# Contents

# Preface

| Ι | No   | nparametric Kernel Methods                         | 1  |
|---|------|----------------------------------------------------|----|
| 1 | Den  | sity Estimation                                    | 3  |
|   | 1.1  | Univariate Density Estimation                      | 4  |
|   | 1.2  | Univariate Bandwidth Selection: Rule-of-Thumb and  |    |
|   |      | Plug-In Methods                                    | 14 |
|   | 1.3  | Univariate Bandwidth Selection: Cross-Validation   |    |
|   |      | Methods                                            | 15 |
|   |      | 1.3.1 Least Squares Cross-Validation               | 15 |
|   |      | 1.3.2 Likelihood Cross-Validation                  | 18 |
|   |      | 1.3.3 An Illustration of Data-Driven Bandwidth     |    |
|   |      | Selection                                          | 19 |
|   | 1.4  | Univariate CDF Estimation                          | 19 |
|   | 1.5  | Univariate CDF Bandwidth Selection: Cross-         |    |
|   |      | Validation Methods                                 | 23 |
|   | 1.6  | Multivariate Density Estimation                    | 24 |
|   | 1.7  | Multivariate Bandwidth Selection: Rule-of-Thumb    |    |
|   |      | and Plug-In Methods                                | 26 |
|   | 1.8  | Multivariate Bandwidth Selection: Cross-Validation |    |
|   |      | Methods                                            | 27 |
|   |      | 1.8.1 Least Squares Cross-Validation               | 27 |
|   |      | 1.8.2 Likelihood Cross-Validation                  | 28 |
|   | 1.9  | Asymptotic Normality of Density Estimators         | 28 |
|   | 1.10 | Uniform Rates of Convergence                       | 30 |
|   | 1.11 | Higher Order Kernel Functions                      | 33 |
|   | 1.12 | Proof of Theorem 1.4 (Uniform Almost Sure          |    |
|   |      | Convergence)                                       | 35 |
|   | 1.13 | Applications                                       | 40 |

\_\_\_\_\_

| CONTRACTO |
|-----------|
|-----------|

|          |      | 1.13.1         | Female Wage Inequality                             | 41  |
|----------|------|----------------|----------------------------------------------------|-----|
|          |      | 1.13.2         | Unemployment Rates and City Size                   | 43  |
|          |      | 1.13.3         | Adolescent Growth                                  | 44  |
|          |      | 1.13.4         | Old Faithful Geyser Data                           | 44  |
|          |      | 1.13.5         | Evolution of Real Income Distribution in Italy,    |     |
|          |      |                | 1951 - 1998                                        | 45  |
|          | 1.14 | Exerc          | ises                                               | 47  |
| <b>2</b> | Reg  | ression        | n                                                  | 57  |
|          | 2.1  | Local          | Constant Kernel Estimation                         | 60  |
|          |      | 2.1.1          | Intuition Underlying the Local Constant            |     |
|          |      |                | Kernel Estimator                                   | 64  |
|          | 2.2  | Local          | Constant Bandwidth Selection                       | 66  |
|          |      | 2.2.1          | Rule-of-Thumb and Plug-In Methods                  | 66  |
|          |      | 2.2.2          | Least Squares Cross-Validation                     | 69  |
|          |      | 2.2.3          | $\operatorname{AIC}_c$                             | 72  |
|          |      | 2.2.4          | The Presence of Irrelevant Regressors              | 73  |
|          |      | 2.2.5          | Some Further Results on Cross-Validation           | 78  |
|          | 2.3  | Unifor         | rm Rates of Convergence                            | 78  |
|          | 2.4  | Local          | Linear Kernel Estimation                           | 79  |
|          |      | 2.4.1          | Local Linear Bandwidth Selection: Least            |     |
|          |      |                | Squares Cross-Validation                           | 83  |
|          | 2.5  | Local          | Polynomial Regression (General <i>p</i> th Order)  | 85  |
|          |      | 2.5.1          | The Univariate Case                                | 85  |
|          |      | 2.5.2          | The Multivariate Case                              | 88  |
|          |      | 2.5.3          | Asymptotic Normality of Local Polynomial           |     |
|          | 0.0  | 4 1.           | Estimators                                         | 89  |
|          | 2.6  | Applie         | cations                                            | 92  |
|          |      | 2.6.1          | Prestige Data                                      | 92  |
|          |      | 2.6.2          | Adolescent Growth                                  | 92  |
|          | 27   | 2.0.3<br>Proof | Inflation Forecasting and Money Growth             | 93  |
|          | 2.1  | 271            | Derivation of $(2.24)$                             | 91  |
|          |      | 2.7.1          | Proof of Theorem 2.7                               | 100 |
|          |      | 2.1.2<br>2.7.3 | Definitions of $A_{1}$ and $V_{1}$ Used in Theorem | 100 |
|          |      | 2.1.0          | 2 10                                               | 106 |
|          | 2.8  | Exerc          | ises                                               | 108 |
|          |      | <b>L</b> .1010 |                                                    | 100 |
| 3        | Free | quency         | Estimation with Mixed Data                         | 115 |
|          | 3.1  | Proba          | bility Function Estimation with Discrete Data      | 116 |

vii

|          | 3.2 | Regression with Discrete Regressors                  | 118 |
|----------|-----|------------------------------------------------------|-----|
|          | 3.3 | Estimation with Mixed Data: The Frequency Approach   | 118 |
|          |     | 3.3.1 Density Estimation with Mixed Data             | 118 |
|          |     | 3.3.2 Regression with Mixed Data                     | 119 |
|          | 3.4 | Some Cautionary Remarks on Frequency Methods         | 120 |
|          | 3.5 | Proofs                                               | 122 |
|          |     | 3.5.1 Proof of Theorem 3.1                           | 122 |
|          | 3.6 | Exercises                                            | 123 |
| 4        | Ker | nel Estimation with Mixed Data                       | 125 |
|          | 4.1 | Smooth Estimation of Joint Distributions with        |     |
|          |     | Discrete Data                                        | 126 |
|          | 4.2 | Smooth Regression with Discrete Data                 | 131 |
|          | 4.3 | Kernel Regression with Discrete Regressors: The      |     |
|          |     | Irrelevant Regressor Case                            | 134 |
|          | 4.4 | Regression with Mixed Data: Relevant Regressors      | 136 |
|          |     | 4.4.1 Smooth Estimation with Mixed Data              | 136 |
|          |     | 4.4.2 The Cross-Validation Method                    | 138 |
|          | 4.5 | Regression with Mixed Data: Irrelevant Regressors    | 140 |
|          |     | 4.5.1 Ordered Discrete Variables                     | 144 |
|          | 4.6 | Applications                                         | 145 |
|          |     | 4.6.1 Food-Away-from-Home Expenditure                | 145 |
|          |     | 4.6.2 Modeling Strike Volume                         | 147 |
|          | 4.7 | Exercises                                            | 150 |
| <b>5</b> | Cor | nditional Density Estimation                         | 155 |
|          | 5.1 | Conditional Density Estimation: Relevant Variables   | 155 |
|          | 5.2 | Conditional Density Bandwidth Selection              | 157 |
|          |     | 5.2.1 Least Squares Cross-Validation: Relevant       |     |
|          |     | Variables                                            | 157 |
|          |     | 5.2.2 Maximum Likelihood Cross-Validation:           |     |
|          |     | Relevant Variables                                   | 160 |
|          | 5.3 | Conditional Density Estimation: Irrelevant Variables | 162 |
|          | 5.4 | The Multivariate Dependent Variables Case            | 164 |
|          |     | 5.4.1 The General Categorical Data Case              | 167 |
|          |     | 5.4.2 Proof of Theorem 5.5                           | 168 |
|          | 5.5 | Applications                                         | 171 |
|          |     | 5.5.1 A Nonparametric Analysis of Corruption         | 171 |
|          |     | 5.5.2 Extramarital Affairs Data                      | 172 |
|          |     | 5.5.3 Married Female Labor Force Participation       | 175 |

