CONTENTS

- Introduction
${ }_{58}$ Archaeobatrachia
68 Mesobatrachia
${ }_{86}$ Neobatrachia

234 Glossary
236 Further Reading and Useful Resources
237 Index
240 Picture Credits and Acknowledgments

For general queries, contact info@press.princeton.edu

CAMOUFLAGE AND CRYPSIS

Some of the camouflage capabilities of frogs are truly astounding, with some species blending in perfectly with their background. Perhaps one of the best examples of this can be found in the Vietnamese Mossy Frog (Theloderma corticale), which looks remarkably like moss. Not only is their color speckled in a dark to light green and brown, but they have tuberculate skin (having small, rounded projections) and their eye pattern and color even matches their skin. Other species have evolved to match even unexpected features in their environment, such as the South American hylid Dendropsophus marmoratus, which resembles bird poo!

Aquatic frogs have also had to adapt to blend into their environment. The Suriname Toad (Pipa pipa) has evolved to look very much like a dead leaf sitting at the bottom of slow-flowing rivers. They have triangular-shaped heads, a flattened body, are brown/olive, and have tubercles along their skin. They will rest with their arms to the sides of their body and remain motionless for extended periods of time.

Some species opt to confuse predators and use a disruptive coloration tactic to do this. They achieve this by using colors and patterns to break up their body outline. The most common ways are by incorporation of blotches or a dorsal line.
above left | Suriname Toads
(Pipa pipa) will rest motionless in slow moving water waiting for prey to swim close enough for them to capture. Their body form makes it difficult for predators to spot them.
above right | Vietnamese Mossy Frogs (Theloderma corticale) display incredible camouflage when resting on mossy substrates.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

COLOR AS A WARNING

Many species of frog are vibrant in color.
This may seem counterintuitive from a predation perspective because they will be highly visible. However, these bright colors act as warning signals to would-be predators about the toxic nature of the frogs; this toxic advertisement is known as aposematism. No frogs exemplify this more than the Central and South American poison dart frogs (Dendrobatidae), cryptic dart frogs (Aromobatidae), and harlequin toads (Atelopus spp.); the Atlantic Forest of South America's saddleback toads (Brachycephalus spp.); and Madagascar's tomato frogs (Dyscophus spp.) and mantellas (Mantellidae).

Other species do not continuously display their aposematic coloration and instead conceal it when resting. Fire-bellied toads (Bombina spp.) only have aposematic coloration on their ventral surface and when threatened they will lift their body off the ground, displaying their bright-red underside, a tactic known as unkenreflex.

Other species have eye spots, such as the Brazilian leptodactylid frog Physalaemus deimaticus, which when threatened raises up its rear end and puffs up its body, displaying dramatic black spots that are thought to mimic the eyes of snakes. This behavior is known as a "deimatic" display.
top | The Yellow-banded Poison Frog (Dendrobates leucomelas) has bright coloration to warn predators of its toxicity.

MIDDLE | The red coloration of Tomato Frogs (Dyscophus antongili) is a warning that when harassed they will secrete a sticky toxic substance from their skin.

RIGHT | The exceptionally brightly colored Purple Harlequin Toad (Atelopus barbotini) uses its colors as a signal about its toxicity.

$$
\begin{aligned}
& \text { © Copyright, Princeton University Press. No part of this book may be } \\
& \text { distributed, posted, or reproduced in any form by digital or mechanical }
\end{aligned}
$$ means without prior written permission of the publisher.

OTHER ADAPTATIONS

There are lots of other mechanisms that frogs use to avoid predation. When attacked, the Hairy Frog and night frogs (Astylosternus spp.) from Central Africa will break their bones in their hind feet and then push these through their own skin. They then use these protruding bones to stab into the attacking animal. This adaptation has given Astylosternus robustus the alternate name of the Wolverine Frog, in reference to the claws that emerge from the hands of the Marvel superhero Wolverine.

Many frogs will urinate when harassed. This urine can be smelly and foul-tasting, meaning that if a predator has the frog in its mouth, it might be tempted to release it. Other species may bury themselves in mud or feign death by remaining motionless to avoid confrontations with predators in the first place. The Pebble Toad (Oreophrynella nigra) from northern South America will curl up into a ball and roll away from danger.

USING OTHER ANIMALS FOR PROTECTION

Some frogs use other animals as protection. For example, members of the species-rich narrow-mouthed frogs (Microhylidae) from South America and Asia live with spiders. These small frogs gain protection from these often large spiders, and in return it is believed that the frogs eat the small arthropods that would otherwise cause problems

above | A Dotted Humming Frog (Chiasmocleis ventrimaculata) coexisting in a mutualistic relationship with a large Peruvian Tarauntula (Pamphobeteus sp.).

LEFT \| The bones on the hindfoot of the Wolverine Frog (Astylosternus robustus) have been pushed through the skin as a defense mechanism.

for the spiders. This is a mutualistic behavior because both the frog and spider benefit from the relationship. It is possible that the relationships between the spiders and frogs are species-specific. The Dotted Humming Frog (Chiasmocleis ventrimaculata) from the western Amazon region of South America is known to co-occur with several
species of tarantula and other spiders. The spiders use chemical signals to recognize these frogs instead of eating them, as they have been recorded to do for other species of frog.

LOCOMOTION

Frogs move in a number of different ways but the most well known is hopping or jumping. Almost everywhere that frogs occur there will be at least one species that hops or jumps. Frogs are particularly adept at jumping due to their enlarged hind limbs and strong thigh muscles. These large limbs are capable of propelling the frogs forward, often over incredibly large distances for their size. The American Bullfrog (Aquarana catesbeiana) is a large frog at about 7 in $(180 \mathrm{~mm})$ in length, but despite this the species has a truly impressive jumping capability, recorded at up to $7 \mathrm{ft} 2 \mathrm{in}(2.2 \mathrm{~m})$, which is a staggering 12 times its total length. However, the American Bullfrog's leap looks miniscule considering its body size when comparing it to the Sharp-nosed Grass Frog (Ptychadena oxyrhynchus) from southern Africa, where one
individual jumped 17 ft 6 in (5.35 m), which was more than 90 times its total length! Although not all species are capable of such large leaps, other species are capable of extreme speed. The Coastal Ecuador Smoky Jungle Frog (Leptodactylus peritoaktites) when disturbed is incredibly fast, combining powerful leaps one after the other. The speed is so great that even on flat ground it is often difficult for a human to keep up when running from a standing start.

WALKING AND RUNNING

Not all frogs jump when navigating through their environment, with some opting to walk or run instead. All frogs are capable of walking, but it is often cumbersome for many species due to their large hindlimbs. However, some species are better adapted to walking and running than others, with

these species often having shorter hindlimbs than those of other frogs, meaning that their hindlimbs are more similar in length to their forelimbs. One species that almost exclusively moves in this way is the European Natterjack Toad (Epidalea calamita), which is capable of running at fairly quick speeds. This, coupled with the "go-faster stripe" that tracks down the center of its dorsum, gives the species its other common name of Running Toad.

SWIMMING

As discussed earlier, tadpoles are well adapted to an aquatic lifestyle, but many adult frog species are also adapted to life in an aquatic environment. Species that have some association with water courses generally have webbed feet to enable them to swim more efficiently. The level of webbing usually depends upon the extent to which the species is linked with waterfor example, species that are fully aquatic have extensively webbed feet. The African Clawed

Frog (Xenopus laevis,) has large webbing on its hindfeet that it fans out and uses to make big paddle-like strokes while moving. Perhaps the most interesting aquatic adaptation of any frog can be seen in the Hairy Frog (Astylosternus robustus) from West Africa, where there is extreme sexual dimorphism and the males spend most of their lives in the water. The males have papillae on the sides and thighs, increasing their surface area for highly efficient gas exchange while in the water.

