6 Introduction

CONTENTS

- 82 Non-ditrysian Microlepidoptera
- 102 Ditrysian Microlepidoptera
- 164 Macrolepidoptera
- 231 Epilogue: The Sixth Extinction, Nature, and Moths
- 232 Glossary
- 234 Additional Reading and Important Resources
- 235 Index
- 240 Acknowledgments and Picture Credits

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

LEFT | Case-bearing Clothes Moth (*Tinea pellionella*) caterpillar extended from its silken case, into which it has incorporated some red fibers from the textile it's consuming. Woolens and other fabrics made of animal hair are targeted by some tineids.

items worldwide. Their casemaking caterpillars have the exceptional ability to digest keratin—the chemically resistant protein that makes up claws, fur, hair, hooves, nails, and horns of mammals. Clothes moth larvae are most problematic with stored fabrics, clothing, wall hangings, and tapestries that are not periodically washed.

CATERPILLARS AND MOTHS AS HUMAN FOOD

Caterpillars are highly nutritious—they are rich in protein, including all essential amino acids, unsaturated fatty acids, minerals, and vitamins. When dried, their protein proportion is comparable to that of raw beef and is far more sustainable environmentally, requiring less land, less water, and yielding minimal greenhouse emissions. Caterpillars, and less frequently moths, are important food sources for many indigenous peoples, especially in Asia, Africa, and Latin America. Large caterpillars, in particular those of giant silk moths (Saturniidae) that reach high

local population levels, are frequently a target. Most famously, the Mopane Worm (*Gonimbrasia belina*) is eaten across southern Africa, either dried or cooked in prepared dishes. In Veracruz, Mexico, the *Arsenura* caterpillar, another giant silk moth, is targeted for human consumption. Australian tribes consume caterpillars, especially large-bodied, wood-boring cossids and hepialids. Among the most common is the Witchetty Grub (*Endoxyla leucomochla*), a cossid that bores in the stem and upper roots of various *Acacia*.

Indigenous groups in Mexico collect the Maguey Worm (*Comadia redtenbacheri*), a cossid that bores into agave leaves and roots. Single plants may yield hundreds of caterpillars. The larvae, known as *chilocuiles*, *chinicuiles*, or *tecoles* in Mexico, get increasingly red as they mature—prepupae are bright red. As such, the caterpillar also has become widely known as the red Maguey Worm and *gusano rojo*. Notably, Maguey Worm is the caterpillar most commonly found swirling at the bottom of some mezcal bottles.

The boiled pupae of silk worms, a by-product of sericulture, are an enormous nutritional resource. China alone produces more than 100,000 tons of Domesticated Silk Moth pupae annually. While the pupae are canned and sold as human food in Asia, more commonly they are dried and used as an additive in human foods or processed into animal feeds, especially for chickens.

In Bhutan and Tibet, the caterpillars of several species of *Pharmacis* and *Thitarodes* (Hepialidae) are highly valued as an aphrodisiac, a remedy for cancer and a sweep of other ailments, and a prophylactic for still other maladies, but only after the larvae have been attacked and mummified by a fungus (*Ophiocordyceps sinensis*)! As far as I am aware, there is scant evidence that the fungus zombies cure any ills, beyond what an alternative placebo would treat. The dried caterpillar–fungus cadavers are worth twice their weight in gold. Well-preserved specimens may sell for \$140,000 a kilo. In Bhutan

LEFT Large caterpillars such as this African saturniid are commonly roasted and sold in Asian, African, and Latin American markets.

BELOW In Central and South America, caterpillars such as the Maguey Worm (*Comadia redtenbachen*) serve as a protein supplement.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

LEFT Roasted mopane caterpillars (*Gonimbrasia belina*) for sale in a market. Late instars of this large silk moth are an important source of protein for many peoples across southwestern Africa.

LEFT Ghost moth (Hepialidae) "fungus caterpillars" for sale on a Chinese market. The myceliaridden caterpillars are ground up and used as traditional folk medicine to treat various maladies and as an aphrodisiac.

the harvesting and sale of the mummies is a significant source of income for many rural families, with school activities sometimes scheduled around the annual appearance of the fungal fruiting bodies.

Adult moths are much less often consumed, with one important exception: Australia's Bogong Moth (*Agrotis infusa*), which gregariously aestivates in caves and scree high in the mountains of southeastern Australia. Each summer billions

of the adults would migrate to the caves and other sheltered sites to await fall rains and the greening of the larval feeding sites. For centuries, Aboriginal tribes would come to the Bogong's montane aggregations to feast on the moths for weeks at a time. Changes in land use, agricultural intensification, and a severe drought in 2017 so diminished the moth's numbers that today many of the caves are empty, and the species is now regarded as endangered (see also page 55).

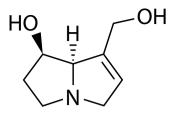
MOTHS AND PLANTS

Insects and plants have been evolving together for at least 400 million years. The fates of the two groups are inextricably intertwined and have spawned countless interactions over geological time. The three most archaic moth lineages, the Micropterigidae, Agathiphagidae, and Heterobathmiidae, have retained host associations similar to those believed to have existed at the time of their origin. In fact, there is much reason to believe many modern-day host associations are reflective of those of their ancient ancestors.

The vast majority of today's estimated 300,000 plus species of Lepidoptera feed on angiosperms (flowering plants). Angiosperms started diversifying as early as the Jurassic, or even before, at a time when cone-bearing plants (gymnosperms), ferns, club mosses, liverworts, and mosses were the ecologically dominant plants across Earth's terrestrial ecosystems. However, that all changed some 125 mya when angiosperms radiated and catapulted themselves (with the help of insects as pollinators) into ecological dominance across the planet. Moth—

plant associations span the gamut from highly mutualistic and codependent to highly antagonistic, with caterpillars sometimes fully consuming their host plant, or in the case of shrubs and trees, defoliating, and not infrequently killing their hosts.

SECONDARY PLANT COMPOUNDS


Plants defend themselves from herbivores and other enemies using a battery of physical defenses that include spines, hooks, dense hairs, and

ABOVE RIGHT A fairy moth (Adelidae) visiting a flower. The effectiveness of adelids and most other archaic moths as pollinators is in much need of study. Their cousins, the Prodoxidae, are renowned for their pollination services, upon which yuccas are entirely dependent.

RIGHT A Syssphinx raspa caterpillar. While eating different plants across their range, local populations of many moths specialize on just one species at a given place—here, prairie acacia in southeast Arizona.

ABOVE Retronecine, a common pyrrolizidine alkaloid (PA), is a powerful secondary plant compound, toxic to liver tissues.

hardened tissues as well as a galaxy of chemical defenses, or secondary plant compounds (primary compounds are those needed for photosynthesis, respiration, and other basic metabolic functions). Secondary plant compounds known to deter herbivory by caterpillars include alkaloids, nonprotein amino acids, cyanide-producing compounds, cardenolides, glycosides, phenolics, terpenes, salts, silica, several classes of sulfur-containing compounds, and still others.

Any moth lineage that evolves the capacity to avoid, detoxify, tolerate, or sequester the secondary metabolites of a diverse, ecologically abundant plant lineage has much to gain evolutionarily. Should the moth lineage radiate in turn, it poses increasing selective pressure on the plant group. And as the herbivory pressures increase on a plant lineage, there would be increasing fitness benefits to any member of the plant lineage to evolve some new secondary compound or other means of self-protection. Upon doing so, the plant taxon, now freed of much herbivory, would be poised to radiate in turn.

Such a situation would represent but two bouts in an ancient arms race that has been ongoing between insects and their host plants for millions of years dating back to at least the Permian

Era—an ongoing coevolutionary battle that may account for much of the planet's species diversity.

Pyrrolizidine alkaloids (PAs), common to many borages (Boraginaceae), composites (Asteraceae), legumes (Fabaceae), and orchids (Orchidaceae), underlie much of the evolutionary successes of several groups of moths, and in particular the tiger moths (Erebidae: Arctiinae). PAs are potent liver toxins and mutagens when consumed by vertebrates. Tiger moth caterpillars that sequester PAs as caterpillars render themselves unpalatable to lizards, birds, and bats, and warn of their toxicity with yellow, orange, white, and black colors, in both the larval and adult stages, and in some cases, even the egg and pupal stages.

LARVAL DIETS AND **HOST-PLANT SPECIALIZATION**

Perhaps 98 percent of all Lepidoptera are herbivorous, with some 85 percent of these being host-plant specialists as caterpillars that eat just one or a few related plant species. The remaining taxa are either oligophagous, feeding on plants in just two to three plant families, or polyphagous, feeding on plants in four or more families. The ecological and evolutionary advantages and disadvantages of these strategies are active areas of inquiry among ecologists. Surely part of the explanation is that specialists become adept at detoxifying or otherwise processing the potpourri of secondary plant compounds that plants manufacture to protect themselves from herbivores and other enemies.

There is another eco-evolutionary advantage to host-plant specialization, in that, over time, the caterpillar of a specialist species can be shaped by natural selection to resemble its host plant—in color, shape, texture, reflectance—and adopt appropriate behaviors, to lower its apparency to visual predators such as lizards, monkeys, and

especially birds. This argument becomes more compelling when considering the fate of host-plant generalists, which are on different plants from generation to generation (and even day to day), and as a consequence are not well matched to any single plant.

The diversity of moth species hosted by a plant is largely a function of the host plant's geographic range, architectural complexity, and range-wide abundance; other determinants include the plant's apparency, physical and chemical properties, and degree of taxonomic isolation (for example, the number of congeners or family members growing nearby).

In addition to plants, there are moth caterpillars that feed on fallen leaves and flowers, fungi, lichens, and algae. Tineidae are unique

ABOVE LEFT A male approaching a female Bella Moth (*Utetheisa ornatrix*). Males transfer PAs to their female partners during mating.

ABOVE A Bella Moth larva sequesters PAs from its host plant. All four life stages of Bella Moths may be protected by PAs.

among lepidopterans in that they can digest keratin, which allows their caterpillars to mature on diets of antlers and horns, feathers, fur (including wool), owl pellets, and turtle shell.

PLANT-FEEDING GUILDS

While most caterpillars feed on leaves, essentially all plant tissues are consumed by Lepidoptera.

