the sea floor, a lot taller than Everest).

In East Africa the familiar cones of Kilimanjaro, Rungwe, Kenya, Elgon and Bufumbira all invite questions about geological history and the hidden forces that generated our pimpled, rifted landscapes. Inhabiting every mountain top to every shoreline are floras and faunas of countless entities. Their interactions with one another and with their surroundings hold inconceivable complexity. Their histories are yet to be untangled, let alone understood.

Rock-perched musings with Max aside, huge events like global warming and freezing, tectonics, volcanic eruptions, asteroids and their impact on the history of life on Earth were not part of my formal education - I wish they had been. Even so, subsequent expeditions to the heights of Kilimanjaro, Kenya, Rwenzori and Rungwe challenged my senses and sensibilities - every rock has a story to tell. Today, sundry multitudes of scientists are bringing the unique insights of
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Baobabs in Kunduchi Bay.
evolution, genetics, biogeography, geology and astronomy to bear on human adaptations and prehistory. We now examine islands, mountains, landscapes and climatic periods, asking what set of circumstances could possibly have given rise to the most interesting and complex of all animals - mammalian primate humans.

Ape and human limb proportions compared.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Kilimanjaro, seen from Mweka, and imagined erupting.

For general queries, contact webmaster@press.princeton.edu

GONDWANA'S CORE

In which frogs, with some help from geologists, gift us a truer and older history of continents. Their legacy, with lungfish and scorpions as guides. Native of a microplate.

In 1963 my dear friend and fellow biogeographer, Wilma George ('MamaGundi'), invoked land bridges between fixed land masses to explain some puzzling animal distribution patterns. Given that many offshore islands and sandbanks had long been shown to have had former dry land connections, her speculations were forgivable. Furthermore, her most powerful and influential contemporaries, pundits in the USA and commissars in Russian petroleum industries, all envisaged fixed land and marine surfaces just rising and falling, not slewing and sliding about, en masse.

They and Wilma were wrong.
Amid the many mysteries of our planet, the true story of the formation and movement of continents has been among the most recent to be discovered. We owe our knowledge to one of the great heroes of science, Alfred Wegener - geologist, astronomer, meteorologist, explorer, non-stop smoker and a martyr to science. He first presented his research at a 1912 meeting in one of the world's most splendid (and my favourite) of museums, the Senckenberg, in Frankfurt. However, his discovery of what he called 'continental drift' (now more precisely the science of plate tectonics) only found its full acceptance during my lifetime (after a half-century of ferocious rejection by most self-appointed authorities). In 1944 a humble geologist, Arthur Holmes, who had first tried out his field skills in eastern Africa and Borneo, was the first to document the spread of mid-ocean ridges and confirm that continents slither, like fragments of loose peel over the surface of our global tangerine. Wegener, Holmes and the science of plate tectonics explain the eruption of volcanoes far out in the mid-ocean, like the Galápagos, Hawaiian, St Helena and Mauritian islands. Most important of all, evidence from many disciplines has now been brought together to allow a reconstruction of Pangaea, the supercraton mother of all continents. Even then, her vast amalgam of land and rock took up less than a third of Earth's surface (Mother Earth for us primates, but Mother Ocean for whales and extraterrestrials). Estimated to have held together for some 150 million years, Pangaea's equatorial waistline then arched obliquely over today's Sahara, but mainly it warmed a much more extensive belt of sea.

Pangaea's fracture into northern Laurasia and southern Gondwana is thought to have begun about 300 million years ago when a rift valley first split Morocco's Atlas Mountains away from New England's Adirondack Mountains. An

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Schematic maps of Pangaea and Gondwana's breakup.
embryonic 'sea of Tethys', the future North Atlantic, swept into the cleft. Then the sea's floor steadily widened, just as Arthur Holmes was the first to show.

The mental challenge of imagining events such as oceans cascading into rift valleys or over a Gibraltar waterfall brings with it a peculiar sort of thrill. Authors of the Old Testament understood this well enough when they concocted the scene of Noah's ark floating off on a Mesopotamian flood (real enough for some likely originators of the story). Moses striking his magic staff to part the waters of the Red Sea and let the Israelites pass over could plausibly have had its origins in some upstream landslide creating a dam, or a super-drought somewhere in Mesopotamia. The big difference is that Wegener and Holmes dedicated their lives to extracting true stories, backed up by their own and their colleagues' painstaking research into natural processes. However, contemporary idolisers of 'sacred books' tend to bring literal minds to bear upon symbolic stories that invite interpretation (perhaps designedly so) in more than one way. Expulsion from the garden of Eden was once understood as the end of childhood, while Cain's murder of brother Abel was allegory for the farmers' displacement of nomadic foragers - both tales referencing the personal experiences of the Middle-Eastern authors, and other early converts to these fledgling faiths. For all their poesy, here are ambiguous and misleading materials for mullahs, mothers and grandmothers to tell bedtime stories. Richard Dawkins and Dave McKean have explored this dichotomy brilliantly in their very beautiful book The Magic of Reality, which should be in the library of every school, worldwide.

Had I been raised by such mentors with such school-books, and innocent of an over-arching, global civil war, I might have seen my environment very differently. Luckily, I can go on learning and discover that I was born close to the centre of a grand and fertile stretch of territory - the VM or 'Victoria Microplate'. Much of my life has been spent exploring fellow animal and plant inhabitants right out to the lakes, mountains and rift valleys that demarcate the VM's far-flung and often heart-quickeningly beautiful borders.

Living on the fertile slopes of Kilimanjaro, watching a setting sun paint those beloved hillsides orange, brief as flame, conjured biblical visions in

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Afro-Arabian continent about 62 million years ago (below) and today (right).

which fountains of magma built the mountain, the very slopes we now inhabited. Humans may not have witnessed Kili's most recent eruptions, but will a day come when people, our people, see the mountain wake and come alive again?
This native of a microplate has lived long enough to expand his habitat and describe it as a sort of 'life on central Gondwana'. These terminologies are very distant from those that territorial colonialism, nationalism and religions have imposed upon us. They are a part of embracing the deep past and its consequences - a necessary part of the emancipations and joys of becoming a naturalist. Gondwana was, perhaps, 150 km thick, which did not stop it from fracturing. Africa became the central supercraton of four - Antarctica, Australia and South America budding off (in that order).
There are Wegener fans who call Australia 'Eastern Gondwana’ and South America 'Western Gondwana', while Africa occupies Central Gondwana (central, that is, to the pre-break-up mega-continent). This core is still actively breaking apart, having already sloughed off (about 165 million years ago) those big chunks of ex-Africa that we call Madagascar, India and Arabia, the latter creating the $2,200 \mathrm{~km}$-long, narrow, but still widening Red Sea. Today, an extension of that ex-rift valley is opening as a continental crack that runs from the southern end of the Red Sea to the Zambezi delta, $3,000 \mathrm{~km}$ away. Like Arabia some 50 million years ago, all the land lying east of that eastern rift is today pulling away towards the Indian Ocean. The creation of new islands is a violent process. Mount Kenya's slopes are peppered with lava bombs (now cloaked in moss) beside the living grace of Afro-Alpine groundsels and senecios.
The deeply fractured trenches of the western Rift are more complicated. They demarcate the western margins of the VM, now known to be one of the most extensive chunks of thickened crust and mantle in the world. In spite of its thickness, this colossal microplate has been swept along by Africa's swivelling but mainly northward drift. Because it extends more than 100 km down, deep into the Earth's molten mantle, it is particularly 'sticky' along its northwestern hinge with Africa's main body (the Nubian plate). 'Hinge' is tool-language for the Rwenzori mountains, where the VM has crumpled up thousands of metres high

Stromatolite landscape.
(today eroded down to peaks of just over 5,100 m). This vast uplift is due to the sticky VM going into a counter-clockwise swivel against its fracturing junction with the main mass of Africa. The microplate's southern tip, lying beneath my family's little home town of Mbeya, grates against the Nubian plate to the west, while the rift that marks the VM's long eastern margins is pulling a $3,000 \mathrm{~km}$ long strip of land eastward. Like Rwenzori at its northern end, this southern hinge is associated with volcanics and massive uplift. The natural history of the VM's extraordinarily beautiful landscapes, especially around its outer extremities, begged to be explored by my youthful self.

Before our time, it was inconceivable that the surfaces we walked or rode over were anything less than the bedrock of our grasp of reality. Scientific hero Wegener, for all the pedantic style imposed upon him by a provincial academic tradition, showed that we are mariners on rafts moving at rates, varying rates, that can now be calculated.

Before she crashed into the sandy shores of Asian Himalaya, India detached herself from Madagascar and broke records by speeding across the Indian Ocean at 15 cm per year, which is pretty fast for a migrating subcontinent. Australians, their males prone to growing stubble, like to say that their continent is moving more slowly, but at the same rate as hair growing on an Aussie chin.

Scientists have estimated that Earth formed from its constituent matter some 4.6 billion years ago and, very tentatively, that life began some 4 billion years ago (give or take quite a few million years).

To find anything resembling 'first life on Earth', visit the slopes of an active, sometimes smoking volcano in the East African Rift Valley. Its perfect cone, nearly $3,000 \mathrm{~m}$ high, will tower overhead. Below you, the sun or sky will reflect off the glassy, salty surface of Lake Natron. Standing on the banks of a pretty little stream that flows off Ol Donyo Gelai, look down into water that is disarmingly clear but actually resembles the sort of chemical soup that flowed over the cooling surfaces of planet Earth all those billions of years ago.

In those shallow waters you will see rounded mineral accretions, stromatolites that are the product of mineral-trapping bacteria, by ancestry as ancient as the chemical soup in which they live. In Australia's Shark Bay, stromatolites
take the form of giant mineralised 'mushrooms', which look like a vast gathering of globular tents scattered through extensive lagoons of warm, shallow water. The upper surface of each 'mushroom' consists of a mat of living bacteria, and it is one of life's thrills to watch a fine film of oxygen balloons bubbling over that broad, bland surface and realise that you are witnessing a process that first evolved about 3 trillion years ago and that you owe it to that bubble-wrapped mushroom that you can breathe. Filling and emptying of lungs, steady, even while you sleep, or deep and gasping after a run, is taken for granted until you kneel, warm and wet, beside the altar of a stromatolite, mother of Earth's oxygen.

There are good reasons to feel reverence and gratitude here, because long before the emergence of Pangaea, in the shallow waters of future land-masses, various microbes were busy photosynthesising, and emitting deadly gases such as methane. For more than a billion years, Earth's atmosphere was pretty toxic. Among the photosynthesisers, a single form of bacterium evolved the ability to break a particularly robust bond - the $\mathrm{H}_{2} \mathrm{O}$ of water. This oxygen synthesiser consisted of four manganese molecules that freed oxygen out of water, releasing oxygen as a free energy source. Recent research has identified the 'moment' when the oxygen released by bacteria overtook the toxic gases released by other bacteria. That moment, about 700 million years ago, is called The Great Oxidation Event (GOE). Thereafter, complex life and more sophisticated types of photosynthesis evolved but all began with bacteria, drawing life from the rays of a life-giving star - the sun.

Our planet's history is inscribed in rocks and bacteria but also in much more complex living things - take lungfish, old-timers with an ancient phobia for salt water. Africa boasts several lungfish species in the genus Protopterus, unambiguously Gondwanan in origin. Compare them with the Barramunda or Australian Lungfish, as well as with the South American Lungfish or piramboia, the only lungfish species found in the Americas. It is astonishing to find such close resemblances enduring since the break-up of Gondwana.

Fossil lungfish were quite diverse 400 million years ago. Even then they tolerated extremes of drought by aestivating, yet (in spite of being distantly related to those 'living fossils' the coelacanths, deep-sea fishes that can live for more than 100 years) they are completely unable to tolerate salt water.

When I was a boy, the giant eel-like bodies of the African lungfish were often on offer on open market stalls. Chunks chopped up with a panga (cutlass) ended up in onion, brinjal and pepper stews. With biologically minded friends, we called them Protopterus, or 'gloppy-bloppy-opteruses' because they seemed to swim in slime. An individual Protopterus might arrive in market attached to a stout yoke and hanging as tall as the porter carrying it. Given their great size, it was not surprising to be told that they could live as long as a human.

One of my more enduring memories is of two youths crouched in the reeds close to the foreshore below our house in Mwanza. 'What are you digging for?' I asked as they cut and levered away with panga, and a sharpened stick. Could it be Mmaamba - a crocodile? I recoiled, but it was no crocodile that emerged from all their spading and probing (the same Swahili word is used for crocodile and fish, but the latter is discriminated by drawing out mmaa, while a short, blunt mamba signifies the reptile). Tearing away another clod, one youth plunged his arm down into the muddy hole he had excavated. Breaking up an envelope of brittle material resembling aerated plaster, he drew out a pale sausage folded over itself and covered in messy slime. The indeterminate creature, a Protopterus, writhed in slow motion as it was skewered behind its blunt head, and I too shuddered as I watched the young men set off with it to the open market in Mwanza town.