[^0]

ABOVE \| Like other treefrogs, Phyllomedusa bahiana climbs and sticks to surfaces using its adhesive toe pads and subarticular tubercles.

CLIMBING

Frogs have adapted equally well to life in trees as they have to living in water and on the ground. Arboreality has evolved numerous times, to occupy the countless niches that life in the trees offers. Throughout the tropics, tree-dwelling frogs are as abundant as frogs that live on the ground. Arboreal frogs have had to adapt to ensure that they are capable of supporting their body weight in the trees, regularly achieving this by having adhesive toe pads that are often wider than their ground-dwelling counterparts, a lengthening of their foreand hindlimbs, and increased flexibility in their ankle joints.

GLIDING

There are several species of frog that can sail through the air to escape predators or to move through their environment with more energy efficiency, in a process termed parachuting or gliding. This behavior is especially prevalent in members of the Flying Frogs (Rhacophorus). These frogs have extensive webbing between their digits that act like

parachutes when the frogs jump from a high point. The skin flaps, patagia, are extended during flight, increasing the surface area and enabling the frog to slow its descent and glide through the air.

BURROWING

Burrowing is a common feature among frogs, scattered across several families. Almost all burrowing species will use the metatarsal tubercles on their hind feet, which act like shovels, to excavate the soil. Other species will burrow forward. For example, the Shovelnose Frogs (Hemisus spp.) of Africa burrow headfirst by using their shovel-shaped nose to push their way through the substrate.

Different species use burrowing behavior in different ways. Some will use the behavior to escape or hide from predators, some will burrow to retain moisture, some dig burrows in order to breed or rear young, and others will forage for soil-dwelling invertebrates.
above | The Wallace's Flying Frog (Rhacophorus nigropalmatus) extends the patagia between its toes to allow it to slow its descent from high in the canopy.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

LIFE IN EXTREME CONDITIONS

Frogs have a global distribution, occurring on every continent except Antarctica. They can be found in almost every terrestrial habitat on earth, and in many temperate regions they are considered ubiquitous within wetland habitats. However, frogs have an incredible ability to adapt when we consider that their anatomy and physiology mean they are tied to water and are ectothermic. As discussed on page 18, some species can form cocoons to estivate during extreme conditions.

Frogs do not cope well with salt water due to their need to use their skin for gas exchange,
and salt prohibits this. This is one reason why amphibians are rare on geologically recent islands.
Some families seem to tolerate transoceanic dispersal, such as the Hyperoliidae of Africa, which have colonized islands to the west and east of the main landmass, including as far as the Seychelles archipelago. The Cane Toad (Rhinella marina) can tolerate saline conditions and has even been observed swimming in the sea on occasion. The Crab-eating Frog (Fejervarya cancrivora) of Southeast Asia lives in brackish environments and eats a range of crustaceans (for example, crabs) and insects that inhabit these environments.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

ABOVE \| Crab-eating Frogs (Fejervarya cancrivora) are unusual among frogs because they are one of just a handful of species capable of surviving and hunting in saline conditions.

OPPOSITE \| Wood Frogs (Boreorana sylvatica) have the amazing ability of being able to be frozen during extremely cold weather conditions without any ill effects.

Many frogs hibernate to escape the cold temperatures of winter. Perhaps the most amazing frog species to have adapted to extreme cold conditions is the Wood Frog (Boreorana sylvatica) of North America, which occurs as far north as northern Alaska. These frogs essentially freeze, with up to 60 percent of their body becoming frozen solid for up to eight months of the year! During this time ice crystals form between the muscles and the skin, and large amounts of glucose enter each cell. The outside of each cell freezes but the glucose in each cell prevents the internal parts of the cell from freezing. During this time, metabolism effectively shuts down and the heart completely stops. Once temperatures increase the frog thaws and prepares for breeding. No other known tetrapod is capable of such feats!

At the other end of the spectrum, some frogs tolerate extremely hot environments. The Ryukyu Kajika Frog (Buergeria japonica) inhabits hot springs in Taiwan and the Ryukyu Archipelago in Japan. Tadpoles have been reported to occur in pools of $115^{\circ} \mathrm{F}\left(46.1^{\circ} \mathrm{C}\right)$; average human bath temperatures are $95-104^{\circ} \mathrm{F}\left(35-40^{\circ} \mathrm{C}\right)$.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CONSERVATION

Frogs are vital for proper ecological equilibrium in both aquatic and terrestrial environments. Tadpoles eat algae, keeping aquatic environments from being inundated with detrimental algal blooms. Adults eat pest invertebrate species that could otherwise cause devastation to natural environments and result in enormous economic impact upon agriculture. Frogs are food for countless other animals, including terrestrial mammals, bats, birds, reptiles, and invertebrates. Additionally, they help humans beyond being ecologically important by acting as bioindicators and keeping mosquito-borne diseases at bay (some tadpoles eat mosquito larvae and adult frogs eat the adults).

THREAT STATUS

Amphibians are the most threatened terrestrial vertebrate group on the planet, with tens of species likely going extinct each year. The

International Union for Conservation of Nature (IUCN) is the primary international organization for the conservation of animals, plants, and fungi. The IUCN maintains the Red List of Threatened Species, which is the main resource for categorizing the threat status of organisms. To date, 6,580 of the 7,600+ known frog species have been evaluated, and only 46 percent of these are considered to be free from any imminent danger of becoming extinct. We know of at least 33 frog species that have become completely extinct in recent years and two that are Extinct in the Wild; however, this number could be much higher, as many species have not been seen for decades. Some estimates suggest that upward of 200 species have gone extinct in recent years. Over 1,500 species are in immediate danger of becoming extinct and are classified as either Endangered or Critically Endangered. Most of the approximately 2,000 species that have been classified as Data Deficient

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

or have not been evaluated are almost certainly at risk of extinction because they have not been evaluated due to a general lack of observations, probably because they are rare.

There are numerous threats to amphibian populations, including loss of habitat, disease, climate change, agricultural practices, pollution, and invasive species. Unfortunately, it is usually a combination of these factors that are causing amphibian populations to suffer.

HABITAT LOSS

Habitat loss and the conversion of amphibian habitat into agricultural land is the greatest factor causing declines. Many of the areas with the highest diversity, such as Brazil and Madagascar, have been the most affected by habitat destruction.

Habitat destruction comes in various forms, and the most notable contributions to amphibian
declines are total loss of habitat, removal of aquatic breeding grounds, and habitat fragmentation. While fragmentation may not necessarily cause noticeable declines at first, it can lead to a loss of genetic diversity - meaning that the animals become less fit within their environment or are unable to adapt to changing conditions.

The Kihansi Spray Toad (Nectophrynoides asperginis) from the Udzungwa Mountains in Tanzania is now considered Extinct in the Wild, according to the IUCN Red List. The species was only known within the spray zone of the Kihansi Falls. A dam constructed farther up the Kihansi River decreased the flow of water passing over the falls by 90 percent, removing the only known habitat of the species. This is just one of hundreds, possibly thousands, of examples of habitat loss that have led to catastrophic declines in frog populations.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Disease is a major cause of frog declines. The most prominent and devastating to frog populations is the amphibian chytrid fungus Batrachochytrium dendrobatidis, which is a fungal disease that often leads to the death of its hosts. However, some species seem more resistant than others and the fungus has only limited effects. The fungus grows in the skin layers and can eventually lead to heart failure given that the frog's permeable skin cannot regulate water and gas intake.