| viii | CONTE         |              |                                                 |            |
|------|---------------|--------------|-------------------------------------------------|------------|
|      |               |              |                                                 |            |
|      |               | 5.5.4        | Labor Productivity                              | 177        |
|      |               | 5.5.5        | Multivariate $Y$ Conditional Density Example:   |            |
|      |               |              | GDP Growth and Population Growth                |            |
|      | -             | -            | Conditional on OECD Status                      | 178        |
|      | 5.6           | Exerc        | bises                                           | 180        |
| 6    | Con           | dition       | al CDF and Quantile Estimation                  | 181        |
|      | 6.1           | Estin        | nating a Conditional CDF with Continuous        |            |
|      |               | Covar        | riates without Smoothing the Dependent Variable | 182        |
|      | 6.2           | Estin        | nating a Conditional CDF with Continuous        |            |
|      |               | Covar        | riates Smoothing the Dependent Variable         | 184        |
|      | 6.3           | Nonp         | arametric Estimation of Conditional Quantile    |            |
|      |               | Funct        | tions                                           | 189        |
|      | 6.4           | The <b>(</b> | Check Function Approach                         | 191        |
|      | 6.5           | Cond         | itional CDF and Quantile Estimation with        |            |
|      |               | Mixee        | d Discrete and Continuous Covariates            | 193        |
|      | 6.6           | A Sm         | all Monte Carlo Simulation Study                | 196        |
|      | 6.7           | Nonp         | arametric Estimation of Hazard Functions        | 198        |
|      | 6.8           | Appli        | ications                                        | 200        |
|      |               | 6.8.1        | Boston Housing Data                             | 200        |
|      |               | 6.8.2        | Adolescent Growth Charts                        | 202        |
|      |               | 6.8.3        | Conditional Value at Risk                       | 202        |
|      |               | 6.8.4        | Real Income in Italy, 1951–1998                 | 206        |
|      |               | 6.8.5        | Multivariate $Y$ Conditional CDF Example:       |            |
|      |               |              | GDP Growth and Population Growth                |            |
|      |               |              | Conditional on OECD Status                      | 206        |
|      | 6.9           | Proof        | S                                               | 209        |
|      |               | 6.9.1        | Proofs of Theorems 6.1, 6.2, and 6.4            | 209        |
|      |               | 6.9.2        | Proofs of Theorems 6.5 and 6.6 (Mixed           |            |
|      |               |              | Covariates Case)                                | 214        |
|      | 6.10          | Exerc        | cises                                           | 215        |
|      |               |              |                                                 |            |
| Π    | $\mathbf{Se}$ | mipar        | rametric Methods                                | 219        |
| 7    | Sem           | ipara        | metric Partially Linear Models                  | <b>221</b> |
|      | 7.1           | Partia       | ally Linear Models                              | 222        |
|      |               | 7.1.1        | Identification of $\beta$                       | 222        |
|      | 7.2           | Robin        | nson's Estimator                                | 222        |
|      |               | 7.2.1        | Estimation of the Nonparametric Component       | 228        |

ix

#### CONTENTS

|   | 7.3  | Andrews's MINPIN Method                            | 230        |
|---|------|----------------------------------------------------|------------|
|   | 7.4  | Semiparametric Efficiency Bounds                   | 233        |
|   |      | 7.4.1 The Conditionally Homoskedastic Error Case   | 233        |
|   |      | 7.4.2 The Conditionally Heteroskedastic Error Case | 235        |
|   | 7.5  | Proofs                                             | 238        |
|   |      | 7.5.1 Proof of Theorem 7.2                         | 238        |
|   |      | 7.5.2 Verifying Theorem 7.3 for a Partially Linear |            |
|   |      | Model                                              | 244        |
|   | 7.6  | Exercises                                          | 246        |
| 8 | Sen  | niparametric Single Index Models                   | 249        |
|   | 8.1  | Identification Conditions                          | 251        |
|   | 8.2  | Estimation                                         | 253        |
|   |      | 8.2.1 Ichimura's Method                            | 253        |
|   | 8.3  | Direct Semiparametric Estimators for $\beta$       | 258        |
|   |      | 8.3.1 Average Derivative Estimators                | 258        |
|   |      | 8.3.2 Estimation of $g(\cdot)$                     | 262        |
|   | 8.4  | Bandwidth Selection                                | 263        |
|   |      | 8.4.1 Bandwidth Selection for Ichimura's Method    | 263        |
|   |      | 8.4.2 Bandwidth Selection with Direct Estimation   |            |
|   |      | Methods                                            | 265        |
|   | 8.5  | Klein and Spady's Estimator                        | 266        |
|   | 8.6  | Lewbel's Estimator                                 | 267        |
|   | 8.7  | Manski's Maximum Score Estimator                   | 269        |
|   | 8.8  | Horowitz's Smoothed Maximum Score Estimator        | 270        |
|   | 8.9  | Han's Maximum Rank Estimator                       | 270        |
|   | 8.10 | Multinomial Discrete Choice Models                 | 271        |
|   | 8.11 | Ai's Semiparametric Maximum Likelihood Approach    | 272        |
|   | 8.12 | A Sketch of the Proof of Theorem 8.1               | 275        |
|   | 8.13 | Applications                                       | 277        |
|   |      | 8.13.1 Modeling Response to Direct Marketing       | 977        |
|   | 8.14 | Exercises                                          | 277<br>281 |
| 0 | A da | litius and Smooth (Versing) Coefficient            |            |
| 9 | Sor  | hilling and Shlooth (Varying) Coenicient           | 283        |
|   |      | An Additive Model                                  | ⊿00<br>೧೪೨ |
|   | 9.1  | 0.1.1 The Marginal Integration Method              | 200<br>284 |
|   |      | 9.1.2 A Computationally Efficient Oracle Estimator | 204<br>286 |
|   |      | 9.1.3 The Ordinary Backfitting Method              | 200        |
|   |      | J.1.0 THE OTHINALY DAUALITUING METHOD              | 209        |

