Table of Contents

Introduction

<table>
<thead>
<tr>
<th>PART I</th>
<th>Voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The Best Way to Choose the Winner</td>
<td>9</td>
</tr>
<tr>
<td>Majority, Dictators, and Monarchs</td>
<td>11</td>
</tr>
<tr>
<td>The Unreasonable Effectiveness of Mathematics</td>
<td>12</td>
</tr>
<tr>
<td>It’s as Simple as Simple Majority</td>
<td>15</td>
</tr>
<tr>
<td>Quota and Supermajority</td>
<td>17</td>
</tr>
<tr>
<td>The Tyranny of Convenient Numbers</td>
<td>22</td>
</tr>
<tr>
<td>2 The Worst Way to Choose the Winner</td>
<td>28</td>
</tr>
<tr>
<td>Most of Not Many</td>
<td>28</td>
</tr>
<tr>
<td>A Splitting Headache</td>
<td>32</td>
</tr>
<tr>
<td>Spoils of Plurality</td>
<td>34</td>
</tr>
<tr>
<td>A Party of Two</td>
<td>37</td>
</tr>
<tr>
<td>Second Time’s the Charm</td>
<td>45</td>
</tr>
<tr>
<td>Ties and Top Hats</td>
<td>50</td>
</tr>
<tr>
<td>3 From Best to Worst</td>
<td>53</td>
</tr>
<tr>
<td>Candidate Profiling</td>
<td>53</td>
</tr>
<tr>
<td>Successive Elimination</td>
<td>58</td>
</tr>
<tr>
<td>Assigning Points</td>
<td>75</td>
</tr>
</tbody>
</table>
Comparing Pairs
Everybody (and Nobody) Is a Winner

4 **The Impossible Democracy**
Axioms of Democracy
Arrow through the Heart of Voting
Living with the Impossible

5 **To Each Their Own**
They Love You, They Love You Not
A Range of Emotions

6 **Strategy and Manipulation**
Game of Chairs
The Most Manipulable Method
A Scheme for Honest Men
Deadly Bullet Points

7 **And the Winner Is . . .**

PART II Representation

8 **This Old House**
A Waiter’s Take on Democracy
The House Hits the Ceiling
One Representative per Seattle
The Golden Ratio

9 **Rather Divisive than Indecisive**
Divisors and Quotas
Hamilton’s Paradoxes
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Divisor and Conquer</td>
<td>183</td>
</tr>
<tr>
<td>Jefferson: Going Low</td>
<td>183</td>
</tr>
<tr>
<td>Webster: Taking the Middle Road</td>
<td>187</td>
</tr>
<tr>
<td>Huntington-Hill: A Mean Battle</td>
<td>191</td>
</tr>
<tr>
<td>The Final Impossibility</td>
<td>201</td>
</tr>
<tr>
<td>11 A Country Divided</td>
<td>207</td>
</tr>
<tr>
<td>Because America Can Hack Its Own Elections</td>
<td>208</td>
</tr>
<tr>
<td>Mangling Democracy since 1788</td>
<td>212</td>
</tr>
<tr>
<td>He Who Controls Redistricting</td>
<td>217</td>
</tr>
<tr>
<td>A Civic Solution</td>
<td>223</td>
</tr>
<tr>
<td>Carving Up Prisons and Schools</td>
<td>226</td>
</tr>
<tr>
<td>12 Math v. Gerrymandering</td>
<td>228</td>
</tr>
<tr>
<td>Axioms of Districting</td>
<td>228</td>
</tr>
<tr>
<td>Symmetry and Bias</td>
<td>233</td>
</tr>
<tr>
<td>Cracking Down on Packing</td>
<td>242</td>
</tr>
<tr>
<td>The Geometry of Districting</td>
<td>249</td>
</tr>
<tr>
<td>Random Brewery Hopping in the Space of Maps</td>
<td>260</td>
</tr>
<tr>
<td>May the Math Please the Court</td>
<td>267</td>
</tr>
<tr>
<td>13 Proportional Representation</td>
<td>273</td>
</tr>
<tr>
<td>Sharing Is Caring</td>
<td>274</td>
</tr>
<tr>
<td>Party Loyalty</td>
<td>278</td>
</tr>
<tr>
<td>Candidates before Parties</td>
<td>285</td>
</tr>
<tr>
<td>PR for PR</td>
<td>296</td>
</tr>
<tr>
<td>PART III Civic Infrastructure</td>
<td>305</td>
</tr>
<tr>
<td>14 The Electoral College</td>
<td>307</td>
</tr>
<tr>
<td>Characters Preeminent for Ability and Virtue</td>
<td>307</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Spinning Pluralities into Majorities</td>
<td>315</td>
</tr>
<tr>
<td>The Bare Minimum</td>
<td>318</td>
</tr>
<tr>
<td>One Person, Four Votes</td>
<td>322</td>
</tr>
<tr>
<td>Abolish, Amend, Avoid</td>
<td>325</td>
</tr>
<tr>
<td>15 The Citizen-Mathematician</td>
<td>336</td>
</tr>
<tr>
<td>An Infrastructure Plan</td>
<td>340</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>341</td>
</tr>
<tr>
<td>Glossary</td>
<td>345</td>
</tr>
<tr>
<td>Figure Credits and Sources</td>
<td>353</td>
</tr>
<tr>
<td>Notes</td>
<td>355</td>
</tr>
<tr>
<td>Index</td>
<td>381</td>
</tr>
</tbody>
</table>
Introduction

One day my daughter’s fourth grade teacher announced that the following Friday was going to be a movie day. Everyone would come to school in pajamas, bring their favorite stuffed animal, and curl up to watch one of three options: *Bolt*, *Incredibles 2*, or *Coco*. To pick the movie, a vote would take place at the beginning of the day.

That morning, as my daughter was getting ready for school, I asked her to try to remember how the vote turned out. When she returned home, she duly reported that *Bolt* received 7 votes, *Incredibles 2* got 6 votes, and *Coco* got 4 votes. The teacher declared *Bolt* to be the winner and the class settled in for a movie afternoon.