Chytrid fungus has caused an estimated 90+ species to go extinct and hundreds of other species to decline significantly. The fungus has been confirmed in every amphibian-inhabited region in the world except for the Seychelles Archipelago. The worst-affected regions are Central and South America, and Australia.

You can help stop the spread of chytrid between populations by maintaining good biosecurity and ensuring footwear is clean and free of dirt when traveling to new areas.

ABOVE \| Drought and chytrid fungus (Batrachochytrium dendrobatidis) has caused the Northern Corroboree Frog (Pseudophryne pengilleyr) to be isolated to just three small subpopulations in southeast Australia.
below | The Cusco Andes Frog (Bryophryne cophites) from Peru has been killed by the lethal amphibian chytrid fungus (Batrachochytrium dendrobatidis).

CLIMATE CHANGE

Frogs are ectothermic animals with osmotically sensitive physiology, so it is no surprise that their ecologies and distributions are intrinsically linked to climatic variables. It is widely believed that the rapid onset of climate change means that most frog species will be unable to adapt quickly enough to these changes. We are already seeing the results of climate change on frogs from around the world. The Lowland Leopard Frog (Lithobates yavapaiensis) from North America has undergone massive declines in many parts of its range due to severe droughts, and the Northern Corroboree Frog (Pseudophryne pengilleyi) from Australia has declined and lost at least 42 percent of its breeding sites due to drought.

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

LEFT \| A swab sample is being taken from a Majorcan Midwife Toad (Alytes muletensis) to test for the presence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis).

CHEMICAL CONTAMINATION

Amphibian survival is closely linked to their environment. Frogs have highly sensitive skin important for transfer of gases and water into their body, their eggs are porous, and the larvae have gills. Environmental contaminants from an industrial or agricultural landscape can have cataclysmic effects on amphibians, leading to death, a loss of fitness, or infertility. Chemicals, including antimicrobials and microplastics as well as other common pesticides and heavy metals, usually accompany other factors such as habitat loss, causing increased pressure on populations.

CONSERVATION ACTIONS

It is not all doom and gloom, though, and there have been some fantastic conservation success stories. Conservation actions are driven by dedicated people throughout the world, including academic institutions, conservation organizations, governmental agencies, and members of the public. These inspirational people have at times brought species back from the brink of extinction, whether directly or indirectly, even by doing
seemingly simple things like recording sightings of species. There are three major amphibian organizations dedicated to the conservation of amphibians, working very closely with one another but each having unique responsibilities:

1.

The Amphibian Survival Alliance promotes and coordinates conservation actions for amphibians, including outreach with local communities and establishing partnerships.

2.

The IUCN SSC Amphibian Specialist Group provides the scientific foundation to inform effective amphibian conservation action.

3.

The Amphibian Ark leads on the ex situ conservation of amphibians, building in-country expertise, and Conservation Needs Assessments (a framework for identifying immediate conservation requirements for individual species).

SUCCESS STORIES

We will finish the introductory section of this book by discussing some of the incredible stories of species recovery. The Mountain Chicken Frog (Leptodactylus fallax) is the largest amphibian in the eastern Caribbean, occurring on the small islands of Dominica and Montserrat. The Mountain Chicken has been an economically important species for the people living on the islands, acting as a major food source. In 2002 (Dominica) and 2009 (Montserrat), chytrid devastated the populations, resulting in one of the most rapid declines in a vertebrate species ever recorded. It is likely that no wild individuals now survive on Montserrat. Due to a fast response from the amphibian conservation community, however, Mountain Chickens were taken into captivity to form a successful conservation breeding program in Europe. Subsequently, a breeding facility and a genetics diagnostics lab that performs regular testing for chytrid has been established on Dominica. Most recently a seemingly successful semi-wild control
area has been established to investigate reintroduction potential - and the results from this look promising, meaning that the future of the Mountain Chicken might be secured.

The Pool Frog (Pelophylax lessonae) is a ubiquitous species across many parts of Europe but native populations became extinct in the UK in 1995 due to a loss of habitat. By translocating animals from Sweden (part of the same clade as the native UK population), two sites in Norfolk in eastern England were selected for a series of reintroductions. These reintroductions have so far been successful, with yearly breeding over the past few years, showing very positive signs for the species in the UK.

OPPOSITE ABOVE | Map showing global distribution of the Anura. Colors denote approximate species diversity with red representing highest diversity areas through to blue, indicating lowest diversity.

OPPOSITE BELOW | It is
hoped that with the successful reintroduction program the Pool Frog (Pelophylax lessonae) will become more widespread in Britain over the coming years.

LEFT | A long-term recovery strategy has been put in place to help conserve the Mountain Chicken Frog (Leptodactylus fallax).
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

For general queries, contact info@press.princeton.edu

THE FROG SUBORDERS AND SUPERFAMILIES

below |The Strawberry Poison Frog (Oophaga pumilio) comes in as many as thirty different color phases ranging from bright red, red with blue legs (blue jeans phase), to green with black spots.

The Anura contains three suborders, the Archaeobatrachia, Mesobatrachia, and Neobatrachia, although authors have differed with regard to which families comprise the first two of these.

The Archaeobatrachia (archaeo- = ancient; batrachia = frogs) contains the oldest extant frog families, the Ascaphidae and Leiopelmatidae of NW North America and New Zealand respectively, which together comprise the superfamily Leiopelmatoidea, and the European Alytidae and Bombinatoridae, forming the superfamily Discoglossoidea. These extant frogs are linked to long extinct frogs by a number of primitive anatomical characters (see page 59).

The Mesobatrachia (meso- = middle; batrachian) contains those frog families that are more recent than the archaeobatrachians, but which still exhibit primitive anatomical characters (see page 69). This suborder comprises two superfamilies, the Afro-American Pipoidea, with two families, and Eurasian-American Pelobatoidea, with four families.

All other extant anurans belong to the complex Neobatrachia (neo- + new; batrachia). The most basal family is the South African Heleophrynidae, with the remaining families in the Sooglossoidea (2 families, Seychelles and India), Myobatrachoidea (3 families, Australasia and Chile), Hyloidea (21 families), and Ranoidea (19 families).

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

ARCHAEOBATRACHIA

LEIOPELMATOIDEA

Ascaphidae
Leiopelmatidae

DISCOGLOSSOIDEA
Alytidae
Bombinatoridae

PIPOIDEA
Pipidae
Rhinophrynidae

NEOBATRACHIA		
	1	
Heleophrynidae	HYLOIDEA	RANOIDEA
	Allophrynidae	Mantellidae
SOOGLOSSOIDEA	Centrolenidae	Rhacophoridae
Nasikabatrachidae	Leptodactylidae	Pyxicephalidae
Sooglossidae	Hylodidae	Conravidae
	Aromobatidae	Petropedetidae
MYOBATRACHOIDEA	Dendrobatidae	Phrynobatrachidae
Limnodynastidae	Alsodidae	Ptychadenidae
Myobatrachidae	Cycloramphidae	Ranidae
Calyptocephalellidae	Odontophrynidae	Ceratobatrachidae
	Rhinodermatidae	Micrixalidae
	Bufonidae	Ranixalidae
	Hylidae	Nyctobatrachnidae
	Ceratophryidae	Dicroglosside
	Batrachylidae	Odontobatrachidae
	Telmatobiidae	Hemisotidae
	Hemiphractidae	Brevicipitidae
	Brachycephalidae	Hyperoliidae
	Ceuthomantidae	Arthroleptidae
	Craugastoridae	Microhylidae
	Strabomantidae	
	Eleuthrodactylidae	

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

For general queries, contact info@press.princeton.edu
opposite | The Yellow-bellied
Toad (Bombina variegata) is a widely distributedspecies in Europe.

