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1 Introduction

Lies, damned lies, and statistics.
—Disraeli

1.1 The Subject Matter of Statistical Mechanics

The goal of statistical mechanics is to predict the macroscopic properties of bodies,
especially their thermodynamic properties, on the basis of their microscopic structure.

The macroscopic properties of greatest interest to statistical mechanics are those relat-
ing to thermodynamic equilibrium. As a consequence, the concept of thermodynamic
equilibrium occupies a central position in the field. It is for this reason that we will first
review some elements of thermodynamics, which will allow us to make the study of sta-
tistical mechanics clearer once we begin it. The examination of nonequilibrium states in
statistical mechanics is a fairly recent development (except in the case of gases) and is
currently the focus of intense research. We will omit it in this course, even though we
will deal with properties that are time-dependent (but always related to thermodynamic
equilibrium) in the chapter on dynamics.

The microscopic structure of systems examined by statistical mechanics can be des-
cribed by means of mechanical models: for example, gases can be represented as systems
of particles that obey the classical equations of motion and interact by means of a phe-
nomenologically determined potential. Other examples of mechanical models are those
that represent polymers as a chain of interconnected particles, or the classical model
of crystalline systems, in which particles are arranged in space according to a regular
pattern, and oscillate around the minimum of the potential energy due to their mutual
interaction. The models we use are, however, rather abstract and often exhibit only a
faint resemblance to the basic mechanical description (more specifically, to the quantum
nature of matter). How such abstract models are able to describe the behavior of actual
systems is itself one of the more interesting questions of statistical mechanics, and has
led to establishing the theory of universality and its foundation in the renormalization
group.

The models of systems dealt with by statistical mechanics have some common char-
acteristics. We are in any case dealing with systems with a large number of degrees of
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freedom: the reason lies in the corpuscular (atomic) nature of matter. Avogadro’s con-
stant, NA � 6.022 · 1023 mol−1—that is, the number of molecules contained in a gram-mole
(mole)—provides us with an order of magnitude of the degrees of freedom contained in
a thermodynamic system. (The values of this and other fundamental physical constants
are given in sec. H.) The degrees of freedom that one considers should have more or less
comparable effects on the global behavior of the system.

Exercise 1.1 (On Avogadro’s number) Imagine we could “mark” the water
molecules contained in a small flask of 100 cc, and pour them into the sea. If we fill
the flask from the sea after having waited for the flask’s “marked” molecules to have dis-
tributed uniformly in the oceans, how many of the molecules can we expect to find back
on average?

NOTE. The surface of the oceans equals 71% of the earth’s surface, and its mean depth
is 3,800 m. The molecular weight of water is equal to 18.

This state of affairs excludes the application of the methods of statistical mechanics to
cases in which a restricted number of degrees of freedom “dominates” the others—for
example, in celestial mechanics, although the number of degrees of freedom of the plane-
tary system is immense, an approximation in which each planet is considered as a particle
is a good start. In this case, we can state that the translational degrees of freedom (three
per planet)—possibly with the addition of the rotational degrees of freedom, also a finite
number—dominate all others. It follows from these considerations that one encounters
quite hard problems if one naively attempts to apply statistical concepts to human sciences,
such as politics. Indeed, even if a nation’s political system includes a very high number
of degrees of freedom, it is possible to identify some degrees of freedom that are much
more important than the rest. On the other hand, statistical methods can also be applied to
systems that are not strictly speaking mechanical—for example, neural networks (under-
stood as models of the brain’s components), urban thoroughfares (traffic models), and
some problems of a geometric nature (for example, percolation).

The simplest statistical mechanical model is that of a large number of identical particles,
free of mutual interaction, inside a container with impenetrable and perfectly elastic walls.
This is the model of the ideal gas, which describes quite well the behavior of real gases at
low densities, and more specifically allows one to derive the well-known equation of state.

The introduction of pair interactions between the particles of the ideal gas allows us
to obtain the standard model for simple fluids. Generally speaking, this model cannot
be resolved exactly and is studied by means of perturbation or numerical techniques. It
allows one to describe the behavior of real gases (especially rare gases), and the liquid-vapor
transition (boiling and condensation).

The preceding models are of a classical (that is, not quantum) nature and can be applied
only when the temperatures are not too low. The quantum effects that follow from the
inability to distinguish particles from one another are very important, and can be dealt with
at the introductory level if one omits interactions between particles. In this fashion, we
obtain models for quantumgases, further distinguished as fermions or bosons, depending
on the nature of the particles.
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The model of noninteracting fermions describes the behavior of conduction electrons
in metals fairly well, once one redefines the dependence of their energy on their momen-
tum in a suitable way. The thermodynamic properties are governed by the Pauli exclusion
principle.

The model of noninteracting bosons has two important applications: radiating energy
in a cavity (also known as black body) can be conceived as a set of particles (photons) that
are bosonic in nature; moreover, helium (whose most common isotope, He, is bosonic
in nature) exhibits, at low temperatures, a remarkable series of properties that can be
interpreted on the basis of the noninteracting boson model. Actually, the transition of
4He to a superfluid state, also referred to as the λ transition, is connected to the Einstein
condensation, which occurs in a gas of noninteracting bosons at high densities. Obviously,
interactions between helium atoms are not negligible, but their effects can be studied by
means of analytic methods such as perturbation theory.

In many of the statistical models we will describe, however, the system’s fundamen-
tal elements will not be “particles,” and the fundamental degrees of freedom will not be
mechanical (position and velocity or impulse). If we want to understand the origin of fer-
romagnetism, for example, we focus on the degrees of freedom that are most relevant
for the phenomenon, such as the orientation of the magnetic moments of the electrons,
called their spin. The spin, being of a quantum nature, can assume only a finite num-
ber of values. The simplest case is when there are only two values—in this fashion, we
obtain a simple model of ferromagnetism, known as the Ising model, which is by far the
most studied model in statistical mechanics. The ferromagnetic solid is therefore rep-
resented as a regular lattice in space, where for each point of the lattice there is a spin
variable that can assume the values +1 and −1. This model allows one to describe the
paramagnet-ferromagnet transition, as well as other similar transitions.