Many lineages, including Noctuidae, Geometridae, Pyralidae and Crambidae, Plutellidae,

ABOVE Not all caterpillars eat green plants. Footmen or lithosiines radiated on lichens. The long setae on this *Eudesmia arida* caterpillar keep many of its smaller enemies at bay.

LEFT A few small lineages of owlet moths feed principally on fungal hyphae. So far as known, all members of *Metalectra* are dietary specialists on fungi (and can be raised on storebought mushrooms). This example is *Metalectra diabolica*.

Coleophoridae, Adelidae, and Agathiphagidae, among others, target fruits and seeds. Borers in nonwoody stems include many Noctuidae, Tortricidae, and Momphidae. These may feed on the entirety of the stem, while others specialize on certain tissues such as the meristems, pith, epidermis, or the outer photosynthetic tissues. Most gall-forming Lepidoptera are stem gallers.

Root feeding is surely more widespread than appreciated. Borers that enter above or just below the soil and tunnel into the roots include Hepialidae, Noctuidae (especially noctuines), and Sesiidae. Lepidoptera that can burrow through sand and friable soils—such as

Hepialidae, Noctuinae, and Crambidae—will feed externally on roots.

Leaf-mining has been reported in some 20 families of Lepidoptera, and is especially common among archaic families and smaller microlepidopterans. Given that the leaf is also the caterpillar's environment, the host ranges of leafminers tend to be more specialized. Species-rich families include the Bucculatricidae, Gracillariidae, Nepticulidae, and Tischeriidae.

POLLINATION

Moths are among the most important insect pollinators, second only to bees. But just how

important moths are to flowers remains one of the more poorly documented aspects of their biology because so much of their activity occurs after nightfall. Moth-pollinated flowers tend to be white, fragrant, and make their nectar available at night. Many members of the evening primrose (Onagraceae) and four o'clock (Nyctaginaceae) families do not even open their flowers until late afternoon or dusk.

Nearly all "moth flowers" produce sweet scents. Indeed, some of the flowers with the most pleasant fragrances are moth pollinated. The wonderful aromas of carnations, gardenias, honeysuckle, lilacs, narcissus, and the queen of all, jasmine, are volatiles, manufactured by plants to encourage pollen transfer by moths. Common floral scents include benzaldehyde, lilac aldehydes, linalool, methyl benzoate, and phenylacetaldehyde.

BELOW Fruits and seeds like corn are targeted by many moth caterpillars, here a Western Bean Cutworm (*Richia albicosta*).

BOTTOM Serpentine mines of *Phyllocnistis populiella* on aspen. The mature larva, visible on the lower left leaf, is beginning to spin its pupal crypt—a minute pinched fold fashioned along the leaf edge.

ABOVE | *Hemaris* are small day-flying sphingids that are often mistaken for bumblebees or hummingbirds. About 20 or so species are widely distributed across the northern hemisphere.

Sphinx moths are recognized as important pollinators, especially in arid regions and the tropics. They are strong fliers, have the longest tongues of any insects, and at least some are thought to follow traplines—that is, they can remember the locations of widely scattered and sometimes distant nectar sources—an attribute that can be especially important in the tropics where many trees grow in low densities, often well removed from one another. Moreover, sphingids have acute color vision—the most sensitive known across the animal kingdom—enabling them to detect colors under extremely low light conditions and ensuring that they will be able to navigate to flowers even on new moons and under closed forest canopies.

Madagascar's Comet Orchid (*Angraecum* sesquipedale) has a spectacular white, fragrant

NURSERY POLLINATION

Of special note are nursery pollination systems wherein a moth species is both a dedicated pollinator and consumer of the host plant's seeds and fruits. Upon transferal of pollen to an appropriate flower, the female then lays her egg(s) in or on the flower—her offspring will mature on the developing seeds and associated tissues. The most renowned example of a nursery pollination system occurs in yuccas and yucca moths—the two lineages are engaged in an obligatory mutualism where the survival of each is interdependent and absolute. A more globally widespread and understudied nursery pollination system is that of Silene (family Caryophyllaceae) and the coronet moths (Hadena; Noctuidae) that see to the pollination of the world's 900 species of the genus.

flower with an enormous nectar spur that often exceeds 10 in (25 cm) in length. As its name implies, the spur is a floral extension where a flower produces, and more to the point, caches its nectar reward. Charles Darwin, upon examining a bloom of the Comet Orchid, predicted that there must be a moth with a tongue long enough to reach to the bottom of the orchid's spur. It was not until 21 years after his death, that the moth *Xanthopan praedicta* was discovered—a moth known today as Wallace's Sphinx Moth—whose lingual siphon may exceed 11 in (28 cm) in length.

MOTH BEHAVIOR AND ECOLOGY

Just a few areas of the extraordinary palette of behaviors and ecological interactions of moths can be shared here. Because so much of what a moth is and does happens at night, suffice it to say, much more remains to be written. To some degree, the same is true for their caterpillars.

COURTSHIP AND MATING

Much regarding the reproductive behavior of moths appears elsewhere in these introductory pages and in the taxon profiles that follow, in large measure because moths, the ultimate stage of these insects, have a principal mission: to propagate. Those moths with a short adult lifespan are especially singularly minded: upon eclosion the female must find a mate, court, pair, and then get to the business of dispersal and oviposition. For males, only the first three of these activities will occupy their psyche. The major exceptions to the above are those species that enter a reproductive diapause before mating—

a behavior common among those moths that hibernate or aestivate as adults.

In nearly all moths, the females produce the principal sex pheromone—that is, the scent to which males will orient and compete for mating opportunities. In most species, the primary sex pheromone is released by females from specialized abdominal glands soon after she has eclosed, typically immediately after her wings have fully expanded and before she has taken her first flight. In exceptional cases, such as ghost moths, this signaling system may be reversed.

Moths couple end-to-end. In Saturniidae, the male and female frequently remain in copula until nightfall of the next day. In Ditrysia, which account for about 98 percent of extant moth diversity, females have a separate reproductive opening solely for copulation. Further anterior in the female's abdomen, Monotrysia and Ditrysia have a sack-like enlargement, the bursa copulatrix that receives the male spermatophore, and less commonly multiple spermatophores. From the bursa the sperm must swim through a narrow duct, past the common oviduct, and make their way into a special gland, the spermatheca, where they await the passing of unfertilized eggs.

The male spermatophore and the bursa that can house it may well represent key innovations for moths. Spermatophores, depending on the taxon, routinely contain proteins, lipids and

LEFT | Fall-generation adults of Herald Moth (Scoliopteryx libatrix) (Erebidae) enter a reproductive diapause, seek out caves in which to overwinter, then mate and lay their eggs in the spring. An aggregation pheromone may be involved as the hibernating moths are often found clustered.

LEFT A recently emerged Buck Moth (*Hemileuca maia*) "calling"; that is, emitting the female sex pheromone from a gland near the terminus of her abdomen.

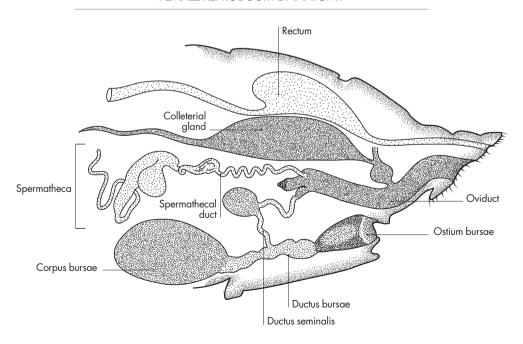
sterols, carbohydrates, minerals, vitamins, and defensive chemicals, in addition to sperm, that will contribute to the fitness of both the female and the couple's offspring. Stated differently, the bursa allows the male to make massive energetic and defensive contributions to his partner and offspring that have played important roles in the diversification and ecological successes of Lepidoptera.

The extended duration of mating likely relates to the time necessary for the male to transfer his spermatophore to the female. In some species the male will lose considerable mass over the course of a single mating. There is some evidence that virgin males make preferred partners for females, and that, once-mated, males may have long refractory periods before they are able to constitute a second spermatophore, and even then, it may be of lesser value.

TERMINALIA AND SEXUAL CONFLICT

The male and female terminalia of moths tend to be quite complex morphologically, with the two fitting together like a lock and key. The male genitalia are particularly elaborate. Whether this complexity is due to sexual selection and the

ancient battles of the sexes fighting to control paternity, or the need to prevent mating mistakes with closely related species, is a fascinating subject. But for whichever reason, the genitalia and associated secondary sexual structures are among the most rapidly evolving anatomical features of moths. As such, they are important for making species-level identifications by moth taxonomists, collectors, extension entomologists, and others.


In moths, as in many other animals, there is ongoing conflict between the sexes, with each having evolved multiple measures to control facets of reproductive interactions. At the point of courtship, the female has much control in that she determines when to call, when to proceed past courtship to accept a male partner, and when to expose her abdomen to her suitor. A female disinterested in a pursuant male can stop calling, fly off, or raise her abdomen to make it unavailable. Additional controls are built into the

female's anatomy. In some moths, the ductus bursae is corkscrewed, which can prevent entry of the aedeagus of a closely related species that has not "coevolved" to meet the biomechanical demands required by the female's anatomy. Sperm precedence plays an important role. After mating, sperm are stored in the spermatheca, atop the female oviduct, where they await the passage of unfertilized eggs out of the common oviduct. The sperm near the entry duct are most likely to fertilize a given egg. Thus, a female that accepts a pairing with a second male will, in so doing, favor parentage by her most recent suitor.

In their attempts to control paternity, males have evolved numerous strategies to discourage subsequent pairings. The male spermatophore,

BELOW Lateral view of a ditrysian moth abdomen. Note the separate openings for egg deposition (terminus of oviduct) and mating (ostium bursae).

FEMALE REPRODUCTIVE ANATOMY

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

LEFT In some hepialids the mate-signaling system is reversed: virgin females must fly upwind, tracking a sex pheromone, to locate a calling male. Here, *Phymatopus hectoides* is releasing his pheromone from hundreds of androconia borne on the hind tibiae. (During the day the tibiae and androconia are tucked into deep pockets on the sides of his abdomen.)

transferred to the bursa copulatrix during mating, can be so large in some taxa that the female is incapable of accepting another mate. In other taxa, the female can pair again, but only after she has digested the first spermatophore, which can take days. Males of some moths leave pheromones behind that render a female less attractive, at least through some refractory period. Bordering on the sinister, a number of moths have sharp, deciduous spines on their aedeagus that are left behind in the female genital tract after mating to thwart mating attempts by subsequent males.