ARCHAEOBATRACHIA

The Archaeobatrachia contains 4 primitive anuran families, 7 genera, and 27 species, survivors from the dinosaur age. The Ascaphidae of northwestern North America, and the Leiopelmatidae from New Zealand, date back to the Late Jurassic, 163-145 MYA. The Alytidae and Bombinatoridae of Eurasia are traced back to the Mid-Jurassic, 180 MYA, with some of the earliest fossils from England.

These frogs exhibit a suite of primitive characteristics absent in modern anurans. Modern frogs have five to eight presacral vertebrae but the Ascaphidae and Leiopelmatidae possess nine, while Jurassic Prosaliurus bitis and Vieraella herbstii had ten. These extinct Jurassic frogs also had ribs which are retained in Ascaphidae and Leiopelmatidae on the II-IV vertebrae. The Alytidae and Bombinatoridae have eight presacral vertebrae, also with ribs on numbers II-IV. All modern frogs lack ribs.

Ascaphid and leiopelmatid frogs have amphicoelous vertebrae (see Glossary), while alytid and bombinatorid frogs possess opisthocoelous vertebrae, and all modern frogs have procoelous vertebrae. The ascaphids and leiopelmatids also possess an epipubic cartilage anterior to the pubic bone, a feature otherwise only seen in some pipid frogs. distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

TAILED FROGS

The tailed frogs do not actually possess a tail; rather, males possess a highly vascularized intromittent organ, a cloacal extension that resembles a tail. Supported by cartilaginous strands known as Nobelian rods, this is a ridged structure that is folded forward and inserted into the female's cloaca when the pair are in amplexus. Tailed frogs are the only frogs that internally fertilize their ova.

The Acaphidae is an ancient family from the Late Jurassic (c.163-145 MYA). Today it is represented by one genus and two species, the

Coastal Tailed Frog (Ascaphus truei) and the Rocky Mountain Tailed Frog (A. montanus), which inhabit southern British Columbia, Canada, and parts of five US states (California, Washington, Oregon, Montana, and Idaho). They occur from near to sea level on the coast to $8,390 \mathrm{ft}(2,557 \mathrm{~m})$ elevation in the Rocky Mountains. These are delicate frogs that are dorsally brown or gray with translucent pink venters.

Ascaphus is an ancient genus, as evidenced by its nine amphicoelus presacral vertebrae, three pairs

LeFt | Tailed frogs (Ascaphus spp.) lack a tympanum (external ear drum).

OPPOSITE \| The "tail" of the male Coastal Tailed Frog (Ascaphus truei) on the right is clearly visible.

DISTRIBUTION
Pacific northwest United States and southwest Canada

genus

Ascaphus
habitats
Cold torrential rocky streams through humid forest to 8,390 ft (2,557 m) ASL

SIZE
$1 \frac{1}{4}$ in $(30 \mathrm{~mm}) \sigma^{\top}$ to 2 in
$(50 \mathrm{~mm})$ 우 Coastal Tailed Frog
(A. truei) and Rocky Mountain Tailed Frog (A. montanus)

ACtivity

Nocturnal; highly aquatic, occasionally terrestrial

REPRODUCTION

Inguinal amplexus with internal fertilization using male's taillike copulatory organ, eggs laid in bead-like strings attached under stones
diet
Terrestrial and aquatic insects
IUCN STATUS
None designated

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

of ribs, and an epipubic cartilage. Tailed frogs also lack a tympanum, the external eardrum visible in most frogs, and males do not call to attract a mate, possibly because the sound of the water might drown out their calls.

Tailed frogs are highly aquatic with extensively webbed toes, but they leave the water to venture into woodlands on wet nights. When they mate, the male grasps the female using inguinal amplexus. Mating occurs in the water and females lay strings of 28-96 eggs attached to the undersides of streambed stones.

Tadpoles inhabit fast-flowing water and exhibit small tail fins and large oral suckers to anchor themselves and graze algae and they have been observed using these suckers to clamber up rocks in the splash zone. Tadpoles may take up to five years to fully develop.

Neither species is considered endangered by the International Union for Conservation of Nature (IUCN), although A. truei is protected in California and Oregon.

OPPOSITE \| Archey's Frog
(Leiopelma archeyr) is the smallest New Zealand frog, confined to North Island, New Zealand.

Below | Hochstetter's Frog (Leiopelma hochstetter) is the most widely distributed species of New Zealand frog.

TThe Leiopelmatidae contains a single endemic New Zealand genus with four species. Among the most primitive living frog families, it dates back to the Late Jurassic (c.163-145 MYA). Leiopelmatids exhibit nine amphicoelous presacral vertebrae, three pairs of ribs, and an epipubis.

The smallest species is Archey's Frog (Leiopelma archeyr). This species inhabits the Coromandel Peninsula and Whareorino Forest on North Island. The largest species is Hamilton's Frog (L. hamiltont), confined to Stephens Island in the Cook Strait. Hochstetter's Frog (L. hochstetter) is the most widely distributed species, distributed through most of the northern half of North Island and Great Barrier Island. The species with the smallest range is the recently described Maud Island Frog (L. pakeka) from a single island in the Marlborough Sounds.

New Zealand frogs are dorsally cryptically patterned with brown, gray, or green, and darker below. Leiopelma hamiltoni and L. hochstetteri have raised dorsal tuberculate ridges on their backs, while L. archeyi is smooth-skinned or exhibits only small ridges.

DISTRIBUTION

New Zealand

genus

Leiopelma

habitats

Lowland to upland, and under rocks, logs, or leaf-litter
SIZE
$1 \frac{1}{4}$ in (31 mm) σ^{7} Archey's Frog (L. archeyi) to 2 in
(52 mm) 우 Hamilton's Frog
(L. hamiltoni)

ACTIVITY

Nocturnal; terrestrial, semiaquatic, occasionally scansoriall

REPRODUCTION

Inguinal amplexus;
< 22 eggs laid in small pools (L. hochstetteri) hatching into larvae with part-developed
limbs, or < 19 eggs laid on damp ground (L. archeyi and L. hamiltoni) hatching as froglets, without larval stage
DIET
Insects, spiders, and mites

IUCN STATUS

$\mathrm{CR}=1, \mathrm{VU}=2$; percentage species in trouble $=75 \%$

Inhabiting native forests close to running water, L. archeyi, L. hamiltoni, and L. pakeka adopt a terrestrial lifestyle while L. hochstetteri is more semiaquatic with strongly webbed hindfeet. Leiopelma archeyi may also climb into low vegetation. They feed on insects and small arachnids but being unable to extend their tongues must lunge forward open-mouthed to catch prey.

Males do not call. Leiopelma hochstetteri lays up to 22 eggs in a small wet depression, which hatch into tadpoles with partially developed legs and a tail.

Females of terrestrial species lay up to 19 eggs in leaf-litter where they are guarded by the male. These hatch into tiny froglets with short tails, which ride on their father's back until fully developed. Leiopelma archeyi is listed as Critically
Endangered, while L. hamiltoni and L. pakeka are Vulnerable. New Zealand frogs are listed in the EDGE of Existence program's 100 Evolutionary Distinct and Globally Endangered amphibians, with L. archeyi at the top of the list.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

ALYTIDAE
 MIDWIFE TOADS \& PAINTED FROGS

TThe Alytidae (formerly Discoglossidae) dates back to the Mid-Jurassic (c. 180 MYA) and comprises three Mediterranean genera. They possess the modern number of eight sacral vertebrae, but they are opisthocoelous in arrangement and associated with three pairs of ribs, both primitive characters.