1.2 Statistical Postulates

The behavior of a mechanical system is determined not only by its structure, represented
by the equations of motion, but also by its initial conditions. Therefore the laws of mechan-
ics are not enough by themselves to define the behavior of a mechanical system that
contains a large number of degrees of freedom if nothing is said about the relevant ini-
tial conditions. It is therefore necessary to complete the description of the system with
some additional postulates—the statistical postulates in the strict sense of the word—that
concern these initial conditions.

The path to arrive at the formulation of statistical postulates is fairly twisted. In the
following section, we discuss the relatively simple case of an ideal gas. We conjecture
the distribution of the positions and velocities of particles in an ideal gas at equilibrium,
following Maxwell’s reasoning in a famous article [Maxw60], and we see how the equation
of state of the ideal gas follows from this conjecture and the laws of mechanics. What
this argument does not prove is that this distribution is conserved—in other words, if
the equilibrium distribution of positions and velocities of the particles holds at a certain
instant in time, it also holds at each following instant, as the system evolves according to its
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equations of motion. It is also necessary to show that if the initial distribution is different
from the equilibrium one, the actual distribution approaches the equilibrium one as a
consequence of the system’s evolution—that is, that the system “naturally” approaches
equilibrium. Boltzmann’s great contribution was to state clearly the problems mentioned
above and to make a bold attempt at their solution.

1.3 An Example: The Ideal Gas

1.3.1 Definition of the System

In the model of an ideal gas, one considers N point-like bodies (or particles), with mass
equal to m, identical to one another, free of mutual interaction, inside a container of vol-
ume V whose walls are perfectly reflecting. The mechanical state of the system is identified
by the position vector ri and the velocity vector vi (both three-dimensional vectors) of each
particle i. These vectors evolve according to the laws of mechanics.

1.3.2 Maxwell’s Postulates

The assumption is that the vectors are distributed “randomly,” and more specifically
that:

1. The velocity and position vectors pertaining to different particles are independent of one

another. This hypothesis certainly does not apply, among other examples, to particles that

are very close to each other, because the position of two particles that are very close is

undoubtedly influenced by the forces that act between them. One can, however, expect that

if the gas is very diluted, deviations from this hypothesis will have negligible consequences.

If one accepts the hypothesis of independent particles, we can describe the state of the

system by giving, for each value of r= (x, y, z) and v= (vx, vy, vz), the number dN of particles

whose position is located within a box, with sides dr= (dx, dy, dz) placed around r, and that

are simultaneously driven by a velocity whose vector lies in a box of sides dv= (dvx, dvy, dvz)

aroundthevectorv:we thenhavedN = f (r, v) dr dv.Thisdefines thesingle-particleprobability

distribution f (r, v).

2. Position is independent of velocity (in the sense given by probability theory), and therefore

the probability distribution f (r, v) factorizes: f (r, v) = f (r)(r) f (v)(v).

3. Density is uniform in the space occupied by the gas, and therefore f (r)(r) = N/V = ρ = const.

if r is inside the container, and equal to zero otherwise.

4. The velocity components are mutually independent, and we have therefore f (v)(v) =
f (x)(vx) f (y)(vy) f (z)(vz).

5. The distribution f (v)(v) is isotropic in velocity space, so that f (v)(v) depends in actual fact only

on the magnitude v = |v| of v.

The basic properties of probability distributions are summarized in sec. A.
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vʹ
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x

Figure 1.1. Derivation of the relation between average speed and pressure.
The particle driven by velocity v is about to hit the wall. After the impact,
it will have velocity v′, in which the x component (normal to the wall) has
changed sign.

Exercise 1.2 Prove that the only distribution that satisfies postulates 4 and 5 is a
Gaussian:

f (v)(v) ∝ exp
(−λv2

)
,

where λ is a positive constant. Show that〈
v2
〉= 3

2λ
,

and that therefore the average kinetic energy is given by〈
1
2

mv2

〉
= 3m

4λ
.

1.3.3 Equation of State

We now prove that Maxwell’s postulates allow us to derive the equation of state for ideal
gases and provide a microscopic interpretation of absolute temperature in terms of kinetic
energy.

Let us consider a particle of velocity v= (vx, vy, vz) that, coming from the left, hits a
wall parallel to the plane (yz) (see figure 1.1). After the impact, it is driven by velocity
v′ = (−vx, vy, vz). The change �p in its momentum p is given by �p= p′ − p= m(v′ − v) =
m(−2vx, 0, 0). The number of impacts of this type that occur in a time interval �t on a
certain region of the wall of area S is equal to the number of particles driven by velocity v
that are contained in a box of base equal to S and of height equal to vx �t. The volume of
this box is equal to S vx �t, and the number of these particles is equal to ρf (v)(v) vx S �t.

The total momentum �P transmitted from the wall to the gas, during the time interval
�t, is therefore

�P=
∫ +∞

0

dvx

∫ +∞

−∞
dvy

∫ +∞

−∞
dvz f (v)(v) ρ S�t (−2m) v2

x i, (1.1)

where i= (1, 0, 0) is the versor of the x axis. In this expression, the integral over vx runs
only on the region vx > 0 because only those particles that are moving toward the right
contribute to pressure on the wall.
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The total force that the wall exercises on the gas is given by F= −�P/�t, and therefore
the pressure p is given by

p = |F|
S

= 2mρ · 1
2

〈
v2

x

〉= ρm
2λ

. (1.2)

In this equation, the factor 1/2 comes from the integration over vx, which runs only on the
region vx > 0. It is well known that the equation of state for perfect gases takes the form

pV = nRT , (1.3)

where n = N/NA is the number of moles, T is the absolute temperature, and R �
8.314 J K−1 mol−1 is the gas constant. By introducing the Boltzmann constant kB,

kB = R
NA

� 1.381 · 10−23 J K−1, (1.4)

and the particle density

ρ = N
V

, (1.5)

eq. (1.3) can be written

p = ρ kBT . (1.6)

If we compare this expression with eq. (1.2), we obtain the constant λ:

λ= m
2kBT

. (1.7)