Nothing against *Bolt*, but this was a terrible way to determine the winner. Most of the kids, ten of them, didn’t give *Bolt* as their first choice. The will of the minority (7) was imposed on the remaining majority (10).

What could the teacher have done differently? She could, for example, have told the four kids who voted for *Coco* that their movie didn’t make it, but they could cast another vote, this time between *Bolt* and *Incredibles 2*. The four new votes would have been added to the existing tallies for those two movies, with the upshot that the winner would now necessarily have majority support. If any two of the four kids who originally voted for *Coco* had voted for *Bolt*, that would have been the winner with at least 9 votes, but if—in a nail-biter twist—three had voted for *Incredibles 2*, that’s the movie all seventeen kids would have watched, with *Bolt* dethroned after a 9–8 loss.
We will never know what would have happened. The plurality vote the teacher conducted asked only for the kids’ top choice and nothing else. When so little information is asked for, only the coarsest tallying method is possible: count up the votes and the candidate with the most votes wins. The nuance of any preferences beyond the first choice is lost, resulting in a winner who does not necessarily represent the true will of the people.

And yes, this was just a bunch of kids choosing what movie to watch, so what’s the big deal? But several months earlier, in the 2018 Democratic primary election in the 3rd District of Massachusetts, a few miles north of my daughter’s school, you would have seen the same scenario playing out. Lori Trahan carried the nomination with 21.7% of the vote. Fast forward to the 2020 Republican primary in Florida District 3, far to the south, and you would see Kat Cammack winning with only 25.2% of the vote. Fast forward again, zagging back north to the 2022 Ohio Republican primary in the U.S. Senate race, and you would see J. D. Vance winning with 32.2% of the vote. You get the picture—all around us, people who have earned the support of only a minority of voters represent all of the voters.* This scenario is replicated all over the United States and the world in elections of all magnitudes, at all levels, deciding matters big and small.

What we’re seeing is, at its root, a problem in mathematics.

Matters of politics have become mired in personalities and partisanship. Although we recognize that problems exist, we’re getting worse at identifying them and increasingly paralyzed when it comes to constructing and assessing solutions. However, democracy is not just a human forum, it is also a system, a piece of civic infrastructure that runs on mathematics. Mathematics powers our basic democratic processes in ways that spread well beyond the seemingly simple matter of voting. Determining the size of representative bodies, distributing legislative seats, districting, and gerrymandering—all of these procedures rest on mathematical foundations.

* In heavily partisan districts, as most of them are, primaries are typically the real contests. All of these victors went on to be elected to office in their general elections.
Introduction

Just as camera filters and lenses can reproduce an image faithfully or manipulate it intentionally or output a garbled mess, the mathematics of democracy can give the people a voice or silence some and amplify others or lead to results too fragile to trust. And indeed, a closer look at the manifestations of mathematics in our democracy reveals that the ways we use it are flawed, and archaic, and often serve discriminatory intent. They have murky, dubious, or politically motivated origins that few know about and even fewer remember.

The good news—the hopeful news—is that mathematics is also transparent, with no agenda or spin. It lets us see what’s under the hood—we just have to look. If our politics are a screaming toddler and we are a parent incapacitated by the severity of the tantrum, then the math of those politics is the deep breath, a grounding mechanism that helps us understand that the child is just tired or hungry and we actually know how to fix that. Math is a clarifying way of looking at the world. It provides empowering confidence and is accessible to anyone. It is ready to reveal the deficiencies of our current democratic processes and recommend which new or updated ones can work better.

I have proof. For several years, I have witnessed the transformative effect of political numeracy education through teaching a college-level Math and Politics course. Students come to the class intrigued by the odd couple in the course title and hoping to earn a math credit needed for graduation. By the end, they are outraged that no one ever showed them how terrible our voting methods are, how blatantly devious gerrymandering is, how dysfunctional the U.S. Electoral College is. They are fired up about all the inequalities and discriminatory practices built mathematically into our system and are ready to get out there and do something about it. This book aims to bring my classroom to you, to empower you with knowledge (as well as outrage) that rests on a firm foundation of objective mathematics and that will give you the confidence to make a difference.

The time is right. There is growing awareness of the faults in our voting systems, and I don’t mean fantasies of widespread voter fraud or conspiratorial voting machines. Initiatives to address inequities in representation and to implement something smarter are proliferating. (At the
time of writing, at least ninety U.S. municipalities are trying to enact ranked choice voting.) After the 2016 election, the inadequacies of the Electoral College and its incompatibility with the popular vote have come front and center. As has gerrymandering, especially after the 2020 census and the many legal challenges to redistricting that followed. Politicians are starting to pay attention. More schools are building political quantitative literacy into their curriculum in recognition of its pedagogical appeal and relevance. Now is the time to get on the math and democracy bandwagon and join the movement to restore a functioning democracy.

It would of course be foolish to think that mathematics is the panacea for all of our political dysfunction. The role of politics, religion, community, emotion, greed, and power in democracy is undeniable and apparent to even the most detached of mathematicians. I tend to be even more sensitive to these things as an immigrant from Bosnia-Herzegovina. My life has to a significant extent been determined by that country’s terrible war of the early 1990s, a horrific and bloody demise of democracy far removed from anything rational—and hence from anything mathematical.