As its habitat dries out, the fish burrows by biting its way down, allowing mouthful after mouthful of soft mud to escape through gill arches. The passage of its efforts is marked by a hole through which the lungfish can continue to breathe, and it must have been this air-hole and its disturbed surroundings that gave the cocoon away to the young foragers. Once embedded deeply enough, the Protopterus foams up a frothy mix of gluey secretions and mud that harden into a cocoon around the ever-more-immobile, usually U-folded, fish.

Lungfish adapted to droughts some 400 million years ago and have survived by outliving the most punishing of global perturbations. Since lungfish have never been able to tolerate salt water, they are true relicts from terrestrial Gondwana.

Having a genome that is 36 times larger than that of a human and 360 times larger than fellow fish fofu-nungu, or Long-spine Porcupinefish raises all sorts of interesting and important questions. The answer to one, deduced by geneticists, is that the common ancestor of humans and fofu-nungu had 12 chromosomes. How lungfish came to acquire a genome with more than a billion base pairs remains a mystery, but selection for a way of life that has survived for 400 million years has to have some relevance, as well as testifying to the durability of lungfish under the most extreme of conditions.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Killifish from west to east.

This also raises questions about what it was about the southern continents that has allowed lungfishes to survive there but not in the north - a question to be examined in the next chapter.
The aestivation that has helped lungfish to survive the almost unimaginable vicissitudes of all those millions of years is paralleled in another group of extremely ancient salt-water-intolerant fish - the killifish (also known as rivulins and annuals). These tiny, slender fishlets probably evolved in Gondwana, and their survival over the ages has been enhanced by their spending most of those ages as embryos, not adults. Why? Because their fertilised eggs and embryos can survive where adults cannot, and can endure drought, heat and climate change, as well as avoid predators. To achieve this, embryos have thickened their outer membrane to resemble the impervious skin of some ingenious time capsule. Furthermore, that well-protected embryo can respond to other external challenges by delaying its own development at any of three embryonic stages. Just how lengthy such delays might have been in the past remains to be determined. The eruptions, earthquakes and heat-waves that surely accompanied the break-up of Gondwana must have severely tested these animals, among the most advanced forms of life on land at that time.
Male killifish court the dowdy females with some of the most glorious displays of colour and pattern ever to have evolved on this planet. Here, evolution has captured the entire spectrum of the sun's radiance in fish scales. Here, tiny male killifish in seasonal puddles (even rainwater in elephant footfalls) combine all the potentials of touch and vision to caress and impress females, the vessels for their very meaning, their brief moment as males.

Their flat, two-dimensional fins take bill-board advertisement to its extremes. Like many other organisms, segmented beginnings, genetic structures and the structural sensitivities of eyes favour repetition, such as a pattern of spots and stripes. Additionally, sensitivity to colour allows sides and fins to evolve elaborations of these repeated patterns. The outlines of fins alter easily, extensions acquire streaks and stripes, margins enlarge, spots become red, blue, yellow - all to what end? To out-compete other males in the beauty stakes? To seduce drab, functional females? The winning moment is to be there, sperm-ready, fins caressing her as she, visually mesmerised, expels her few and precious eggs.
Way out west, in Djallon, female killifish respond to zigzag movements and complex patterns. In Togo, perhaps the hypnotic stare of disembodied eyes is
enough to convince them to release their eggs, but no, a female's girdling by an enormously enlarged male tail could just as well be seen as the fish equivalent of a peahen submitting to the inescapability of the male's quivering galaxy of eyes. In the species south of Benue, it is red and blue stripes that win over the females, while around Buta a jeweller's shop-window of rubies and diamonds set in silver holds the key. The male of one East African species throws the works at his intended. An opalescent eye stares out from a facial mask of fluorescent vermilion. This graduates into a succession of about 30 zebroid stripes of amber, then ruby, each alternately set in turquoise, each just one scale wide. This glowing procession of jewels ends in a tail-tip of blazing orange gold. Remember, a fish that lives for just weeks cannot become the year-round diet of any predator. Killifish males can afford to be as garish, as bling-worthy as wins the race for the longevity of your species, if not for your own month in the sun.

Lest we take too much comfort in our own supposed longevity, remember that male killifishes have been capturing rainbows perhaps for 170 million years. Here, what we call 'beauty' has been thrilling female killifish for all those years. Here, in the briefest of brief moments, we witness life's meaning, moments in which males can dazzle, moments in which male determination to impress meets its maker - the female principle, a male's only guarantor of continuity, the only hope of a future for his kind.

Here life's capacity to surprise found expression before there were human eyes and brains to explore their meaning; long before that same species evolved with a determination to make all nature serve its animal appetites.

Now, let us turn to frogs. Because they had evolved by at least 250 million years ago and cannot tolerate salt water, land-lubbing frogs are a gift to biogeographers. Each continent, even each former continental mass, even odd piles of debris such as the Seychelles and New Zealand, left behind from the safaris of wayward continents, has its own archaic families of frogs. The most ancient forms evolved while all the continents were one mass - Pangaea.

African Clawed Frog
(Xenopus laevis).
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

It is a near-miracle of survival that Pangaean frogs should have survived in New Zealand, but their survival there is a tribute to the durability of land-lifesupport in just such remote localities. The parting between Laurasia and Gondwanaland, some 175 million years ago, stranded yet more primitive frogs in the southern mega-continent.

Lake Mutanda in the Rain.

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

In Mwanza our evenings were sometimes punctuated by noisy clicks made by an extremely primitive frog, Xenopus laevis, or the African Clawed Frog. Xenopus are air-breathers, adapted to burrow down into mud as their freshwater ponds dry out. They can aestivate for a year in a slimy cocoon, and live relatively long lives (15 years is long for a frog).

South America hosts a closely related species, the Sabana Surinam Toad or Pipa parva, which has maintained a similar body plan and habits, even though the last common ancestor that it shared with Xenopus had lived before South American 'West Gondwana' broke away from Africa's 'Central Gondwana’ some 140 million years ago. In eastern Africa, Xenopus are most in evidence during the wet season, when the silhouettes of their splayed, black-nailed limbs and bloated-looking, small-eyed bodies seemed to float, like corpses, in many a pond or river-bend. Misleadingly torpid, they dive out of sight and swim away surprisingly fast when disturbed, in spite of being incapable of leaping, only swimming and scrabbling. In their inability to jump or hop, and in their very primitive mouth parts, they are unlike other frogs. Because they lay large eggs and are easy to keep under laboratory or aquarium conditions, Xenopus are favourite experimental animals and thousands have been exported and established in labs all over the world. For many years, Xenopus was used to test pregnancy in women, because female frogs exposed to the urine of a pregnant woman responded by laying eggs. Today, these frogs, their eggs and tadpoles are employed in countless biology labs for an astonishing array of research topics. In genetics they are used to reveal the function of particular proteins, because the individual genes that control for particular proteins can be easily knocked down and thus reveal their function in the expression of mature structures.

In the mountainous regions of central Africa, high-altitude lakes have formed in valleys peppered with conical hills that are miniatures of neighbouring giants, some of them active volcanoes.

In some of these newly formed lakes Xenopus got there before fish, and multiplied enormously. Around Lake Bunyoni, in southwestern Uganda, both otters and the local people adapted to a diet of frogs. It was there that I sampled quite tasty Grenouille Provençale à la Kigezi, without knowing my dish’s ancient

Table Mountain, South Africa.
ancestry. I wonder how my mental child-scape might have enlarged had I the capacity to imagine such knowledge at the time. With the wisdom of hindsight I can vouch for their tangible reality, because I have contemplated, handled, drawn and even eaten beings that were here in scarcely different form from long before there were dinosaurs.
Another pre-dinosaurian has survived in the shape of 'spookpaddas' or Table Mountain Ghost Frogs, Heleophryne rosei. Emerging as a distinct lineage some 140 million years ago, these South African endemics are the epitome of evolution's astonishing capacity to adapt to just about every imaginable vicissitude, to survive against all odds, yet be abruptly extinguished when some vital property of existence is withdrawn, or some novel disease penetrates an organism's defences.
South Atlantic swells have carved this last chilly outpost of Africa, sometimes encircling it as an inhospitable island, but Table Mountain's hard, weatherbeaten granitic sandstone has endured, as have spookpaddas and, remarkably, their tadpoles. Chilly waters and a pauper's diet slow their development down to an entire year, yet these hardy little larvae have survived by broadening their lower jaw and adapting their throat skin into a strong adhesive suction-pad that can cling to slithery rocks, while their slipstreamed bodies withstand a year of survival under rushing torrents of near icy water. How could such persistence endure and evolve over so many millions of years, and why?

Spookpadda or Table
Mountain Ghost Frog (Heleophryne rosei).

Their habitat's most durable, most reliable, least changeable but least nutritious resource has been the green algae that coat those slimy rocks, and this is the tadpole's only food, harvested by tongues armed with tooth-like rakes. Only after they have matured into (still rather flattened) adult frogs can they shift to a more nutritious diet of worms and invertebrates, but their webbed and spatulate digits signify that they remain champion clingers, as well as fast, strong
swimmers and expert hiders in crevices, but hopeless hoppers. The steep, shady, once densely forested valley in which the ghost frogs were first found is called Skeleton Gorge, hence the frog's spooky nickname.

The city of Cape Town is built on lowlands lying east of Table Mountain. The town draws its waters from reservoirs built high up on Table Mountain, which capture and store an abundance of rain coming off the cold South Atlantic. Overflows still course down steep, once spookpadda-friendly canyons, but European colonisation brought several unprecedented changes. Reservoir water gets heated by the sun, so the overflows, even when sheltered from the sun, are warmer. I have also seen for myself how fast-growing commercial conifer and poplar plantations have replaced the indigenous forests that were felled long ago. Also introduced exotics, such as livestock and the goat-like Himalayan Tahr, churn up banks and streams, making once crystal-clear waters turbid and contaminated. Worldwide, the Cape is celebrated for its flora and for an abundance of supposedly lesser beings such as spiders and some spectacular insects. Notwithstanding all the vicissitudes that the Cape has suffered at the hands of vandals, generations of noble conservation-minded locals have done much to mitigate some of the horrors associated with pioneer urbanisation. Thanks to their efforts a splendid Cape Peninsula National Park now administers and protects those spookpadda habitats and other wildlife-rich areas that remain.

While almost every geological era has retained vestiges of history in the form of living frogs, India's detachment and cruise away from Madagascar and Africa allowed it to transport many plants and at least two distinct Gondwanan frogs, one survivor being the Xenopus-like, miniature-headed Purple Frog or Nasika Frog, Nasikabatrachus sahyadrensis, that just survives in one corner of the southwestern Ghats.

The Seychelles archipelago (fragments of granite left behind during India's cruise across the ocean) still hosts several species of Gondwanan palm frogs of the genus Sooglossus. These extraordinary miniature frogs develop from eggs deposited in a cluster on damp ground. A parent then guards this crèche until the eggs hatch into froglets, upon which they wriggle their way up onto the parent's back. Here, glued by some strange batrachian mucus, they grow to maturity. The vicissitudes of

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

West-facing view from our home in Mwanza; oil painting by Dorothy Kingdon, 1941.
their islands' long oceanic isolation presumably included periods in which natural ponds dried out, favouring this strangely contrived ontogeny.
In a very real sense, lungfish, killifish and frogs are older than the continents and almost all the world's mountains, including the mighty Himalayas, which are but recent by comparison. In Mwanza I shared the lake shore with fellow beings, fish that were bigger and heavier than me, that had been around in littlechanged form for all those many millions of years.
My personal good fortune was to be at home beside a short stretch of lake foreshore where gloppy-bloppy-opteruses, killifish, spiders, ngo-mwenye-sumu (scorpions) and an orchestra of frogs lived within the ambit of our verandah. By the time we left Mwanza it had been home for nearly half of my then lifetime. Even now, among the many recollections of an already long life, those two and a half years beside the great lake still seem to occupy a disproportionately large portion of my memory. I am sure that many more of my perceptions were formed there than I can now begin to re-examine or unearth.

Robert Blackburn's map of airfields from London to Cape Town.

Had I known it at the time, perhaps some such explanation might have tamed some fearful moments that I can still remember as animal terror. My Mbeya School bed bouncing about as if it was being shaken by an amorphous angry dog - cracks opening up across the plastered walls of our dormitory - being peppered by bits of loosened thatch - very loud, rumbling growls from deep, deep below during the darkest hours of night.