| CONTENTS |
|----------|
|----------|

|    |      | 9.1.4              | The Smoothed Backfitting Method                 | 290 |
|----|------|--------------------|-------------------------------------------------|-----|
|    |      | 9.1.5              | Additive Models with Link Functions             | 295 |
|    | 9.2  | An Ao              | lditive Partially Linear Model                  | 297 |
|    |      | 9.2.1              | A Simple Two-Step Method                        | 299 |
|    | 9.3  | A Se               | miparametric Varying (Smooth) Coefficient       |     |
|    |      | Model              |                                                 | 301 |
|    |      | 9.3.1              | A Local Constant Estimator of the Smooth        |     |
|    |      |                    | Coefficient Function                            | 302 |
|    |      | 9.3.2              | A Local Linear Estimator of the Smooth          |     |
|    |      |                    | Coefficient Function                            | 303 |
|    |      | 9.3.3              | Testing for a Parametric Smooth Coefficient     |     |
|    |      |                    | Model                                           | 306 |
|    |      | 9.3.4              | Partially Linear Smooth Coefficient Models      | 308 |
|    |      | 9.3.5              | Proof of Theorem 9.3                            | 310 |
|    | 9.4  | Exerci             | ises                                            | 312 |
|    |      |                    |                                                 |     |
| 10 | Sele | $\mathbf{ctivity}$ | Models                                          | 315 |
|    | 10.1 | Semip              | arametric Type-2 Tobit Models                   | 316 |
|    | 10.2 | Estim              | ation of a Semiparametric Type-2 Tobit Model    | 317 |
|    |      | 10.2.1             | Gallant and Nychka's Estimator                  | 318 |
|    |      | 10.2.2             | Estimation of the Intercept in Selection Models | 319 |
|    | 10.3 | Semip              | arametric Type-3 Tobit Models                   | 320 |
|    |      | 10.3.1             | Econometric Preliminaries                       | 320 |
|    |      | 10.3.2             | Alternative Estimation Methods                  | 323 |
|    | 10.4 | Das,               | Newey and Vella's Nonparametric Selection       |     |
|    |      | Model              |                                                 | 328 |
|    | 10.5 | Exerci             | ses                                             | 330 |
|    |      |                    |                                                 |     |
| 11 | Cen  | sored 1            | Models                                          | 331 |
|    | 11.1 | Paran              | netric Censored Models                          | 332 |
|    | 11.2 | Semip              | arametric Censored Regression Models            | 334 |
|    | 11.3 | Semip              | arametric Censored Regression Models with       |     |
|    |      | Nonpa              | arametric Heteroskedasticity                    | 336 |
|    | 11.4 | The U              | nivariate Kaplan-Meier CDF Estimator            | 338 |
|    | 11.5 | The N              | Iultivariate Kaplan-Meier CDF Estimator         | 341 |
|    |      | 11.5.1             | Nonparametric Regression Models with            |     |
|    |      |                    | Random Censoring                                | 343 |
|    | 11.6 | Nonpa              | arametric Censored Regression                   | 345 |
|    |      | 11.6.1             | Lewbel and Linton's Approach                    | 345 |
|    |      | 11.6.2             | Chen, Dahl and Khan's Approach                  | 346 |

x

| CONTEN | VTS                                                | xi         |
|--------|----------------------------------------------------|------------|
| 11.7   | Exercises                                          | 348        |
| III C  | onsistent Model Specification Tests                | 349        |
| 12 Mod | lel Specification Tests                            | 351        |
| 12.1   | A Simple Consistent Test for Parametric Regression |            |
|        | Functional Form                                    | 354        |
|        | 12.1.1 A Consistent Test for Correct Parametric    |            |
|        | Functional Form                                    | 355        |
|        | 12.1.2 Mixed Data                                  | 360        |
| 12.2   | Testing for Equality of PDFs                       | 362        |
| 12.3   | More Tests Related to Regression Functions         | 365        |
|        | 12.3.1 Hardle and Mammen's Test for a Parametric   |            |
|        | Regression Model                                   | 365        |
|        | 12.3.2 An Adaptive and Rate Optimal Test           | 367        |
|        | 12.3.3 A Test for a Parametric Single Index Model  | 369        |
|        | 12.3.4 A Nonparametric Omitted variables fest      | 370<br>275 |
| 194    | Tasta Polated to PDFa                              | 379        |
| 12.4   | 12/11 Testing Independence between Two Bandom      | 310        |
|        | Variables                                          | 378        |
|        | 124.2 A Test for a Parametric PDF                  | 380        |
|        | 12.4.3 A Kernel Test for Conditional Parametric    | 000        |
|        | Distributions                                      | 382        |
| 12.5   | Applications                                       | 385        |
|        | 12.5.1 Growth Convergence Clubs                    | 385        |
| 12.6   | Proofs                                             | 388        |
|        | 12.6.1 Proof of Theorem 12.1                       | 388        |
|        | 12.6.2 Proof of Theorem 12.2                       | 389        |
|        | 12.6.3 Proof of Theorem 12.5                       | 389        |
|        | 12.6.4 Proof of Theorem 12.9                       | 391        |
| 12.7   | Exercises                                          | 394        |
| 13 Non | smoothing Tests                                    | 397        |
| 13.1   | Testing for Parametric Regression Functional Form  | 398        |
| 13.2   | Testing for Equality of PDFs                       | 401        |
| 13.3   | A Nonparametric Significance Test                  | 401        |
| 13.4   | Andrews's Test for Conditional CDFs                | 402        |
| 13.5   | Hong's Tests for Serial Dependence                 | 404        |