But this book will intentionally ignore these things. Its scope and its intent are not to stretch into all things democracy. Everything you will read here is grounded in the quantitative. The motivation and the examples will come from a messy reality, but the analysis will proceed in a mathematically impartial way, without political commentary. The political context will be used only to inform the math. My guiding principle is that using the best version of mathematics in democracy is of benefit to everyone, regardless of all those extraneous factors. Using a voting method that best captures the will of the people; electing our officials in a way that respects the basic one person, one vote axiom of democracy; creating conditions so that underrepresented groups have a voice should be universal aspirations, and their implementation should be steered by tools that are equally all inclusive. Mathematics is one of those tools.
On the other hand, democracy is about people, and even the math of democracy is a story of human idealism, shortsightedness, and above all compromise. This means that we’ll have to engage with the messiness on occasion. As definitive and unwavering as math is supposed to be, it doesn’t do so well when it must proclaim itself the “best,” the “most fair,” or the “least biased.” We’ll see these words a lot because they’re naturally woven into any discussion of politics and democracy, but they belong to a nonmathematical realm, one occupied by humans, in which opinions, preferences, and interpretations are allowed. For mathematics, these notions turn out to be too elusive. As a result, it will be easy for us to spot bad math (and there will be lots of it), but it will be trickier to find a replacement we can endorse. When considering math in the abstract, a diversity of definitions, theorems, and theories about a single subject can coexist simultaneously and independently (and they can all be equally true and valid), but because we will force them into competition for real-world application to democracy, we will sometimes have to be content with speculative outcomes. But we’ll make the best of this. We’ll figure out how to embrace the mathematical uncertainty.

This book is also not about the (mis)use of math and statistics in politics. I won’t even address, let alone pick apart, the troubling ease with which politicians manipulate numbers, graphs, and charts or the cavalier way with which they bandy about cooked or carefully selected statistics. I have much respect for those who are waging the good fight of educating the public about the exploitation of statistics in politics, but this book is about the mathematics behind democratic processes, not in front of them. Of course, the two ends are but two tentacles of the political innumeracy kraken, and those of us who fight it stand shoulder to shoulder, math spears in hand, trying to flank the beast from different angles.

Finally, there is growing recognition that math curricula at all education levels need to be updated in a way that reflects the injustices, discriminations, and intolerances of the world. In this way, the optimistic educator reckons, we might even be able to use mathematics to tackle those issues. Many amazing people are fighting this good fight, writing
and speaking about the archaic way we teach math and producing curricular materials that are relevant and timely.* As worthy and necessary as this effort may be, it is also outside the scope of this book. Our interest here is in the mathematical mechanics of democracy and not how mathematics can be used to explain or analyze specific social justice issues. But that’s not to say that the content here has nothing to do with social justice. On the contrary—and as I’ll argue repeatedly—implementing better math practices in democracy can lead to more equitable, less discriminatory outcomes.

So what does the math of democracy look like? We’ll invest some time in unpacking concrete examples to get a feel for things—what goes right, what goes wrong—and then take on some formalism and abstraction to bring the big picture into focus. With only modest mathematical machinery, we’ll be able to synthesize, extrapolate, generalize, and look for patterns in search of a cohesive framework that will support recommendations for better policies and mechanisms of democracy. We’ll establish axioms, make definitions, and state theorems. We’ll also encounter a surprising number of limitations and trade-offs, which will often manifest in paradoxical behavior, counterintuitive outcomes, and apparent inconsistencies—but we’ll celebrate these. Probing strange outcomes can tell us a lot about the system.

On the other hand, the math of democracy is fairly straightforward: basic arithmetic is all you’ll need. The focus will be on simple examples. If there is a more complicated or more abstract idea lurking around, I’ll mention it in a footnote to avoid interrupting what I hope will be a comfortable, even cozy flow. You won’t even notice I’ve slipped in some legit math!

As we move along, the mathematics will enable you to engage confidently in restoring our democracy by demystifying the systems that

* Examples include Mathematics for Social Justice by Gizem Karaali and Lily S. Khadjavi and Rethinking Mathematics: Teaching Social Justice by the Numbers by Eric Gutstein and Bob Peterson.
power it and examining how close they come to embodying our ideals. You’ll be equipped to reject the prevailing refrain that things are just too complicated. You won’t defer to history or tradition. You won’t fear that something terrible is lurking in the details of an unfamiliar method that makes it secretly partisan. Math will offer a path to true progress, to tangible improvements and resolutions of impasses. You’ll understand how the engine of democracy works, and you’ll be ready to make your own judgments and take action.
INDEX

Page numbers in *italics* refer to figures.