The distribution of the component vx of the velocity, taking into account the normalization
condition, is then given by

f (vx )(v) =
(

m
2π kBT

)1/2

exp
(

− mv2

2kBT

)
. (1.8)

Analogous laws hold for the distributions of vy and vz. Then the distribution of the speed
v = |v| is given by the following expression, known as the Maxwell distribution:

φ(v) =
∫

dv δ (v − |v|) f (v)(v) =
(

m
2π kBT

)3/2

4πv2 exp
(

− mv2

2 kBT

)
, (1.9)

where δ(x) is the Dirac delta “function” (cf. sec. A.8), defined by∫
dx f (x) δ(x − x0) = f (x0), (1.10)

where f (x) is an arbitrary smooth function.
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Exercise 1.3 (On Maxwell’s distribution)

1. Evaluate the root mean square speed vRMS = √〈v2〉 of a gas obeying Maxwell’s distribution

φ(v) in d dimensions. Give the corresponding numerical value for air in three dimensions

at room temperature (T = 300 K). Air is made by 2/3 of nitrogen (molecular weight 28) and

1/3 of oxygen (molecular weight 32).

2. Evaluate the value v of the speed in a Maxwell distribution at temperature T for a gas of

molecules of mass m in d dimensions that corresponds to the maximal probability density.

Compare it with the root mean square speed.

3. Evaluate the probability distribution function for the kinetic energy of a gas following

Maxwell’s distribution, i.e., the probability density that the kinetic energy of a randomly

chosen particle has the value κ :

f (κ) =
∫

dv δ
(
κ − 1

2
mv2

)
φ(v).

Exercise 1.4 (Gas in a gravity field) Let us consider a gas of particles of mass m, at
equilibrium with a uniform temperature T in a gravity field, described by the acceleration
g pointing vertically downward. The gas particles obey the Maxwell distribution. Let S1

and S2 be two horizontal surfaces, at heights z1 and z2 > z1, respectively. We denote by ρi,
i ∈ {1, 2} the numerical density close to Si.

By considering the condition that, in a time interval of duration �t, as many particles
originating from S1 cross S2 as vice versa, derive a relation between ρi and zi (i ∈ {1, 2}).
Neglect the effects of collisions between S1 and S2.

Exercise 1.5 (Knudsen gas) Let us consider a gas distributed in two containers placed
side by side, both at a very small density, at pressures and temperatures (p1, T1) and (p2, T2).
The two containers are connected by a very small opening, such that the thermal equilib-
rium of the two systems is not perturbed. There is molecular equilibrium when the flux
of particles through the opening from container 1 to container 2 is equal to the flux of
particles from container 2 to container 1.

1. Show that in this situation there is a simple relation between (p1, T1) and (p2, T2).

2. Evaluate the small change in (pi, Ti), i = 1, 2, that obtains in a short time interval �t.

Exercise 1.6 (Drag in a gas) Let us consider an ideal gas made of particles of mass m,
with numerical density ρ = N/V , at temperature T . Using Maxwell’s distribution, evaluate
the drag applied by the gas on a small disk of radius R moving at velocity v, where v is
parallel to the axis of the disk. We assume that R is much smaller than the interatomic
distance ρ−1/3 and that v is much smaller than the characteristic speed of the particles.
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Potassium
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Rotating
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φ

Pump

T2
T1

Pump

ℓ

Detector

Figure 1.2. The Marcus and McFee experiment. Based on [Marc59].

1.3.4 The Marcus and MacFee experiment

The Maxwell distribution can be measured directly by means of experiments on the molec-
ular beams. We will follow the work by Marcus and McFee [Marc59]. A diagram of the
experiment is given in figure 1.2. Potassium atoms are heated to a fairly high temperature
(a few hundred degrees Celsius) in an oven. The oven is equipped with a small opening
that allows the beam to escape. A screen with a small hole is placed a bit further away, in
order to have a well-aligned beam. In the region traversed by the beam, a vacuum is main-
tained by a pump. Two rotating screens, set at a distance 
 from each other, act as velocity
selectors. Each is endowed with a narrow gap, and they rotate together with angular veloc-
ity ω. The two gaps are out of phase by an angle ϕ. Therefore, only particles driven by a
velocity v = 
ω/ϕ will be able to pass through both gaps, hit the detector, and be counted.
If we denote the total beam intensity by j0, and the solid angle by which the detector is
seen from the opening by d, the number of particles driven by a velocity between v and
v + dv that hit the detector in a given unit of time is given by

j dv d= 1
Z j0vφ(v) dv d= j0 m2

2π (2kBT)2
v3 exp

(
− mv2

2kBT

)
dv d, (1.11)

where the normalization constant Z is chosen so that the total particle flux equals j0.
By varying ϕ or ω, one can measure the particle flow at various velocities v. We can

introduce the variable η= v
√

m/kBT , thus obtaining a law that is independent of both m
and T :

j dv
j0 d

= η3

2
exp

(
−η2

2

)
dη. (1.12)
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Figure 1.3. Particle flux as a function of the transit time between the two disks in
the Marcus and McFee experiment at 157◦C. The line is a straightforward fit to the
Maxwell distribution. The discrepancy at high velocity (small transit time) is due
to the fact that the disks do not instantaneously interrupt the particle flow. Based
on [Marc59].

This law is well suited to experimental proof, which is shown in figure 1.3. In order to
arrive at a quantitative agreement with the results of the experiment, it is necessary to take
into account the fact that the disks do not instantaneously interrupt the particle flow and
that therefore there are uncertainties in the velocity selection.

1.4 Conclusions

We have therefore been able to show that, if one formulates some statistical hypotheses
about the distribution of the velocities of the particles, the equation of state of ideal gases
is compatible with the ideal gas model. In the argument we have laid out, there is, how-
ever, no proof that the statistical hypotheses concerning the distribution of position and
velocity of particles are compatible with the laws of mechanics. In order to prove this com-
patibility, we need to establish some hypotheses about initial conditions. We will therefore
be satisfied if we manage to prove that for “almost all” initial conditions that satisfy cer-
tain criteria, the statistical properties of the relevant distributions are “almost always” valid.
These considerations will be incomplete, however, since it is not clear how hypotheses that
are valid for almost all initial conditions can be relevant to explain the result of a specific
experiment, carried out with specific initial conditions.