PHEROMONES

Moths produce many different sex pheromones, with those of the females being chemically dissimilar to those produced by males. Female sex pheromones tend to be straight-chain, 8- to 20-carbon aliphatic compounds, with one or two double bonds and a chemically active moiety (acid, alcohol, aldehyde, ketone). As a rule, female sex pheromones are odorless to humans.

Because female sex pheromones are rather chemically simple in their diversity, there can be cross-reactivity among both closely and distantly related species. In most cases, and especially when two or more congeners are sympatric (that is, active at the same locale), the exact blend of constituent molecules in the sex pheromone cocktail will differ. Species-specific signaling can also be attained by having pheromone blends with differing chiralities. Cross-reactivity and mating mistakes also can be prevented by related species calling at different times of night, being active during different seasons, or by occupying separate habitats or regions.

Males may also employ pheromones that are important for female acceptance in some lineages. Most male pheromones are released from specialized scales called androconia that are deployed only in the vicinity of the calling female, as part of a pre-mating courtship. The androconia responsible for pheromone release tend to have an elaborate ultrastructure, which provides an exaggerated surface area for rapid volatilization of the pheromonal compounds. Male scent scales and brushes are most commonly found in association with the genital capsule, adjacent abdominal segments, or on the wings, but also occur on the legs (especially the hindlegs, which are those most proximate to the

genitalia); less commonly, they occur on antennae and labial palpi.

Androconia can be single specialized scales or, more commonly, scale clusters that form brushes, "hairpencils," scent patches, or, in special cases, incorporated into elaborate courtship organs. A storied example is that of the abdominal courtship brush present in many Noctuidae. The organ, secreted in a pleural fold of the abdomen until needed, consists of two levers, an elaborate distal androconial brush, composed of dozens of golden, pheromone-laden setae, and a pheromone-producing gland. Immediately prior to coupling, the brush is pulled from the pocket and the androconia splayed.

MIGRATION

Moths include several of the most notable and economically consequential insect migrants. A significant fraction of the world's most destructive crop pests migrate on storm fronts, sometimes in hordes so massive that they show up on weather-tracking radar. A widespread migratory scenario among moths is to move out of tropical and semitropical areas into temperate regions to exploit the abundant, nutrient-rich vegetation that becomes available each spring. In tropical regions, analogous mass movements take place between wet and dry forests that are synced up with rains and allow the moths to take advantage of the availability of new growth.

Because these movements occur at night, the migrations of moths are less familiar and less studied than those of butterflies. There is also increasing evidence that many, if not most, moths migrate at heights of 1,000 ft (300 m) or more—

BELOW Urania Swallowtail Moths (*Urania fulgens*) puddling during mass migration to a forest with new growth of *Omphalea*, its larval host.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

moving on aerial conveyor belts that can propel their movements at speeds often exceeding 60 mph (100 kmh). At these velocities, moths, and especially the microlepidopterans, are essentially aerial plankton that are simply taking advantage of atmospheric currents that will carry them great distances over a single night.

Sunset moths (family Uraniidae) make spectacular migrations. These swallowtail-sized, day-flying moths—dazzling in their beauty of intermixed metallic green and orange scales—are renowned for their mass movements from jungles of older foliage to sites in which their host plants are producing new leaves. While most of the migration occurs above the canopy, and might be entirely missed by the casual naturalist, both sexes become visible at ground level when they descend to gather water and salts at mud.

Two related noctuids warrant special mention: the Army Cutworm (*Euxoa auxiliaris*) and the Bogong Moth. The Army Cutworm is an

ABOVE | Grizzly Bear flipping rocks in search of aggregations of aestivating Army Cutworm (*Euxoa auxiliaris*), which make up an important part of the summer diet of Grizzlies in the Rockies of North America.

abundant species that inhabits the high prairies, grasslands, and steppes flanking the Rocky Mountains of the United States and Canada. Its larvae mature on the lush grasses and forbs of spring (including alfalfa and row crops). The adults eclose weeks later by the millions, and begin their annual migration into the mountains, where they gather in huge numbers in talus slopes and aestivate over the dry summer months, when their grassland habitats have browned and become hostile. Millions if not billions remain in a state of reproductive diapause, sequestered under rocks in the high scree. In Yellowstone National Park, and no doubt elsewhere, many insectivorous mammals dine on the aggregations through the summer months. Most famous among these are grizzly bears. A single bear may

eat 20,000–30,000 moths a day—as much as one-third of the calories required for an entire year may derive from the consumption of the moths. With the return of rains in the autumn, the survivors emerge from their aestivation sites and begin the reverse migration to the greening grasslands where they will lay their eggs and start the cycle anew.

Australia boasts an even more exceptional migrant, the Bogong Moth. Its biology mirrors that described above of the Army Cutworm, being a grass and forb feeder whose caterpillars mature in spring in low-elevation grasslands. Until recently its numbers were estimated to be in the billions, and it ranked among the world's more abundant animals. Dozens of mammals and indigenous nations fed on the aggregations of

aestivating moths that gathered in caves across southeastern Australia (see also page 42). During the spring migration the moths were so numerous as to slow trains and shut down many public events. The fortunes of the Bogong took an abrupt turn in 2017 when a severe, three-year drought struck eastern Australia. Moth numbers suffered mightily, many caves have since gone unoccupied, and the Bogong is no longer seen in abundance over much of its range. So grave has been the decline that the moth was listed in 2021 as an endangered species by the International Union for Conservation of Nature (IUCN).

The fraction of moths that migrate is poorly known, as virtually all the flight activity happens under cover of darkness, and much is far above the ground where the phenomenon is intractable to

LEFT The mass migrations of the Bogong Moth (*Agrotis infusa*) were legendary—dense enough to close down schools and church services and disrupt travel.

study. As a general rule of thumb, migration is the norm in dry, seasonal habitats, deserts, and other arid lands, where water is scarce and vegetation becomes unsuitable for caterpillar development over long periods, and especially in regions where the rainfall pattern is sporadic. It is also common from tropical and subtropical regions that do not experience freezes, into temperate and boreal areas, in spring and summer.

DIURNALITY IN MOTHS

While many of the most archaic moth lineages are brightly colored day-active animals, the vast majority of moths are nocturnal. The five largest families of Lepidoptera, in order of decreasing richness (Erebidae, Geometridae, Noctuidae, Tortricidae, and Crambidae), are essentially nocturnal. Yet, each of these families has spawned

multiple lineages that are day-active, but virtually all are small groups and of little ecological consequence. I suspect if we knew the phylogeny of moths in detail, we would learn of more than 200 instances where a nocturnal moth group gave rise to a new diurnal species or lineage, but only one of these has met with great success—we call these butterflies. Three moth families with a preponderance of diurnal species include the Castniidae, Sesiidae, and Zygaenidae.

Moths that inhabit cold environments—high latitudes and alpine ecosystems—are often diurnal, presumably because daytime temperatures are more favorable and vertebrate predation pressures are lowered. In alpine communities and above 60° north or south latitude, a great many moths are diurnal perforce. Several traits are associated with this transition.

LEFT Diurnal moths often have comparatively large compound eyes, and none more so than those of fairy moths, where the eyes sometimes fuse over the top of the head.

ABOVE | Aposematically colored moths typically are rendered in bright red, orange, and yellow, often paired with black or white markings, to warn of their unpalatability.

With the exception of butterflies, most diurnal moth lineages are smallish, so small that they are commonly ignored by birds and other visual predators. Nocturnal species tend to be green, brown, gray, or rendered in earth tones that can go unnoticed during the day when they are perched. By contrast, diurnal moths are often white, brightly colored, or otherwise more conspicuously rendered than their nocturnally active sister taxon. Diurnal moths that are palatable tend to be fast fliers, making them challenging quarry.

A large fraction of diurnal moths includes those that are chemically protected and unpalatable to birds. As such, they can operate in daylight with some level of impunity—these tend to be aposematic (brightly colored), slow-flying, and often hardy in constitution, that is, potentially

capable of surviving a predator attack. Such species often anchor the abundant mimicry systems (see page 62) found across the order.

Because visual cues replace the primacy of odor communication in day-flying moths, the antennae are often smaller than those of closely related nocturnal species. In many moths the compound eyes of day-active species may be larger, and especially so in male diurnal adelids, with enormous compound eyes, that may join over the top of the head. But in still other lineages the eyes of diurnal moths are conspicuously smaller than those of their closely related nocturnal cousins.

DISTRIBUTION AND HABITAT

Moth diversity increases with proximity to the equator, although there are important lineages that

LEFT | Euryglottis aper, a large tropical hawk moth of western South America. Note its large, coiled tongue, which extends for many inches when it's actively nectaring (pollinating).

ABOVE | Automeris is a large New World genus with more than 70 species. The prominent eyespots are concealed at rest. Upon disturbance, the forewings are thrown forward to startle its attacker. Shown here is Automeris amanda.

become more speciose at higher latitudes (before dropping off at still higher latitudes). It is possible that as much as 80 percent of all moth diversity is endemic to tropical ecosystems, with diversity peaking in the neotropics. Nowhere is as rich as the foothills of the Andes, with the equatorial regions of Colombia, Ecuador, and Peru boasting the highest planetary diversity of moths.

Moths occupy virtually all terrestrial communities; if there are plants, there are likely to be moths. A few lineages are fully aquatic in freshwater—with the acentropine crambids being the most diverse and ecologically successful.

Acentropine caterpillars feed on algae as well as

aquatic plants. As would be expected, moth richness increases with plant diversity: scrublands have more diversity than grasslands and woodlands support more species than shrublands. Likewise, moth diversity increases with the architectural complexity of their hosts: trees support more species than shrubs, which support more diversity than forbs. In temperate regions, it is likely that the 10 most abundant tree genera support more than half of all the species of moths in a given community. Across the northern hemisphere, but especially in North America, oaks are the clear frontrunner: more than 1,000 species of moths are known to feed on oaks in America north of Mexico—a number that will increase as life histories of many western moths still await discovery.