Academy Awards, 295–96
Adams, Eric, 68, 135–36
Adams, John, 100, 311
Adams, John Quincy, 187, 190, 311, 320
Adams’s method, 187, 189, 198, 203
Alabama, 58, 215, 216, 271
Alabama paradox, 179–80, 186, 190, 201, 345
Alaska, 46, 73, 160, 315; instant runoffs in, 58, 64–65, 110, 134, 317, 318; top-four primaries in, 29
American Mathematical Society, 116
anonymity criterion, 18–19, 101, 104, 115, 345
Apportionment Act (1792), 156
Apportionment Act (1842), 156, 232
Apportionment Act (1941), 200
apportionment problem, 153, 345
approval voting, 112–14, 134, 138, 345; bloc, 289; multimember, 289, 349
Approval Voting (Brams and Fishburn), 113
Argentina, 279, 313
arithmetic mean, 194–96, 345
Arkansas, 58, 200, 317
Arrow, Kenneth, 104–7, 111–12, 137
Arrow impossibility theorem, 106–8, 115, 202, 345
Australia, 42, 224, 297, 300–1
authoritarianism, 31, 42, 143
axioms, 99, 345
Baker v. Carr (1962), 215
Balinski, Michel, 122, 201–2, 203
Balinski-Young impossibility theorem, 202, 345
ballot exhaustion, 59, 62n, 89n
Barros, John, 47
baseball awards, 78
batch elimination, 68n
Bayesian regret, 120
Begich, Nick, 64, 73
Belgium, 281
Benedict XVI, Pope, 24
Berlin Philharmonic, 24n
Beyer, Don, 302
Bézout, Étienne, 86
Biden, Joe, 29, 32, 129; lack of enthusiasm for, 115; in 2020 election, 220, 313, 317–20, 323, 332
Bill of Rights, 212
binary choices, 12
Black, Duncan, 108–9
bloc approval voting, 289
bloc voting, 286–89, 294–95, 345
Bloomberg, Michael, 39
Borda, Jean-Charles de, 75–76, 86–87, 133
Borda count, 57, 97, 98, 109, 117; benefits of, 77–78; defined, 345; institutional use of, 78–80; manipulability of, 125, 126–27, 136; origins of, 76; shortcomings of, 81–86, 102–3, 133
Bosnia-Herzegovina, 26–27, 184n, 273, 275, 336–37; proportional representation in, 274, 278–79, 285; strategic voting in, 130
Boston, 31, 47
Bouk, Dan, 158, 173n
Brams, Steven, 73, 113, 115
Brazil, 46, 279, 313
Buchanan, James, 190
Buchanan, Pat, 63
bullet voting, 119, 122–23, 139, 345
Burr, Aaron, 51, 311
Burton, Phil, 221
burying, in ranked voting, 132–33, 138, 140, 345
Bush, George H. W., 36, 37, 127, 326
Bush, George W., 34–36, 63, 161, 315, 317, 320, 332
Bush v. Gore (2000), 313
Buttigieg, Pete, 115
Byrne, David, 303n
California, 162n, 300, 315–16, 324; compactness rules in, 230, 259; independent districting commission in, 221, 223, 225; instant runoffs in, 144; recall elections in, 34, 38; top-two primaries in, 46
Campbell, Andrea, 47
Cambridge, Mass., 278–79, 297, 299
Cammack, Kat, 2
Canada, 31, 278; independent districting commission in, 224, 254; multiparty system in, 40, 41; representation ratio in, 169, 170, 171; strategic voting in, 131
candidate-centered proportional representation, 286, 345
candidate cloning, 136, 345
cardinal voting, 112, 138, 345
Carroll, Lewis, 91n, 127
Cass, Lewis, 36
center-squeeze effect, 43, 69, 78, 345
Chicago, 47, 229–30
Ciccioina (actress), 42
Chen, Jowei, 260–61, 268, 271
Chile, 46, 297, 313
choice voting (generalized Hare method; proportional ranked choice voting; single transferable vote), 289–96, 300–2, 340, 351
Civil Rights Act (1957), 23, 215
Civil Rights Act (1964), 216
Clay, Henry, 36
Cleese, John, 276
Cleveland, Grover, 36, 320
Clinton, Bill, 36, 37, 123, 127, 317
Clinton, Hillary, 32, 36, 39, 319, 320n, 329, 331; faithless electors and, 314; Russian meddling and, 129; Stein's candidacy and, 37, 317–18
closed list proportional representation, 279, 346
closure, 23
collection building, 22
Cohen, Steve, 326
Coleman, Norm, 33–34
collective preferences, 9, 17, 100
Colorado, 116, 216–17, 223, 230
combined voting methods, 123
committee size paradox, 293n
Common Cause v. Lewis (2019), 271
Communities of interest, 216–17, 228, 346
compactly, 217, 230–31, 249–56, 346
compensatory seats, 280, 346
competitive district, 163, 211, 224, 225, 330, 346
conclave, 24, 128
Condorcet, Marie-Jean-Antoine-Nicolas, Marquis de, 86–87
Condorcet criterion, 102–3, 104, 109–10
Condorcet cycle, 90–92, 101, 346
Condorcet loser, 88–89, 110–11
Condorcet method, 57, 86–92, 97, 101, 136, 346
Condorcet winner, 88–89, 95, 97, 102, 109–10
Conservative Party (UK), 276
Considerations on Representative Government
(Mill), 296
constituency, 346
constitutional amendment, 22–23
Constitutional Convention, 154, 307–8
contiguity, 217, 232, 346
continuity, 246
convex hull score, 257, 258, 346
convexity, 346
Copeland, A. H., 93
Copeland’s method, 101, 102, 112, 132, 133; majority requirement met by, 102; in round robin sports tournaments, 93; shortcomings of, 95, 104, 136
Correia, Jasiel, 37–38
cracking, in gerrymandering, 210, 246–47, 346
Croatia, 48, 49, 233, 279, 336–37
Cruz, Ted, 32–33, 63, 114
cube root law, 170–72, 346
cumulative voting, 122–23, 140, 289, 297n, 346
Cutler, Eliot, 39
Cusanus, Nicolaus, 76
cut edge score, 260n
Daley, David, 218
Dasgupta, Partha, 109
Davis, Gray, 34
Davis v. Bandemer (1986), 269
Dayton Accords (1995), 337
Dean, James, 187
Dean’s method, 187–90, 198, 346
Declaration of Independence, 99–100
DeFord, Daryl, 263, 271–72
degressive proportionality, 277, 346
Delaware, 160, 167, 179, 186, 315, 323
Democratic-Republican Party, 213
Denmark, 285
D’Hondt, Victor, 281
D’Hondt method, 277, 283–84, 285, 346
dictatorship, as voting method, 13, 18, 19, 106, 346
discovery vs. invention, 15
dispersion, in district shapes, 255, 257, 347
district, defined, 347
District of Columbia, 312, 315, 317
divisor methods, 184–88, 194, 195, 198, 201, 202, 347
double bunking (incumbent pairing), 212, 347
Douglas, Stephen, 78n
Droop, Henry Richmond, 289–91
Droop quota, 290–91, 294
Duchin, Moon, 263, 271–72
Duke, David, 48
Duverger, Maurice, 39, 41
Duverger’s law, 39, 40–41, 42, 78, 132, 291
educational gerrymandering, 226–27, 347
Edwards, Edwin, 47–48
efficiency gap (EG), 225, 242–49, 261, 266, 267–68, 347
Eisenhart, Luther, 200
electors, 347
elimination paradox, 277n
Ellenberg, Jordan, 270n, 308
England, 225
ensemble sampling, 265–66, 266n, 268, 270, 271
equal protection, 221
Essay on the Applicability of Analysis to the Probability of Majority Decisions (Condorcet), 86
Euclid, 99, 100
Euler’s theorem, 16, 260
European Parliament, 277
Eurovision, 79–80, 128

For general queries, contact info@press.princeton.edu
eventual majority, 62
Eves, Mark, 44
exhausted ballot, 59, 62n, 89n

Fahey, Katie, 225
Fair Representation (Balinski and Young), 201
faithless electors, 313–14, 334, 347
Fall River, Mass., 37–38
Fargo, N.D., 116, 139
favorite betrayal, 39, 48, 131, 134, 138, 347