Midwife toads, A lytes (6 spp.), inhabit southwestern Europe, northwest Africa, and the Balearic Islands. They are small, stocky frogs with large eyes, and a dorsal pattern of greens, grays, and browns. The most widely distributed is the Common Midwife Toad (A. obstetricans) and its name hints at the curious reproductive strategy of these frogs. When the female has laid her strings of eggs, the male will wrap them around his hindlegs and carry them for six weeks before depositing them into water,

TOP Left | A male Midwife Toad (Alytes obstetricans) may carry strings of eggs from several females for six weeks.

Left | The Hula Painted Frog (Latomia nigriventer) is a "Lazarus species" from Israel.
opposite | The Iberian Painted Frog (Discoglossus galganor) is widely distributed from Gibralter to Portugal and the Pyrenees.

DISTRIBUTION

Southern Europe, northern Africa, and Israel

genera

Alytes, Discoglossus, Latonia

habitats

Most habitats near water, including anthropogenic habitats

SIZE

2 in (47 mm) Moroccan
Midwife Toad (A. maurus) to 3 in (80 mm) North African Painted Frog (D. pictus), Moroccan Painted Frog (D. scovazzi), and Iberian Painted Frog (D. galganoi)

ACtivity

Nocturnal and fossorial (Alytes) or both day and night, and terrestrial/aquatic
(Discoglossus and Latonia)

REPRODUCTION

Axillary amplexus; < 1,000 eggs laid in loose clumps in water (Discoglossus), or 20-100 eggs laid and

often carrying eggs from several females. Midwife toads like dry, rocky, or wooded hillsides near water, with loose soil for burrowing.

Painted frogs, Discoglossus (5 spp.), inhabit Spain, Portugal, southern France, Morocco, Sicily, Sardinia, and Corsica, up to $6,230 \mathrm{ft}(1,900 \mathrm{~m})$ above sea level (ASL). A former species, the Hula Painted Frog (Latonia nigriventer), inhabits Israel. Last seen in the 1950s, following the draining of the Hula marshes, it was declared extinct in 1996, but it was
carried by the male (Alytes) until close to hatching

DIET

Insects and other invertebrates

IUCN STATUS

$\mathrm{CR}=1, \mathrm{EN}=2, \mathrm{VU}=1$,
$\mathrm{NT}=1$; percentage species in trouble $=42 \%$
rediscovered in 2011, making it a "Lazarus species." Painted frogs are distinctively marked with contrasting stripes or large spots on their pale-brown, warty dorsums. They are more robust than midwife toads, with smaller eyes.

The widest distributed are the Iberian Painted Frog (D. galganor) and the Moroccan Painted Frog (D. scovazzi), but the North African Painted Frog (D. pictus) is expanding into Europe. They inhabit natural and man-made aquatic habitats, including brackish or stagnant water. Females may lay up to 5,000 eggs, fertilized by several males.

Latonia nigriventer is listed as Critically Endangered, A. muletensis and A. maurus (Mallorcan Midwife Toad and Moroccan Midwife Toad) are Endangered, A. dickhilleni (Betic Midwife Toad) is Vulnerable, and D. montalentï (Corsican Painted Frog) is Near Threatened.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

FIRE-BELLIED TOADS, BELL TOADS \& ASIAN FLAT-HEADED FROGS

TThe Bombinatoridae is an ancient frog family from the Mid-Jurassic (c. 180 MYA), with eight opisthocoelous sacral vertebrae, and three pairs of ribs.

Genus Bombina (7 spp.) contains two European species, the Fire-bellied Toad (B. bombina) in eastern Europe, and the Yellow-bellied Toad (B. variegata) of central and southern Europe. The Oriental

Fire-bellied Toad (B. orientalis) inhabits eastern China, Russia, and the Korean Peninsula. The other four Bombina are usually called bell toads.
The widest-distributed is the Large-webbed Bell Toad (B. maxima).

These are stout-bodied frogs with short limbs, drab brown or green bodies with large warty tubercles, but they have brightly colored undersides,

Left | The European Fire-bellied Toad (Bombina bombina) has vivid red markings on its belly that it exposes defensively when it adopts the "unkenreflex" posture.

OPPOsite | Oriental Fire-bellied Toads (Bombina orientalis) occur in Russia, China, and the Korean Peninsula.

OPPOSITE RIGHT |

Only found on the islands of Palawan and Busuanga, the Philippine Flat-headed Frog (Barbourula busuangensis) is Endangered.

DISTRIBUTION

Europe, Turkey, Russia, China, Korea, Vietnam, Philippines, and Borneo

GENERA

Barbourula, Bombina

HABITATS

Small ponds and lakes, even stagnant water and temporary ponds, in woodland or open habitats (Bombina) or fast, shallow streams in rainforest habitats (Barbourula)

SIZE
$11 / 2$ in (40 mm) Apennine Yellowbellied Toad (Bo. pachypus) to $3 \frac{1}{4}$ in (85 mm) Philippine Flat-headed Frog (Ba. busuangensis)

ACtivity

Primarily diurnal but also active at night
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

which are displayed when the toad feels threatened and adopts a posture known as "unkenreflex," rolling its hands and feet upside down above its head and displaying the aposematic ventral colors. This is not a bluff, Bombina sequester toxins from their invertebrate prey into their own skins.

Males make a soft call by passing air from their vocal sacs to the lungs, the reverse of the way most other frogs call. Females attach their eggs to submerged vegetation.

Genus Barbourula (2 spp.), the flat-headed frogs, were originally included with Alytes and Dicroglossus,

REPRODUCTION

Males grasp females in inguinal amplexus and fertilize the egg clumps
that are attached to aquatic vegetation
DIET
Small invertebrates

IUCN STATUS

$\mathrm{EN}=2, \mathrm{VU}=2, \mathrm{NT}=1$;
percentage species in trouble $=56 \%$
but are closer to Bombina. The Philippine Flatheaded Frog (Ba. busuangensis) inhabits Busuanga and Palawan, while the Bornean Flat-headed Frog (Ba. kalimantanensis) is endemic to Indonesian Borneo. Highly aquatic with flattened bodies and heads, they inhabit fast-flowing montane or rainforest streams respectively. Although poorly known, some tantalizing clues have been uncovered. Known from only two specimens, the Bornean Flat-headed Frog is the world's only known lungless frog, respiring by gas exchange through the skin. The reproductive strategy of the Philippine Flat-headed Frog is unknown, but as tadpoles have not been found and females contain very large eggs, it may be a direct breeder without a larval stage.

Barbourula busuangensis is Endangered, Bombina lichuanensis and Bo. fortinuptialis (Lichuan Bell Toad and Large-spined Bell Toad) are Vulnerable, while Ba. kalimantanensis is Near Threatened.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

For general queries, contact info@press.princeton.edu

OPPOSITE | Hendrickson's
Litter Frog (Leptobrachium hendricksoni) is a big-eyed species from the Malay Peninsula and Borneo.

MESOBATRACHIA

The Mesobatrachia contains frogs that are more advanced than those in the Archaeobatrachia, but most families still date back to the Late Jurassic or Early Cretaceous, 163-100 MYA, and they exhibit some primitive characteristics such as amphicoelous or opisthocoelous vertebrae, while the vertebrae of modern, neobatrachian frogs are procoelous. The Mesobatrachia contains six families split between two superfamilies (suffix =-oidea).