The statistical postulates are ultimately founded in thermodynamics. S.-K. Ma stressed
in [Ma85] that they can be summarized by the relation (discovered by Boltzmann) between
thermodynamic entropy and a mechanical quantity: the volume of the accessible phase
space. In order to clarify the nature of the entropy and what we mean by volume of accessi-
ble phase space, it is necessary to briefly discuss the principles of thermodynamics, which
is done in the next chapter.
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Recommended Reading

The kinetic theory of gases is treated in greater detail in a large number of works. A
brief but careful introduction can be found in K. Huang, Statistical Mechanics, New York:
Wiley, 1987. A classic reference work is R. C. Tolman, The Principles of Statistical Mechan-
ics, Oxford, UK: Oxford University Press, 1938 (reprinted New York: Dover, 1979). The
(often surprising) history of the kinetic theory has been retraced by S. G. Brush, The Kind
of Motion We Call Heat, Amsterdam: North-Holland, 1976.
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of, 192–93; Legendre transformation and, 277;
Maxwell relations and, 33–35; of percolation, 48;
per site for one-dimensional Ising model, 219–20.
See also Gibbs free energy; Helmholtz free energy;
Landau free energy

free energy difference, 197
frozen disorder, 416
frustrated spins, 148
frustration, 417, 447–48; Hopfield model and, 464
fugacity, 120; definition of, 95, 168; as function of

density, 288; grand canonical ensemble and, 420;
grand canonical partition function and, 178, 264,
284–86; linear polymers and, 421; in partition
function, 127, 165, 259–60; and polydisperse
solution, 425; virial expansion and, 288

functionals, 98
functional derivatives, 489–91
functions defined on lattice, 496–98
fundamental equation of thermodynamics, 26–27
fundamental hypothesis of thermodynamics, 14
fundamental physical constants, 513–14
fundamental postulate, 59; and entropy as

phase-space volume, 62–64

Gallavotti-Cohen relation, 399; and symmetry,
400–401

gas constant, 6, 513
gases: chemical equilibria in, 154; in gravity field, 7;

internal degrees of freedom of, 146–51; van der
Waals equation for, 157–61; virial expansion and,
265. See also boson gas; fermion gas; hard sphere
gas; ideal gas; simple fluids

gas-liquid system, critical exponents of, 205
Gastheorie (Boltzmann), 262
Gaussian distribution: Brownian motion and, 340;

critical exponents and, 240; and energy levels in
random-energy models, 452–53; of random force,
359, 371; of random variables, 449, 452, 469; of
simple fluid model, 313; of velocity, 5

Gaussian model, 419; critical crossover in, 250–51;
fixed points in, 252; linear polymers in solution
and, 418–21; renormalization and, 234–37

Gaussian random variable, 476
generalized Brownian motion, 365–68
generalized detailed balance, 390
generalized ensembles, 85–88; and average values

and fluctuations, 87; entropy in, 95–97; grand
canonical ensemble as, 93–95 (see also grand
canonical ensemble); and paramagnet, 87–88;
variational principle for, 97–99.

generalized forces, 20, 26, 199; as affinities, 378–80
Gibbs condition, 55–56
Gibbs correction factor, 74, 263
Gibbs-Duhem equation, 42, 51, 57–58, 159–60, 288,

296, 383
Gibbs formula, for entropy, 95–97
Gibbs free energy, 35–36, 41, 119; chemical potential

and, 49; equilibrium and, 363; isotherm of, 50, 51;
liquid solutions and, 295; partition function and,
89; simple fluid and, 44; variation of, 48
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Gibbs functional S, of probability distribution, 97
Gibbs isotherm, 57
Gibbs paradox, 75
Gibbs phase rule, 54
Ginzburg criterion, 196, 247, 253; fluctuations and,

199–200
glasses, 13, 269. See also spin glasses
grand canonical ensemble, 93–95, 100, 163–67, 178,

420; for adsorption, 144; for boson or fermion gas,
118–19; fluctuations of number of particles in,
93–95; for simple fluid, 264, 284

gravitational constant, 514
gravitational energy, 137
gravity field, gas in, 7
Green-Kubo formulas, 344
Gumbel distribution, 450–52

Hamiltonian, 68, 69, 74, 99; critical surface and, 226;
density of, 234–35; and Ising model, 164–65; as
operator, 92

Hamilton’s equation of motion, 67, 401
hard core, 91, 163, 264, 267, 283, 292–94
hard sphere gas: equation of state for, 288–89; one-

dimensional, 90–91; virial coefficients for, 292,
293

harmonic oscillators: Brownian motion of, 375;
classical, 102–3; equipartition theorem and, 103–
4; Planck radiation law and, 106–9; quantum
mechanical, 70, 104–5

harmonic potential, Einstein condensation, 143
Harris criterion, 444
Hatano-Sasa relation, 404
Hausdorff dimension, 439–41
heat: definition of, 20; enthalpy and, 36; and heat

flux, 21; infinitesimal, 20; solvation, 296–99;
stochastic, 389–92, 395; work and, 19–24

heat reservoir. See reservoir, thermal
Heaviside’s theta function, 61; Fourier transform of,

373
Heisenberg fixed point, 243, 246, 247, 253, 444
Heisenberg model: critical exponents and, 243; Ising

model and, 171, 445; and renormalization, 231
helium-4, λ transition of, 3, 55, 142, 205
Helmholtz free energy, 93, 119, 237, 300; approx-

imations to, 277–79; availability and, 197, 366;
definition of, 30; equation for, 56; fluctuation rela-
tions and, 399; partition function and, 147, 213;
perturbation theory of fluids and, 294; phase coex-
istence and, 50, 51; in thermodynamics, 33, 277;
virial expansion and, 282

heme, 145
hemoglobin, 145; simplified model of, 145–46
Hermitian operator, 69, 92
hexatic phase, 260
Hilbert space, 69, 92, 104
homogeneous and isotropic, 11