Federalist Papers, 154, 156, 310, 328, 347
Federalist Party, 213
FIFA World Cup, 93, 94
Fifteenth Amendment, 213
figure skating scores, 84–85
filibuster, 23
Finland, 46
first past the post. See plurality voting
Fishburn, Peter, 73, 113
flip, in Markov chain algorithm, 347
Florida, 34–35, 63, 88, 162n, 222, 317, 334
football polls, 81
Ford, Gerald R., 326
Formula One rankings, 78
Fourteenth Amendment, 177n, 221
France, 46, 48, 49, 163
game theory, 105–7
Gaming the Vote (Poundstone), 120, 129
Garcia, Kathryn, 44, 135
generalized Hare method (choice voting;
proportional ranked choice voting; single
transferable vote), 289–96, 300–2, 340, 351
geometric mean, 194–95, 347
George, Annissa Essaibi, 46
Georgia (U.S.), 45, 58, 187, 215, 319–20
Germany, 163, 280–81, 285, 300–1, 313
Gerry, Elbridge, 213
gerrymandering, 3, 4, 207–9; alternatives to,
222–25; axioms of, 228–33; competitive
districts eliminated by, 211, 330; cracking
in, 210, 246–47, 346; defined, 347; defini-
tional elusiveness of, 267–72; educational,
225–26; ”eyeball test” for, 270; incumbents entrenched by, 300; minorities
disenfranchised by, 213–16, 221, 226; orig-
ins of, 212–13; packing in, 209–10, 215,
224, 242–49, 349; partisan bias in, 233–42;
prisons and, 226; proportional representation as threat to, 299; random maps
and, 260–66; Republican mastery of,
217–20, 224, 276; secretiveness of, 221;
shape of districts in, 249–61; Supreme
Court’s acquiescence in, 222–23; techno-
logical aids in, 217
Gibbard, Allan, 137
Gibbard-Satterthwaite impossibility theo-
rem, 137–38, 202, 347
Giffords, Gabby, 129
Gill v. Whitford (2018), 222, 249, 260, 267–68,
271
Gingrich, Newt, 326
Ginsburg, Ruth Bader, 288
Gödel’s incompleteness theorem, 108
Goldwater, Barry, 43
Gomillion v. Lightfoot (1960), 215
Gore, Al, 34, 88, 161, 315, 317, 320, 332; Nader’s
candidacy and, 35–36, 39, 63, 129
Gorsuch, Neil, 269
grade point average, 119
Graham-Squire, Adam, 111, 293n
greatest divisors method. See Jefferson
apportionment
Green, Angela, 130, 132
Green, Roger, 207
Greenback Party, 41n
Groover, Denmark, 45n
Gross, Al, 134–35
Guinier, Lani, 123
Ham, Gracie, 15
Hamilton, Alexander, 177, 310
Hamilton apportionment method (Vinton
method), 177–82, 186, 190–91, 202, 277,
331, 347

For general queries, contact info@press.princeton.edu
Harding, Warren, 156
Hare, Thomas, 58, 296
Hare-Niemeyer method, 191n
Hare's method. See instant runoff method
harmonic mean, 198n
Harrison, Benjamin, 36, 320
Hawaii, 232
Hawkins, Howie, 317
Hayes, Rutherford, 320
Heisman Trophy, 78
Henry, Patrick, 212
Herschlag, Gregory, 271
Hill, Joseph, 192–93, 197
Hofeller, Thomas, 221–22
Hofstadter, David, 195
Holy Roman Empire, 313
Hong Kong, 233
Hoover, Herbert, 157
house monotonicity, 201, 202, 347
House of Representatives, 22–23, 26; degressive proportionality in, 277; insufficient size of, 152–72, 340
Humphrey, Skip, 33–34
Huntington, Edward, 197–98
Iceland, 78, 279
Idaho, 230–31
Illinois, 187–88, 221, 222, 249, 250, 298n
immigration, 153, 157–58, 192, 215
impossibility theorems, 106–8, 115, 137–38, 202
incumbency, 300
incumbent pairing (double bunking), 212, 347
independence of irrelevant alternatives (IIA), 84–85, 95, 103–4, 106, 107, 109, 115, 348
independent districting commissions, 223–26, 244, 254, 302, 340
India, 31
insincere voting (strategic voting; tactical voting), 71, 120, 122, 123, 127–41, 351
instant runoff method (Hare's method; sequential runoff method), 46, 60–63, 96–97; algorithm for, 58–59; benefits of, 50, 63–66, 143–45; candidate diversity linked to, 144; defined, 348; growing use of, 145; objections to, 66–69; monotonicity failed by, 69, 72, 73, 102, 104, 133–34; for presidential elections, 328–29, 340; research on, 109, 111, 143–44; shortcomings of, 69–75, 82, 102, 103, 136; single transferable vote linked to, 290, 295
Institute for Mathematics and Democracy, 338
invariance under scaling, 253, 348
invention vs. discovery, 15
Iowa, 226, 231, 249
Iran, 232–33
Ireland, 42, 297, 298
isoperimetric inequality theorem, 252–53, 260, 348
Israel, 279, 281, 297
Italy, 171, 302
Jackson, Andrew, 311, 320
Janey, Kim, 47
Jankowski, Chris, 217
January 6 insurrection, 32
Japan, 279, 302
Jefferson apportionment (greatest divisors method), 183–85, 194, 198, 202, 203; adoption of, 179; defined, 348; D'Hondt method likened to, 184n, 277, 283–84; large states favored by, 185–86, 187, 189, 203, 204n; quota rule violated by, 186, 191, Webster's method compared with, 189
Jeffries, Hakeem, 207
John Paul II, Pope, 24
Johnson, Gary, 37, 129, 315, 317, 331
Johnson, Lyndon B., 43
Jorgensen, Jo, 317
jungle primaries. See top-two primaries juries, 12; size of, 26; unanimous verdicts of, 24