| xii       |              | CONT                                                                   | ENTS  |
|-----------|--------------|------------------------------------------------------------------------|-------|
|           | 13.6         | More on Nonsmoothing Tests                                             | /08   |
|           | 13.0<br>13.7 | Proofs                                                                 | 400   |
|           | 10.1         | 13.7.1 Proof of Theorem 13.1                                           | 400   |
|           | 13.8         | Exercises                                                              | 410   |
|           |              |                                                                        |       |
| IV        | N            | onparametric Nearest Neighbor and Series                               |       |
| M         | etho         | ds                                                                     | 413   |
| <b>14</b> | K-N          | learest Neighbor Methods                                               | 415   |
|           | 14.1         | Density Estimation: The Univariate Case                                | 415   |
|           | 14.2         | Regression Function Estimation                                         | 419   |
|           | 14.3         | A Local Linear $k$ -nn Estimator                                       | 421   |
|           | 14.4         | Cross-Validation with Local Constant $k\text{-}\mathrm{nn}$ Estimation | 422   |
|           | 14.5         | Cross-Validation with Local Linear $k$ -nn Estimation                  | 425   |
|           | 14.6         | Estimation of Semiparametric Models with $k$ -nn                       |       |
|           |              | Methods                                                                | 427   |
|           | 14.7         | Model Specification Tests with $k$ -nn Methods                         | 428   |
|           | 14.0         | 14.7.1 A Bootstrap Test                                                | 431   |
|           | 14.8         | Using Different k for Different Components of $x$                      | 432   |
|           | 14.9         | Proofs                                                                 | 432   |
|           |              | 14.9.1 Proof of Theorem 14.1                                           | 435   |
|           |              | 14.9.2 Proof of Theorem 14.5                                           | 435   |
|           | 1/10         | 14.9.3 Proof of Theorem 14.10                                          | 440   |
|           | 14.10        | J Exercises                                                            | 444   |
| 15        | Non          | parametric Series Methods                                              | 445   |
|           | 15.1         | Estimating Regression Functions                                        | 446   |
|           |              | 15.1.1 Convergence Rates                                               | 449   |
|           | 15.2         | Selection of the Series Term $K$                                       | 451   |
|           |              | 15.2.1 Asymptotic Normality                                            | 453   |
|           | 15.3         | A Partially Linear Model                                               | 454   |
|           |              | 15.3.1 An Additive Partially Linear Model                              | 455   |
|           |              | 15.3.2 Selection of Nonlinear Additive Components                      | 461   |
|           |              | 15.3.3 Estimating an Additive Model with a Known                       | 409   |
|           | 15 /         | Link Function                                                          | 403   |
|           | 15.4         | Estimation of Partiany Linear Varying Coefficient                      | 166   |
|           |              | 15/11 Testing for Correct Parametric Regression                        | 400   |
|           |              | Functional Form                                                        | 471   |
|           |              |                                                                        | * I X |

xiii

CONTENTS

| 15.4.2 A Consistent Test for an Additive Partially |     |
|----------------------------------------------------|-----|
| Linear Model                                       | 474 |
| 15.5 Other Series-Based Tests                      | 479 |
| 15.6 Proofs                                        | 480 |
| 15.6.1 Proof of Theorem 15.1                       | 480 |
| 15.6.2 Proof of Theorem 15.3                       | 484 |
| 15.6.3 Proof of Theorem 15.6                       | 488 |
| 15.6.4 Proof of Theorem 15.9                       | 492 |
| 15.6.5 Proof of Theorem $15.10$                    | 497 |
| 15.7 Exercises                                     | 502 |

## V Time Series, Simultaneous Equation, and Panel Data Models 503

| 16 Inst        | rumental Variables and Efficient Estimation of      |     |
|----------------|-----------------------------------------------------|-----|
| $\mathbf{Sem}$ | iparametric Models                                  | 505 |
| 16.1           | A Partially Linear Model with Endogenous            |     |
|                | Regressors in the Parametric Part                   | 505 |
| 16.2           | A Varying Coefficient Model with Endogenous         |     |
|                | Regressors in the Parametric Part                   | 509 |
| 16.3           | Ai and Chen's Efficient Estimator with Conditional  |     |
|                | Moment Restrictions                                 | 511 |
|                | 16.3.1 Estimation Procedures                        | 511 |
|                | 16.3.2 Asymptotic Normality for $\hat{\theta}$      | 513 |
|                | 16.3.3 A Partially Linear Model with the Endogenous |     |
|                | Regressors in the Nonparametric Part                | 515 |
| 16.4           | Proof of Equation $(16.16)$                         | 517 |
| 16.5           | Exercises                                           | 520 |
| 17 End         | ogeneity in Nonparametric Regression Models         | 521 |
| 17.1           | A Nonparametric Model                               | 521 |
| 17.2           | A Triangular Simultaneous Equation Model            | 522 |
| 17.3           | Newey-Powell Series-Based Estimator                 | 527 |
| 17.4           | Hall and Horowitz's Kernel-Based Estimator          | 529 |
| 17.5           | Darolles, Florens and Renault's Estimator           | 532 |
| 17.6           | Exercises                                           | 533 |
| 18 Wea         | akly Dependent Data                                 | 535 |
| 18.1           | Density Estimation with Dependent Data              | 537 |

|    |                      | 18.1.1 Uniform Almost Sure Rate of Convergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 541 |
|----|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | 18.2                 | Regression Models with Dependent Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 541 |
|    |                      | 18.2.1 The Martingale Difference Error Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 541 |
|    |                      | 18.2.2 The Autocorrelated Error Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 544 |
|    |                      | 18.2.3 One-Step-Ahead Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 546 |
|    |                      | 18.2.4 <i>d</i> -Step-Ahead Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 547 |
|    |                      | 18.2.5 Estimation of Nonparametric Impulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|    |                      | Response Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 548 |
|    | 18.3                 | Semiparametric Models with Dependent Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 551 |
|    |                      | 18.3.1 A Partially Linear Model with Dependent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|    |                      | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 551 |
|    |                      | 18.3.2 Additive Regression Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 552 |
|    |                      | 18.3.3 Varying Coefficient Models with Dependent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|    |                      | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 553 |
|    | 18.4                 | Testing for Serial Correlation in Semiparametric Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 554 |
|    |                      | 18.4.1 The Test Statistic and Its Asymptotic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|    |                      | Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 554 |
|    | 10 5                 | 18.4.2 Testing Zero First Order Serial Correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 555 |
|    | 18.5                 | Model Specification Tests with Dependent Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 550 |
|    |                      | 18.5.1 A Kernel lest for Correct Parametric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 556 |
|    |                      | 18.5.2 Nonperemetric Significance Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 557 |
|    | 18.6                 | Nonsmoothing Tosts for Bogrossion Functional Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 558 |
|    | 18.0                 | Testing Parametric Predictive Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 550 |
|    | 10.7                 | 18.7.1 In-Sample Testing of Conditional CDFs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 559 |
|    |                      | 18.7.2 Out-of-Sample Testing of Conditional CDFs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 562 |
|    | 18.8                 | Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 564 |
|    | 10.0                 | 18.8.1 Forecasting Short-Term Interest Rates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 564 |
|    | 18.9                 | Nonparametric Estimation with Nonstationary Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 566 |
|    | 18.10                | ) Proofs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 567 |
|    |                      | 18.10.1 Proof of Equation (18.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 567 |
|    |                      | 18.10.2 Proof of Theorem 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 569 |
|    | 18.11                | 1 Exercises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 572 |
| 10 | Don                  | al Data Madala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 575 |
| 19 | <b>F</b> all<br>10 1 | Nonparametric Estimation of Panel Data Models:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 010 |
|    | 19.1                 | Ignoring the Variance Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 576 |
|    | 10.2                 | Wang's Efficient Nonnarametric Panel Data Estimator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 578 |
|    | 19.2                 | A Partially Linear Model with Random Effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 584 |
|    | 19.4                 | Nonparametric Panel Data Models with Fixed Effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 586 |
|    | 10.1                 | The second | 000 |