An explanation of what was going on might have been calming - but for an eight-year-old animal on his own in a strange bed for the very first time in his short life, perhaps not. Anyway, I never forgot that first earthquake in Mbeya school, where some of us, children of World War II, could imagine we were bound for an abattoir where at least one of our teachers seemed to preside over an educational slaughter-house. That notwithstanding, I remember us as a cheerful little bunch.

Less than three decades before my incarceration in that school, a pioneer plane-builder called Robert Blackburn had an unlikely role in the creation of Mbeya township. During World War I he had turned his factories over to build a fleet of aeroplanes that fought and triumphed over those of the Kaiser's regime. After witnessing his fleet scuttled in 1918 and its remnants sold off to postwar Germany, he became one of the founders of Imperial Airways. Thereafter he battled a succession of British governments almost as incompetent as contemporary Brexiteers. Wanting to develop more versatile routes than the scatter of sea bays, lakes and broad rivers that Imperial's 'flying boats' or 'sea planes' had to splash down onto, he looked for an alternative. He saw that large planes with stout wheel carriages, able to land on terra firma, offered much more direct and profitable routes between Africa's capital cities. A brand new London to Cape Town service would link Nairobi and Harare (the latter a copycat 'Salisbury' at that time), but the two pioneer cities were nearly $2,000 \mathrm{~km}$ apart. Exactly halfway between them lay a broad, flat valley below a tiny Safwa hamlet called Mbeya. Here, Imperial Airways installed an airstrip, a post office, a fuel dump and a small hotel. The sudden, totally unexpected arrival of an airfield with international connections invested Mbeya like no other inland
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
town with a new sense of being linked to the big, bad world outside. It also attracted Nazi party members, who set up a school there to indoctrinate German children. Such were the precursors for our earthquake-prone, ex-Nazi, Mbeya School.

Today, Mbeya town sprawls over the southern tip of the VM, a region of uplifted rift walls (some of them sheer cliffs dropping into lake waters) and long ranges of hills and mountains. A few kilometres south of the town stands Rungwe mountain, a currently dormant volcano, rarely revealing its summit through the clouds that envelop it. The entire region is freckled with volcanic craters, hot springs and avalanches of pumice. I soon became as blasé as any other locals about earthquakes - they were that frequent. In Mbeya the rumble of Gondwana's fracturing feels as real as those so-ancient continental partings that stranded lungfish and clawed frogs on its floating fragments.

Mbeya valley, as seen from Crater Lake, Mbisi.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Lake Tanganyika, showing Bujumbura, Mpulungu, Tabora and the eastern Congo watershed.

Old Gondwana's break-up finds something of a replay in Lake Tanganyika, even though the rift it fills began to form a mere 12 million years ago. That rifting has been progressive, the lake deepening and extending south by stages. The lake actually comprises two distinct underwater basins, but its waters have risen and fallen many, many times.

Most fascinating of all, Wegener has taught us that the Earth's land surfaces have pitched and rolled, like floating lilos or the decks of sluggish catamarans caught in cross currents. In Africa it has been suggested that periodic overspills might, at different times, have sent Tanganyika's waters towards at least three points

Lava flow near Mzima springs.

Chyulu hills from Kilaguni.
of the compass - northwards into the Nile, south into Lake Rukwa and beyond, and its present intermittent overflow westward into the Atlantic, via the Congo basin. The rifting margins of slumping valley bottoms often rise up, tilting up former flats until they become near-vertical stratified hills or mountains such as the Rwenzoris. Upstart 'nations' or 'peoples' often use such margins and rifts as natural territorial boundaries. These ancient ranges, especially those that encircle the VM, have served as refuges that harbor interesting endemic biota such as relictual spiders, proteas, Podocarpus trees and worm-like amphibian caecilians. I visit all of these in later chapters.

Two caecilians from the Seychelles: (left) Hypogeophis rostratus; (right) Grandisonia seychellensis.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher

DAWN AND CONSEQUENCES FROM CHANCE

Abstract

In which the dawn of Earth as we know it today is shown to be the aftermath of a cosmic car-crash. The Chicxulub Crater. More frogs and more survivors in The Cape. The Mouse that ate the Laws.

On 20 July 1944, chittering monkeys hugged one another while dogs howled and spurfowl clattered out their evensong. Believers in The Day of Judgement prostrated themselves in terrified prayer. For those in East Africa and India who were unprepared for the sun's eclipse, it was a frightening experience. For those already alerted, pieces of exposed film were held up to witness the moon glide between viewers and the sun, its traverse an ever-larger nibble of The Big Orange until, for a brief moment, a perfect disc appeared, its halo blazing. Then, as the moon moved relentlessly on, sunlight returned to the Earth sliver by sliver.

Was it the sun that moved? Or the moon? Or the Earth beneath us? The ability to predict that eclipse was ultimately a byproduct of countless curious minds, over lifetimes of seasons, all registering links between sky-gazing, shadow-watching and ground-living. These were minds that put a value on close observation, the sharing of facts via language and print, devoted to keeping records and to explaining the sun's prodigality in the tropics - its annual withdrawal at the poles. Sunbeams fathering sunflowers. What we learn from science helps us reassure the little girl who thinks her shadow wants to bite her heels.

Seeing the sun climb, seemingly all wet, out of the sea, then, as it soared slowly overhead, watching crisp shadows glide from pointing west to pointing east until the sun hid behind the Usambara mountains - all of this was physical sensation. At dusk I felt robbed of all that hot light. Mosquitoes arrived and I was packed off to bed under a mosquito net. To interpret and translate such mysteries, a hungry mind depends upon what it is fed by parents, priests, teachers or scientists.

My father's efforts to teach me how Earth circles the sun and how the moon circles Earth were early and memorable. With an orange for the sun in one outstretched hand and a physalis berry for the Earth in the other, he slowly pirouetted himself and the berry around the orange as if he were a ballet dancer -'A full circle is one year.' Then he spun the berry between thumb and digits - 'While the berry faces the orange that's a day, and because it spins, like your top, half of its spin is in the dark - that's a night.' Then he made a much tighter, faster manoeuvre with a pea, making it whizz around the berry. 'That's the moon, but notice that when it's fully lit by the sun but we are in our night-time cycle we
call it a full moon but while the Earth cuts out more and more of the sun's rays the lit portion of the moon declines, only to enlarge again while what we call a lunar month goes by. When the moon comes between us and the sun, the sun's light gets blocked out for some people somewhere on Earth, and that we call an eclipse.' Such intimate modelling served to reduce the unimaginable vastness of the Universe, let alone the sun, moon and weather, and translate it down to a scale that a child can imagine or visualise.

People have long tried to explain the movements of planets, comets and the starry, moonlit Universe above them in terms of their own little patch of terrestrial territory.

A most surprising and entirely unforeseen connection to ancient Africa and its inhabitants appeared above me during a visit to Egypt, dominated by museums, pyramids and a launch up the Nile. My mind and imagination seethed with exquisite images of Thoth, Horus, Seth and beautiful queens served by regiments of commoners, all depicted in sculptures, bas-reliefs and paintings from Africa's greatest and longest-lived civilisation, all built on the banks and delta of our longest river.

Gold head of Horus with polished onyx eye, Antiquity Museum, Cairo. Extraordinary attention to detail and proportion suggests it was modelled from specimens, alive or mummified, or both.

To avoid a scorching midday we were on a dawn outing to a mosque built on Cairo's not-very-high heights. Emerging straight out of a freshly risen sun, a Peregrine Falcon came stooping down to strike one out of a panicked flock of feral pigeons. Here, right before my own eyes, was Horus, Sun God and falcon-god, announcing his arrival to metropolitan inhabitants of the World's Centre, a city of plump pigeons as well as donkeys and people.

The cliffs of Jebel Iweybid were too far east for ancient Cairenes to learn that Horus and his predecessors spent their nights roosting there. Even so, I cannot be the only non-Egyptian to feel moved by the exquisite crafting that was
lavished upon images, even mummies, of this bird - a smallish raptor that made manifest the abstract wonder of dawn breaking over this precious globe of ours as we all hurtle, spinning as we go, through space.

My father's astronomy lessons were augmented by a Royal Navy-issued telescope that he had inherited from his own father. Perhaps it was my grandfather's subordination to naval discipline and his imposition of it upon his offspring that influenced Teddy's stress on order, in both society and in the known Universe.
If so, our sessions gazing at the moon through his telescope forced him to concede that her plenitude of impact craters showed that the moon had been peppered by almost countless comets, meteors and asteroids. Was it only the moon that was some sort of a target on a shooting range? Or were bits and pieces of cosmic rubbish a perennial hazard out there?

Stained-glass window of moons and moonflowers, Rondo Chapel, south Tanzania.

Teddy was forced to admit that disorder could rupture his predictable fruit salad universe, as he knew at first hand.

In 1930 Teddy was in Mwanza when a bolide was seen to burn up in the atmosphere, scattering fragments all over the Sukuma hamlet of Malampaka. He also described the night skies of 1933 being lit up with frequent showers of meteors, burning up as they entered the atmosphere.

On several occasions Teddy drove the family out to Mbozi where we picnicked beside 'Kimondo', a then barely exposed meteorite. This chunk of iron and nickel has now been calculated to weigh 25 metric tons. Eating sandwiches, we sat on a surface which, with some imagination, could be said to resemble the back of some prehistoric reptile. Yet no-one has yet devised a date for this metallic bullet's ballistic impact. All traces of its crater were overlaid by later geological upheavals (which have been very substantial all around this disjunction between two rift valley lakes). The oldest craters are now invisible on Earth's surface, but meteors can leave a magnetic record deep underground. Thus, the misbehaviour of compasses in central Africa long ago revealed what has come to be called the 'Bangui Magnetic Anomaly'. Some geologists think this might betray the impact of a meteor strike well over 540 million years ago. Other scientists suggest that perhaps early basalts go down unusually deep below central Africa.

Earth has been hit by random comets many times (more than 300 impacts are on record).

One particularly well-known crater (dated to a mere one million years ago) is hugely popular in Ghana. Close to Kumasi City, this crater is called Lake Bosomtwe. Formed by the vertical strike of an iron meteorite not less than 500 m wide, it created a 10 km -wide, nearly circular crater with its central bore-hole about 8 km wide and 750 m deep. That the levels of the lake's waters have fluctuated wildly is betrayed by fossil fish being found near the peaks of surrounding hills, and by divers finding drowned tree stumps on the lake's floor.

Known to have shrunk to a puddle during past periods of drought, this lake figures in a telling folk-tale from long before the Ashanti became the populous people they are today. Pursuing what was probably the water-loving Sitatunga antelope, a legendary hunter lost all sight of his quarry when it submerged itself into what was then a vestigial lake lining the then forested crater's depths. Impressed by what he took to be the intervention of a god with a special fondness for antelopes, the legendary hunter and his audience named the lake after that 'God of the antelope’ - Bosomtwe.

For the most pictorial visual effect, a perfect circle of cliffs in the Kalahari, some 70 km across, is perhaps the closest Earth gets to our equivalent of a lunar impact crater. Morokweng crater (with the charmingly named hamlet of PomPom perched upon its rim) is dwarfed by its near neighbour, the 2 billion-yearold Vredefort crater which, with a diameter of 300 km , is the largest known crater on our planet. The meteor's effects are particularly well known because
its impact liquefied the Earth's surface, melting a pond of minerals that included a lot of gold and uranium. The margins of this pond solidified into a series of very hard rings, known today as the Witwatersrand reef, and 100 years of gold extraction have left a landscape of mine tailings that eerily mimic the mounds of harvester ants, on a gigantic scale. Seen from the seat of an airliner, one rim of the inner crater is still just visible. Billions of years of erosion and the more recent cut of the Vaal river have blurred the rest of the imprint of a freakish bolt from outer space.

Was this the most grievous wound ever inflicted upon a world that just happened, at that very moment, to be in the path of a stray asteroid?