NATURAL ENEMIES

Moths and their caterpillars are eaten by legions of other animals both small (for example, ants) and a sweep of larger animals: fish, amphibians, reptiles, birds, and mammals. Many birds are reliant on caterpillars, timing their migrations

ABOVE LEFT | *Eupackardia* calleta caterpillar. The larvae are disruptively colored as well as boldly marked. Upon disturbance, they will secrete a fluid rich in biogenic compounds from their scoli, which repels ants and other enemies. Note the very small clear droplets on segments A3, A7, and A8.

LEFT Wasp moths have radiated across the planet's tropics. More than 3,000 species have been described. This Neotropical *Cosmosoma* is best regarded as a Müllerian mimic of wasps, as it is unpalatable as well, protected by the pyrrolizidine alkaloids consumed during its larval stage.

and breeding to annual peaks of caterpillar abundances in late spring, with both clutch size and fledging success often tied to caterpillar availability. One study found that it took 6,000–9,000 caterpillars to rear one clutch of Black-capped Chickadees. Lizards and snakes are also avid caterpillar hunters.

Caterpillar- and pupa-feeding mammals include bats, mice, voles, shrews, chipmunks, squirrels, raccoons, skunks, foxes, and bears. In tropical regions, monkeys are important predators of caterpillars. Many indigenous peoples also eat caterpillars (see pages 41 and 42).

Adult losses to vertebrates pale in comparison to those suffered by the eggs, caterpillars, and pupae. However, bats harvest enormous quantities of moths. The Mexican Free-tailed Bat colony of perhaps 1.5 million adults that roosts under the Congress Avenue Bridge in Austin, Texas, is estimated to consume over 20,000 lb (9,000 kg) of insects most nights when pups are nursing—much of that harvest is moths. Nighthawks and related caprimulgid birds are also moth specialists.

Invertebrate predators account for most caterpillar predation. Foremost among these may

ABOVE | (*Left*) A swarm of aquatic moths. (*Right*) An early instar aggregation of Buff-tip moths (*Phalera bucephala*) on an oak leaf.

be ants—especially in tropical and semitropical regions, where ants may exceed the mass of the resident vertebrates. For example, more than 400 species of ants have been recorded from La Selva Biological Station in Costa Rica—most of these eat caterpillars. Then come spiders. Lynx and other foliage-gleaning spiders are important enemies of caterpillars. Large orb-weavers build efficient moth-trapping webs and even have adhesives that appear to be specialized for the capture of moths. A few spiders use analogs of a moth's mating pheromone to attract males that are in search of calling females. Bolas spiders spin a silk line, with a sticky terminal droplet laden with an attractant, which they wield about with a leg, to ensnare incoming males. A few species of large, orb-weaving spiders of genus Argiope produce volatiles that attract mate-seeking, day-flying saturniids into their webs.

Yellow jackets and paper wasps are especially fond of caterpillars and spend much of their

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

LEFT A mongoose carts off a saturniid caterpillar. Diurnal mammals and birds that hunt caterpillars and other insects by day have shaped everything a caterpillar is about: its form, its color, how it feeds, when it feeds, and more.

BELOW LEFT Spiders take a major toll on caterpillars, especially through early instars when the larvae are small. Later, they thin the ranks further, trapping moths in their webs.

foraging time hunting them. To these, we can add the legions of earwigs, assassin bugs, stink bugs, lacewing larvae, lady beetles, and other lineages of wasps. Some sphecid wasps provision their nests with caterpillars that they have paralyzed (but not killed, as these would soon rot). Entombed within the wasp's underground nest, the hapless caterpillar is then slowly eaten alive by the larva of the wasp. Caterpillars that feed on forest-floor plants, or descend to the ground to

pupate, fall prey to still other enemies. Wolf and more than a dozen other families of spiders and ants likely get the lion's share, but centipedes and ground-dwelling beetles also pose a threat. Much of the text above addresses predators and parasitoids that attack middle and late instars. However, in many species, the greatest mortality rates occur in the egg and in the early instars, where the ranks are thinned by predatory mites, minute wasps, lacewing larvae, lady beetles, and other foliage-gleaning predators.

With the exception of mites, punkies (minute flies), and a few minute parasitic wasps, neither moths nor their caterpillars have any true parasites—that is, small animals that feed on them and then move off without killing the host. However, the early stages of moths are targeted by a seemingly endless number of flies or wasps that attack the eggs, caterpillars, and pupae. There is growing molecular evidence that there may be more than 20,000 species of parasitoid flies (nearly all Tachinidae) and more than 400,000 species of parasitoid wasps with most

of these targeting the early stages of moths. At least three families of minute wasps, but especially trichogrammatids, attack insect eggs. Most parasitoid wasps and flies specialize on the larvae and pupae of Lepidoptera, with tachinid flies, and braconid, chalcidoid, and ichneumonid wasps being most prevalent.

The vast majority of insect parasitoids feed internally. Parasitized larvae suffer rather gruesome deaths. Typically, the larval stage of the fly or wasp feeds initially on nonlethal tissues, and then, in a final pulse of growth, consumes much of the caterpillar. In most, the host

caterpillar is killed at the time the parasitoid matures and exits the vanquished cadaver. In some, the caterpillar, while mortally compromised, is fated to stand guard over the cocoon(s) of the wasps that attacked it, until the new generation of wasps hatch and fly off. A few groups of ichneumonid wasps are specialized on moth pupae. These can be observed hunting for cocoons and pupal cells on forest floors. Caterpillars and pupae in moist environments—marshlands, mesic forest, and along riparian corridors—also fall victim to both nematodes and horsehair worms.

The same types of pathogens that infect most animals also attack moths and caterpillars: viruses, bacteria, protozoans, and fungi. The fungus *Cordyceps*, an enormously successful genus with perhaps 600 species worldwide, attacks many Lepidoptera, especially those that live in soil as larvae. *Beauvaria* fungi, too, are a common enemy of caterpillars, especially those that live in the soil or other moist environments.

Many of these disease agents have been used in biological control programs to control pest species, in part because pathogens tend to be very specific

ABOVE LEFT More than 8,500 tachinid flies have been described, with thousands more awaiting recognition—most of these parasitize caterpillars. *Compsilura cocinnata* (shown here) was introduced into North America as a biological control agent to attack the Spongy Moth (*Lymantria dispar*).

LEFT | Tiger moth caterpillar attacked by a microgastrine braconid wasp. More than 30 of the wasp cocoons are visible here—and all have hatched (note the open or missing opercula).

and are only capable of infecting a small group of species. Extended periods of cool, wet weather, especially through spring months, favorable to pathogens, are associated with taxonomically widespread population downturns in many Lepidoptera. The fungus *Entomophaga maimaiga* has been spectacularly successful in bringing down outbreaks of the Spongy Moth (Lymantria dispar). The bacterium Bacillus thuringiensis is used worldwide in gardens, croplands, and forests to control pestiferous caterpillars. In general, viruses have highly specific host ranges, but are expensive to produce, and as such are only rarely employed as biological control agents. However, entomopathogenic viruses have great potential to be used in genetic engineering—for example, when their toxin-producing genes are inserted into a plant genome.

APOSEMATISM AND MIMICRY

While the vast majority of moths are cryptic in coloration, rendered in camouflaging greens, grays, and earth tones that blend in with foliage, bark, or soil by day, moths that are chemically protected and unpalatable are commonly aposematic. That is, they advertise their presence with bold wing and body colors: yellows, oranges,

ABOVE LEFT Zombie caterpillar. Having fed inside the noctuid, a microgastrine wasp larva exited and spun its cocoon under the caterpillar, which, still alive, serves to protect the wasp from predators.

ABOVE RIGHT Pupa of a hepialid attacked by a *Cordyceps*. The fungus releases spores to infect the next generation of caterpillars.

and reds that are accentuated with additional white and black markings. Bright white colorations, which are conspicuous both day and night, are another way distasteful moths commonly advertise their chemical protection.

The chemical ecology of such moths is worthy of its own book. The toxins and defensive chemicals that ward off would-be predators—iridoid glycosides, cyanogenic glucosides, cardiac glycosides, and a sweep of alkaloids—consumed by the caterpillar, sequestered and concentrated, can be passed through the pupal stage and on to the adult. Few moths manufacture their own defensive compounds: these are usually simple acids, aldehydes, and ketones. Smoky moths (Zygaenidae) and related families are famous for their ability to manufacture cyanide or compounds that yield cyanide when either the caterpillar or adult is under attack.

Typically, the defensive chemicals occur in high concentration throughout the body but may also be incorporated into wing and body tissues. A special case is that of *Hylesia metabus* of northern South America. The hairlike deciduous scales of the female's abdomen are highly irritating to human eyes and skin, and can be so problematic

during periods when the adults are common that villagers will turn off their lights in order to protect themselves and their homes. A few lineages exude toxin-laden hemolymph ("blood") when under attack that can, in some cases, terminate the attack and allow the moth to escape.

Mimicry, arguably one of the most compelling cases of evolution and the uncanny powers of natural selection, was unknown to Darwin at the time he wrote *On the Origin of Species*. Instead, English naturalist Henry Walter Bates discovered mimicry while studying butterflies in South America. Given that butterflies are little more than day-flying moths, it should come as no surprise that many moths are mimetic, especially among the day-flying species, where color and patterning are crucial for survival. Moths may be

ABOVE LEFT | Unpalatable caterpillars (here, Didugua argentilinea) warn of their unpalatability with bright colors, patterns, and conspicuous behaviors; for example, they are much more likely to eat during daylight hours.

LEFT Tiger moths may represent the largest radiation of mostly aposematic animals on the planet, with more than 11,000 described species.

either Batesian (where palatable species mimic a toxic model) or Müllerian (where unpalatable species come to resemble one another). Among these are hundreds of bee and wasp mimics, which have clear wings, devoid of scales, that resemble bumblebees or wasps in flight. The likeness of some clearwing moths (Sesiidae) and

wasp moths (ctenuchine Erebidae) to their models is so close that all but the best-informed insect aficionados are likely to be fooled. Add to these a scattered smorgasbord of small, day-flying cossids, saturniids, sphingids, lasiocampids, a smattering of zygaenoids, and still others.