|    |                      | 19.4.1 Error Variance Structure Is Known                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 587                                                                                                                |
|----|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|    |                      | 19.4.2 The Error Variance Structure Is Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                              | 590                                                                                                                |
|    | 19.5                 | A Partially Linear Model with Fixed Effects                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 592                                                                                                                |
|    | 19.6                 | Semiparametric Instrumental Variable Estimators                                                                                                                                                                                                                                                                                                                                                                                                                                             | 594                                                                                                                |
|    |                      | 19.6.1 An Infeasible Estimator                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 594                                                                                                                |
|    |                      | 19.6.2 The Choice of Instruments                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 595                                                                                                                |
|    |                      | 19.6.3 A Feasible Estimator                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 597                                                                                                                |
|    | 19.7                 | Testing for Serial Correlation and for Individual                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                    |
|    |                      | Effects in Semiparametric Models                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 599                                                                                                                |
|    | 19.8                 | Series Estimation of Panel Data Models                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 602                                                                                                                |
|    |                      | 19.8.1 Additive Effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 602                                                                                                                |
|    |                      | 19.8.2 Alternative Formulation of Fixed Effects                                                                                                                                                                                                                                                                                                                                                                                                                                             | 604                                                                                                                |
|    | 19.9                 | Nonlinear Panel Data Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 606                                                                                                                |
|    |                      | 19.9.1 Censored Panel Data Models                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 607                                                                                                                |
|    |                      | 19.9.2 Discrete Choice Panel Data Models                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 614                                                                                                                |
|    | 19.10                | ) Proofs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 618                                                                                                                |
|    |                      | 19.10.1 Proof of Theorem 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 618                                                                                                                |
|    |                      | 19.10.2 Leading MSE Calculation of Wang's Estimator                                                                                                                                                                                                                                                                                                                                                                                                                                         | 621                                                                                                                |
|    | 19.12                | Exercises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 624                                                                                                                |
| 20 | Тор                  | ics in Applied Nonparametric Estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 627                                                                                                                |
|    | 20.1                 | Nonparametric Methods in Continuous-Time Models                                                                                                                                                                                                                                                                                                                                                                                                                                             | 627                                                                                                                |
|    |                      | 20.1.1 Nonparametric Estimation of Continuous-                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |
|    |                      | Time Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 627                                                                                                                |
|    |                      | 20.1.2 Nonparametric Tests for Continuous-Time                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |
|    |                      | Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 632                                                                                                                |
|    |                      | 20.1.3 Ait-Sahalia's Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 632                                                                                                                |
|    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |
|    |                      | 20.1.4 Hong and Li's Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 633                                                                                                                |
|    |                      | 20.1.4 Hong and Li's Test<br>20.1.5 Proofs                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 633\\ 636\end{array}$                                                                            |
|    | 20.2                 | <ul><li>20.1.4 Hong and Li's Test</li><li>20.1.5 Proofs</li><li>Nonparametric Estimation of Average Treatment</li></ul>                                                                                                                                                                                                                                                                                                                                                                     | 633<br>636                                                                                                         |
|    | 20.2                 | 20.1.4 Hong and Li's Test<br>20.1.5 Proofs<br>Nonparametric Estimation of Average Treatment<br>Effects                                                                                                                                                                                                                                                                                                                                                                                      | 633<br>636<br>639                                                                                                  |
|    | 20.2                 | <ul><li>20.1.4 Hong and Li's Test</li><li>20.1.5 Proofs</li><li>Nonparametric Estimation of Average Treatment Effects</li><li>20.2.1 The Model</li></ul>                                                                                                                                                                                                                                                                                                                                    | 633<br>636<br>639<br>640                                                                                           |
|    | 20.2                 | <ul> <li>20.1.4 Hong and Li's Test</li> <li>20.1.5 Proofs</li> <li>Nonparametric Estimation of Average Treatment Effects</li> <li>20.2.1 The Model</li> <li>20.2.2 An Application: Assessing the Efficacy of</li> </ul>                                                                                                                                                                                                                                                                     | 633<br>636<br>639<br>640                                                                                           |
|    | 20.2                 | <ul> <li>20.1.4 Hong and Li's Test</li> <li>20.1.5 Proofs</li> <li>Nonparametric Estimation of Average Treatment Effects</li> <li>20.2.1 The Model</li> <li>20.2.2 An Application: Assessing the Efficacy of Right Heart Catheterization</li> </ul>                                                                                                                                                                                                                                         | 633<br>636<br>639<br>640<br>642                                                                                    |
|    | 20.2<br>20.3         | <ul> <li>20.1.4 Hong and Li's Test</li> <li>20.1.5 Proofs</li> <li>Nonparametric Estimation of Average Treatment Effects</li> <li>20.2.1 The Model</li> <li>20.2.2 An Application: Assessing the Efficacy of Right Heart Catheterization</li> <li>Nonparametric Estimation of Auction Models</li> </ul>                                                                                                                                                                                     | 633<br>636<br>639<br>640<br>642<br>645                                                                             |
|    | 20.2<br>20.3         | <ul> <li>20.1.4 Hong and Li's Test</li> <li>20.1.5 Proofs</li> <li>Nonparametric Estimation of Average Treatment Effects</li> <li>20.2.1 The Model</li> <li>20.2.2 An Application: Assessing the Efficacy of Right Heart Catheterization</li> <li>Nonparametric Estimation of Auction Models</li> <li>20.3.1 Estimation of First Price Auction Models</li> </ul>                                                                                                                            | 633<br>636<br>639<br>640<br>642<br>645<br>645                                                                      |
|    | 20.2<br>20.3         | <ul> <li>20.1.4 Hong and Li's Test</li> <li>20.1.5 Proofs</li> <li>Nonparametric Estimation of Average Treatment Effects</li> <li>20.2.1 The Model</li> <li>20.2.2 An Application: Assessing the Efficacy of Right Heart Catheterization</li> <li>Nonparametric Estimation of Auction Models</li> <li>20.3.1 Estimation of First Price Auction Models</li> <li>20.3.2 Conditionally Independent Private</li> </ul>                                                                          | <ul> <li>633</li> <li>636</li> <li>639</li> <li>640</li> <li>642</li> <li>645</li> <li>645</li> </ul>              |
|    | 20.2<br>20.3         | <ul> <li>20.1.4 Hong and Li's Test</li> <li>20.1.5 Proofs</li> <li>Nonparametric Estimation of Average Treatment Effects</li> <li>20.2.1 The Model</li> <li>20.2.2 An Application: Assessing the Efficacy of Right Heart Catheterization</li> <li>Nonparametric Estimation of Auction Models</li> <li>20.3.1 Estimation of First Price Auction Models</li> <li>20.3.2 Conditionally Independent Private Information Auctions</li> </ul>                                                     | 633<br>636<br>639<br>640<br>642<br>645<br>645<br>645<br>648                                                        |
|    | 20.2<br>20.3<br>20.4 | <ul> <li>20.1.4 Hong and Li's Test</li> <li>20.1.5 Proofs</li> <li>Nonparametric Estimation of Average Treatment Effects</li> <li>20.2.1 The Model</li> <li>20.2.2 An Application: Assessing the Efficacy of Right Heart Catheterization</li> <li>Nonparametric Estimation of Auction Models</li> <li>20.3.1 Estimation of First Price Auction Models</li> <li>20.3.2 Conditionally Independent Private Information Auctions</li> <li>Copula-Based Semiparametric Estimation of </li> </ul> | <ul> <li>633</li> <li>636</li> <li>639</li> <li>640</li> <li>642</li> <li>645</li> <li>645</li> <li>648</li> </ul> |