Kagan, Elena, 223
Kasich, John, 32–33, 63, 314
Kavanaugh, Brett, 223
Kemeny’s method, 91n
Kennedy, Anthony, 223, 267–68
Kentucky, 187
Kerry, John, 320
Kim, Jane, 44
Kim Jong Un, 128
Kiss, Bob, 68
Klobuchar, Amy, 115
Koza, John, 333

Labor Party (U.S.), 41n
Labour Party (UK), 224–25, 276
Lagrange, Joseph-Louis, 86
Laplace, Pierre-Simon, 133
Laraki, Rida, 122
largest remainders method, 177
League of United Latin American Citizens (LULAC) v. Perry (2006), 267
length-width score, 258, 259, 348
Leno, Mark, 44
LePage, Paul, 39
Le Pen, Marine, 46, 48
Liberal Democrat Party (UK), 276
Liberia, 128
Lincoln, Abraham, 78n
literacy tests, 214
Llull, Ramon, 76n, 86n
Locke, John, 154
Loeffler, Kelly, 45
Louisiana, 45, 47–48, 58, 250
lower quota (minimum quota), 176, 177, 348

Macron, Emmanuel, 46, 48
Madison, James, 154, 155–56, 158, 212, 308, 309, 312
Maine, 39, 181, 182, 191, 226; compactness rules in, 259; district system in, 35, 312, 317, 329; instant runoffs in, 29, 53, 55, 58, 318
major fractions method (Webster apportionment), 194–205, 277, 285, 331, 340; adoption of (1910), 191–92; bias absent from, 203–4, 284; Dean's method compared with, 189–90; defined, 351–52; Jefferson's method compared with, 189
majority criterion, 25, 101, 102, 104, 122, 348
majority judgment (majority grading), 122, 348
majority-minority districts, 213n, 216, 267n
malapportionment, 162, 348
Malta, 42, 297
Maptitude (districting software), 217
March Madness, 93–94
Markov chain Monte Carlo (MCMC) algorithm, 263–64, 270, 348
Maryland, 175, 288, 300; gerrymandering in, 220–21, 222, 231, 244, 250, 251, 254, 258
Maskin, Eric, 109, 144
Massachusetts, 178, 187, 234, 258, 300, 310, 332
mass incarceration, 226
math education, 5–6, 340
Mathematical Association of America, 116
Mattingly, Jonathan, 263–65, 270–71
May, Kenneth, 20
mayoral elections, 31, 37; instant runoffs in, 68; runoffs in, 45, 47
May’s theorem, 20–21, 25, 28, 89, 100, 348
McCain, John, 329
McCune, David, 110, 111, 293n
McCune, Lori, 110
McGhee, Eric, 242, 248
McGuire, Thomas, 51
McMullin, Evan, 317
means vs. medians, in range voting, 122
Mélenchon, Jean-Luc, 48
Merrill v. Milligan (2023), 234n, 271
Mexico, 169, 301
Michaud, Mike, 39
INDEX 387

Michigan, 200, 219, 220, 334; compactness rules in, 230, 256; independent districting commission in, 223, 225; in 2016 election, 37, 317–18, 320n
Mill, John Stuart, 296
Miller v. Johnson (1995), 216
minimum quotas (lower quotas), 176, 177, 348
Minneapolis, 58, 297
Minnesota, 29, 334
Minnesota Farmer-Labor Party, 41n
Mississippi, 58
Missouri, 224, 230
mixed electoral system, 280, 348
mixed-member proportional representation, 280, 300, 348
modified divisor (MD), 184–85, 196, 349
monarchy, as voting method, 13, 18, 19, 349
monotonicity, 18, 19, 69, 72, 73, 102, 115; defined, 349; house monotonicity, 201, 202; impossibility theorem and, 106, 107; population monotonicity, 201, 202, 349; types of elections vulnerable to, 111
Monroe, James, 212
Montana, 160, 167, 224, 230, 323
Morgan of Glamorgan, King, 26
Morgenbesser, Sidney, 103n
Morgenstern, Oskar, 105
Morse, Marston, 200n
Most Valuable Player Award, 78
multimember approval voting, 289, 349
multiwinner approval voting, 289, 290, 349
Murkowski, Lisa, 134–35
Nader, Ralph, 35–36, 39, 63, 127, 129, 315, 317, 332
Napoleon Bonaparte, emperor of the French, 76
NASCAR rankings, 78
National Academy of Sciences, 116, 198, 200
National Popular Vote Interstate Compact (NPVIC), 333–34
Native Americans, 177n
NATO (North Atlantic Treaty Organization), 22
NCAA, 78, 93–94
Nebraska, 35, 46, 317, 329
negative campaigning: approval voting as antidote to, 114; Borda count as antidote to, 78, 82; effectiveness of, 43–44; instant runoff as antidote to, 66, 144, 329; proportional representation as antidote to, 300; single transferable vote as antidote to, 293
Nepal, 285
Netherlands, 297
neutrality, in voting methods, 18, 19, 101, 104, 115, 235, 349
Nevada, 46n, 174
New Hampshire, 132, 187, 288
New Jersey, 224, 288
New Mexico, 157, 191, 224
Newsom, Gavin, 38, 56n
new states paradox, 181–82, 186, 191, 201–2, 349
New York City, 58, 68, 135–36, 296
New York state, 182–83, 185–86, 187, 222, 224, 226
New Zealand, 277, 280, 285, 302
Nigeria, 46
Nixon, Richard M., 326
Noah, Trevor, 209
North Carolina, 177, 212, 219, 220, 221–22, 268, 300
North Dakota, 288, 315
Northern Ireland, 224–25
North Korea, 127–28
Norway, 279, 285
no-show paradox, 73, 122, 136, 349
Novoselic, Krist, 302
NP-hardness, 262n
Oakland, 58, 66, 144
Obama, Barack, 329–30