LEFT The deciduous body hairs and scales of *Hylesia metabus*, a diminutive saturniid endemic to northern South America, cause particularly aggravating cases of region-wide dermatitis when they are on the wing.

BELOW This ostentatious pericopine tiger moth (*Composia credula*) is protected by high titers of pyrrolizidine alkaloids (PAs) that are sequestered by its caterpillar.

OBSERVATION

Moths are among the easiest insects to observe as the vast majority come to lights at night, especially light sources rich in UV wavelengths. Partly for this reason, moth watching and especially moth photography are rapidly gaining in popularity among naturalists and community scientists around the world. Dozens of social media groups now anchor to moth watching and photography.

WHERE TO FIND MOTHS

The first rule of thumb is to search for moths at sites with high plant diversity. While woodlands and forests generally have the greatest species diversity, ecotones where early successional habitats intermingle about forested communities will be the most productive. Over the course of time, seek out different plant community types.

Where water is limited, explore canyons and sites with water at or near the soil surface. Diversity drops off quickly with human activity: target sites away from yards, artificial lighting, and areas of abundant exotic plant growth, when circumstances allow.

Expect substantial species turnover during the year, with richness peaking for adults in late spring in temperate areas, and at the start of the wet season in ecosystems with a pronounced dry season. In extremely wet forests, species richness may peak in the dry season. For caterpillar hunting, shoot for three weeks after the peak for

BELOW | The White-lined Sphinx (*Hyles lineata*) is one of the most important pollinators across the deserts and drylands of North America.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

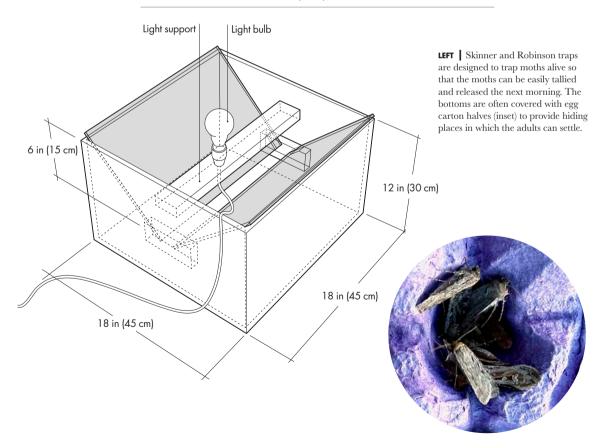
LEFT | Meadows rich in floral resources are a great place to search for moths by day and night. Dusk is a special time that can be particularly rewarding.

LEFT | The Madagascan Moon Moth (Argema mittrei), regarded by many to be among nature's most beautiful and extraordinary animals. Tail lengths vary considerably—this individual is especially well endowed.

adults. Different species fly at different times of the year—many fly only in spring, others in summer, some lineages eclose in the fall with a subset of these persisting through the winter as adults—these may be seen on warm winter nights feeding on sap flows. This latter set tends to go into reproductive diapause until late winter and early spring, when mating occurs.

Different species have their peak flight at different times of the night or day. Dusk is a wonderful time to hunt for moths as many species are on the wing shortly after sundown when there is ample light to see without employing a headlamp. This is a prime time to look for many ghost moths (Hepialidae), plume moths (Pterophoridae), and other microlepidopterans.

Many giant silk moths (Saturniidae) fly principally after midnight. The twilight period before dawn is supposed to be especially good for grass-miner moths (Elachistidae), but is relatively quiet, with most moths making beelines for safe resting sites to pass the day.


LIGHTING FOR MOTHS

While moths will come to any bright green, blue, or UV-rich light, UV wavelengths are the most attractive, and a must for the serious moth photographer or collector. You can enhance a light's effectiveness by placing the bulb proximate to a white sheet that reflects much of the light out into a habitat that is the target of a night's sampling efforts. Within a night or two, stationary

lights become feeding stations for bats by night and birds by morning. Shut your lights down as much as an hour before dawn and shake the sheets to give the moths time to settle elsewhere, especially if you are running a light at the same location night after night.

Many light trap variations are available for use with or without killing agents. Live trapping is highly encouraged where the moth fauna is known, imperiled species are present, where images of live moths are desired, and when seeking to capture a gravid female for breeding purposes. One live-trapping method that is both inexpensive and effective is to place the light among or directly over an assortment of 10 to 20 egg carton tops or bottoms that provide numerous

SKINNER (LIVE) LIGHT TRAP

RIGHT | Sugary baits that have begun to ferment are highly attractive to many moths and are a reliable means to see some moths that are only weakly attracted to light; migratory erebids sometimes gather in huge numbers; nearly all noctuine winter moths are bait-feeders; virtually all Catocala (shown here) are drawn to fermenting baits.

dark places in which moths can take shelter. Place the set of egg cartons in a wide-mesh laundry bag or the equivalent (see page 70). Live traps should be serviced in the morning, before the traps are exposed to direct sunlight, with all but the needed species released.

Scientists use kill traps when they have minimal opportunities to visit a site over the course of a year—for example, when sampling in remote locations, when moving between sites on consecutive days, when a site is due for development or about to be lost to agriculture, for scientific purposes, and other reasons. Their use should be judicious and efforts made to ensure maximal use of the collected insects. The Lepidopterists' Society has a "Statement on Collecting Lepidoptera" that should be followed by professionals, students, wildlife biologists, environmental consultants, and others.

BAITING

Males and females of many moths take nourishment from the sugary solutions provided by flowers, broken tree limbs, oozing plant wounds, fruits (including those that are overripe or even rotting), as well as accumulations of honeydew excreted by aphids and other homopterans. Tree wounds are especially attractive to many moths—any moist bark patch that has an abundance of flies, wasps, and especially butterflies during the day is sure to be a flurry of moth activity by night. These same moths can be drawn to sugary baits that are fermenting, with those that smell strongly of alcohol performing best.

Bait concoctions vary from simple to complex, and even bizarre. Simply "paint" it onto a tree trunk, at about chest level, or place it in a bowl elevated above the ground. In treeless landscapes,

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

the bait can be poured over sponges placed on inverted lids or some other solid substrate.

Like mammals, moths sometimes become intoxicated—species that are wary and unapproachable under normal conditions can be so intoxicated that you can pick them up by hand and photograph them. Conversely, underwing moths (Erebidae: *Catocala*), the principal quarry of many moth baiters, typically remain wary and will flee as soon as a strong light is shown on their position. Approach baiting stations quietly and avoid shining bright lights directly on the feeding moths. The red wavelengths of some headlamps are less alarming, but you still want to avoid shining the light directly on the moth. Many moths have ears—a stealthy approach without conversation is best.

Sugary baits work well in the fall and winter for myriad erebids, noctuids, and some lineages

ABOVE Moths make wonderful subjects for backyard and local-area surveys and offer a gateway to the study (and protection) of nature.

of tortricids and oecophorids. The method works best where sugary resources such as overripe and rotting fruits are commonly available to the local moth fauna; conversely, baits are seldom effective in desert and dryland habitats that lack naturally occurring sugary analogs to moth baits. Expect the yields to differ greatly and inexplicably among nights, depending on the bait, humidity, recent rains, cloud cover, and ambient weather conditions. Baiting can be especially productive over droughty periods, when natural alternatives have been scarce.

Finding and photographing diurnal moths is more challenging, and in many ways more rewarding, as you often have to know more about

LEFT One of the easiest means to live-trap moths is to place a UV light source and egg cartons into an open-mesh laundry bag. Moths attracted to the light will settle into cartons where they are protected from birds and easily examined the next morning.

the moth's biology, preferred habitat, host plants, nectaring preferences, and diel behavior to be successful.

Hunting and raising caterpillars of moths can be an engaging hobby, providing wonderful photographic opportunities, and offering much potential to yield new observations and discoveries. Such is especially true in the tropics and many regions of the southern hemisphere. Caterpillars are relatively easy to raise. Any such efforts are most valuable when you can confidently identify wild host plants; secure quality images of the early stages; photograph any issuing adults; and share your findings. Such life history data are lacking for most species of moths, and are critical to conservation and restoration efforts.

MOTH GARDENS

Butterfly and pollinator gardens are becoming exceedingly popular in home, community, nature center, and school gardens, and additionally are serving to drive interest in insect conservation matters more broadly. The idea of planting a garden for moths—for visitors that benefit after most people have gone in for the night—has only recently gained traction. While many good butterfly flowers, such as lantanas, buddleias, and milkweeds, are also good for moths, other moth flowers differ from those recommended for pollinator gardens. Moth flowers are often white and quite fragrant—think jasmine and honeysuckle. Many have a deep corolla tube that hides the nectar at the bottom so that only long-tongued moths, such as sphingids and noctuids, can easily access the nectar rewards. Various phlox, campions, and verbenas are examples. Four-o'clocks and evening primroses may not open their flowers until late afternoon or twilight (respectively), with moths clearly intended as their preferred pollinators. In addition to targeting the visitation of the adults, consider planting the larval hosts in insect gardens.