| xvi CONI                                               | ENTS |
|--------------------------------------------------------|------|
|                                                        |      |
| 20.4.1 Some Background on Copula Functions             | 651  |
| 20.4.2 Semiparametric Copula-Based Multivariate        |      |
| Distributions                                          | 652  |
| 20.4.3 A Two-Step Estimation Procedure                 | 653  |
| 20.4.4 A One-Step Efficient Estimation Procedure       | 655  |
| 20.4.5 Testing Parametric Functional Forms of a Copula | 657  |
| 20.5 A Semiparametric Transformation Model             | 659  |
| 20.6 Exercises                                         | 662  |
| A Background Statistical Concepts                      | 663  |
| 1.1 Probability, Measure, and Measurable Space         | 663  |
| 1.2 Metric, Norm, and Functional Spaces                | 672  |
| 1.3 Limits and Modes of Convergence                    | 680  |
| 1.3.1 Limit Supremum and Limit Infimum                 | 680  |
| 1.3.2 Modes of Convergence                             | 681  |
| 1.4 Inequalities, Laws of Large Numbers, and Central   |      |
| Limit Theorems                                         | 688  |
| 1.5 Exercises                                          | 694  |
|                                                        |      |
| Bibliography                                           | 697  |
|                                                        |      |
| Author Index                                           | 737  |
| Carbinat Indee                                         | 744  |
| Subject Index                                          |      |

# Chapter 1

# **Density Estimation**

The estimation of probability density functions (PDFs) and cumulative distribution functions (CDFs) are cornerstones of applied data analysis in the social sciences. Testing for the equality of two distributions (or moments thereof) is perhaps the most basic test in all of applied data analysis. Economists, for instance, devote a great deal of attention to the study of income distributions and how they vary across regions and over time. Though the PDF and CDF are often the objects of direct interest, their estimation also serves as an important building block for other objects being modeled such as a conditional mean (i.e., a "regression function"), which may be directly modeled using nonparametric or semiparametric methods (a conditional mean is a function of a conditional PDF, which is itself a ratio of unconditional PDFs). After mastering the principles underlying the nonparametric estimation of a PDF, the nonparametric estimation of the workhorse of applied data analysis, the conditional mean function considered in Chapter 2, progresses in a fairly straightforward manner. Careful study of the approaches developed in Chapter 1 will be most helpful for understanding material presented in later chapters.

We begin with the estimation of a univariate PDF in Sections 1.1 through 1.3, turn to the estimation of a univariate CDF in Sections 1.4 and 1.5, and then move on to the more general multivariate setting in Sections 1.6 through 1.8. Asymptotic normality, uniform rates of convergence, and bias reduction methods appear in Sections 1.9 through 1.12. Numerous illustrative applications appear in Section 1.13, while theoretical and applied exercises can be found in Section 1.14

We now proceed with a discussion of how to estimate the PDF

 $f_X(x)$  of a random variable X. For notational simplicity we drop the subscript X and simply use f(x) to denote the PDF of X. Some of the treatments of the kernel estimation of a PDF discussed in this chapter are drawn from the two excellent monographs by Silverman (1986) and Scott (1992).

# 1.1 Univariate Density Estimation

To best appreciate why one might consider using nonparametric methods to estimate a PDF, we begin with an illustrative example, the parametric estimation of a PDF.

**Example 1.1.** Suppose  $X_1, X_2, \ldots, X_n$  represent independent and identically distributed (i.i.d.) draws from a normal distribution with mean  $\mu$  and variance  $\sigma^2$ . We wish to estimate the normal PDF f(x).

By assumption, f(x) has a known parametric functional form (i.e., univariate normal) given by  $f(x) = (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{1}{2}(x-\mu)^2/\sigma^2\right]$ , where the mean  $\mu = E(X)$  and variance  $\sigma^2 = E[(X-E(X))^2] = \operatorname{var}(X)$ are the only unknown parameters to be estimated. One could estimate  $\mu$  and  $\sigma^2$  by the method of maximum likelihood as follows. Under the i.i.d. assumption, the joint PDF of  $(X_1, \ldots, X_n)$  is simply the product of the univariate PDFs, which may be written as

$$f(X_1,\ldots,X_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(X_i-\mu)^2}{2\sigma^2}} = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (X_i-\mu)^2}.$$

Conditional upon the observed sample and taking the logarithm, this gives us the log-likelihood function

$$\mathcal{L}(\mu, \sigma^2) \equiv \ln f(X_1, \dots, X_n; \mu, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2.$$

The method of maximum likelihood proceeds by choosing those parameters that make it most likely that we observed the sample at hand given our distributional assumption. Thus, the likelihood function (or a monotonic transformation thereof, e.g., ln) expresses the plausibility of different values of  $\mu$  and  $\sigma^2$  given the observed sample. We then maximize the likelihood function with respect to these two unknown parameters.