For the random event that has shaped our very existence, we must now turn to one fateful April moment 66 million years ago when a meteor, like many before it, nearly shot past the Earth. A matter of minutes, earlier or later, and gigantic reptiles might still be the dominant form of life on Earth. Instead, there was a cosmic car crash, as much an 'accident' as any collision on an autobahn.
We owe the story of that collision to a great father/son scientific duo: Luis and Walter Alvarez. It was their pursuit of an inexplicably rare mineral, iridium, that led them to be the first to describe the many dreadful consequences of a 10 km -wide meteor slanting in from the south to slam into today's Caribbean Sea, at about 25 km per second. The impact ignited a fireball reaching temperatures of $1,300^{\circ} \mathrm{C}$ and gouged a crater 14 km deep and 180 km wide. The whole site, sometimes labelled 'Cemetery of the Dinosaurs', is now under about 1 km of limestone, a tombstone that stromatolites and corals have helped to thicken with each passing year.
The closest contemporary on-land settlement to the point of impact is a Mayan village on the Yucatan peninsula, called Chicxulub. Get used to this tongue-twister because the Alvarez team gave this name to their giant, now underground, under-seafloor crater, and I will use it throughout this book for my single most important temporal point of reference.
The Chicxulub meteorite (just as correctly called an asteroid or a bolide) came in loaded with extraterrestrial iridium. When the meteorite and the walls of its crater vaporised, iridium, together with the tiniest of glass spheres, shocked quartz and traces of new, shock-induced minerals got blown through Earth's atmosphere and stratosphere. Some of this iridium-laced cloud of material continued onwards out into space. Eventually falling back to Earth, it left its momentary autograph all over our planet, with its heaviest particles falling closest to the crater, along the path of its blast and in the tsunamis and fireballs it engendered. The 'iridium layer' has become the geological and chemical marker that lies between the $\mathrm{C}(\mathrm{K})$ retaceous (K) and then Tertiary (T) periods of geological history. In Italy, that iridium layer can be seen with the naked eye as a very thin black stratum, separating the once life-filled K and near-lifeless early T. It is called the KT boundary and the catastrophe it marks is known as the 'KT Event' (often revised into 'C-Pg', but the more euphonius KT remains more popular).

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

The lynx's eyes.
We owe much of this vocabulary to Papa and Son Alvarez and their many collaborators, some of them Italian. Because Italy has a long and illustrious tradition in both science and in ce-

Jonathan and Laura straddling the KT boundary at Gubbio, Italy. ramics, her soils have long been explored and analysed by thoughtful minds and attentive eyes. The phrase 'eyes of a lynx' was appropriated by a brotherhood or academy of scientists founded by an 18-year-old in 1603 and based in secular Rome - this body is still called 'The Lynxes' or 'Academia dei Lyncei'. It was natural for Luis and Walter Alvarez to turn to Italian sources to lead them to a rugged gorge close to the hill-town of Gubbio, famous for its Maijolica pottery and a historic source of knowledge about local minerals. There, for every pas-ser-by to see, is the KT Event writ large in coloured rocks.

Inspired by the Alvarezs' thrilling adventures in collaborative research across multiple disciplines, I and my wife, Laura, visited the gorge where their team had studied this particularly graphic exposure of the KT boundary. It was a thrill, perhaps a perverse one, to stand (and even be photographed) with one foot in the Cretaceous, the other in the Tertiary, each separated by that thin but portentous black line.

The prime victim of the KT Event was North America, where extermination of life was almost total. Europe and northern Asia fared little better. Australia, southeastern Asia and southern South America were all devastated, but their hardiest organisms, including particularly sturdy plants and some small animals, survived to inherit the Earth. Most of Africa was caught among three global catastrophes, all, so far as is known, deriving from the colossal jolt of impact.
At the same time as Chicxulub, a detached fragment known as 'Nadir' hit the continental shelf off Guinea. In a third, simultaneous cataclysm, a series of enormous outpourings of super-heated magma belched forth from the western edge of India (at that time a vast migratory island) - these lava flows are known as the Deccan Traps.
'Hot-spots' drive mid-ocean spread, so it is possible that Chicxulub may have jolted or influenced the opening-up of an already weak furrow cut by India's deep actively moving western margin, thus exacerbating this huge eruption of lava.

Combined impact of
Chicxulub, Nadir and the
Deccan Traps on Afro-
Arabia 66 million years ago.

For most of Africa, the effects were dire. At the time of Chicxulub, Africa's northern reaches included today's Arabia, and all of this vast territory was caught between the three major sources of global destruction.
Southern Africa seems to have presented a brighter prospect. The previous chapter discussed the many resemblances between the biota of South Africa, southern Australia and southernmost South America, in terms of their including some survivors from ancient Gondwana. That may apply to some families of ancient vertebrates, invertebrates and plants, but by the time of Chicxulub many tens of millions of years had passed since the break-up of Gondwana.
We now know that the comet hit in the southern autumn - time to hibernate.
This potential for survival from Chicxulub's devastation can be illustrated by a lineage that has given rise to two frog genera that reinforce the likelihood that underground hibernation favoured survival after Chicxulub. Shovelnose frogs, Hemisus, and short-headed rain frogs, Breviceps, are deep burrowers, able to go

Two drawings of Isinana, the Spotted Shovelnose Frog (Hemisus guttatus).
into long-lasting torpor deep underground, or in crevices. Such a strategy could have allowed frogs or other animals to outlive the KT catastrophe, whether in adult, larval or egg stages.

As a small boy in what is now Kwazulu-Natal, I was shown a Spotted Shovelnose Frog, Hemisus guttatus, locally known as Isinana. This burrower can survive long periods deep underground with all obvious life-signs suspended. In the rains it emerges to copulate and to release developing tadpoles or froglets, and to perhaps enjoy a brief aquatic existence. Today Isinana only survives on flat flood-plains beside a very few river basins in Kwazulu-Natal. It has a hornytipped nose, fingertips and heels. Where muscular hind legs serve sudden and surprising leaps in other frogs, in shovelnose frogs they power forceful, persistent rowing through sandy soil. Females guard a jelly-cushioned underground nest containing some 200 eggs.

Their survival is consistent with the south being the only, albeit precarious, refuge from Chicxulub in Africa, but their mole-like behaviour has allowed closely related but somewhat more versatile species to expand their range. Among them are the rain frogs; family Brevicipitidae.

I remember my father charging me as a teenager with excavating three hafirs or reservoirs to irrigate his coffee shrubs. More than 2 m underground I encountered a fat, cappuccino-coloured frog, encased and immobile within its cramped little follicle. How this Rungwe Rain Frog, Probreviceps rungwensis, had managed to insinuate itself so deep underground was a mystery only just explicable while deeply cracked soils were so sodden that this apparently feeble frog could

Rungwe Rain Frog
(Probreviceps rungwensis).

Goliath Frog
(Conraua goliath).

half-dig, half-swim its way down many hundreds of times its own length through soils that become impermeable in the dry season. When attacked, both rain frogs and shovelnose frogs can inflate their bodies to almost spherical proportions, while sweating out noxious, glue-like exudates that deter most potential predators.

Another lineage that gave rise to many other African frogs includes the Goliath Frog, Conraua goliath. This species begins life conventionally enough, its eggs and tadpoles resembling those of related torrent frogs (among frogs, 'close’ cousins can be more than 60 million years apart!). Goliaths earn their name by growing, growing and growing, until they reach up to 3.25 kg , with legs as long as a child's. As builders and sentries of stony, weedy frogs' nests beside rushing torrents in a few West African rivers, these, the largest frogs in the world, are doomed by collectors, zoos, road-side gourmands and most of the many afflictions that threaten frogs today.

In contrast to weak frog forefeet, many animals, especially the digging mammals, have hardened claws on tough, muscle-bound forelimbs. These

Three Cape tortoises: (left) Geometric Tortoise (Psammobates geometricus); (middle) Speckled Cape Tortoise (Chersobius signatus); (right) Angulate Tortoise (Chersina angulatus).
adaptations for subterranean life are undoubtedly ancient, not recent contrivances. Whether the ancestors of two deep-digging mammal lineages, the Aardvark and the golden moles, had parted ways by Chicxulub is still debated, but their divergence seems most likely to date from Chicxulub. Aestivating tortoises were other likely survivors.

Contrary to popular belief, ancestral mammals have been around just as long as ancestral reptiles. Less certain is just how far the radiation of placental mammals had proceeded before Chicxulub. Scientists working with molecular clocks reckon that many ancestral stocks had already evolved. Clearly, Chicxulub was the main 'releaser' for the radiation of mammals, but the rarity of their fossils before 66 million years ago tells us that most mammal lineages (as well as most of those of birds, and even frogs) radiated after KT.

To further complicate matters, these questions interact with controversies over where placental mammals first evolved. Mark Springer, at the University of California at Riverside, argues that the most primitive of surviving placental mammals are found in Africa, and that an early freak transport took one lineage to South America where sloths and armadillos are among their descendants. Nonetheless, neither Africa nor South America is the mammals' Eden - that distinction belongs to Asia.

Among Africa's survivors (first named 'afrotheres' by my dear friend Alan Walker) are Aardvarks and golden moles. These burrowing afrotheres are especially interesting in the context of Chicxulub because (in common with armadillos) they were perfectly adapted to survive the devastation by living underground. Even today, golden moles scarcely exist north of the equator and they are among the many groups of animals and plants that have found their main refuge in South Africa (where promoters of agro-forestry, sugar and other industrial crops now seem dedicated to their extermination). Burrowing afrotheres are interesting not only as survivors of Chicxulub, but also as models to exhibit some of the advantages mammalian hot-bloods had evolved over reptilian coolbloods long, long before the meteor struck. In Chicxulub's wake, Earth became a sort of planetary bomb-site. On a blasted continent that was effectively a vast oceanic island, its southern extremities became the main source of survivors.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

2050 Project 450

A

Aardvark 70, 84-85, 291
Aardwolf 264
Abisa, Saidi Batale 21, 22, 24$25,29,133,200,419,422$
adaptation 246, 288, 371, 374
for bipedalism 244, 316317, 318, 328, 329
to drought 48, 49, 82, 106, 124, 151, 219
dwarfing 219, 220-222
to fire, miombo 124
to malaria, resistance 371
primate hands 224, 243, 281, 289, 306, 316
for subterranean life 69-70, 82, 83
to UVR/solar radiation see skin colours
aestivation, by species 48,49 , 52, 67-68, 70, 82, 86
Africa 3, 15-41, 435
custodian of humanity's origin $445,449,450,455$
greatest biodiversity 3,82 , 144, 167, 175, 449
human evolution in see human evolution
latitudinal boreal realm (centre-west) 304-321
south-east realm 304, 312, 323-349
overland connection with Eurasia 146, 272
African blackwood (mpingo) 119, 120
African Bush Elephant 189
African Clawed Frog (Xenopus laevis) 50,52
African Clawless Otters 318
African Crested Rat 131
African gliding 'squirrel' 127-128

African Grass-elephant (Palaeoloxodon recki) 178, 189
African Guereza monkeys 217
'African lemurs' 275
African Pygmy Falcons 426
African Union (AU) 451, 452
African Wild Dogs (Painted Dogs) 238-240
Africans 3, 382
linked with Melanesians/ Aborigines 369-370
misrepresented/mistreated 2, 12, 15, 19, 187, 383
Afro-Arabia 45, 67, 80, 81, 106, 146, 272
afropithecines 278
afrotheres 70, 71, 72, 77, 83-87, 88
Aardvark lineage 84-85
golden moles $70,86,146$, 266
hyraxes 88, 153
Paenungulates (sea-cows, elephants) 87-88
placental mammals 83,84 , 86, 87, 88, 273
sengis $72,85,86$
water-loving species 86,87
'age of mammals' 82
agriculture 375, 453
monocultural 2, 172, 363
agriculture (industrial scale) $2,117,174,443,444,446$, 448, 452
all natural habitat as farmland 8, 169, 171
East African coast, Tanga area 321
impact on biodiversity 169, 171, 174, 192
impact on ecological elders 267
plant/animal extermination by $96,137,339,442$
airfields 56
Allbrooke, David 277-278, 284
Alvarez, Luis and Walter 66
Amboni caves, Tanzania 321
Andaman Islanders 374, 377
animal shapes, meaning of 423
Ankole Ranching Scheme 196
Anoiapithecus brevirostris 305
anomalure family 127-128, 148, 150
antelopes 120, 151, 152-153, 162, 164, 291, 334, 354
Anthropocene 25, 26, 113, 285, 349, 424
apes 294-299
Africa-to-Eurasia movement 278, 279, 306
body-plan/anatomy 294, 305, 316, 317
in Eurasia, success, lineages 279, 305
Eurasia-to Africa return 278, 279, 305, 306, 307, 308
evolution 277-279, 281, 294, 295, 313
ground see ground apes
human divergence, timing 295, 309, 319
see also Chimpanzees; gorilla(s)
appearances, importance 427
Aquatic Genet (Fishing Genet) 244
archaeology, in Africa 124, 376-377, 378, 380
'archaic genes' $372,373,374$
'archaics' 188-189, 372, 373
Archer, Tony 407, 408
Ardipithecus species 313, 315, 320, 328-329, 333, 341
foot bones 317, 318, 340

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
armadillos 70, 86
army ants 166
arthropods, venomous 143, 144
artists, work of 394, 404-405, 408-409, 411, 417, 427
Uhuru movement and art show 432-434
see also Kingdon, Dorothy; Kingdon, Jonathan
Asia 70, 133, 145, 178, 370
Banda Strandlopers migration 376, 379
most distant from Chicxulub 88, 271, 272
primate evolution 146, 272, 280-281
see also emigration and immigration; Eurasia
asteroids 63, 65
astronomy 61-62, 63, 99, 109
Attenborough, Sir David 234, 235, 442
Australian Aborigines 370, 374, 375
Australopithecus 344, 345, 346-347, 349, 352
Australopithecus afarensis 333
Australopithecus africanus ('Little Foot') 340, 341, 344, 346
Awoura 127-128