The Pipoidea contains the entirely aquatic Pipidae, which is divided into two subfamilies, the South American Pipinae and sub-Saharan African Dactylethrinae. Also included in the Pipoidea is the monotypic, fossorial Rhinophrynidae from Mexico.

The Pelobatoidea comprises the Pelobatidae from Europe, Asia, and North Africa, the Eurasian Pelodytidae, the North American Scaphiopodidae, and the large Asian Megophrynidae. Most members of the Pelobatoidea are terrestrial frogs, in contrast to the aquatic and fossorial Pipoidea. The Pelobatidae and Pelodytidae diverged around 150 MYA.

The Mesobatrachia contains 360 species in 20 genera, a small proportion of the total number of $7,600+$ frogs described.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

PIPIDAE - DACTYLETHRINAE

AFRICAN CLAWED FROGS \& PLATANNAS

Dactylethrinae contains three genera of sub-Saharan African aquatic clawed frogs. The largest is Xenopus (29 spp .), although some authors place the Tropical Clawed Frog (X. tropicalis) and three rainforest Xenopus in Silurana. They are called "platannas" in South Africa, in Afrikaans meaning "flat-handed." Hymenochirus (4 spp.) are dwarf clawed frogs from the West and Central African rainforests, the largest being the Gaboon Dwarf Clawed Frog (H. feae), while Merlin's Dwarf Clawed Frog (Pseudohymenochirus merlinz) is a monotypic species from Guinea-Bissau and Sierra Leone. Because of its importance to science (see page 71), the Smooth Clawed Frog (Xenopus laevis) was the first amphibian to have its entire genome mapped.

Clawed frogs are dorsoventrally flattened and pear-drop-shaped, with smooth skin, large dorsally positioned eyes, wide splayed legs, webbed toes, and long clawed fingers. Xenopus have nictitating membranes over their eyes and an epipubis on the pelvis, features absent in the other two genera. Although fully aquatic, they can crawl over land.

Xenopus tadpoles filter-feed but those of the other genera are carnivorous. Adults feed on aquatic invertebrates, fish, tadpoles, and smaller frogs, but large species can take birds or small mammals.

DISTRIBUTION
Sub-Saharan Africa, including Bioko Island, and introduced worldwide

GENERA

Hymenochirus,
Pseudohymenochirus, Xenopus

HABITATS

Still or slow-moving waters, from lakes to stagnant pools and man-made fish ponds, in close canopy rainforest to open grassland, and perianthropic habitats

SIZE
1 in (27 mm) Boulenger's
Dwarf Clawed Frog
(H. boulengeri) to 5 in
$(130 \mathrm{~mm})$ 우 Smooth Clawed Frog (X. laevis)

ACTIVITY

Nocturnal, diurnal; fully aquatic

REPRODUCTION

Males grasp females in inguinal amplexus and fertilize the eggs, which are attached to aquatic vegetation, usually at night

A

Acanthixalinae 216-17
Acanthixalus 217
Acris 136
Adelastes 225
Adelastinae 224-5
Adelophryne 167
Adelotus 95
Adenomera 106
Afrixalus 214-15
Agalychnis 20, 148-9
Aglyptodactylus 171
Alcalinae 196-7
Alcalus 196-7
Allobates 114
Allobatinae 114
Allophryne 100-1
Allophrynidae 100-1
alpine toads 83
Alsodes 121
Alsodidae 121
Alytes 32, 35, 64-5
Alytidae 35, 59, 64-5
Ameerega 117
Amietia 178
Amolops 192, 194
amplexus 28-9, 30
Anaxyrus 128
Anhydrophryne 179
Anomaloglossinae 115
Anomaloglossus 115
Ansonia 130, 131
Aquarana 44, 190
Archaeobatrachia 58-67
Archey's Frog 62-3
Arenophryne 96
Argus Reed Frog 27
Aromobates 116
Aromobatidae 41, 114-16
Arthroleptella 179
Arthroleptidae 218-23
Arthroleptides 184-5
Arthroleptinae 218-19
Arthroleptis 218-19
Ascaphidae 29, 35, 59, 60-1
Ascaphus 13, 60-1
Assa darlingtoni 32
Asterophryninae 230-3
Asterophrys 230
Astrobatrachinae 204
Astylosterninae 220-1
Astylosternus 17, 42, 45, 220-1
Atelognathus 153
Atelopus 23, 25, 30, 41, 129
Atlantihyla 141
Atympanophrys 84-5
Aubria 181

B

Bahia Forest Frog 125
Bale Mountain Frog 184-5
banjo frogs 95
Barbourula 67
Barrio's Frog 127
Barycholos 163
Batrachia 8
Batrachyla 152-3
Batrachylidae 152-3
bell toads 66-7
Blommersia 172
Boana 138
Bokermannohyla 142
Bombina 25, 41, 66
Bombinatoridae 59, 66-7
Boophinae 170
Boophis 170
Boraceia Tree Toad 21
Boreorana 49, 190-1
Boulenophrys 84-5
Brachycephalidae 158-9
Brachycephalus 41, 158-9
Brachytarsophrys 85
Breviceps 29, 37, 212-13
Brevicipitidae 212-13
bromeliad frogs 108-9
brown frogs 190-1, 192-5
Bryophryne 162
Budgett's Frog 15, 150-1
Buergeria 49, 174
Buergeriinae 174
Bufo 30, 130, 131, 132
Bufonidae 8, 15, 38, 87, 128-33
Bufotes 130, 132
bullfrogs $44,150,171,180-1$, 190, 206, 226
Burrowing Toad 74-5
bush frogs 230
button frogs 122-3

C

Cacosterninae 178-9
Cacosternum 178
Callimedusa 149
Callulina 213
Calyptocephalella 98
Calyptocephalellidae 87, 98-9
camouflage 19, 40
Cane Toad 31, 38, 48, 128
Cardioglossa 218-19
cascade frogs 192-5
Celsiella 104-5
Centrolene 103
Centrolenidae 19, 102-5
Centroleninae 102-3
Ceratobatrachidae 196-9
Ceratobatrachinae 198-9

Ceratophryidae 150-1
Ceratophrys 36, 37, 150-1
Ceuthomantidae 160
Ceuthomantis 160
Chacophrys 150
Chaltenobatrachus 153
Charadrahyla 140
Chiasmochelis 224
Chiasmocleis 43
Chiromantis 175
chirping frogs 168-9
chorus frogs 136
chromatophores 18
chytrid fungus 52,54
circulatory system 16
clawed frogs $34,45,70-1$
climate change 51,52
climbing 46
Clinotarsus 38
cloud frogs 116
Coastal Tailed Frog 13, 60-1
cocoons 18, 48
collared frogs 116
color 18
aposematism 41, 67, 117,
129, 159
camouflage 40
dichromatism 26-7
mate attraction 30
Colostethinae 117
Colostethus 117
Common Frog 31
Common Toad 30
Conraua 30, 182-3
Conrauidae 182-3
conservation 50-5
Cophixalus 231
Cophyla 228
Cophylinae 228-9
coquis 168-9
Cornufer 198-9
corrugated frogs 204-5
Crab-eating Frog 48, 206
Craugastor 161
Craugastoridae 161
Crinia 96
cross frogs 231
Crossodactylodes 109
Crossodactylus 112
Cryptobatrachus 157
Cycloramphidae 122-3
Cycloramphus 122-3

D

Dactylethrinae 69, 70-1 dainty frogs 178-9 dancing frogs $30,200-1$
Darwin's Frog 126-7
defense $37-43$
Dendrobates 119