4

#### 1.1. UNIVARIATE DENSITY ESTIMATION

The necessary first order conditions for a maximization of the loglikelihood function are  $\partial \mathcal{L}(\mu, \sigma^2) / \partial \mu = 0$  and  $\partial \mathcal{L}(\mu, \sigma^2) / \partial \sigma^2 = 0$ . Solving these first order conditions for the two unknown parameters  $\mu$  and  $\sigma^2$  yields

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and  $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})^2.$ 

 $\hat{\mu}$  and  $\hat{\sigma}^2$  above are the maximum likelihood estimators of  $\mu$  and  $\sigma^2$ , respectively, and the resulting estimator of f(x) is

$$\hat{f}(x) = \frac{1}{\sqrt{2\pi\hat{\sigma}^2}} \exp\left[-\frac{1}{2}\left(\frac{x-\hat{\mu}}{\hat{\sigma}}\right)^2\right].$$

The "Achilles heel" of any parametric approach is of course the requirement that, prior to estimation, the analyst must specify the exact parametric functional form for the object being estimated. Upon reflection, the parametric approach is somewhat circular since we initially set out to estimate an unknown density but must first assume that the density is in fact known (up to a handful of unknown parameters, of course). Having based our estimate on the assumption that the density is a member of a known parametric family, we must then naturally confront the possibility that the parametric model is "misspecified," i.e., not consistent with the population from which the data was drawn. For instance, by assuming that X is drawn from a normally distributed population in the above example, we in fact impose a number of potentially quite restrictive assumptions: symmetry, unimodality, monotonically decreasing away from the mode and so on. If the true density were in fact asymmetric or possessed multiple modes, or was nonmonotonic away from the mode, then the presumption of distributional normality may provide a misleading characterization of the true density and could thereby produce erroneous estimates and lead to unsound inference.

At this juncture many readers will no doubt be pointing out that, having estimated a parametric PDF, one can always test whether the underlying distributional assumption is valid. We are, of course, completely sympathetic toward such arguments. Often, however, the rejection of a distributional assumption fails to provide any clear alternative. That is, we can reject the assumption of normality, but this rejection leaves us where we started, perhaps having ruled out but one of a large

number of candidate distributions. Against this backdrop, researchers might instead consider nonparametric approaches.

Nonparametric methods circumvent problems arising from the need to specify parametric functional forms prior to estimation. Rather than presume one knows the exact functional form of the object being estimated, one instead presumes that it satisfies some regularity conditions such as smoothness and differentiability. This does not, however, come without cost. By imposing less structure on the functional form of the PDF than do parametric methods, nonparametric methods require more data to achieve the same degree of precision as a *correctly specified* parametric model. Our primary focus in this text is on a class of estimators known as "nonparametric kernel estimators" (a "kernel function" is simply a weighting function), though in Chapters 14 and 15 we provide a treatment of alternative nonparametric methodologies including nearest neighbor and series methods.

Before proceeding to a formal theoretical analysis of nonparametric density estimation methods, we first consider a popular example of estimating the probability of a head on a toss of a coin which is closely related to the nonparametric estimation of a CDF. This in turn will lead us to the nonparametric estimation of a PDF.

**Example 1.2.** Suppose we have a coin (perhaps an unfair one) and we want to estimate the probability of flipping the coin and having it land heads up. Let p = P(H) denote the (unknown) population probability of obtaining a head. Taking a relative frequency approach, we would flip the coin n times, count the frequency of heads in n trials, and compute the relative frequency given by

$$\hat{p} = \frac{1}{n} \{ \# \text{ of heads} \},$$
 (1.1)

which provides an estimate of p. The  $\hat{p}$  defined in (1.1) is often referred to as a "frequency estimator" of p, and it is also the maximum likelihood estimator of p (see Exercise 1.2). The estimator  $\hat{p}$  is, of course, fully nonparametric. Intuitively, one would expect that, if n is large, then  $\hat{p}$  should be "close" to p. Indeed, one can easily show that the mean squared error (MSE) of  $\hat{p}$  is given by (see Exercise 1.3)

$$MSE\left(\hat{p}\right) \stackrel{\text{def}}{=} E\left[\left(\hat{p}-p\right)^2\right] = \frac{p(1-p)}{n},$$

so  $MSE(\hat{p}) \to 0$  as  $n \to \infty$ , which is termed as  $\hat{p}$  converges to p in mean square error; see Appendix A for the definitions of various modes of convergence.

6

#### 1.1. UNIVARIATE DENSITY ESTIMATION

We now discuss how to obtain an estimator of the CDF of X, which we denote by F(x). The CDF is defined as

$$F(x) = \mathbf{P}[X \le x].$$

With i.i.d. data  $X_1, \ldots, X_n$  (i.e., random draws from the distribution  $F(\cdot)$ ), one can estimate F(x) by

$$F_n(x) = \frac{1}{n} \{ \# \text{ of } X_i \text{'s} \le x \}.$$
 (1.2)

Equation (1.2) has a nice intuitive interpretation. Going back to our coin-flip example, if a coin is such that the probability of obtaining a head when we flip it equals F(x) (F(x) is unknown), and if we treat the collection of data  $X_1, \ldots, X_n$  as flipping a coin n times and we say that a head occurs on the  $i^{\text{th}}$  trial if  $X_i \leq x$ , then  $P(H) = P(X_i \leq x) = F(x)$ . The familiar frequency estimator of P(H) is equal to the number of heads divided by the number of trials:

$$\hat{P}(H) = \frac{\# \text{ of heads}}{n} = \frac{1}{n} \{ \# \text{ of } X_i \text{'s} \le x \} \equiv F_n(x).$$
(1.3)

Therefore, we call (1.2) a frequency estimator of F(x). Just as befor when estimating P(H), we expect intuitively that as n gets large, P(H) should yield a more accurate estimate of P(H). By the same reasoning, one would expect that as  $n \to \infty$ ,  $F_n(x)$  yields a more accurate estimate of F(x). Indeed, one can easily show that  $F_n(x) \to F(x)$  in MSE, which implies that  $F_n(x)$  converges to F(x) in probability and also in distribution as  $n \to \infty$ . In Appendix A we introduce the concepts of convergence in mean square error, convergence in probability, convergence in distribution, and almost sure convergence. It is well established that  $F_n(x)$  indeed converges to F(x) in each of these various senses. These concepts of convergence are necessary as it is easy to show that the ordinary limit of  $F_n(x)$  does not exist, i.e.,  $\lim_{n\to\infty} F_n(x)$  does not exist (see Exercise 1.3, where the definition of an ordinary limit is provided). This example highlights the necessity of introducing new concepts of convergence modes such as convergence in mean square error and convergence in probability.