For general queries, contact info@press.princeton.edu
packing, in gerrymandering, 209–10, 215, 224, 242–49, 349
pairwise (sequential) voting, 93–95, 136
Palin, Sarah, 64–65, 73, 110
papal succession, 24, 128
paradox of positive association, 71
Paraguay, 313
Pareto, Vilfredo, 106n
Pareto criterion, 106n
parity, as voting method, 13, 19, 349
partisan bias, 225, 238, 239–40, 266, 349
partisan symmetry, 235–37, 240, 340
party list proportional representation, 278–81, 285–86, 349;
Paul, Ron, 314
Pegden, Wesley, 270–71
Pelosi, Nancy, 225n
Pelto, Mary, 64–65, 73
Pennsylvania, 116, 309, 334; gerrymandering
in, 219, 222, 231, 250, 251, 259, 263, 267, 271;
in 2016 election, 37, 318, 320n
Perdue, David, 45
Perot, Ross, 36–37, 117, 127, 318
Perron-Frobenius theorem, 16, 260
Perry, Rick, 129
plurality voting (first-past the post; relative
majority; winner take all), 28, 96, 276, 277; defined, 349; manipulability of, 129;
shortcomings of, 29–31, 34–38, 42, 44, 143, 204
plurality bloc voting, 286–89, 349
+2 effect, 324, 330, 349
Political Parties (Duverger), 39
Polk, James K., 36, 187
poll taxes, 214
Polsby-Popper compactness score, 253–54, 258–60, 270, 349
popular vote, 349
population monotonicity, 201, 202, 349
population paradox, 181, 186, 190, 201, 202, 349
population polygon score, 257, 259, 350
Populist Party, 41n
Portugal, 46, 279
positional voting, 78–79
positive political theory, 107
Poundstone, William, 120, 129
Powell, Colin, 314
precinct, 350
preference order (preference ballot), 53
preferential method (ranked choice
method), 53, 132–33, 350; growing use of,
4, 58. See also instant runoff method
primaries: in one-party districts, 2n; open,
132; presidential, 276; spoiler effect in, 37,
132; top-two, 29, 46, 351
Princeton Gerrymandering Project, 258
prison gerrymandering, 226, 350
probability distribution function, 264, 350
profile, in ranked choice voting, 54–56, 350
Progressive Party, 41n
Prohibition Party, 41n
proportional ranked choice voting (choice
testing; generalized Hare method; single
transferable vote), 289–96, 300–2, 340, 351
proportional representation, 208, 234–35;
benefits of, 41–42, 278, 298–303; bloc
voting, 286–89, 294–95; in Bosnia, 273–74, 275–78–79; candidate-centered, 286, 345; closed list, 279, 285; defined, 350; D’Hondt, 277, 281–84, 285, 346; efficiency gap and, 247–48; mixed-member, 280; open list, 279, 349; party list, 278–81, 285–86, 349; prevalence of, 277–78, 279, 281; quotas for, 280–81; Saint-Laguë, 277, 284–86, 350; shortcomings of, 297–98; single transferable vote, 289–96, 300–2, 340, 351; Supreme Court’s preoccupation with, 268; in U.S., 276–77, 296