B

baboons 164, 213, 281, 283, 293
bacteria, oxygen release 47
balance, bipedalism development 317, 318, 329, 330
Banda Strandlopers 375, 378, 379, 385
migration to Africa 376377, 379
tool use 378, 380, 381
'Bangui Magnetic Anomaly' 63
Bantu language 382
Barbary Macaques 318-319
Barn Owl 236-237, 237-238
basalts 63
bats 106, 149, 230, 232, 312
see also fruit bats
Battershill, Sir William 173
Bearder, Simon 275
bears 139, 140, 141
bee-eaters (Merops) 142-143, 144, 406-408
behaviour
circumstances driving, Chimpanzees 288-289
see also social behaviour
behaviour driving morphology 229-249, 305, 409-410
African Wild Dogs (Painted Dogs) 238-240
Barn Owls 236-238
Cape Fur Seals 233
Comb Ducks 242
Dryas Monkeys 247-248
epauletted fruit bats 229232
Fishing Genets 245-246
Gelada-like baboons 243244
ground apes 316-317, 318, 324, 328
Lions 240-241
Wilson's Bird-of-paradise 234-235
Benue/Congo (Congo Exit III) route 256
'Bibi Minnie' 16, 25, 26, 163, 165, 222, 351, 437
biodiversity 3, 28, 105, 159175, 424, 442
agriculture/livestock impact 169, 171, 172, 174, 196
elimination/enemies of 167, 172, 174, 175
greatest, in Africa 82, 144, 166, 167, 175, 449
'hot-spots' 105, 451
marine 88, 167-168
sounds, smell, shape, colour of 159-160, 161, 162
biogeographic realms 36
biogeography $80,301,304$, 323, 325-326
basins, rivers 325, 326, 330-332, 339, 342
human evolution 303, 304, 319
bipedal lineages 328
bipedalism 11, 18, 244, 316317, 318, 329-330
foot anatomy 317, 318
hand/finger-foraging driving 11, 307, 316, 319
vertebral column, skull for 317, 324, 328, 329
birds 103-104, 266
colours/patterns 144, 160, 224, 225-226, 234-235, 405-408
evolution/radiation 226, 265-266, 405
forest-floor (East African forests) 315
intercontinental movements 141-142, 142-143, 144145
piscivorous 378
population, prey abundance effect 108, 109
trade in/export of turacos 227
birds-of-paradise 234-235
Bishop, Bill 276, 277, 284
Bishop's ape 278, 284, 305
Blackburn, Robert 56
Blue Whale 169
body disposal/entombment 347, 349
bones, giant 180, 181
'Book of the Generations' 25, 26, 435
boreoeutheres (northern placentals) 83
Bosomtwe, Lake 64
botanists 135, 136
brains 273, 291
evolution, with senses 291, 389
hand use, co-ordination 11, 318, 319, 330, 336, 347
hominin 293, 337, 344, 345, 352, 359
primates 273, 279, 289, 290, 292, 293, 392
processing of images/ drawings 394
stripe patterns and 404
tool use 336, 337, 352
visual input 378, 392, 400, 404
whales 190, 191, 292
breeding, abundant food supply and 108, 109
Browne, Sir Thomas 21, 74
bubonic plague 210-211
Bunyoni, Lake (Uganda) 52-53
burrow(s), Merops 406-407, 408
burrowing, survival of Chicxulub by 70, 82, 86, 266

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

'bush-babies' (komba) 274
Bushmen (Khoisan people) 4, 380, 381-382
butterfly wings, pattern 414, 415, 417
Bwamba, Uganda 144, 167, 287, 288, 345

C

Cain and Abel 1, 25, 44, 140, 424
calls, animal see sounds/calls camouflage 394, 412, 426
Cape Fur Seals 233
capuchin monkeys 292, 293
Caracals 410-411
carnivores 240
Carson, Rachel 365
Catsis, Mike 299
cephus/red-tailed monkeys 220-222, 223, 224, 283
Cercopithecus 218, 219, 305, 324, 345
Chalicotheres 179
chameleons 19-20, 22, 28-29
channels, sensory traffic 389 , 391, 392
'Charaman' 380
chemical damage to land 25 , 113, 137
Chicxulub meteorite 65, 67, 74, 270, 304
Africa's survivors see afrotheres
area most distant from 68, 271, 272
bird evolution/radiation and 226, 265-266
impact/effects 67-68, 70, 73-74, 79, 304
placental mammal radiation 70, 83, 270
small size of survivors 71, 80, 83
survival by burrowing/living underground 67-68, 70, 82, 86, 266
survival in Southern Africa 67-68, 70, 74, 83-84, 304, 337
survival in water 86,87
termite survival 83
children 356-357, 359, 368, 424, 455, 456
Chimpanzees 287, 288, 294, 295, 308, 310, 311, 312, 313
eastern border for 309, 310
feeding strategies 315,317
human comparisons 296, 298
skeleton/anatomy 296, 317, 328, 340
tool-use 316, 337
Cinchona trees 132
claws 69, 72, 83
clay, 'sketching' with 398, 399
CLIMANZ 445
climate $40,100,103,113,120$, 309, 448
see also droughts/dryness; Ice Ages; rain
climate change (global warming) 2, 40, 113, 120, 448, 450
coccyx, tail loss and 294
coffee trees 68, 133
cold, surviving, Neander genes and 373
Cole, Sonia 276, 277, 380
colies (Speckled Mousebirds) 265, 266
colobus monkeys 282, 283, 284, 293, 345, 398
colonialism/colonials 45, 173, 202, 205, 321, 433, 451, 453
colours and/or patterns 159, 160, 304, 392-393, 393-395
birds 144, 160, 224, 225226, 234-235, 405-408
butterfly wings 414,415 , 417
camouflage and 394, 412, 413
cephus/red-tailed monkeys 220, 222
Dryas Monkeys (Dryads) 247
Erythrina red coral tree 123
evolution of 220, 402-404, 405-406
facial patterns, of monkeys 223, 248, 253
fish 49-50, 88, 89, 90, 265
hornbills 144
killifish 49-50
Merops (bee-eaters) 144, 406-408
miombo (plant communities) 122-123

Painted Dogs (African Wild Dogs) 238, 239, 240
stripe patterns (zebra, equines) 400, 401-404
turacos (go-away birds) 224, 225-226
Wattled Starlings 107-108
Wilson's Bird-of-paradise 234-235
see also skin colours
colugo ('flying lemur') 146, 148, 270-271
Comb Duck 242
communication 220, 221, 289, 358-359
see also sounds/calls
competition, evolution and 73, 271, 311, 346-347, 354, 356-357, 359, 363-364
trees and grasses 192
for water resources 364
see also niches, stealing/ thieves of
Congo basin 166, 219, 223, 245, 255, 381, 437
Congo River 251-252, 254, 255-256, 308
conservation 443, 444, 447, 448-449
continent(s) 143-144
bird movement between 141-142, 142-143, 144145
mammal movement between 140-141, 146, 179, 327
see also individual continents
continental drift 43-44, 45, 51
continental shelves, narrow, Africa 88
cord snares 358,360
cordon sanitaire 194
Coster, Max ('Great Dane’) 40
courtship 108, 222, 225, 233, 291
birds 108, 109, 234, 242
Comb Ducks 242
fur seals 233
killifish 49-50
Covid-19 2, 193, 199, 233, 439, 452, 455
'cowboys' and cowboy culture 151, 174, 195, 196
cranes 37-38

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
craters, meteorite 63, 64, 65
Cretaceous (K) period 65, 66, 82
Cross River 256
Crowned Guenon 224, 225
crows 234
Crutzen, Paul 25, 113
cuckoos 157, 426
cycads 442

D

Dalbergia melanoxylon 118, 120
Darwin, Charles 1, 26, 27, 165, 192, 258, 306, 307, 326, 359, 401
Dassie Rats 215
databases 440, 441
Davis, Steve 368
Dawkins, Richard 44, 347
death, and fear of 203, 204, 205
Deccan Traps, India 67, 304
'Deep Time' 2, 253, 257
deer fawns 413
deforestation/logging 128129, 130, 137, 285, 365, 443, 449
Denisovans 188, 373-374, 377, 385
dental apes 277, 305, 306
Desert Locusts 106, 107
'development industry' 4, 173
diamonds 197, 266
dikdiks 152, 153
dinosaurs $25,65,79,80,82$, 266, 270
'dipping', by flying foxes 370
diseases 187, 193, 199-211, 452
cordon sanitaire to prevent spread 194-195
rinderpest 193-194
susceptibility/resistance 371, 373, 381
see also malaria
Dodoma, Tanzania 154, 182, 183, 258
‘dragon's teeth’ 280
Drakensberg mountains 4, 339, 340, 342
dreams 33-34, 208
droughts/dryness 64, 103, 165, 219, 309, 364
adaptation to $48,49,82$, 106, 124, 151, 219
dry corridors, non-forest biota 111, 308, 309, 311, 330
floods alternating, Limbali Forest 245-246
ground ape evolution 324
miombo 122, 124
Dryas Monkeys (Dryads) 247-248
dryopithecine ape lineage 278, 279, 305, 306
'dryoporillas' 308, 309
Dugongs 87-88
Dwarf Marmoset 275, 276
dwarfing 219, 220-222

E

ear-tip signalling 411
Earth 46, 47, 439
orbiting the sun, astronomy 61, 62, 99
earthquake 56,57
East Africa 36, 382
Equatorial 330-331, 344
forests, region 311-312, 313, 314, 320, 321, 325
fossil sites $36,326,327,330$
East African Mammals: An Atlas of Evolution in Africa (Kingdon) 18, 30, 31, 166, 174, 284, 303, 409, 410
East coast of Africa 105, 175, 319
rivers and basins 325,326 , 330
'eastern arc' mountains 175, 311, 430
Eastern Rift Valley 36, 45, 46
ecological elders 251-267, 345
Aardwolf 264
colies (Speckled Mousebirds) 265, 266
golden moles 70, 86, 146, 266
scorpions 257-258
South Africa 337-338
spiders 260-263
springhares 264
Sulawesi tarsiers 269-270
talapoin monkeys 251-252, 253
termites 258-260
see also afrotheres
ecological islands $39,40,126$, 141, 175, 245, 304
ecology 440, 441, 443-444
economically productive landscapes 443, 444
ecosystems 192, 443, 444, 446, 449
conservation of 444, 446, 447, 448-449
extermination/extinction and 442-443
tropical, long life-histories 449, 450
education 4, 6, 15, 21, 96, 175, 227, 295, 422, 444, 450, 454, 456
Egypt, trip 62-63
'Ele-stations' 11
elephants 7, 11, 131, 177, 187, 193, 345
ancestors/evolutionary changes 87, 178, 179, 180, 189, 280
human response to encounters 182, 183-185, 186, 346
landscapes shaped by 177178
in lava field, seed germination 116-117
lower jaws and molars 181, 189
orphan, care of 182-183, 185, 186
slaughter/shooting of 173 , 178, 182, 186, 187, 189
social setting 181-182
Elgon, Mount 40, 177
Elliot, Clive 109
Elliot, Hugh 38-39, 109, 242
Elton, Charles 189-190
embryos 49, 81
emigration and immigration 139-157, 284, 304
antelopes 151-153
apes $278,279,305,306$, 307, 308
bears 140-141
bee-eaters (Merops) 142143, 144
birds 141-142, 142-143, 144-145, 157
gliders, anomalures 148, 150
herbivores (mammalian) 153-154
hornbills 144-146
hyenas 154

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

mammals failing to colonise Africa 146
mammals succeeding in colonising Africa 146147, 273, 304
primates see primate evolution
quaalis 141-142, 143
rodents 147-148, 272, 273
environmental modelling 453
environmental policies 453
equine ancestors, stripes/ striping 401, 402, 403, 404
'erects' $345,346,349,372,373$
erosion 196, 252, 431
Erythrina (red coral tree) 123
Ethiopia 36, 319, 320, 321, 323, 324, 331, 333
fossils 141, 313, 320, 324 331, 333