Dendrobatidae 30, 38-9, 41, 117-20
Dendrobatinae 118-19
Dendrophryniscus 129
Dendropsophus 40, 138
Diasporus 168
Dicroglossidae 206-7
Dicroglossinae 206-7
diet 34-6
dink frogs 168-9
dirt frogs 161
Discoglossus 65
Dotted Humming Frog 43
Dryophytes 135
Duellmanohyla 140
Duttaphrynus 130
dwarf swamp frogs 110-11
dwarf treefrogs 138
Dyscophinae 228-9
Dyscophus 41, 229

E

ears 24-5
Ecnomiohyla 138-9
ecomorphs 13
Ectopoglossus 120
Edalorhina 110
egg frogs 220-1
eggs 12, 26, 31-2
Elachistocleis 224
Eleutherodactylidae 167-9
Eleutherodactylinae 168-9
Eleutherodactylus 22, 29, 39, 168-9
emerald-barred frogs 160
Engystomops 110, 111
Epidalea 45, 130
Epipedobates 117
Ericabatrachus 184-5
escuerzos 124-5
estivation $18,48,49,77,151$
Euparkerella 163
Euphlyctis 206-7
Eupsophus 121
evolution 8-11
extinctions $50-1,52$
eyes $6-7,15,20-1$
eye spots 41

F

Fejervarya 48, 206
fertilization 26, 28-9
fire-bellied toads $25,41,66-7$
fishing frogs 180-1
flat-headed frogs 66-7
flea frogs 158-9, 167
Flectonotus 156
Flying Frogs 46-7, 177
foam frogs 110-11
foam-nest treefrogs 175-7
forest frogs 38
fork-tongued frogs 206-7
fringe-limbed treefrogs 138-9
fringe-toed treefrogs 138
Fritziana 156

G

Galaxy Frog 227
Gardiner's Frog 92-3
gas exchange 16-17, 18, 34
Gastrophryne 225
Gastrophryninae 224-5
Gastrophrynoides 232
Gastrotheca 15, 156, 157
Geocrinia 96
Gephyromantis 172
Gerobatrachus 8
ghost frogs 88-9
giant frogs 182-3
gills 12,34
gladiator frogs 138
glass frogs 19, 30, 102-5
gliding 46-7
Glyphoglossus 226
Golden Coqui 29
Golden Dart-poison Frog 378, 118
golden frogs 38-9
Goliath Frog 30, 182
grass frogs 188-9
ground frogs 94-5, 121
Guenther's Marsupial Frog 15, 157

H

habitat loss 51, 53, 54
Haddadus 161
Hairy Frog 17, 42, 45, 220-1
Hamilton's Frog 62-3
heart 16
Heleioporus 94
Heleophryne 88-9
Heleophrynidae 87, 88-9
Hemiphractidae 156-7
Hemiphractus 15, 157
Hemisotidae 210-11
Hemisus 47, 210-11
Heterixalus 215
hibernation 49, 191
Hildebrandtia 189
Hochstetter's Frog 62-3
Holarctic treefrogs 134-5
Hole-in-the-head Frog 23, 195
Holoaden 163
Holoadeninae 162-3
Hoplobatrachus 206-7
Hoplophryninae 228-9
horned frogs $15,34,36,150-1$
horned toads 84-5
horned treefrogs 156-7
Huia 23, 195
Hyalinobatrachium 104-5
Hyalobatrachinae 104-5

Hydrolaetare 106
Hyla 134-5
Hylambates 216
Hylidae 38, 87, 134-49
Hylinae 134-43
Hylodes 21, 112
Hylodidae 112-13
Hylorina 153
Hyloscirtus 138
Hyloxalinae 120
Hyloxalus 120
Hymenochirus 70-1
Hyperoliidae 48, 214-17
Hyperoliinae 214-15
Hyperolius 27, 214
Hypodactylinae 162-3
Hypopachus 225

I

Ikakogi 102
incertae sedis 217
Incilius 27, 128
Indirana 202-3
Insuetophrynus 127
intromittent organ 29
Ischnocnema 159
Isthmohyla 141

J

jumping 8, 15, 44
jumping frogs 171

K

Kajika frogs 49, 174
Kalophryninae 226-7
Kalophrynus 227
Kaloula 226
Kassina 216
Kassininae 216-17
Kihansi Spray Toad 51
Kurixalus 176

L

Lake Titicaca Water Frog 17, 154
Laliostoma 171
Laliostominae 171
Lankanectes 204-5
Lankanectinae 204-5
Latonia 65
Lazarus species 65, 142, 155, 227
leaf-frogs 148-9
leaping frogs 202-3
Leiopelma 62-3
Leiopelmatidae 59, 62-3
Leiuperinae 110-11
leopard frogs 190-1
Lepidobatrachus 15, 18, 150-1
Leptobrachella 82, 83
Leptobrachiinae 82-3
Leptobrachium 82-3

Leptodactylidae 41, 106-11
Leptodactylinae 106-7
Leptodactylodon 221
Leptodactylus 44, 54, 106-7
Leptopelinae 222-3
Leptopelis 222-3
Leucostethus 117
Limnodynastes 94-5
Limnodynastidae 87, 94-5
Limnomedusa 121
Limnonectes 29, 206-7
lingual frogs 115,120
Lithobates 52, 190-1
Lithodytes 106-7
Litoria 19, 144, 146
litter frogs 164, 172-3
litter toads 82
Liurana 197
Liuraninae 196-7
Llanos Frog 18
long-fingered frogs 218-19
Lowland Burrowing Treefrog 18
Lowland Leopard Frog 52
lungs 16-17, 25
Lysapsus 143

M

Macrogenioglottus 125
Malabar Frog 38
Mannophryne 116
Mantella 41, 172-3
Mantellidae 38-9, 41, 170-3
Mantellinae 172-3
Mantidactylus 172
marsupial treefrogs 156-7
mating balls $30-1$
Maud Island Frog 62-3
Megaelosia 112
Megastomatohyla 140
Megophryidae 82-3, 84-5
Megophryinae 84-5
Megophrynidae 69
Megophrys 34, 85
Melanobatrachinae 226-7
Melanobatrachus 227
Melanophryniscus 39, 129
Mesobatrachia 68-85
metamorphosis 13
Metaphrynella 226, 232
Micrixalus 30, 200-1
Microhyla 226
Microhylidae 42, 87, 224-31
Microhylinae 226-7
Microkayla 162
Microxalidae 200-1
midwife toads $32,35,64-5$
Mini 228, 232
Mixophyes 96, 97
monkey frogs 149
monophyletic groups 8, 10
Mountain Cascade Frog 34
Mountain Chicken Frog 54, 106, 107
mountain frogs 95, 196-7
mountains false toads 98-9
moustache toads $82-3$
mouth-brooding frogs 126-7
mucoproteins 18
Myobatrachidae 39, 87, 96-7
Myobatrachus 96

N

narrow-mouthed frogs 42, 224-33
Nasikabatrachidae 87, 90-1
Nasikabatrachus 90-1
Natterjack Toad 45, 130
Nectophryne 133
Nectophrynoides 29, 51, 133
Neobatrachia 86-233
Neobatrachus 18, 94
New Zealand frogs 62-3
Niceforonia 163
nictitating membrane $20-1$
night frogs 42, 220-1
Nimbaphrynoides 29
Noblella 162
Northern Burrowing Frog 18
Northern Corroboree Frog 52
Notaden 94
Nothophryne 179
nurse frogs 114
nursery frogs 231
Nyctibates 221
Nyctibatrachidae 204-5
Nyctibatrachinae 205
Nyctibatrachus 205
Nyctimantis 32
Nyctimystes 146
Nymphargus 102, 103