INDEX

Note: Superfamilies, families, and subfamilies are in Roman type; genera and species are in italics

A

Abantiades hydrographus 91 Abantiades latipennis 90-91 Abbott's Sphinx 33 abdomen 24, 25, 30, 51 Acanthopteroctetes bimaculata 88 Acanthopteroctetidae 88 Acanthopteroctetoidea 88 Acentropinae 58, 160 Acharia stimulea 145 Acherontia atropos 33, 190 Acherontia lachesis 190 Acleris, A. variana 133 Acrolophus popeanella 106 Acronicta funeralis 28 Actias luna 6, 7 Actias selene 29 Adela 94 Adela reaumurella 95 Adelidae 43, 46, 94-95 Adeloidea 94-99 Aenetus virescens 91 Aetole bella 112 African Death's-head Sphinx 33, 190 Agathiphaga vitiensis 85 Agathiphagidae 18, 43, 46, 85 Agathiphagoidea 85 Aglossata 12 agricultural intensification, impact 72, 74, 231 agrochemicals 39, 72, 74, 75 Agrotis infusa 42, 54, 55, 213 Alcathoe caudata 137 Alcides 204 Alucita 122 Alucitidae 122 Alucitoidea 122 Amata compta 227 Ambulycini 191 American Swallowtail Moth 193 American Tent Caterpillar Americerura scitiscripta 207 Amorpha 33 Amphipoea oculea 211 anatomy external 21-25 internal 26 Andraca theae 177 androconia (scent scales) 16-17, 24, 36, 52, 53, 100,

154

angiosperms 9, 10, 15, 43 Anisota 184 Anomoeotidae 148 Antaeotricha schlaegeri 116 antennae 21-22, 23, 35, 36, larval 24, 25, 35 Anthela denticulata 176 anthelid moths 176 Anthelidae 176 Anticla antica 179 Antispila 96 ants 59, 71, 73 apatelodid moths 172-173 Apatelodidae 172-173 apophyses 35 Apoplania 89 aposematism 16, 56, 57, 62-64, 199, 222 aquatic lineages 58 aquatic snout moths 160 archaic bell moths 89 archaic moths 10, 12, 43, 56, 79, 85, 87, 102 families/lineages 10, 12, 18, 43, 84-101 mandibulate 84 archaic sun moths 88 Arctia caja 224 Arctic Woolly Bear Moth 30, 219 Arctiinae 217, 222-227 Arctiini 224-225 Arcyophora 209 Argema mittrei 65 Argent and Sable 201 Argiope 59 Army Cutworm 54, 213 armyworms 212-213 Arsenura 40, 185 arsenurid moths 185 Arsenurinae 185 Artichoke Plume Moth 123 artificial lights, threat to moths 72, 74-75 Athis inca 140 Atlas Moth 182, 183 Attacus atlas 182, 183 Australian Guava Moth 124 Autographa precationis 214 Automeris 57, 187

Bacillus thuringiensis 62 bagworm moths 29, 104-105 bait traps 70 baiting 68-70, 181 "balloon," by early instars 20, 104

ballooning 220 Barro Colorado Island, Panama Canal 73 Batesian mimicry 64, 137, bats 13-14, 17, 19, 23, 34, 164 Beauvaria 61 behavior 49-64, 169-170 Bella Moth 45, 225 biological control 61-62, 73, birds, caterpillars in diets for 15, 58, 59 Black-olive Caterpillar 209 Blackberry Skeletonizer 126 Blinded Sphinx 191 Bogong Moth 42, 54, 55, 213 Bombycidae 178-180 Bombycoidea 24, 172-192 bombykol 179 Bombyx mandarina 179, 180 Bombyx mori 37, 38, 172, 178, 180 Box Tree Moth 158 Brahmaeidae 172, 175 Brahmin moths 175 brain 26 Brenthia 130, 131 bristle-legged moths 126 bristles/bristlelike spines 23, 24, 25, 88, 107, 126, 127 broods 30-31 Brown-tail Moth 219 Bryolymnia viridata 19 Bucculatricidae 46, 110 Bucculatrix coronatella 110 buck moths 50, 186-187 Buff-tip Moth 59 Bumelia Webworm Moth 128 burnet moths 16, 149-150, 151 bursa copulatrix 49, 50, 51, 52, 102 butterfly moths 140

Cactoblastis cactorum 157 Callidulidae 154 Calliduloidea 154 calling females 36, 50, 51, 52, 169 Caloptilia 108 Calpinae 230 Calyptra minuticornis 230 camouflage see mimicry Campaea perlata 199 Canephora hirsuta 105

Carmenta 137 Carpenterworm Moth 138 carpet moths 200-201 Carposina sasakii 124 Carposina scirrhosella 124 Carposinidae 124 Carposinoidea 124 Carthaeidae 177 Case-bearing Clothes Moth 40, 107 case-bearing moths 117 Castniidae 56, 140 Catapterix 88 caterpillars 6, 15, 28-29 anatomy 16, 24-25, 26 crypsis see mimicry diets, plant specialization 35, 43, 44-45, 218 form/color changes 28, 29 hairy 25, 172, 174, 219, 221 as human food 40-42, 59, 182, 183 hunting/collecting 65-66, 70, 78 instar number 28 internal feeders 25, 46, 88 overwintering 31 parasitized 60, 61 as pests see pests, moths as predation of 15, 58, 59-60 silk use by 20, 25, 105, 168-171, 180 sound production 33, 190, 192 toxic compound sequestration 44, 58, 62, unpalatability 44, 58, 63, 142, 172, 174, 204 Catocala 68, 69, 228, 229 Catocala fraxini 228, 229 catocalines 228 Cauchas fibulella 95 Cecropia Moth 22 Cephonodes hylas 192 Ceratocampinae 184 Cerodirphia candida 187 Ceromitia 95 chaetotaxy 25 Chalcosiinae, and chalcosiines 149 Chelepteryx collesi 176 chemoreceptors 34, 35 Chiasmia clathrata 199 Chihuahuan Desert, moths 31 Choreutidae 130-131 Choreutoidea 130-131

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Crambidae 13, 46, 56, ears 13, 18–19, 23, 34, 69,

chorion 27 Choristoneura fumiferana 134 chrysalises 30 Chrysiridia 204 Chrysiridia rhipheus 6, 204 Chrysopsyche lutulenta 168 Cicinnus melsheimeri 163 Cimeliidae 166 circulatory system 26 Citheronia regalis 181 clades 13, 14, 23, 172 classification of moths 8, 12, clearwing moths 23, 136-137 Clifden Nonpareil 228, 229 climate change 72, 74, 75, 231 clothes moths 39-40, 107 cocoons 20, 30, 37-38, 110, 180 Cocytius antaeus 18 Codling Moth 135 Coleophora albicosta 117 Coleophora alnifoliae 117 Coleophoridae 46, 117 collecting moths 68, 77-78, 79, 231 collections, insect/moth 77 - 78color 8, 16, 56, 231 aposematism 16, 56, 57, 62-64, 199, 222 caterpillars 28, 29, 44, 58, 63 diurnal vs nocturnal moths 56, 57, 94 eggs and pupae 27, 30 color vision 32, 188 Coloradia 186 Coloradia pandora 186 Comadia redtenbacheri 40, 41, Comet Orchid 48 Composia credula 64 Composia fidelissima 222 Compsilura cocinnata 61 conservation 28, 71-78, 79, 231 Copiopteryx 185 Coptodisca 96 Cordyceps 61, 62 corkscrew moth 193 Corn Earworm 38 coronet moths 48 Coscinoptycha improbana 124 cosmet moths 119 Cosmopterigidae 119 Cosmopterix 119 Cosmopterix zieglerella 119 Cosmosoma 58 Cossidae 138-139 Cossoidea 136-140 Cotton Bollworm 39, 215 courtship 23, 33, 49-50, 51 courtship brushes 24, 53 crambid snout moths 158

158-161, 159, 160, 161 Crambinae 158, 159 Crambus praefectellus 159 Creatonotos gangis 223 crochets 25, 164 crypsis, larval see mimicry cryptic moth species 24, 33, 44-45, 62, 90 Cryptophasa rubescens 113 Cryptothelea gloverii 29 cutworm moths 210-211, 212 - 213Cyana 226 Cyana malayensis 226 cyanide 16, 62, 150 Cyclophora 202 Cyclosia papilionaris 150 Cydalima perspectalis 158 Cydia pomonella 135 Cydia saltitans 135

Dacnonypha (infraorder) 12 Dalceridae 143 dart moths 212-213 Dasychira 220 Deborrea malgassa 105 defensive chemicals 16, 17, 57, 62-63, 224, 225 pyrrolizidine alkaloids 44, 45, 58, 62, 225 deforestation 72, 74, 231 Depressariidae 115, 116 Depressariinae 115 deserts/drylands 31 Diamondback Moth 39 diapause 31, 49, 66 dichomeridines 121 Didugua argentilinea 63 distribution 57-58, 73 Ditrysia (ditrysian moths) 11, 13, 49, 102-103 diurnal moths 17, 18, 56-57, finding/photographing 69 - 70diversity of moths 8-9, 13, 45, 57-58, 65 Doidae 166 Domesticated Silk Moth 37, 38, 172, 178, 180 Doratifera quadriguttata 145 Douglas moths 125 Douglasiidae 125 Douglasioidea 125 Drepana 167 Drepanidae 164, 166-167 Drepanoidea 164, 166-167 droughts 74, 75 ductus seminalis 102 dusk, finding moths 66 Dysodia 152

Ear Moth 211 Earias 209

203 echolocation, bats 34 ecology 57-58 economic importance of moths 37-42 see also food (for humans); pests, moths as; silk ecosystems, insect decline 71, Ectoedemia atricollis 93 education, about moths 75, 76, 231 eggs 27-28, 31, 51, 59, 60, 102 Eichlinia cucurbitae 139 Elachistidae 67 emerald moths 196-197 emperor silk moths 181-182, 183 Enaemia pupula 142 endangered moth species 42, 55, 71, 78 Endotricha ignealis 156 Endoxyla 139 Endoxyla leucomochla 40 Endromidae 177 Endromis versicolora 177 Ennominae 198-199 Entomophaga maimaiga 62 Eois 200, 201 Epermenia chaerophyllella 127 Epermeniidae 127 Epermenioidea 127 Ephestia kuehniella 39 Epia muscosa 179 Epicampoptera 167 epiphysis 23 Epipleminae 205 Epipyropidae 141 Epitymbiini 134 erebid moths 216-217 Erebidae 13, 56, 64, 69, 216 - 230Erebinae 217 Eriocraniidae 87 Eriocranoidea 87 Euclea obliqua 145 Eudesmia arida 46 Eudocima homaena 230 Eudryas grata 210 Eulepidotis 217 Eupackardia calleta 58 Eupithecia 200, 201 Eupithecia absinthiata 200 Euproctis 220 Euproctis chrysorrhoea 219 Eupterote mollifera 174 Eupterotidae 172, 174 European Corn Borer 161 Euryglottis aper 57 Euxoa auxiliaris 54, 213 evolutionary origin, moths 10-14, 15, 16, 18-19, 81, 82, 85

plant coevolution 43, 44. Exoporia (infraorder) 12 extinct species 71, 231 eved sphinx moths 191 eves, compound 21, 22, 32, 56, 57 evespots 57, 160, 183, 187, 191, 195, 203, 205