Geladas 243
ground apes 320, 321, 323, 328
quaalis 141, 143
Eurasia 70, 73, 82
ape movement back to Africa 278, 279, 305, 306, 307, 308
ape movement from Africa to $278,279,305,306$
ape success in 279, 305, 306
colonisation by 'moderns', timing 372, 377
'erects' /'archaics'/premoderns populating 372, 373-374
mammals colonising Africa from 146, 147, 148, 151, 154, 179, 304
overland connection with Africa 146, 272
Eurasians 372, 373-374
European Robin 393-394
evolution 409, 440, 442-443
see also Darwin, Charles; human evolution; natural selection; primate evolution
evolutionary biology 2, 409, 448
evolutionary experiments 324, 326, 409
evolutionary history, importance 363
'evolutionary whirlpool' 166, 256
‘Execrable scorpion' (Lychas asper) 257-258
exploitation 2, 8, 12, 19, 383, 443, 444, 445, 446, 452
see also agriculture (industrial scale); logging
extermination of plants/ animals 2, 96, 105, 153, 154, 195, 249, 453
of birds 227, 339
cordon sanitaire and 194195
by industrial agriculture 96, 137, 153, 154, 339, 442
extinction of animals 73-74, 174, 189, 281, 442, 451

F

facial hair 296
facial patterns/colours 220, 222, 223, 226, 248, 253
facial wrinkling 381, 382
Fairfax-Bell, Dr 389-390, 391
Fairfield Pass, Uganda 101, 103
fear of death/disease 203, 204, 205
feeding strategies, apes 314 , 315-316, 318, 330
feet
Ardipithecus, bones 317, 318
Australopithecus africanus 340
flat 317, 318, 321, 329
Lucy 335
ferns, first colonists of lava fields 115, 116
fevers 200-201, 207, 209
fig trees 116, 287, 310
fire(s) 354, 431
'first life on Earth' 46
fish
colours/patterns 49-50, 88, 89, 90, 265
fossil 64
fishermen 368, 378
fishing spider 261, 263
flashes/flashing
birds 104, 144, 159, 160, 161, 225-226, 235, 406, 407, 408
cephus red-tailed monkeys 222
see also colours and/or patterns
'Flit' (insecticide) 200, 203, 207
floodplains 193, 201, 331, 332, 336, 394
floods/flooded land 28, 37, 38, 193, 196, 246, 252, 335
flying, gliding leading to 271
flying foxes 370
flying lemur (colugo) 146, 148, 270-271
food 343-344, 357-358
mimicry 108
foraging, coastal/shoreline 368, 371
see also Banda Strandlopers
foraging techniques
bipedalism and 316, 317, 324, 328
finger-food/foraging 243, 307, 316
gentles and cephus/red-tails 220, 224
ground apes 315, 316, 319, 324, 328
ground foraging 315, 316, 318-319
humans 359-360, 368, 371
squat-foraging 313,316 , 317, 318, 330
use of skins as bags 360 , 361
forelimbs 69, 83, 179, 294, 333
forest(s) 304, 308, 320, 325, 435
Congolian, Awoura and anomalures 127-128
'eastern arc' (E. Africa) 311-313, 314, 321, 325
fossil(s) 326, 327
afrotheres, after Chicxulub 72, 265
bears 141
coly lineage (mousebirds) 265-266
dinosaur 79
fish 64
ground apes 313, 320-321
hominin 196, 324, 326, 330, 331, 332, 333, 344, 345
'Jurassic Mother' (placental mammal) 82
lungfish 48
primates 146-147, 275, 276, 284, 305, 306, 313
rhinoceros 125

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
sites of $36,326,327,330$, 332
in South Africa 339, 340, 341, 344, 347
tarsiers 270
teeth 125, 189
trap-door spider ancestors 261
frigatebirds 350, 351
frogs 50-54, 69, 392
Chicxulub's impact 67-68
sounds 163, 392
'Frontier Tanzania' 175
fruit bats 134, 135, 162, 229, 231-232, 287, 370
epauletted 229, 230-232, 238
musky smell 231, 232
sounds and volume of $230-$ 231, 391
furs, uses/industry 190, 361

G

Gabon, caves 312
galagos 274, 275, 289, 290, 345
garden orb spiders 263
Gautier, Jean-Pierre 221
Gelada-like baboons 243-244
'generalised', natural selection for 293-294, 313, 335
genes 441
'archaic' 372, 373, 374
genetic diversity 380
genetic drift 308, 380
genetic modification (GM) 443
genetic polymorphisms 379
genetically programmed skills 353
genets 244, 245
genome(s) 48, 83, 188, 248, 253, 295
Gentle Monkey (Blue Monkey) 217-218, 219, 220
geological history 253
Congo River course 254, 255-256
uplift of land surfaces 36 , $46,57,255,256,430$
geology of Africa 15, 36, 40, 43-59, 45, 253
geophysiology 440, 441, 445
George, Wilma ('MamaGundi') 43
Gerenuk (antelope) 153

Giant Eland 120
Giant Otter 215
Giant Otter Shrew 86, 87
gibbons 279
gigantism, evolution of 443
Gigantopithecus blacki 280281
giraffes 154, 364, 413
glaciers 100, 101, 102, 103, 320, 373
gliding, and gliders 127, 148, 150, 270-271
global information networks 453
global warming (climate crisis) $2,40,113,120,448,450$
Glotin, Herve 191
glyphs 396, 397
go-away birds (turacos) 39, 161, 224-226, 227
golden moles 70, 86, 146, 266
golden orb spiders (Nephila) 263
Goliath Frog 69
Gondwana 43-44, 45, 51, 57, $67,255,256,430$
break-up 43-44, 45, 52, 57, 58, 67, 233
Goodall, Jane 310
gorilla(s) 9, 285, 296, 308, 309
evolution/dryoporilla predecessor 279, 308, 309
faces 10, 299
feeding strategies 315
human competitor 309
Ikimuga 8-9, 299
Rugabo 285, 299
Grant, Captain 301, 302
grass(es) 125, 192-193
diets/eating 125, 126, 192193, 211
evolution/co-evolving taxa 125, 126
miombo 124
grass-rats 126-127
Grass Rhino 28, 125, 249
grasshoppers 106
graze-teeth, evolution 125
grazers, succession, Serengeti plains 192-193
Great Frigatebirds 351
'Great Lakes Basin' 325, 330-331
Great Oxidation Event (GOE), The 47
Great Rift Valley 36
'Greek apes' (Graecopithecus) 306, 308
Grey-capped Warbler (modomo mdaa) 103-105
Grey-crested Helmetshrike 94-95
Grey Crowned Crane 37-38
ground apes 11, 313, 314, 315, 319, 323, 328
behaviour driving morphology 316-317, 318, 324, 328
in east-coast forests 313 , 314, 315, 316, 320, 321, 323, 324, 325, 328, 337
emancipation of hands 315, 316, 319, 330
feeding strategies 314 , 315-316, 318, 330
feet and locomotion 318, 321, 328, 330, 340
'Kanapoi hominin' differences 333, 342
latitudes north of equator, Ethiopia 313, 319, 320, 321, 325
latitudes south of equator 323, 326, 339, 342
range extension, response to predators 346
seasonal habitats/foods 339, 342-343
South African Basin, arrival, timing 339
Zambezia Basin 331-332
ground foraging 315,316 , 318-319
ground-thrushes 300, 301
groundnut (peanut) (Arachis hypogaea) 173
Gunda Anyampanda 111, 112

H

Hadropithecus ('pseudomonkeys') 276
hafting 378, 379, 380
hair, 'curly' 368, 371
Hamilton, Bill 127
Hammer, Mike 379
Hammer-headed Bat 229-231
hand(s)
Australopithecus 341
driving uprightness 11, 307, 316, 319
emancipation, human evolution 306, 307, 319

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

primates 224, 243, 281, 289, 306, 315, 316, 319, 330
tool use and protective action 347
haplorrhine primates 272, 274
hares 154, 190, 193, 264
harpoons 378, 379, 380, 381
Hart, Therese 245, 248
head(s)
brain-heavy 291-292, 293294
movement, cephus/redtailed monkeys 222
squat foraging, bipedalism development 317
weaponised 72, 73, 151, 152
helmetshrikes 93-96
herbalists and herbal medicines 137, 205, 206
herbivores $71,73,87,125$, 151, 153, 174, 178
collapse, causes 189-190
plants poisonous to 130 131
hides, of animals 361, 363
hieroglyphics 396, 413
Hignell, Harold (‘Great-uncle Hal') 182, 204
Hignell, Minnie ('Bibi’) 16, 25, 26, 163, 165, 222, 351, 437
Hippopotamus 216-217
HIV/AIDS 209
Holekamp, Kay 356
Holmes, Arthur 43, 44
hominid fossils 284, 308, 344
hominid skulls 340-341
hominins 278, 294, 311, 326
bipedalism see bipedalism
brains 293, 337, 344, 359
in central Kenya 324
eastern forest region 312313, 320, 321, 326
emergence, date 330
fossils 196, 324, 326, 330, 331, 332, 333, 344, 345
humpanzee divergence 309, 311
'Kanapoi hominin' 332-333, 333-334, 335, 340, 341
niche-thieves 352, 353
Praeanthropus afarensis (Lucy) as most successful 335, 336
radiation/expansion 313, 319, 320, 328, 330, 331, 342
seasonal movements 339, 341-342, 343, 345
South African Basin 339, 340, 342, 343
tool use 352, 353
Zambezia Basin and 332
Homo 352, 353
in Eurasia 372, 373-374
origin in South Africa 353
Homo erectus (Erect man) 345, 346, 349, 372, 373
Homo ergaster (Work man) 349
Homo habilis (Handy man) 344, 345, 346, 349, 373
Homo naledi 347
Homo pekinensis (Peking man) 349
Homo sapiens 30, 196, 285, 302, 304, 336, 345, 346, 355, 372
diverse genealogies 372-375
earliest dispersion 375, 376
Honey Badger (nyegere) 154, 292
hoopoes 145, 408
hornbills 144-145, 146, 287, 426
horns 73, 151, 152, 164, 249
horses, primitive 179, 404
human(s) 354
animal as greatest part of 306, 424
human evolution 11, 12, 74, 188-189, 269, 293, 295, 323, 336
in Africa 1, 3, 5, 11, 18, 34-35, 36, 144, 175, 306, 319, 320, 445
African apes and 278, 279, 294, 295, 307, 308, 309, 311, 319
ape divergence 295,309 , 319
from Australopithecus 344, 345, 346, 349, 352
biogeography 303, 304, 319
proconsuls and 277
reconstruction difficulty, ecosystem destruction 446
study of 326, 327
see also entries beginning Homo; hominins
Human Family sculptures 383, 384
'humpanzees' 308, 309, 311, 313, 317, 323
Humpback Whale 168-169
hunter(s) 26, 108, 119, 154, 195, 294, 361
hunter-gathering 168, 206, 252, 382
hunting 201, 202, 360-361, 378
material/tool use and 358, 360, 361, 363
hyraxes 88, 101, 153
hyenas 154, 155, 264
Hyracotherium (fossils) 403-404

I

Ice Ages 40, 99-100, 101, 140, 141, 222, 319, 373
Ikimuga (gorilla) 8-9, 299
imagery 394, 395, 396, 397
immunity, to diseases 202, 203
Impala 153, 164, 361
imports/exports, evolution see emigration and immigration
independence (Uhuru) 398, 432-433, 433-434
India 45, 46, 54, 377
Indian Ocean 311, 323, 339
infectious diseases 199-211
innovation 359, 360, 363
insect-pickers 133
insecticides 109, 200
'instinctive feeders' 351-352
intelligence 186, 189, 215, 313
interbreeding $372,374,375$, 381
intercontinental migration see continent(s)
interglacial period 100
International Biological Programme (IBP) 447, 450
International Convention on Biological Diversity 169, 171
International Council of Scientific Unions (ICSU) 447
Ionides, 'Iodine’, Game Ranger 172-173, 174
'Iranian-Arabian corridor' 272
iridescence 160
iridium 65
Isanzu people 111, 112, 113

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Ishida, Hidemi 329
Isimila, pinnacles of 35
Isinana (spotted shovel-nose frog) 68
Island Africa (Kingdon) 18, 141, 166, 256, 304
'Island Africa' 141, 142
islands, ecological 39, 40, 245, 304
ivory $19,186,187,188$

J

Jackson's chameleon 20-21
James, Lydia 17, 18
Japan, Japanese concepts 139-140, 318, 329
jaws 181, 189, 217, 388
Jengo, Elias 320, 321, 400, 425, 432, 433, 434
juvenile animals 355, 356, 357, 359, 365