Hooke’s law, 58, 89, 102–3
Hopfield model: of associative memory, 462–66;

capacity of, as network, 466
hydrogen, ortho- and para-, 152–53
hypernetted chain equation (HNC), 291–92,

293

ideal gas, 2; in canonical ensemble, 84–85; classi-
cal, 144; entropy of, 73–75; and equation of state
of Bose gas, 142; and equations of state, 75, 91,
95, 99–100, 122, 157, 281; free energy of, 282;
in grand canonical ensemble, 94–95; molecular
dynamics and, 311; in one dimension, 90–91;
pressure and internal energy density in, 127; as
simple fluid, 45; specific heats of, 85, 103; velocity
distribution in, 77

impurities, systems with, 442–45
independent events, 471, 472
independent random variables, 448; central limit

theorem for, 474; generating function of, 424
independent thermodynamic variables, 153
indeterminacy principle, 70
infinite temperature fixed point, 236
information: copying, 410–12; and information

reservoirs, 407–10; thermodynamics of, 404–7
instantaneous stationary distribution, 402
integrable function, 494
integral fluctuation relation, 397, 399
integrating factor, 489
intensive variables, 30–33; fluctuations of, 197;

Gibbs-Duhem equation and, 41–42; Koenig-
Born diagram and, 37–38; phase coexistence and,
49–50; thermodynamic potentials and, 30–33,
38–39

interaction energy among macroscopic systems,
13–14

interfaces: fluid-fluid, 279–80; planar, 55–57
interface width, 55
internal degrees of freedom: atomic gases and, 146–

48; molecular gases and, 148–51; ortho-hydrogen
and, 152–53; para-hydrogen and, 152–53

internal energy: of black body radiation, 110; entropy
and, 15–17; fluctuations of, 83–84, 197, 198; of
ideal gas, 73; magnetization and, 197; relation
between pressure and, 127–29; specific heat and,
103; variance of, 83; volume and, 89; and union of
two systems, 13–14; work and, 20

internal partition functions, 147
inverse Fourier transform, 494
involution property, 398
ionic solutions, 299–300
irreducible channel, 290
irreducible diagrams, 287
irrelevant perturbations (operators), 225–29
Ising antiferromagnet: mean-field theory of, 188;

order parameter and, 171
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Ising model, 3; and analogy between magnetic
phenomena and percolation, 427–28; critical expo-
nents and, 206; d-dimensional cubic lattice and,
322–23, 324; decimation in the one-dimensional,
218–20, 221; decimation in the two-dimensional,
222; duality in the three-dimensional, 182; with
exchange integral, 165; fixed point and, 252;
fluctuations in, 196–97; Heisenberg model and,
171; magnetization and, 169; and Mattis model
as infinite-range, 448; mean-field theory and,
182–86, 188; Migdal-Kadanoff renormalization
of, 439; Monte Carlo simulations of, 333–36; neu-
ral network and, 464; one-dimensional, 176–79;
of paramagnet, 78–80; partition function of the
two-dimensional, 209–14; phase transitions and,
164–65; Potts generalization of, 434–36; spon-
taneous magnetization and, 185; square lattice
with L x L spin and, 173, 174; two-dimensional,
179–82, 220–24; XY model and, 171. See also
critical behavior of Ising model; ferromagnets

isotherm, 50–51; critical, 245; in van der Waals
model, 156, 160; at zero temperature, 68,
128

isothermal compressibility, 90; at critical point, 273;
pair distribution and, 269

isothermal magnetic susceptibility, 88
isotropy, 267, 340, 357

Jarzynski equality, 399; close to thermodynamic
limit, 402

Jensen’s inequality, 186, 481–82
joint probability, 471; and distribution, 471;

Gaussian, 471
Josephson constant, 513
Joule-Thomson process, 283–84
jump rate, 394, 387

Kadanoff transformation, 225–28, 234; and crit-
ical exponents at first order in ε, 241; finite
lattice method and, 229–31; in Fourier space,
231–45; Gaussian model and, 234–37; and one-
dimensional Ising model, 218–20; in φ4 model,
238–39; and relevant operators, 225–28

Kappler’s experiment, 103, 353
kinetic coefficients, matrix of, 380–82
kinetic energy, as observable, 61; temperature and,

309
Kirkwood equation, 275
Klein-Kramers equation, 353
Knudsen gas, 7
Koch curve, 440, 441
Koenig-Born diagram, 37–38
Kosterlitz-Thouless transition, 255–61
Kramers-Kronig relation, 374
Kronecker delta, 163, 237, 433, 456; definition of,

116

Kubo formula, 358; sum rules and, 357–58
Kullback-Leibler divergence, 391, 506

Lagrange multipliers, 98, 99, 484–86
λ transition, 3, 55, 142, 205
Landau argument, one-dimensional Ising model

and, 176
Landau diamagnetism, 131–33
Landauer’s principle, 404–5
Landau free energy, 193, 193
Landau levels, 132
Landau theory of phase transitions, 192–95
Langevin diamagnetism, 129–31
Langevin equation, 341, 367; linearized, 368
Langevin function, 133
Langevin theory of paramagnetism, 88
Langmuir isotherm, 144, 145
Larmor theorem, 131
Lattice gas, 163; phase coexistence and, 162–64
law of adiabatic processes, 47
law of corresponding states, 159
law of large numbers, 475
law of mass action, 362
law of total probabilities, 468
Lee-Yang theory of phase transitions, 165–69; elec-

trostatic analog of equation of state and, 168–69;
and phase coexistence, 167–68; theorems of, 166

Legendre transform, 482–84; enthalpy and, 36;
entropy and, 86; Lagrange multipliers and, 484–
86; number of particles and, 38; properties of, 50;
thermodynamic potential and, 30, 32

Lennard-Jones potential, 264–65; gas expansion and,
283, 284; Mayer function of, 281–82; perturbation
theory and, 294, 295

lever rule, 52, 156
linear congruence (random number generator), 326
linear polymers in solution, 417–25; comparison of,

to percolation problem, 432–33; critical phenom-
ena and, 423–25; and Flory argument, 421–22;
and Gaussian model, 418–21; and polydisperse
solution, 425; and on lattice, 421