Quan, Jean, 66
Quinn, Jameson, 123n
quota: defined, 350; Droop’s, 290–91, 294; for proportional representation, 280–81; for supermajorities, 22, 25
quota rule, 186, 191, 201, 202, 284
quotients, in proportional representation, 281–82, 350
random walk, 263
range voting (score voting), 112–13, 117–22, 134, 139–40, 350
ranked choice method (preferential method), 53, 132–33, 350; growing use of, 4, 58. See also instant runoff method
Ratf”**ed (Daley), 218
reality shows, 80n
Reapportionment Act (1929), 157, 158–59, 162, 165, 192, 196, 216n
recall elections, 38
recombination, 263, 350
REDMAP (Redistricting Majority Project), 217–21, 267
relative majority. See plurality voting
Reock score, 256, 258–59, 270, 350
representative population, 177n
responsiveness, of seats-votes curve, 240–42, 350
Reynolds v. Sims (1964), 215, 323
Rhode Island, 160, 177
Richie, Rob, 143–44
Riker, William, 107
Roberts, John G., 268
Rodden, Jonathan, 260, 271
Roemer, Buddy, 47–48
Roman Empire, 76n
Romney, Mitt, 329–30
Roosevelt, Franklin D., 200
Roosevelt, Theodore, 36, 318
rotten boroughs, 212
rounding, 23, 151–52; in Adams’s vs. Jefferson’s models, 203; of standard quotas, 175–76, 186, 189, 194, 195, 324
round robin tournaments, 93
Rove, Karl, 220
RSA encryption, 16
Rubio, Marco, 32–33, 63
runoff elections, 45–50, 350. See also instant runoff method
Saari, Donald, 81, 109, 115, 117, 127
safe district, 350
Saint-Laguë method, 277, 284–86, 350
St. Louis, 116, 139
St. Paul, 58
Sanders, Bernie, 115, 314
San Francisco, 58
Santa Fe, 58
Santorum, Rick, 129
Satterthwaite, Mark, 137
scale invariance, 250–51, 348
school secession, 226–27
Schwartzberg score, 255, 256, 259, 270, 350
Schwarzenegger, Arnold, 34, 221
score voting (range voting), 112–13, 117–22, 134, 139–40, 350
Scotland, 224–25, 276, 297
Seabrook, Nick, 221
seats bonus (winner’s bonus), 235, 351
seats-vote curve, 237–42, 351
secret ballot, 25n
seeding, in sports tournaments, 95n
self-sorting, 217, 224, 242, 245
Sen, Amartya, 106–7, 109, 137
Senate, 22–23, 154; filibusters in, 23
sequential runoff method (Hare’s method; instant runoff method), 46, 60–63, 96–97
sequential (pairwise) voting, 93–95, 136
Serbia, 336
Shape (Ellenberg), 308
shareholder voting, 289
Shaw v. Reno (1993), 216
Sherman, Roger, 308n
sieve method, 20
Silver Party, 41n
Simonds, Shelley, 51
simple majority, 12–14, 22–24, 351
Simpson’s paradox, 75, 110
Sinema, Kyrsten, 130
single mixed vote, 280, 351
single transferable vote (choice voting; generalized Hare method; proportional ranked choice voting), 289–96, 300–2, 340, 351
Slay the Dragon (documentary film), 218, 222
Sliwa, Curtis, 135
Slovenia, 78, 131, 233, 336
Smith, Warren, 120
Social Choice and Individual Values (Arrow), 105
social choice function, 101n
social choice theory, 131n, 14, 17, 92, 100, 108, 351
Socialist Party (U.S.), 41n
social welfare function, 101n
Solomon, Justin, 263, 272
South Carolina, 58, 132, 212, 214, 312
South Dakota, 160, 288, 315
South Korea, 170
Southwest Territory, 177
Soviet Union, 116
Spain, 131
Sparta, 120
spoiler effect, 31, 36–37, 63, 64, 78, 89, 103–4; Condorcet criterion linked to, 110; defined, 351; IIA linked to, 104, 110; in instant voting, 72–73, 83, 132, 135, 339; manipulative use of, 129; multiparty coalitions vs., 130
Spotted Eagle, Faith, 314
stacking, in gerrymandering, 212n
Stalin, Joseph, 128n
standard divisor (SD). See representation ratio
standard quota, 174, 177, 189, 195, 285, 351
STAR (Score-Then-Automatic-Runoff) voting, 123
Stein, Jill, 37, 39, 129, 317–18, 331
Steiner, Jakob, 252, 260
Steingart, Alma, 205
Stephanopoulos, Nicholas, 242, 248
Stewart, Potter, 270
Stoppard, Tom, 128
strategic voting (insincere voting; tactical voting), 71, 120, 122, 123, 127–41, 351
supermajority, 21–24
Sweden, 285, 301
Sweet, Betsy, 44
Switzerland, 191n
symmetry score, 238n
tactical voting (insincere voting; strategic voting), 71, 120, 122, 123, 127–41, 351
Taegepera, Rein, 170
Tabarrok, Alex, 127
Taft, William Howard, 318
Taylor, Zachary, 36
tennis rankings, 78
Texas, 116, 132, 173, 300, 315; gerrymandering in, 222, 231, 240, 241, 242, 250
theorems, 14
Theory of Committees and Elections, The (Black), 108
Theory of Games and Economic Behavior (von Neumann and Morgenstern), 105
Thornburg v. Gingles (1986), 216
Three-Fifths Compromise, 309, 351
Thurmond, Strom, 23, 326
ties, 21, 50–51, 101; in approval voting, 114; in instant runoffs, 59; in parity method, 13; in simple majority method, 12, 20
Tilden, Samuel J., 191, 320
top-two primaries, 29, 46, 351
Tour de France, 78
Trahan, Lori, 2
transitive preferences, 90, 101, 109
Treatise on Election of Representatives, A (Hare), 58
Trenk, Adam, 51
Trudeau, Justin, 254
Tshibaka, Kelly, 134–35
two-candidate elections, 19–21, 25, 28
Turkey, 46, 279, 281
turnout, 44, 247n, 248, 299, 324n, 327
Twelfth Amendment, 311
Twenty-Third Amendment, 312
unanimity, 22, 25, 351; in jury trials, 24
Uniform Congressional District Act (1967), 288, 302
uniform partisan swing, 351
United Kingdom, 41, 163, 313; districting bias in, 22.4–25; plurality voting in, 31, 40, 277; strategic voting in, 131; votes vs. seats in, 276
United Nations, 115
universal domain, 108, 109
unreasonable effectiveness of mathematics, 16–17
UN Security Council, 26
upvotes and downvotes, 119
Urban VI, Pope, 24
Utah, 224
Vance, J. D., 2
Vandenberg, Arthur, 192
van Newenhizen, Jill, 115
variance, 351
Vaughn, Christy, 263
Ventura, Jesse, 33–34
Vermont, 160, 226, 288, 315
veto power, 23
Vieth v. Jubilirer (2004), 267
Vinton, Samuel F., 179, 190
Vinton Act (1850), 190
Vinton method (Hamilton apportionment method), 44, 247n, 248, 299, 324n, 327
Virginia, 178, 181, 185, 212, 224, 309
von Neumann, John, 105, 200
voter satisfaction efficiency, 123n
voter suppression, 248
voter turnout, 44, 247n, 248, 299, 324n, 327
vote splitting: approval voting resistant to, 114; Borda count resistant to, 77–78; Condorcet method resistant to, 89; defined, 351; fringe beneficiaries of, 33, 34, 42; instant runoffs resistant to, 63, 64, 132, 329; multiparty coalitions vs., 130; plurality voting vulnerable to, 31, 42
voting, defined, 351
Voting Rights Act (1965), 216, 228–29, 266, 301, 302
Wales, 224–25, 297
Walker, Herschel, 45
Wang, Sam, 271–72
Ware, William, 58n
Warren, Elizabeth, 115
Washington, D.C., 312, 315, 317
Washington, George, 155, 156, 177–79, 182–83
Washington state, 46, 221
wasted votes, 143, 242–48, 280, 281, 351
For general queries, contact info@press.princeton.edu
Webster, Daniel, 187
Webster apportionment. See major fractions method
Wesberry v. Sanders (1964), 162, 215
West, Kanye, 129, 317
Whig Party, 213
Wikimedia Foundation, 90
Willcox, Walter, 191–92, 197, 198
Wilson, Chris, 167–68
Wilson, Jennifer, 110
Wilson, Erica, 227
Wilson, Woodrow, 36, 167–68
winner’s bonus (seats bonus), 235, 351
winner take all. See plurality voting
Wisconsin, 175; gerrymandering in, 219, 221, 222, 224, 248, 260, 264, 265, 267; in 2016 election, 37, 318, 320n; in 2020 election, 319–20
Wolf, Tom, 271
Wright, Kurt, 68
Wu, Michelle, 47
Wyoming, 160, 315–16, 324
Wyoming Rule, 166–168, 352
Yancey, David, 51
Yang, Andrew, 44
Young, Danny, 226
Young, Peyton, 201–2, 203
Yugoslavia, 336