Fabiola 114 facultative broods 31 fairy moths 43, 56, 94-95 Faithful Beauty 222 Fall Armyworm 39 false burnet moths 128 families of moths 13 Fangalabola moth 105 females antennae 21-22 control of courtship 51 pheromones 35, 36, 49, 50, 52, 59 reproductive anatomy 51 Fiery Clearwing 36 finding moths 65-67 flannel moths 146-147 flat-bodied moths 115 flies, parasitoid 60, 61 flower(s), for moths 47, 48, 70, 75 flower moths (Noctuidae) 29, 215 food (for humans) 40-42 caterpillars as 40-42, 59, 182, 183 moths as 42, 186 pupae as 41, 105 food webs 15, 37, 164 footman moths 46, 226 forelegs 23 Forest Tent Caterpillar 169, 170 foretibia 23 forewing 21, 23-24, 79 fossils (moth) 10, 81 frenulum 23, 24, 88 fringe-tufted moths 127 fruit-piercing moths 230 fruitworm moths 124 Funerary Dagger 28 fungi infecting moths 41, 42, 61 - 62fungus moths 106-107

galacticid moths 132 Galacticidae 132 Galacticoidea 132 gall forming 46, 108-109 ganglia 26 Garden Lance-wing 127 Garden Tiger 224 Garella nilotica 209 Gelechiidae 120-121

Gelechioidea 113-121 genitalia 24, 49, 50, 51, 52 geographic distribution 73 geological history 10-14 geometrid moths 194-195 Geometridae/geometrids 13, 20, 24, 27, 34, 56, 194-202 Geometrinae 196-197 Geometroidea 13, 164, 193-205 ghost moths (Hepialidae) 12, 18, 24, 27, 41, 42, 46, 66, 90-91 Giant Peacock 183 giant silk moths 36, 40, 67, 181 - 182Giant Sphinx 18 global threats to insects 72, 73, 231 glory moths 177 Glossata 12 Gloveria 169, 170 glycols 31 goat moths 138-139 Gonimbrasia belina 40, 42, Gracillariidae 46, 108-109 Gracillariinae 109 Gracillarioidea 108-110 Grapholita molesta 135 grass-miner moths 67 grass snout moths 159 Greater Death's-head Sphinx Gum Leaf Skeletonizer 209 Gynaephora groenlandica 30, 219

н

habitat 57-58, 74, 76 Hadena 48 Hadenini 212 Hag Moth 145 hairy body (moth) 168, 169 hairy caterpillars 145, 146, 176 handmaiden moths 227 haustellum (proboscis) 12, 17-18, 21, 22, 34, 57 Hawaii 71, 126, 231 hawk moths 32, 57, 188-189 head, anatomy 21-22, 24, 25 Helicoverpa 215 Helicoverpa armigera 39, 215 Helicoverpa zea 38 Heliocheilus 215 Heliodinidae 112 Heliolonche 215 Heliothinae 29, 215 Heliothis 215 Heliozelidae 96 Hemaris 48 Hemaris aethra 189 Hemerophila 131

Hemerophila diva 131

Hemileuca 181, 186

Hemileuca hera 187 Hemileuca maia 50 Hemileucinae 182, 186-187 hemolymph 26, 63, 199, 225 Hepialidae (ghost moths) 12, 18, 24, 27, 41, 42, 46, 66, 90 - 91Hepialoidea 90-91 Hepialus humuli 90 Herald Moth 49 herbivory, toxic compounds to reduce 35, 43-44, 150 Herminiinae 218 hermit moths 113 Heterobathmia pseuderiocrania 86 Heterobathmiidae 43, 86 Heterobathmiina 12 Heterobathmioidea 86

Heterocera 82, 164 Heteroneura (infraorder) 12, 13, 14 Hilarographa 133 Himantopteridae 148 hindlegs 23 hindwing 21, 22, 23-24, 79 histamines 221 holometabolous development 16 - 17Homadaula anisocentra 132 hooktip moths 166-167 hornworms 189 Hyalophora cecropia 22 Hyblaea puera 153 Hyblaeidae 153 Hyblaeoidea 153 Hyles euthorbiae 189 Hyles gallii 188 Hyles lineata 65 Hylesia 186 Hylesia metabus 63, 64 hypermetamorphic development 28

П

Idaea 27, 202 Idaea degeneraria 202 identification of species 75 Imma 129 immid moths 129 Immidae 129 Immoidea 129 inchworms 195 Incurvaria masculella 97 Incurvariidae 97 Indian Moon Moth 29 Indianmeal Moth 39 insect decline 72-73 insect walks 76 intoxication of moths 69 invertebrate predators of moths 59 io moths 186-187 Iridopsis 195 IUCN, imperiled species 71, jawed moths 10 jewel caterpillar moths 143 Jordanita chloros 150 Jumping Bean Moth 135 jumping-spider mimic 10, 84, 112, 114, 118, 130, 131, 160

K

Kauri moths 85 Kentish Glory 177 keratin, digestion 40, 45, 106–107 kill traps 68, 78 knot-horned moths 157

labial palpi 21, 22, 25, 34, 35,

L

189, 192

Lacosoma 162

Lacturidae 142

Lampronia 97

Lacosoma arizonicum 163

Lacosoma chiridota 163

Lactura sapotearum 142

Lampronia corticella 99

labium 21

Lanassa lignicolor 13 land-use change 72, 74 Langiinae 188 lappet moths 168-171 Larentiinae 200-201 larva/larval stage 16, 28-29, 30 see also caterpillars Lasiocampidae 164, 168-171 Lasiocampoidea 10, 168leaf blotch miner moths 108-109 leaf-mining 46, 47, 86, 87, 88, 93, 95, 101, 109 leafcutter moths 97 legs 22, 23 Lepidoptera 8, 12, 15 evolutionary origin 10, 81, 82, 102 lichen-feeding caterpillars 19 lichen moths 223, 226 life cycle 27-31 light detectors, ocelli as 21, 32, 33 light pollution 72, 74-75 light sources attracting moths 9, 32, 67-68, 79 light traps 67-68, 224 Limacodidae 144-145 Lithocolletinae 109 Lithophane leautieri 212 Lithosiini 46, 226 litter moths 218 live-trapping methods 67-68,

Lobster Caterpillar 207

Lomoymia 187

long-tailed burnet moths 148
Lonomia 186, 187
looper moths 194–195
Luna Moth 6, 7
Lymantria dispar 38, 61, 62,
221 220
Lymantriinae 219
Lyssa 203

M

Macalla thyrsisalis 155 Macaria carbonaria 17 Macaria liturata 198 macro moths 164-230 Macroglossinae 188, 192 macroglossine sphinx moths 192 Macroheterocera 164-230 macrolepidoptera 11, 13, 34, 164-230 Madagascan Moon Moth 65 Madagascan Sunset Moth 204 Maguey Worm 40, 41, 139 Malacosoma americanum 171 Malacosoma disstria 169, 170 males 102-103 antennae 21 pheromones 36, 52 sexual conflict 51-52 mandibles 21, 25 mandibulate archaic moths 84 Manduca 190 Manduca blackburni 78 Manduca sexta 189 many-plumed moths 122 Maroga melanostigma 113 mass migration 53, 54-55. mating 49-50, 50-51, 51-52, 53, 102, 178 Utetheisa 225 mating swarm 59 maxilla 21, 25 maxillary palp 21, 22, 25, 35 Mediterranean Flour Moth 39 Megalopyge lanata 146, 147 Megalopygidae 146-147 Meganola 208 Melipotis 228, 229 Melipotis cellaris 229 mesothorax 23 Metalectra diabolica 46, 216 metalmark moths 130-131 metamorphosis 15-17, 97 - 31metathorax 23 microlepidoptera 10, 27, 30, 54, 81-100 Micronia 203 Micropterigidae 10, 43, 83 Micropterigoidea 83 Micropterix 83

migration 53-56, 65, 204 Milionia zonea 194 Mimallonidae 10, 162-163 Mimallonoidea 162-163, mimicry 10, 57, 62-64, 84, 150, 226 by caterpillars 19-20, 44, 172, 192, 193, 198, 199, 201, 230 Mimosa Webworm 132 Mnesarchaea acuta 92 Mnesarchaeid moths 92 Mnesarchaeidae 92 Mnesarchaeoidea 92 Mnesarchella 92 molting 26, 33 Mompha propinquella 118 Mompha raschkiella 118 momphid moths 118 Momphidae 46, 118 monkey moths 174 Monoleica semifascia 145 Monopis dorsistrigella 107 Monotrysia 49 Mopane Worm 40, 42, 183 moth gardens 70, 75 mouthparts 16, 17 Müllerian mimicry 58, 64, 150, 226 mummies (of Hepialidae) 41 - 42

Ν natural enemies of moths nectar/nectaring, coilable tongue for 17-18 Nemophora 94 Nemophora staudingerella 95 Nemoria 197 Nemoria arizonaria 197 Neopseustidae 89 Neopseustis meyricki 89 Neopseustoidea 89 Nepticulidae 18, 46, 93 Nepticuloidea 93 nervous system 26 nests, lasiocampid (tent caterpillars) 20, 169-170, 171 Nisiga simplex 174 Noctuidae 13, 19, 29, 38-39. 46, 48, 56, 164, 165, 210 - 215Noctuinae 46 Noctuoidea 13, 23, 36, 164, 206-230 nocturnal moths/nocturnality 18-19, 56, 67, 68 Nola 208 Nola cucullatella 209 Nolidae 208-209 Notodontidae 206-207

oak trees 38, 58, 110, 221 observation, of moths 65-70 ocelli 21, 22, 32 Oecophora bractella 114 Oecophorid moths 114 Oecophoridae 114 Oiketicus 105 Olceclostera seraphica 172 Old World butterfly-moths Olethreutinae 135 olethreutine leafroller moths olfaction 21, 36 oligophagous species 44 ommatidia 32 Operophtera 201 Opisthoxia 195 Oreta rosea 166 Orgyia 220 Orgyia antiqua 28 Oriental Fruit Moth 135 Oriental Silk Moth 37, 38, 172, 178, 180 Orthosia 213 ostium bursae 51 Ostrinia nubilalis 161 overwintering 31, 122, 213 ovipositor 35, 102 owl moths 175 owlet moths 34, 46, 210-211