Liouville’s equation, 67, 339
Liouville’s theorem, 64–68
liquid(s): colloidal suspensions of, 301–4; entropy of,

295; perturbation theory and, 293–94
liquid-gas coexistence, 156–62, 169–70; binary

mixtures of, 161–62; critical point and, 155–56
liquid solutions, 295–300; ionic, 299–300; solvation

heat and, 296–99
local-density approximation (LDA), 279
logsum inequality, 482
Lorentzian correlation function, 356
lower critical dimension, 255

M (magnetic moment), 20, 42; as magnetic dipole,
11; density of, per unit of volume, 42
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magnetic quantum number, 150
magnetic field, 42–43, 79, 88, 130–31, 147, 169, 177,

188, 195–97, 215–17, 226, 245, 457–58
magnetic susceptibility: critical exponents and, 196;

Curie-Weiss law for, 190, 193; isothermal, 88; of
spin glass, 457.

magnetization, 11; canonical ensemble and, 80;
density and, 42; internal energy and, 197; Ising
model and, 169; and magnetic moment (M), 43;
paramagnet and, 87–88; thermodynamics and, 9,
42–44

majority rule, 230
manipulation, 386
Marcus and MacFee experiment, 8–9
Markov chain(s), 336, 507; convergence to sta-

tionarity and, 509–12; definitions of, 507–8;
microcanonical ensemble and, 325; Monte
Carlo method and, 321–22; non-ergodic matri-
ces and, 512; spectral properties of, 508–9;
time-homogeneous, 508

Markov process, 352; discrete, 387; equilibrium and,
388

mass action, law of, 154
Massieu functions, as thermodynamic functions, 86
master equation, 321, 387, 387n1, 392–93, 403, 408,

412, 508–9
Mattis model, 448
maximum entropy (MaxEnt) principle, 99
Maxwell-Boltzmann distribution, 311, 349, 351,

384
Maxwell construction, 159, 160
Maxwell distribution, 6, 7, 77; Marcus and MacFee

experiment and, 8–9
Maxwell relations, 90, 161; free energy and,

33–35; Koenig-Born diagram and, 37–38; as
thermodynamic potentials, 34

Maxwell’s postulates, 4, 5
mean, of N independent random variables, 474
mean-field theory, 182–86; cluster approximations

and, 187; correlation functions and, 188–92; crit-
ical exponents and, 206; Ginzburg criterion and,
199–200; graphical solution of, 184; Hopfield
model and, 465; of Ising antiferromagnet, 188;
Landau theory and, 192–95; variational principle
for, 186–87

mechanical energy, 14
mechanocaloric effect, 382–83
mesoscopic systems, 386
metals, electrons in, 123–27
metastable state(s), 359; stochastic resonance and,

358–62
Metropolis algorithm, 323, 334–36, 437; one-

dimensional Ising model and, 325
Meyer’s relation, 47
micelles, 301–4

microcanonical ensemble, 76; canonical ensemble
and, 81–82; Markov chain for sampling of, 325;
probability distribution and, 75–76

microemulsions, 14, 56
microstate, 60–61, 96–100, 102, 106, 119, 139, 144,

197, 314, 323, 327, 368
Migdal-Kadanoff transformation, 438, 439
molecular dynamics, 307; numerical simulation

using, 307–14; proof of canonical sampling and,
318–19; temperature and pressure in, 309–11;
thermostats in, 314–19; Verlet algorithms and,
311–14; Widom insertion method and, 333. See
also Monte Carlo method

molecular gases: internal degrees of freedom of,
148–51; as simple fluids, 262–63

moments of a random variable, 470; generating
function and, 424

momentum: total, 5, 115, 315; total kinetic energy
and particle, 123

momentum density, 113
monomers, 417
monotonicity of entropy, 16
Monte Carlo method, 307; accelerated, 333–36;

and algorithms in statistical mechanics, 322–25;
dynamics of, 464; extrapolation to thermodynamic
limit and, 329–31; Markov chains and, 321–22;
Metropolis algorithm and, 323; microcanonical
ensemble and, 325; numerical simulation and,
319–31; random sequences and, 325–27; statisti-
cal errors and, 327–29; Widom insertion method
and, 333

mutual information, 405, 506
mutually exclusive events, 468
myoglobin, 145

N-dimensional spaces, properties of, 502–3
nearest neighbors, number of, 165. See also

coordination number
Nernst’s postulate, 68, 69, 70n1
neural networks, 2, 464
neuron, 462, 463
neurotransmitters, 462
neutrino density, in universe, 128–29
neutron scattering experiment, 270–71
neutron stars, 138–39
Newton’s law, 113, 114
node of diagram, 286
nonadiabatic entropy production, 402
noncorrelation, 340
nonequilibrium entropy, 391
nonequilibrium states, 1
nonequilibrium steady states, 380–82
non-ergodic matrices, 512
nonobservable, 61
normalization condition, 476
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normalization constant, 86, 87
normalization factor, 92
Nosé-Hoover thermostat, 315
nuclear degrees of freedom, 146–48
nuclear magneton, 514–18
numerical experiments, 306–7
numerical simulation: accelerated Monte Carlo

methods and, 333–36; discussion of, 336–37;
introduction to, 305–7; molecular dynamics
as method of, 307–14; Monte Carlo method of,
319–31; and umbrella sampling, 331–33

objective (ontic) probabilities, 97
observables, 61–62, 72; generalized Brownian

motion and, 365; molecular dynamics simulation
and, 337; quasi-thermodynamic, 265

occupation number(s), 99, 106, 118
one-dimensional Ising model, 176–79; decimation

of, 218–20; and Landau argument, 176; solution
of, 176–77

Onsager’s reciprocity relations, 372, 376–78, 400–
401; application of, 382–84; equilibrium and,
386; and mechanocaloric effect, 382–83; and
thermomechanic effect, 383–84

Onsager’s regression hypothesis, 372
order parameter, 170–72; Edwards-Anderson, 446;

equation of state for, 205; and Landau theory,
194–95; in limit n → ∞, 201

Ornstein-Zernike theory, 188; approximation using,
199, 421; Debye-Huckel theory compared to, 300;
Gaussian model and, 236

ortho-hydrogen, degrees of freedom and, 152–53
osmotic pressure, 24, 39–40, 296
overlap between spin configurations, 328, 454,