K

kami and kamamatsuri 139, 140
'Kanapoi hominin’ ('Kana Boy') 332-333, 333-334, 335, 340, 341
keystone species 18,193
Khoisan people 4, 380, 381-382
Kilimanjaro, Mount 33, 40, 44-45, 254
Killer Whale 190-191
killifish 49-50
King Baboon Spider 263
Kingdon, Afra 439-440
Kingdon, Dorothy 16, 21-22, 31, 32, 182, 203, 206, 292
art/drawings/paintings 12, $23,27,28,29,31,55,134$, 155, 163, 310, 420
as artist, and teacher 16, 21, 22, 31, 420-421, 423
bequest of papers and letters 16, 31, 420
letter on Serengeti plains 163-164, 165
loss of orphan elephant 187
on miombo 122-123
personality $21,22,31,185$, 203, 420
photographs of 22, 419
Kingdon, Jonathan
birth and infancy 16, 32, 33, 38, 419
books by see individual titles
career and research 4, 6, 7, $13,16,30,139,303,417$
challenge from father 2930, 31
childhood 6, 16, 17, 19-21, 31, 34, 163-164, 423
drawing, meaning/value of 409, 410
drawing lessons from Dorothy 31, 421, 423
drawings/sketches/paintings $5,7,15,27,75-76,81$, 118, 204, 210, 394, 409, 410
dreams for the future 454
homes (childhood) 27-28, $33,34,38,40,44,55,75$, 204
people of importance to 19 , 21-25, 24, 29, 419
photographs of $24,35,129$, 165, 320, 344, 383, 400, 434
as 'the question machine' 16, 123, 206, 292-293, 351
schooling/self-education 21, 31, 56, 57, 75, 166, 421, 422, 423
solar system lesson 61-62, 63, 99, 109
Kingdon, Teddy (Z.E.) 17, 20, 21, 22, 32, 35, 77, 106, 132, 207, 438
astronomy lessons for son 61-62, 63, 99, 109
career $21,27,40,172,201$
challenge to son 29-30, 31
childhood 105, 106, 185, 347
death 29, 30
father (electrical engineer) 438
photograph 419
at a rain-making ceremony 111
shooting birds/elephants 178, 265
tropical storm and 437, 438
as undergraduate in Oxford 298-299
Kingdon, Zachary (son of Jonathan) 119
Kingdon Line 304, 312, 330-331

Kingdon-Ward, Frank 135, 136
kingfishers 406, 409
Kirumi, Tanzania 111, 112
Kitahurira Rapids, Ishasha 414
kite spiders (Gasterocantha) 263
Kiwira River, Tanzania 143, 144
knee joint 329
knowledge 6, 363, 424, 441, 455, 456
Kobus antelopes 334, 335
Kondo, Shiro 329
Kondoa Irangi, Tanzania 117
KT boundary (Cretaceous/ Tertiary periods) 65, 66
'KT Event’ 65, 66, 70
see also Chicxulub meteorite
Kuhme, Willie D. 239
Kuria people 235, 236

L

lakes, high-altitude 52
land bridges 43, 146, 272
laterite 258
Laurasia 43, 51
lava fields 115, 116
The Laws of Tanganyika 74, 75, 77
Le Gros Clark, W.E. 278
Leakey, Louis S. B. 36, 277, 278, 325, 352
Leakey, Mary 277
legends 5, 26, 64
legumes/leguminous plants 120, 121, 122
trees 120, 127-128, 130
lemurs 275, 276, 290
Leopard 9, 32, 155, 156, 157, 218, 413
Lesser Spot-nosed Monkeys 220
lianas 28
life history 441-442
Limbali Forest 245, 246
Limpopo River 380
Limpopo valley/delta 326, 339, 340, 341, 380, 381
Lions 240-241, 281
lipilenga trumpet 262
livestock 193, 364
plants poisonous to $130-$ 131

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

livestock industry 130, 153, 174, 444, 449
Ankole Ranching Scheme 196
exterminations, cordon sanitaire and 194-195
irresponsible, time to stop 364-365
lizards 150, 166, 388
locusts 106, 107, 108, 109
logging 128-129, 130, 137, 285, 365, 443, 449
Long-spine Porcupinefish (fofu-nungu) 48
long-tailed monkeys 252, 281, 283
Lowly Origin (Kingdon) 18, 304
'Lucy’ (Praeanthropus afarensis) 332-333, 334, 335, 340, 341, 352
lungfish 47-48
'Lupemban' 380, 381, 382
lynx spiders 260-261

M

Maathai, Wangari Muta 365
macaques 284, 293
Madagascar 45, 46, 54, 93, 95, 275, 276
'magic' and 'magicians' 205, 206, 208
magma 40, 67
maiden and unicorn, metaphor 22, 24
Makerere University, Uganda 7, 97, 110, 303, 389, 416, 432, 433, 451
Makonde people, sculptors 119, 398
malaria 132, 199-200, 202, 207
susceptibility/resistance 371, 373
Malawi, Lake (Lake Nyassa) 194, 201
male/female relationships 221-222, 229-230, 233, 242
male appearance 49, 229, 232, 234, 242
male dominance 221,233, 241
see also courtship
male-on-male competition 151, 240

Maley, Jean 245
Maloba, Gregory 7, 8, 12, 13, 396, 397, 398, 443
mammals, African 70, 80-81, 82
intercontinental movements 140-141, 146, 179, 327
speciation, time/distance 334
species number in Africa 273
see also placental mammals
manatees 87-88
mandible 181, 216-217
Mandrills 162, 163, 242, 283
maps, memory 424-427, 431
marine communities 88 , 167-169
Marsh Mongooses 318
Matumbi Hills, Tanzania 136
Mbeya, Tanzania 56, 57, 133, 181, 295
Mbondei, Mtalami 136-137, 205
Mbono valley 425, 428, 431
Mbuti people 166, 258
McKean, Dave 44
measles 211
medicine men 137, 205-206
Meehan, Betty 368
Melanesians 368, 369, 371, 374, 375, 383
melanin 368, 384
memory maps 424-427, 431, 433

Merops (bee-eaters) 142-143, 144, 406-408
meteorites 63
see also Chicxulub meteorite
meteors 63,64-65
mganga (doctors) 205, 206
mice 74-75
Milankovitch Cycle 100, 103
Million, the Aardvark 85
millipedes 293
mimicry 12-13, 108, 196, 354, 378
Gelada-type baboons' chests 243, 244
mind and memory 425
minerals, exploitation 25, 197, 266
Miocene, apes 305, 306, 307, 308, 313
miombo 120, 121, 122-123, 124, 424

Mkapa, Ben 119
Mkomazi expedition/ landscape $32,425,431$, 433, 434-435
'moderns' 371-372, 377
see also Homo sapiens
molars, mammalian 125, 126, 181
molecular clocks 248, 252
moles 146
molluscs $367,368,378$
mona monkeys 224
Mongiro hot springs, Uganda 144, 167, 287, 294, 345
monkeys 217-218
evolution/ancestors 252, 279, 281
radiation in Africa 252-253, 282
see also specific types of monkeys
monocultures 2, 172, 363
moon 61-62, 63
Moreau, Reg 141
Morokweng crater 64
Moroto, Mount 276, 278, 454
mosquito(es) 206
fear of, caution 199, 203, 204
rituals/precautions against 199-200, 203
mosquito netting 203, 207, 371
Mountain Fruit Bat 391
mountain sickness 373
mountains, refuge for species 141
movements, fast/sudden 222, 281, 283
Mozambique Mini-basin 325, 330
Mpilimo lodge 112, 113
mpingo (African blackwood) 119, 120
multimammate mouse 74-76
musky smell 153, 231, 232
Mwanza, Tanzania 48, 52, 55, 63, 107, 109, 163, 263
Mwasumbi, Leonard 105

N

'Nadir' crater 67
National Parks 454
natural history, mission for 29-30, 454

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Natural History Museum, GB 301, 302, 303
natural selection 11, 48, 105, 363, 373, 392, 409, 442
bigger brains/brain-heavy heads 291-292, 293-294, 359
for enlarged bodies 72
fish 48, 90
glaciation/interglacial period effect 100
hominins, 'experiments' 324, 326
'hybrid kids', 'moderns'/ Neandersovans 372
juvenile animals as targets 355, 356
legume (Awoura) and anomalures 128
malaria/disease resistance 203
at margins/boundaries 367
nests of Grey-capped Warbler and 104-105
by predators, camouflage and 412
response to signals 389
skin colour, solar superstress 368, 371
Neandersovans 189, 372, 373, 385
genes $372,373,374$
Neanderthals 188, 372, 373
neonates 291, 292, 354, 355, 419
nesting holes, of bee-eaters (Merops) 144
nests, of Grey-capped Warbler 103-105
niche-multiplying process 144, 354
niches, stealing/thieves of 3 , 18, 140, 351-365, 363
by humans $18,336,351$, 352, 353-354, 363, 364, 365
night-blindness 404
Nijhout, Fred 417
Nile, river 255, 396
Nkrumah, Kwame 15, 451
nocturnal animals 82, 161162
nomadic human societies/ foragers 25, 44
non-governmental organisations (NGOs) 445
noses, gorilla 299
Nubian plate 45, 46
'Nutcracker hominins' 335336, 340
'Nutters' 173, 174
Nyamwanga hunters 194, 195
Nyiragongo, Mount 116

0

Ogooué River 255, 308
Okapi 167, 437
Olduvai Gorge 35, 325, 344
Oligo-mini-ape (Oligopithecus savagei) 275
optical neurons 392, 400
orang-utans 279, 295, 298
Orange Ground-thrush 301
Oreopithecus bambolii 305, 314
Organisation of African Unity (OAU) 197, 451
Orrorin tugela (a ground ape) 330
Orrorin tugenensis (a ground ape) 313
oryx 162
ostriches 164
'otter shrews' 86, 87, 100
otters 215, 318
owls 236-237, 237-238, 396, 397
oxygen, bacteria releasing 47
oyans 244

\mathbf{P}

Paabo, Svante 372, 373
Paenungulates 87
pain 390
Paine, Bob 193
Painted Dogs (African Wild Dogs) 238-240
palaeontology 277, 305, 324, 326, 327
pandemics 193, 199, 452
Covid-19 2, 193, 199, 233, 439, 452, 455
rinderpest 193-195
Pangaea 43, 44, 50, 255
Papua New Guinea 188, 233, 234, 235-236
people from 368, 371, 374
Paraceratherium 178, 179
parasites, susceptibility/ resistance 371
Pare mountains, Tanzania 426
parental status 355-356

Patas Monkey 252, 253
patterns see colours and/or patterns
pelicans 389, 390
'Penfield Homunculus' 319
'Perissos' 178, 180
Pesadilla flu pandemic (1918) 193, 199
physical anthropologists 326
physiology 440, 441
Pilbeam, David 278-279
piscivory 244
placental mammals 81, 82
evolution 70, 270, 271, 272
fossils 82
radiation, Chicxulub and 70, 83, 270, 272
plague, bubonic 210-211
plant(s) 115-137, 354, 363
Banda Strandloper diet 379
poisonous 130-131
practical uses/medicinal 137, 205, 206
re-foresting the Earth 115, 116-117
South Africa, Chicxulub survivors 337-338
succession 192
plant collectors/collection 135
plant-eaters see herbivores
plant-animal interactions 120, 127, 130-132
plate tectonics 43
'poison-arrow trees' (Acokanthera) 130-131
poisoning/poisons 130-131, 263
pollution 448, 453
porcupines 279-280
postures, primate 313 , 314-315
Praeanthropus 332, 333
Praeanthropus afarensis ('Lucy’) 332-333, 334, 335, 340, 341, 352
Praeanthropus anamensis ('Kanapoi hominin') 332-333, 333-334, 335, 340, 341
pre-modern humans 372,373 , 374, 375
Precambrian surfaces in Africa 120, 121
predators 346, 411-412
prehistoric artefacts 359

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

primate(s) 289, 367, 423, 424
in boreal centre-west realm 304-305
brains 273, 279, 289, 290, 292, 293, 392
in Bwamba-Semliki 167, 288
communication and sounds 287, 289, 290
fossils 146-147, 275, 276, 284, 305, 306, 313
hands 224, 243, 281, 289, 306, 316
jaws 217
limbs 281, 289, 294, 296, 316-317
postures 313, 314-315
scent and 290
sensors/channels for signals 392
sex behaviour 242, 243, 244
'South African Basin' 339
touch 290
vision and visual acuity 289, 392
see also apes
primate evolution 146-147, 218, 248, 269-285, 289, 290
advantages in Africa 273
in Asia, origin 146, 272, 280-281
divergence of early lineages 271, 279, 281
export from Eurasia 146, 272, 278, 279, 284-285, 305, 307, 308
exported to Eurasia 278279, 284, 306
first arrivals in Afro-Arabia 146, 272, 273
galagos and African lemurs 274, 275, 289
'intensive gleaners', 'expansive foragers’ 281
'Returnee Radiation' 279
South America 275
Pringle, John 150
proboscids 178, 180, 189, 327
process as principle 440 , 441-442, 445, 446, 447, 452, 453
ecology 440, 443-444
evolution 440, 442-443
geophysiology 440, 441, 445
living processes vs products 19, 186, 197, 443, 452
physiology, and life history 440, 441-442
rainforest communities 449
Proconsuls 277, 278
'prosimians’ 270
protective responses 346-347
Puku antelope 331-332