Palaephatid moths 100 Palaephatidae 100 Palaephatoidea 100 Panacelinae 174 Pandora moths 186-187 Paonias excaecata 191 Paracrama dulcissima 208 Parasa indetermina 7, 145 parasites 60 parasitoid wasps 60-61 Parategeticula 98, 99 Parectopa lespedezaefoliella 109 pathogens 61-62 Peach Fruit Moth 124 Pectinophora gossypiella 121 Pennisetia marginata 136 Perola clara 145 pesticides/agrochemicals 39, 72, 74, 75 pests, moths as 38-40, 132, 201, 211, 213, 214, 221 of clothes/textiles 39-40, 107 of crops 38-39, 53, 121, 122, 123, 124, 127, 135, 137, 159, 189 of forests/trees 134, 139, 153, 182 of stored-products 39, 156,

petite leafmining moths 93

Phalera 207

Pharmacis 41-42 Phazaca 205 phenotypic plasticity 197 pheromones 24, 35, 36, 49, 50, 52-53, 59, 154, 178 Phiditiidae 177 Philobota 114 Phobetron pithecium 145 photography 69, 70, 75, 79, Phragmataecia castaneae 139 Phycitinae 157 Phyllocnistinae 109 Phyllocnistis populiella 47 Phyllonorycter leucographella 109 phylogeny of moths 10-14, 56, 81-82, 103, 165 Phymatopus hectoides 52 Pindi Moth 90-91 Pink Bollworm 121 Plagodis alcoolaria 19 Plagodis dolabraria 198 plant-feeding guilds 45-46 planthopper parasite moths 141 plants, and moths 9, 43-48, 70 coevolution 43, 44, 45 diversity, moth diversity 9, 45, 58 larval diets, host-plant specialists 35, 43, 44-45, 218 pollination 18, 32, 43, 46-49, 70 secondary plant compounds 35, 43-44, 45, 171 Platybtilia carduidactyla 123 Plodia interpunctella 39 plume moths 30, 66, 123 Plusiinae 214 Plutella xylostella 39 Polka-dot Wasp Moth 227 pollinators, moths as 18, 32, 43, 46-49, 70 polyphagous species 44, 223 pre-pupa 29, 31 predation, of caterpillars/ moths 15, 58, 59-60 Primrose Moth 215 Prionoxystus robiniae 138 proboscis (tongue) 21 see also haustellum processionary moths 206-207 Procridinae 149 Prodoxidae/prodoxids 29, 43, Prodoxus 31, 99 Prodoxus decipiens 99 Prodoxus y-inversus 99 prolegs 24, 25, 173 prominent moths 206-207

Psychidae 104-105 Pterodecta felderi 154 Pterolocera 176 Pterophoridae 30, 66, 123 Pterophoroidea 123 Pterophorus pentadactyla 123 "puddling" 18, 53, 54 pupae/pupal stage 29-30, 31, 36, 59, 61, 105 pyralid snout moths 155, 156 Pyralidae 155-157 Pyralinae 156 Pyralis 156 Pyraloidea 13, 24, 34, 155-161 Pyraustinae 158, 161 Pyromorpha dimidiata 150 Pyropteron chrysidiformis 36 pyrrolizidine alkaloid (PA) 44, 45, 58, 62, 225

quakers 213

R

Raspberry Moth 99 Rattlebox moths 225 Reed Leopard 139 reproductive openings, two 13, 49, 51, 102 respiration 26 retinaculum 23, 24 retronecine 44 rewilding 76 Rheumaptera hastata 201 Richia albicosta 47 ribbed cocoon-maker moths root feeding 46, 47 royal moths 184

Sabatinca kristenseni 10 sack-bearer moths 162-163 salivary-silk gland 25 satin moths 219 Saturnia pyri 183 Saturniidae 40, 41, 49, 67, 181-187 Saturniinae 183 scales 8, 16, 17, 22 Schinia 215 Schinia florida 215 Schreckensteinia festaliella 126 Schreckensteiniidae 126 Schreckensteinioidea 126 scientific collections 77 scoli (horns) 58, 175, 182, 184 Scoliopteryx libatrix 49 scoopwing moths 203, 205 Scopula 202 Scorched Wing 198 secondary plant compounds 35, 43-44, 171 seeds, moths feeding on 19, 29, 48

nursery pollination systems 48

prothorax 22

Prothysana 172

Psilopygida 184

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

means without prior written permission of the publisher. segments 21, 22, 24, 25, 30 stenomatine moths 116 Trosta 146, 147 Sematuridae 193 semi-looper moths 214 senses 32-36 sensilla 21, 25, 34, 35 Sesiidae 36, 46, 46, 56, 136-137 setae 23, 25, 34, 35, 87, 168, 170, 174 primary, secondary 25, 146, 169, 175 stinging/toxin-laden 144, 146, 219, 220, 221 sexual conflict 50-52 shapeshifters 28 shield-bearer moths 96 Shorea 148 silk 20, 25, 104, 111, 180 economic importance 37-38, 180 production/use by caterpillar 20, 25, 105, 168-171, 180 silk worms (silk moths) 20, 25, 41, 178-180 Sinna calospila 209 Sloane's Urania 71, 204, 231 slug caterpillar moths 144-145 smell and olfaction 21, 36, 47, 179 Smerinthinae 188, 191 Smerinthini 191 smoky moths 62, 149-150 sound production 33-34, 190, 192, 208 sound reception 13, 19, 34, 164, 168, 192 South America, moth species number 8-9, 58 spanworms 195 Sparganothini 134 species of moths, number 8, 9, 13, 79 sperm 49, 51, 102 spermatophores 49-50, 51-52, 102, 225 Sphecodina abbottii 33 Sphingidae/sphingids 32, 48, 164, 188-192 Sphinginae 188, 190 Sphingognatha asclepiades 174 sphinx moths 33, 34, 48, 188-189, 190 spiders 59, 60, 225 Spilomelinae 161 spinneret 25 Spodoptera frugiperda 39 Spodoptera litura 39 Spongy Moth 38, 61, 62, 220, 221 Spruce Budworm 134 Squash Vine Borer 135 Stauropus alternus 207 stemmata 32-33 Stenomatinae 116

Sterrhinae 30, 202 Stigmella castaneaefoliella 93 stinging setae/spines 144, 146, 219, 220, 221 Stiria intermixta 19 Stiria rugifrons 210 sugary baits 68-70 sun moths 112, 140 sunset moths 18, 54, 203, 204 superfamilies of moths 13, 79, 82, 102 Synemon jcaria 140 Syntomeida epilais 227 Syntomini 227 Syssphinx blanchardi 184 Syssphinx raspa 43

tails 66, 148, 185 Taro Caterpillar 39 tarsi 22, 34 taste/tasting 34-35 Tawny-barred Angle 198 taxonomic names 14 Teak Defoliator 153 teak moths 153 Tegeticula 98, 99 Tegeticula yuccasella 98 tent caterpillars 20, 168-171 terminalia 50-52 Thitarodes 41-42 thorax 21, 22-23 caterpillars 24, 25 Thyrididae 152 Thyridoidea 152 Thysania agrippina 229 Tiger Moth 61, 63 tiger moths 33-34, 44, 217. 222-223, 224-225 timber moths 113 Timocratica 116 Tinagma 125 Tinagma ocnerostomella 125 Tinea 107 Tinea pellionella 40 Tineidae 39-40, 45, 106-107 Tineoidea 104-107 Tischeriidae 46, 101 Tischerioidea 101 tongue, coilable/coiled 12, 17-18, 21, 22, 34, 57 Tortricidae 13, 46, 56, 133, 134, 135 Tortricinae 134 tortricine leafroller moths 134 Tortricoidea 133-135 Tortyra slossonia 131 toxic alkaloids 34 toxic chemicals see defensive chemicals trees 9, 38, 58, 68 Trisyntopa 114 tropical burnet moths 142 tropical regions 53, 54, 55, 57-58

trumpet leafminer moths 101 tufted moths 208-209 tussock moths 219 twirler moths 120-121 tymbal 208

ultrasonic sounds 33-34

U

from bats, detection 13, 19, 34, 164, 168, 192 ultraviolet light, moths attracted by 9, 32, 67 underwing moths 69, 216-217, 228-229 unpalatability of caterpillars 44, 58, 63, 142, 172, 174, unpalatability of moths 57, 62, 63, 178 color and 16, 44, 56, 57, 58, 62-64, 222 toxins/chemicals see defensive chemicals Uraba lugens 209 Urania fulgens 53 Urania leilus 204 Urania sloanus 71, 204, 231 Urania Swallowtail Moth 53 Uraniidae 54, 203-205 Uraniinae 204 Urodidae 29, 128 Urodoidea 128 Urodus parvula 128 Utetheisa 225 Utetheisa ornatrix 45, 225

voucher specimens 77

ν

vampire moths 230

Vamuna remelana 223

Vapourer Moth 28

vision 32-33, 57, 188

viruses, entomopathogenic 62

Wallace's Sphinx Moth 18, 48, 188 wasp moths 58, 227 wasps, predation by 59, 60 - 61wave moths 202 webworm caterpillars 20 webworm snout moths 161 Western Bean Cutworm 47 White-lined Sphinx 65 White Plume Moth 123 White Witches 229 Wild Silk Moth 179, 180 wild silk moths 183 window-winged moths 152 wings 16-17, 22-23, 85 coupling mechanism 23 - 24winter moths 201, 212, 213 witch moths 228

Witchetty Grub 40, 139 Wood Leopard Moth 139

Xanthopan praedicta 18, 48, 188 Xvlorvctidae 113

Y

Yellowstone National Park 54-55 Yponomeuta 111 Yponomeutidae 111 Yponomeutoidea 111-112 vucca moths 31, 43, 48, 98-99

Z

Zeugloptera 12, 84 Zeuzera pyrina 139 zombie caterpillar, protecting wasps 62 Zygaena 16, 149, 151 Zygaena trifolii 151 Zygaenidae 56, 62, 149-150 Zygaeninae 149 Zygaenoidea 141-151