458–59, 465–66

packing ratio, 289, 292–93
pair density, 266
pair distribution g(r), 266–69; integral equations

for, 289–93; isothermal compressibility and, 273;
of Lennard-Jones fluid, 294, 295; Mayer function
and, 281; measurement of, 270–72; reversible
work theorem and, 269–70; superposition
approximation using, 274

pair potential, 157, 163; in integral equations, 289–
93; in numerical simulation, 307; for simple fluid,
262, 264

para-hydrogen, degrees of freedom, 152–53
parallel connection diagram, 290
parallel tempering, 336
paramagnet: generalized ensembles and, 87–88;

Ising, 78–80
paramagnetism: Langevin theory of, 88; Pauli,

126–27
parity of observable, 369

partial derivatives, 487–89
particles: phonons as, 113; with variable spin,

147–48
partition function, 82–84, 104; of classical fluids,

262–65; grand canonical, 118–19, 127; hard
sphere gas and, 91; integral defining, 83; in p-T
ensemble, 89; single-particle, 119; thermody-
namic potentials and, 83, 92, 96; translational,
147; of two-dimensional Ising model, 209–14

patterns (memory), 465
Pauli exclusion principle, 3, 118, 148, 152, 264
Pauli paramagnetism, 126–27
Peierls’s argument, 172–76, 178
pendulum, Verlet algorithm for, 312–13
percolation, 416, 425–41; on Bethe lattice, 428–32;

and fractal structure of percolation cluster, 439–
41; limit q → 0 and, 436–37; limit q →1 and,
434–36; and magnet phenomena analogy, 427–28;
Migdal-Kadanoff renormalization of Ising model,
439; in one direction, 28; Potts model and, 432–
37; renormalization of bonds in, 437–39; site, in
two dimensions, 426; and standard problem, 426;
theory of, 426; tree statistics and, 436–37

percolation cluster: fractal structure of, 439–41;
incipient, 441

percolation threshold, 417, 426; for Bethe lattice,
428–32; fractal dimension at, 439–41

Percus-Yevick equation, 292, 293
perturbation theory, 293–95
phase coexistence, 49–51, 167–68; Clausius-

Clapeyron equation and, 51–52; and coexistence
curve, 52–53; critical point and, 54–55, 155–56;
and Gibbs phase rule, 54; liquid-gas and, 155–56;
with planar interfaces, 55–57; of several phases,
53–54; and thermodynamics, 49, 51–52. See also
coexistence curve; critical behavior

phase diagram, 54, 156–57, 185, 195, 262, 409
phase space, 9, 59–61, 71, 81–82; accessible volume

of, 74; entropy and, 62–64; Liouville’s theorem
and, 64–68; probability distribution and, 75–76,
86; unit of volume in, 69–71

phase transitions, 51–52; binary mixtures and,
161–62; continuous, 51, 53, 54; discontinu-
ous, 51; duality and, 179–82; Ising model and,
164–65; lattice gas and, 162–64; Lee-Yang the-
ory of, 165–69; and liquid-gas coexistence and
critical point, 155–56; mean-field theory and, 182–
86; one-dimensional Ising model and, 176–79;
order parameter and, 170–72; Peierls argument
and, 172–76; symmetry breaking and, 169–70;
universality and scaling and, 204–9; van der Waals
equation and, 157–61

φ4 model, 237–40; cubic anisotropy and, 252–53
phonons, 111; second sound and, 113–17; specific

heat of solids and, 111–12
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photons, 3, 108; of black body radiation, 106–11
physical constants, 513–14
planar interfaces, 55–57
Planck constant, 513
Planck’s law, of black body radiation, 106–9, 110
plaquettes: dual lattice of, 180–82; frustrated, 447
Poisson-Boltzmann theory, 299
Poisson bracket, 67, 68
Poisson distribution, 469
polydisperse, 301, 425
polylog function, 120–21, 141
polymers, 410–11, 417, 423–25; heterogeneous, 417;

homogeneous, 417; on a lattice, 421
potential well, phase space volume for, 71
Potts model, percolation and, 432–37
power, and fluctuation-dissipation theorem, 473
pressure, 18, 22–23; Carnahan-Starling extrapola-

tion formula and, 293; enthalpy and, 35–36; in
molecular dynamics, 309–11; osmotic, 24; pair
distribution and, 268; relation between internal
energy and, 127–29

pressure equation, 268
principal value, 373
principle of minimal entropy production, 382
principles of thermodynamics, 11
probability: conditional, 471; definition of, 468; law

of total, 468
probability density function, 469
probability distribution, 469; Gibbs functional, 97–

98; of microcanonical ensemble, 75–76; phase
space and, 86

product rule, 491
products, of chemical reaction, 48
protocol, 389
proton magnetic moment, 514
proton mass, 514
p-T (pressure-temperature) ensemble, 89–91,

92; one-dimensional hard sphere gas and,
90–91

pure states, 172, 417

quadratic anisotropy, 246–47
quantum ensembles, 92–93
quantum exclusion principle, 152
quantum gases, 2
quantum harmonic oscillators, 104–5
quantum mechanics, particles, 118
quantum number: angular, 150; magnetic, 150
quantum state: particle in potential well and, 71;

in thermodynamics, 68–71
quasi-average, magnetization and, 170
quasi-long-range order, 256
quenched average, 443
quenched disorder, 416
quenched variables, 442–43

radiation, black body, 3, 106–11
radius of gyration, 419
random-energy model, 448–52; as limit of spin

model, 452–54; replica method approach to,
454–57

random field, 445
random sequences, Monte Carlo method and,

325–27
random variables: average, 470, 471; continuous,

469; definition of, 469, 474; discrete, 469; inde-
pendent, 471–73; moments of, 470–71; probability
distribution and, 471; uncorrelated, 472

rate constants, 363
rate equations, 363
Rayleigh chain, 418
reactants, 48, 154
reaction coordinate, 364
realization of disorder, 443
reciprocal lattice, 497
reduced critical temperature, for Lennard-Jones