Q

quaali (spurfowl) 141-142, 143
quadrupedalism 316
Quagga lineage 402, 403
quails 141-142
quinine $132,202,203,205$, 371

R

Rabongo Forest 131
rain 40, 103, 122, 245-246
rain frogs (Breviceps) 67-68
rain-makers, and ceremony 111, 112, 113
'rain-stones' 111
rainforests $117,127,130$, 442-443, 449
Ramapithecus 327
ranching 196
Rare Earths 197
'Reclamation' 171
Red-and-yellow Barbets 425, 426
Red-billed Queleas 211
red-tailed (cephus) monkeys 220-222, 283
reef fish 90, 91, 92, 168, 265
'Releasers', fish regurgitation by birds 393-394
retina, patterns of light falling on 400,401
'Returnee Radiation' 279
rhinoceros(es) 73, 125, 154, 249
Rhinoceros Hornbill 144, 145, 146
rhizobia 120
rift valleys 36, 255, 309
Eastern 36, 45, 46
lakes 193-194
Western 45
rinderpest 193, 194
Rising Star Cave, South Africa 347, 349
rituals 113, 356
against mosquitoes 199200, 203
'Robusts’ 335-336, 352
Rock Monitor lizard (leguaan) 388-389
rock paintings $3,4,137,321$, 399, 400, 402, 403
Mkomazi 434-435
rodents
assisting Awoura to reduce competition 127-128
Eurasian, migration to Africa 147, 148, 272, 273
skulls 214-215
Root, Alan 85, 116, 117, 180
'rootstock ground ape' (Ardipithecus ramidus) 313, 315, 341
Rugabo (gorilla) 285, 299
Rukwa, Lake 59, 194
Rungwe mountain, Tanzania 40, 57
Rungwe Rain Frog 68, 69
Rushby, George 310
Rwenzori mountains 45-46, 59, 100, 287
glaciers 100, 101, 103
Ruweza, Adam 196
Rwagasira, Ruben 8-9

S

Sable Antelope 120, 124
sac spiders 263
Sahara desert 73, 106, 245, 304, 364, 407
Saharan locusts 106, 107
Sahelanthropus 308
salt water intolerance 48, 49, 50
Samburupithecus 306, 308
sau (Soudanian doka) 120, 121
'sausage trees' (Kigelia africana) 134-135
savannah ecosystems 354
savannah monkeys 248
scent 231, 232, 290
Schaller, George 238
science 1, 2, 409, 438, 440, 445, 453
Sclater's Monkey 222-223
scorpions 257-258
sculptures $81,117,118,248$, 263, 348, 383, 396, 397

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
sea(s)
abuse/poisoning/destruction 96, 168, 252, 365
aquatic vertebrates, evolution 367
biodiversity in 88, 167-169
sea-cows 87,88
sea level fluctuations 377, 378
seals 233
seasonal movements of hominins 339, 341-342, 343, 345
seasonality of food 342-343, 343-344
'seated feeding' 314
self-consciousness 356
self-education 4, 6, 21, 31, 423
Self-made Man and his Undoing (Kingdon) 18, 370, 371, 372, 375, 376, 377
Semliki River 166, 167, 168
Senegal Galagos 274
Senegal River, West Africa 274
sengis (elephant shrews) 72, 85, 86
senses 162
animal, in humans 392
governing foraging 318
of lizards 388, 389
of primates 289, 290
smell/scent 231, 232, 290
touch 290, 291, 319, 403404
vision see vision
sensors 389, 392
Serengeti plains 39, 239, 394
travel across, Dorothy's letter 163-164, 165
Vesey's concepts/findings 191, 192-193
Serval 126, 127
sexual behaviours 242, 243, 244
see also courtship
sexual organ, display 242 , 243, 248
Seychelles frog (Sooglossus) 54
shadows, metaphor 189
Shango's Axe (thunderbolts) 438, 439
shooting
of birds 265
of elephants 173, 178, 182, 186, 189
of giraffes 364
shovelnose frogs (Hemisus) 67-68
shrews 154, 238
Sieffert, Erik 84, 148
signals/signalling 298, 390
change between noise and vision 220, 391
change from tactile to visual (zebras) 403-404
channels 389, 391, 392
colour see colours and/or patterns
ear-tip 411
eye-aversion and head movement 222
sensing/responding to 389 390, 391
sound see sounds/calls
visual 222, 223, 390, 391, 400, 411
Sikana, Hamisi 195
Simiolus minutus 279
Singida, Tanzania 40, 264
skills 353, 357
skin colours 369, 371, 383
dark, super-pigmented ('super-mels') 368, 369, 370, 371, 374, 385
de-pigmented ('de-mels’) 369, 385
Neandersovans and Moderns 374-375
pigmented ('mid-mels') 369
skins and skinning of animals 155, 156, 360-361
skull(s) 71-72, 248
bipedalism development 317, 324, 328, 329
elephant 179, 180, 280
examination by author 214-215, 215-216
hominid 340-341
Proconsul (dental ape) 277
rodent 214-215
tapir-like 180
as toys/models 213
weaponised 72, 73
slaves/slavery $15,19,187$, 188, 383, 445
sleeping sickness 207
small-sized animals 219, 220, 252
snakes 388
snares, traps 358
Snook, Laura 66
snot-berry trees (Cordia africana) 133-134
social behaviour 358-359
elephants 181-182
Lions 240-241
parental status, and young 355-356
response to predators 346
seasonal movements/
resources and 343-344
territorial, to herd behaviour 403-404
zebras, calls/sounds 404
social groups, hominins 336
solar system 61-62, 63, 99, 109
songbirds 104, 405-406
sounds/calls 159
African Guereza monkeys 217
Barn Owl facial feathering channelling 237-238
birds 104, 405-406, 425
cephus/red-tails 220, 221
chimps 294
colobus monkeys 283
control exerted by young via 355
frogs 163, 392
fruit bats 230-231, 232
Hammer-headed Bat 229, 230
primates (general) 289, 290
'Pyow', gentle monkeys 217-218, 220, 221
whales 169, 190, 292
zebras 404
South Africa 325, 330, 337338, 342
flora and fauna 47,67 , 337-338
fossils in 339, 340, 341, 344, 347
ground apes 339
seasonal movements of hominins 339, 341-342, 343, 345
survival of species from Chicxulub 67-68, 70, 74, 83-84, 304, 337
South African Basin 339, 342
South America 47, 67, 70, 275, 293
'southern man-apes' 340, 341, 344

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

speciation, need for geographic isolation 334, 349
speciesism 295
Speckled Mousebirds ('colies’) 265, 266
Sperm Whales 190, 191, 292
spider(s) 260-263, 291, 390
spider webs 259, 262, 263
'spookpaddas' 53
Spotted Hyena 156, 355-356
Springer, Mark 70
springhares 264
spurfowl see quaali
squat-foraging $313,316,317$, 318, 330
squirrel galagos 318-319
sticklebacks 392-393
Stillbay (Sangoan) 380
stone flowers 412, 413
stone tools 35, 352
Banda Strandlopers 376377
Charaman and 'Lupemban' 380
Strachey, John 173
strepsirrhine primates 272, 274, 275
string, use 360
Striped Hyena 155, 355-356
stromatolites 46-47, 441
succession 177-197
animal, integration with plants 192
grazers, Serengeti plains 192-193
Homo sapiens over other species 196-197
plant 192
Sudd, people of 394, 395
Sulawesi tarsiers 269-270
Sun God 111, 112
Suni (paa) (antelope) 152-153
survival, exploitation threatening 445
sustainability 449-450
Swahili 17, 21, 48, 202, 205

T

Table Mountain, Cape Town 52, 53, 54
Table Mountain Ghost Frog 53
Tabora, Tanzania 38, 121
tail loss, apes/humans 281, 294
talapoin monkeys 251-252, 253, 254, 255
Tanga, Tanzania 321, 324
Tanganyika, Lake 36, 58, 94, 194, 309
tantrums 356
tapirs 146
tarantulas 263
teeth 302
ape, in porcupine refuges 280
fossil 125, 189
molars, mammalian 125 , 126, 181
South African man-apes 341
wearing away, elephants 181
Tendaguru fossil bed, Tanzania 79
termitaries ('ant-hills') 80, 258-260
termites 80, 83, 85, 86, 258260, 315
territorial behaviour 343, 403-404
Tertiary period 65, 66
theropod lineages 266
Theroux, Paul 197
Thomas's Galago 273, 274
Thomson's Gazelles 164
thrushes 300, 301
thunderstorms 437, 438, 439
Tibet, Neandersovan genes 373
timber, timber companies/ trade 129, 130, 248, 365, 443, 449
logging 128-129, 130, 137, 285, 365, 443, 449
Tinbergen, Niko 392
Toba eruption 377
tongues, lizard 388
tool use 316, 337, 347, 357, 372
Banda Strandlopers 378, 380, 381
‘Charaman', Lupemban technique 380, 381
ecological niche invasion and 352, 354
Homo 352, 353
hunting and $358,360,361$, 363
tools, materials for 359, 380

Topi 164, 193
topography of Africa 193-194
Tornieria africana (dinosaur) 79
tortoises 70
touch, sense of 290, 291, 319, 403-404
Transect Series, The 425-426
translating nature 387-417
camouflage and 412-413
of colour to behaviour 393, 394
drawing, as retracing 404405, 407-408, 409, 410, 426
as neurophysiological processes 414-415
into ornament 414-416, 416-417
rock art 399, 400
of signals (visual/sounds) 389, 391, 392, 400
of stripes, into behaviour 400-404
into three-dimensional sculptures 396-398
visual knowledge, into words/art 420-421, 423
trap-door spiders 261
traps and trapping 358, 360
tree(s)
competition with grasses 192
felling 128-129, 130, 137, 285, 365, 443, 449
rainforests 117, 130
see also forest(s)
trophies/trophy hunter 154155, 156, 242
Tropical Forestry Action Plan (TFAP) 129
Tumbo (Mbuti, pygmy) 166, 167
turacos (go-away birds) 39, 161, 224-226, 227
Turkana, Lake 331
Twa pygmies 410

U

Uhuru 398, 432-433, 433-434
UNESCO 447
United Nations Environment Programme (UNEP) 448, 450
United States of America (USA) 171, 383

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
uplift of land surfaces 36,46 , 57, 255, 256, 430
Usambara mountains, Tanzania 61, 311, 430
UVR (ultraviolet radiation) 368, 369, 370

v

Vanessa species (butterflies) 417
vangas, radiation 95
Varian, Ralph 154-155, 156
Vedda people 377
Vesey-Fitzgerald, Desmond ('Vesey') 191-192
vibrator spider 262
Victoria, Lake 37, 38, 55
Victoria Microplate (VM) 36-37, 44, 45-46
vision
brain 'editing' what is seen 392, 400, 404
colour/patterns see colours and/or patterns
fruit bats 232, 238
primates 289, 392
sensitivities 392, 412
tactile sense change to (zebra) 403-404
visual predators 411-412
visual signals 222, 223, 390, 391, 400, 411
volcanoes $36,40,43,46,57$, 115, 117, 377
Volrath, Fritz 291
vomeronasal organ (VNO) 387, 388
Vredefort crater (Parys crater) 64
vulnerability 220, 357
Vulturine Guineafowls 209

W

Wainwright, Ruth 140
Wainwright, Steve 90
walking 318, 329, 330, 340-341
'War against Nature' 195, 196, 365
Ward, Henry Marshall 135
warm, keeping 266
Wasanzu people 111, 112, 113
Wasawo, David 451, 452
water 345
competition for 364
Eastern forests 312
primate fossils beside 345
Water Chevrotain 166, 167
water craft $367,374,375,376$
water-loving afrotheres 87
waterbucks 334, 335
Watson, James (Jim) 26, 27
Wattled Starlings 107-108, 109
weasel family 154
Wegener, Alfred 43, 44, 46, 58
Western Rift valley 45
whales 168, 169, 190-191, 292
whaling 190-191

White Helmetshrike 95
Wildlife Clubs 454
Wilson's Bird-of-paradise 234
Witwatersrand reef, South Africa 65
Wolfe's Guenon 224, 225
wood-hoopoes 145
Woodland Kingfisher 172
World Conservation Strategy
(WoCoSt) 448-449
World War I 56, 105, 106, 185, 347, 447
World War II 16, 56, 107, 109, 132, 166, 211, 447
Wrangham, Richard 315

Y

young animals 355, 356, 357, 359, 365

Z

Zambezia Basin 330, 331-332, 334
Zambezi/Congo (Exit IV) River route 256
Zambezi River 380
Zanzibar Galagos 274
zebra 164, 327, 387, 400, 401, 428
evolution of stripes 401403, 404
foals, nibbling, 'empty grooming' 403-404
sounds/voices 404
Zenkerella 147-148, 214-215