0

Occidozyga 207
Occidozyginae 206-7
Odontobatrachidae 208-9
Odontobatrachus 208-9
Odontophrynidae 38, 124-5
Odontophrynus 124-5
Odorrana 23, 194-5
Oophaga 119
Ophryophryne 85
Orejuela's Glassfrog 30
Oreobates 165
Oreolalax 83
Oreophryne 231
Oreophrynella 42, 129
Oriental Fire-bellied Toad 25, 66
Osteopilus 137
Otophryne 225
Otophryninae 224-5
owl frogs 94

P

pacman frogs 37,150
Paedophryne 232

Painted Ant-nest Frog 106-7
painted frogs 65
pandanus 172-3
papilla-tongued frogs 196-7
Papurana 195
Paracassina 216
Paradox Frog 13, 143
Paradoxophyla 229
Paratelmatobiinae 108-9
Paratelmatobius 108-9
parental care 32-3
parsley frogs 80-1
Paruwrobates 120
Pebble Toad 42
Pelobates 78-9
Pelobatidae 38, 69, 78-9
Pelobatrachus 85
Pelodryadinae 144-7
Pelodytes 80-1
Pelodytidae 69, 80-1
Pelophylax 54, 192, 195
Peltophryne 128
pest control 7, 50
Petropedetes 184-5
Petropedetidae 184-5
Phantasmarana 112-13
Philoria 95
photoreceptors 21
phragmosis 32
Phrynobatrachidae 186-7
Phrynobatrachus 186-7
Phrynoidis 131
Phrynomantis 229
Phrynomedusa 148, 149
Phrynomerinae 228-9
Phrynopus 165
Phyllobates 37-8, 118-19
Phyllomedusa 149
Phyllomedusinae 148-9
Physalaemus 41, 110
Phyzelaphryne 167
Phyzelaphryninae 167
piglet frogs 210-11
Pipa 32-3, 40, 72-3
Pipidae 35, 69, 70-3
pipid frogs 22
Pipinae 69, 72-3
Pithecopus 149
platannas 70-1
plate tectonics 8-10
Platymantis 198-9
Platyplectrum 95
Plethodontohyla 228
Pleurodema 111
poison 7, 37-9
poison dart frogs $30,38-9$,

$$
41,118-19
$$

poison frogs 117-20
pollution 53
Polypedates 176
Pool Frog 54, 192
Pouched Frog 32
Pristimantinae 164-5
Pristimantis 164-5

Probreviceps 213
Proceratophrys 124-5
Pseudacris 136
Pseudis 13, 143
Pseudohymenochirus 70, 71
Pseudopaludicola 111
Pseudophryne pengilleyi 52
Psychrophrynella 162, 163
Ptychadena 44, 188-9
Ptychadenidae 188-9 puddle frogs 186-7
Puerto Rican Coqui 22
pumpkin toadlets 158-9
purple pig-nosed frogs 90-1
Pyxicephalidae 178-81
Pyxicephalinae 180-1
Pyxicephalus 180-1

Q

Qosqophryne 162

R

rain frogs 29, 37, 161, 164-5, 168-9, 212-13
Rana 31, 192
Ranidae 87, 190-5
Ranixalidae 202-3
Ranoidea 144-5, 146
Rapids Frog 121
red-bellied toads 39, 129
Red-eyed Tree Frog 20, 148
reed frogs 27, 214-15
Rentapia 131
reproduction 26-33
Rhacophoridae 174-7
Rhacophorinae 175, 176-7
Rhacophorus 46-7, 177
Rheobates 115
Rheobatrachus 33, 97
Rhinella 31, 38, 48, 128, 129
Rhinoderma 126-7
Rhinodermatidae 126-7
Rhinophrynidae 69, 74-5
Rhinophrynus dorsalis 74-5
Rhombophryne 228
river frogs $122-3,178-9,186$, 195, 206
robber frogs 39, 158-9, 161, 164-5, 166
robust frogs 204-5
rocket frogs $115,117,120,144$
Rockhole Frog 19
Rocky Mountain Tailed Frog 60 rubber frogs 229
running frogs 216-17
Rupirana 109

s

Sachatamia orejuela 30 saddleback toadlets 41, 158-9 Sahona 170
sand frogs 178-9

Santa Marta Harlequin Toad 30
Sarcohyla 140
Scaphiophryne 229
Scaphiophryninae 228-9
Scaphiopodidae 69, 76-7
Scaphiopus 76
Scarthyla 143
Scinax 138, 139
Sclerophrys 132
Scotobleps 220-1
Scutiger 83
Scythrophrys 109
Sechellophryne 92-3
sexual dichromatism 26-7
sexual dimorphism 26-7, 29
Seychelles frogs 92-3
Seychelles Palm Frog 92-3
Seychelles Treefrog 31
sharp-nosed grass frogs 44, 188-9
shield frogs 167
shovel-headed tree frogs 15
shovel-nosed frogs 47, 210-11
Siamophryne 232
Sigalegalephrynus 131
Silverstoneia 117
skeleton 14-15
skin 16-17, 18-19
skulls 14-15
skunk frogs 116
slippery frogs 182-3
Smilisca 18, 139
Smoky Jungle Frog 44
smooth horned toads 124-5
Sooglossidae 87, 91, 92-3
Sooglossus 92-3
spadefoot toads 12-13, 76-9, 82-3
Spea 12-13, 76-7
Spicospina 97
spider mutualism 42-3
spiny-chest frogs 121
spiny frogs 216-17
spiracles 12
splash frogs 194
squeakers 218-19
Staurois 194
Stefania 157
Strabomantidae 162-6
Strabomantinae 166
Strabomantis 166
stream frogs $161,174,178$
Strongylopus 178
stubfoot toads 23
Sulawesi Fanged Frog 29
Sumaterana montana 34
Suriname toads 32-3, 40, 72-3
swimming 45
Synapturanus 225

T

Tachyonemis 31
tadpoles 12-13, 32, 34, 49
tailed frogs 29, 35, 60-1

Taudactylus 97
teeth 15
Telmatobiidae 154-5
Telmatobius 17, 154-5
Telmatobufo 99
thanatosis 217
Theloderma 40, 176
Thomasset's Frog 92-3
Thoropa 123
Tlalocohyla 140
tomato frogs 41, 229
Tomopterna 179
toothed frogs 208-9
toothed toads 83
torrent frogs 23, 112-13,
184-5, 192-5
treefrogs 31-2, 38, 134-47,
156-7, 172-3, 175-7, 222-3
Triadobatrachus 8
trilling frogs 94
Triprion 15, 140
true toads 128-33
Túngara Frog 110
Turkeit Hill frogs 100-1
tympanum 23, 24

U

unkenreflex 41, 67, 216
Uperodon 226
Uperoleia 96
urostyle 15

V

venomous frogs 39
Vieraella 8, 59
Vietnamese Mossy Frog 40
Vietnamophryne 232
Vitreorana 103
viviparous species 29
vocalization 22-3, 26, 37

W

Walkerana 202-3
water frogs 154-5, 190-1, 192-5
water loss 18-19
water toads 98-9
Waynad Dancing Frog 200
West Indian treefrogs 136-7
Wolverine Frog 42, 221
woodfrogs 49, 152-3, 190-1
wot-wots 216-17
wrinkled ground frogs 198

X

Xenophrys 85
Xenopus 34, 45, 70-1
Xenorhina 232

\mathbf{Y}

Yellow Toad 27

[^0]: ABOVE | A European Tree Frog
 (Hyla arborea) displaying a typical jumping motion of a frog.