fluid, 265
reduced densities, 265; BBGKY hierarchy and,

273–75; direct correlation function and, 273; for
Lennard-Jones fluid, 265–66; measurement of
g(r) and, 270–72; pair distribution and, 266–69;
reversible work theorem and, 269–70

reduced variables, 158
Reech’s relation, 47
refractory period, 463
relative entropy, 391, 506
relevant perturbations (operators), 225–29
renormalization: 1/n expansion of critical expo-

nents and, 245; bond percolation and, 437–39;
critical exponents at first order in ε and, 240–
44; in Fourier space, 231–45; Gaussian model
and, 234–37; Kosterlitz-Thouless transition and,
255–61; Migdal-Kadanoff, of Ising model, 439;
multiplicity of contributions to, of u, 244–45; φ4

model and, 237–40; two-dimensional Ising model
and, 224. See also critical exponents; Kadanoff
transformation

renormalization group, 215
replica method, 417, 444; and random-energy

model, 454–57; Sherrington-Kirkpatrick model
and, 457–62

replica symmetry breaking (RSB), 455–57; Parisi
scheme and, 461–62

representative point, 59
reservoir, thermal, 85; canonical ensemble and,

81; and heat, 24; information reservoir as,
407–10

response functions, 368–72; equation defining, 370
reversible adiabatic process, 24
reversible work theorem, 269–70
Riemann zeta function, 108
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root: of Bethe lattice, 428–32; of diagram for
evaluating virial coefficients, 286, 287

rotational degrees of freedom, 149, 150
runaway, 253
running average, 328

Sackur-Tetrode formula, 75
saddle-point method, 192, 202–3, 499; equations for,

202–3
Sagawa-Ueda relation, 406, 409
sample space, 468
sampling with repetition, 140
scale invariance, 25
scaling, universality and, 204–9
scaling laws, 207–9; finite-size scaling and, 329, 331;

Kadanoff transformation and, 225; linear polymer
and, 421

Schnakenberg formula, 396; entropy production rate
from, 411

Schrödinger equation, 69, 132; for nuclei, 149
second-order transitions. See phase transitions:

continuous
second principle of thermodynamics, 16, 25, 379
second sound: phonons and, 113–17
second sound speed, 117
semiconductors, doped, 416
semifactorial, 501
semipermeable membrane, 24
semipermeable walls, 14
series diagrams, 290–91
Shannon entropy, 97, 99, 390–91, 504; information

reservoirs and, 407; of a probability distribution,
96

Sherrington-Kirkpatrick model, of spin glass,
457–62

Sierpiński triangle, 439–41
simple fluids, 2, 11, 41; chemical potential for,

39–40; equations of state for, 44–45; Gibbs free
energy for, 35, 37, 49; numerical simulation of,
313–14; partition function for, 262–65; phase
coexistence in, 49–51; phase space for, 59–61

simulated annealing, 334; protocol of, 334–35
simulation, 305; as third branch of science, 306. See

also numerical simulation
sine series, 493
single-particle potential, 74, 84, 263, 277–78
singularity, 257; strength of a, 257
site percolation, 426
Smoluchowski equation, 351; Brownian particle

and, 347–52
soft matter, 262
solubility, 297
solute, 23–24, 39–40, 57, 295–99
solution, linear polymers in, 417–25
solvation heat, 297; liquid solutions and, 296–99

solvent, 23–24, 39–40, 57, 295–99, 301, 339–43,
352–54; good, 418

spanning trees, 436
species (chemical), 362
specific heat: critical exponents and, 207; criti-

cal temperature and, 156; energy fluctuations
and, 83–84; of ideal gas, 85, 103; of intensive vs.
extensive variable, 13–14, 30–33; in Ising model,
213, 333; of Ising paramagnet, 78–80; in Landau
theory, 194; numerical simulation and, 309; rota-
tional degrees of freedom and, 149, 150; of solids
and phonons, 111–12

speed of light, 513
speed of sound, 114
spherical model, 204
spin, 3; frustrated, 148; particles with variable,

147–48; statistics and, 118
spin glasses, 417, 445; frustration and, 447–48; Hop-

field model and, 462; random-energy model and,
448–52; random-energy model as limit of, 452–54;
replica method approach to random-energy model
and, 454–57; replica symmetry breaking (RSB)
and, 455, 457; Sherrington-Kirkpatrick model and,
457–62

spontaneous magnetization, 170, 185; Ising model
and, 185

spontaneous symmetry breaking, 169; order
parameter and, 170–72; Peierls argument and,
172–76

square gradient approximation, 279
stability: adiabatic process and, 25; thermodynamic

equilibrium and, 45–47
staggered magnetization, 171
standard deviation, 445, 471
standard gravity acceleration, 514
standard molar volume, 513
stars: neutron, 138–39; white dwarfs, 135–39
states of equilibrium. See thermodynamic

equilibrium
stationary distribution, 322, 388, 509
stationary Markov chains, 509–12
statistical errors: Monte Carlo method and, 327–29;

and mutual overlap, 328; and running average,
328

statistical mechanics, 1–3; Monte Carlo algorithms
in, 322–25

statistical postulates, 3–4
statistics: of loops, 210–12, 214; variational deriva-

tion of Bose, 140–41; variational derivation of
Fermi, 139–40

steady-state distribution, 388
steady states, nonequilibrium, 380–82
Stefan-Boltzmann law, 110
Stevin’s law, 47
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nonadiabatic entropy production and, 402–4;
average entropy production rate and, 395–96;
copying information and, 410–12; fundamentals
of, 386–89; information and, 404–7; informa-
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393–95; time reversal and, 396–97; uncertainty
relations and, 412–14

stochastic work, 389, 395
stoichiometric coefficients, 48, 49
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in Monte Carlo method, 319
transition rate, 387
transition temperature, for Einstein condensation,

142
transitivity, of adiabatic equivalence, 25
trees on a lattice, 436–37
tricritical point, 195
triple point, 53, 156, 157, 295; of water, 53
Trotter’s formula, 317
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