Now we take up the question of how to estimate a PDF f(x) without making parametric presumptions about it's functional form. From the

definition of f(x) we have<sup>1</sup>

$$f(x) = \frac{d}{dx}F(x).$$
(1.4)

From (1.2) and (1.4), an obvious estimator of f(x) is<sup>2</sup>

$$\hat{f}(x) = \frac{F_n(x+h) - F_n(x-h)}{2h},$$
(1.5)

where h is a small positive increment.

By substituting (1.2) into (1.5), we obtain

$$\hat{f}(x) = \frac{1}{2nh} \{ \# \text{ of } X_1, \dots, X_n \text{ falling in the interval } [x - h, x + h] \}.$$
(1.6)

If we define a uniform kernel function given by

$$k(z) = \begin{cases} 1/2 & \text{if } |z| \le 1\\ 0 & \text{otherwise,} \end{cases}$$
(1.7)

then it is easy to see that  $\hat{f}(x)$  given by (1.5) can also be expressed as

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} k\left(\frac{X_i - x}{h}\right).$$
 (1.8)

Equation (1.8) is called a uniform kernel estimator because the kernel function  $k(\cdot)$  defined in (1.7) corresponds to a uniform PDF. In general, we refer to  $k(\cdot)$  as a kernel function and to h as a smoothing parameter (or, alternatively, a bandwidth or window width). Equation (1.8) is sometimes referred to as a "naïve" kernel estimator.

In fact one might use many other possible choices for the kernel function  $k(\cdot)$  in this context. For example, one could use a standard normal kernel given by

$$k(v) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}v^2}, \quad -\infty < v < \infty.$$
 (1.9)

This class of estimators can be found in the first published paper on kernel density estimation by Rosenblatt (1956), while Parzen (1962) established a number of properties associated with this class of estimators

<sup>&</sup>lt;sup>1</sup>We only consider the continuous X case in this chapter. We deal with the discrete X case in Chapters 3 and 4.

<sup>&</sup>lt;sup>2</sup>Recall that the definition of the derivative of a function g(x) is given by  $dg(x)/dx = \lim_{h \to 0} \frac{g(x+h)-g(x)}{h}$ , or, equivalently,  $dg(x)/dx = \lim_{h \to 0} \frac{g(x+h)-g(x-h)}{2h}$ .

#### 1.1. UNIVARIATE DENSITY ESTIMATION

and relaxed the nonnegativity assumption in order to obtain estimators which are more efficient. For this reason, this approach is sometimes referred to as "Rosenblatt-Parzen kernel density estimation."

We will prove shortly that the kernel estimator f(x) defined in (1.8) constructed from any general nonnegative bounded kernel function  $k(\cdot)$  that satisfies

(i) 
$$\int k(v) dv = 1$$
  
(ii) 
$$k(v) = k(-v)$$
  
(iii) 
$$\int v^2 k(v) dv = \kappa_2 > 0$$
(1.10)

is a consistent estimator of f(x). Note that the symmetry condition (ii) implies that  $\int vk(v) dv = 0$ . By consistency, we mean that  $\hat{f}(x) \to f(x)$ in probability (convergence in probability is defined in Appendix A). Note that  $k(\cdot)$  defined in (1.10) is a (symmetric) PDF. For recent work on kernel methods with asymmetric kernels, see Abadir and Lawford (2004).

To define various modes of convergence, we first introduce the concept of the "Euclidean norm" ("Euclidean length") of a vector. Given a  $q \times 1$  vector  $x = (x_1, x_2, \ldots, x_q)' \in \mathbb{R}^q$ , we use ||x|| to denote the Euclidean length of x, which is defined by

$$||x|| = [x'x]^{1/2} \equiv \sqrt{x_1^2 + x_2^2 + \dots + x_q^2}.$$

When q = 1 (a scalar), ||x|| is simply the absolute value of x.

In the appendix we discuss the notation  $O(\cdot)$  ("big Oh") and  $o(\cdot)$ ("small Oh"). Let  $a_n$  be a nonstochastic sequence. We say that  $a_n = O(n^{\alpha})$  if  $|a_n| \leq Cn^{\alpha}$  for all n sufficiently large, where  $\alpha$  and C(>0) are constants. Similarly, we say that  $a_n = o(n^{\alpha})$  if  $a_n/n^{\alpha} \to 0$  as  $n \to \infty$ . We are now ready to prove the MSE consistency of  $\hat{f}(x)$ .

**Theorem 1.1.** Let  $X_1, \ldots, X_n$  denote *i.i.d.* observations having a three-times differentiable PDF f(x), and let  $f^{(s)}(x)$  denote the sth order derivative of f(x) (s = 1, 2, 3). Let x be an interior point in the support of X, and let  $\hat{f}(x)$  be that defined in (1.8). Assume that the kernel function  $k(\cdot)$  is bounded and satisfies (1.10). Also, as  $n \to \infty$ ,  $h \to 0$  and  $nh \to \infty$ , then

$$MSE\left(\hat{f}(x)\right) = \frac{h^4}{4} \left[\kappa_2 f^{(2)}(x)\right]^2 + \frac{\kappa f(x)}{nh} + o\left(h^4 + (nh)^{-1}\right) \\ = O\left(h^4 + (nh)^{-1}\right), \qquad (1.11)$$

where  $\kappa_2 = \int v^2 k(v) dv$  and  $\kappa = \int k^2(v) dv$ .

Proof of Theorem 1.1.

$$MSE\left(\hat{f}(x)\right) \equiv E\left\{\left[\hat{f}(x) - f(x)\right]^{2}\right\}$$
$$= \operatorname{var}\left(\hat{f}(x)\right) + \left[E\left(\hat{f}(x)\right) - f(x)\right]^{2}$$
$$\equiv \operatorname{var}\left(\hat{f}(x)\right) + \left[\operatorname{bias}\left(\hat{f}(x)\right)\right]^{2}.$$

We will evaluate the bias $(\hat{f}(x))$  and var $(\hat{f}(x))$  terms separately.

For the bias calculation we will need to use the Taylor expansion formula. For a univariate function g(x) that is m times differentiable, we have

$$g(x) = g(x_0) + g^{(1)}(x_0)(x - x_0) + \frac{1}{2!}g^{(2)}(x_0)(x - x_0)^2 + \dots + \frac{1}{(m-1)!}g^{(m-1)}(x_0)(x - x_0)^{m-1} + \frac{1}{m!}g^{(m)}(\xi)(x - x_0)^m,$$

where  $g^{(s)}(x_0) = \frac{\partial^s g(x)}{\partial x^s}|_{x=x_0}$ , and  $\xi$  lies between x and  $x_0$ .

#### 1.1. UNIVARIATE DENSITY ESTIMATION

The bias term is given by

$$\begin{aligned} \text{bias}\left(\hat{f}(x)\right) &= \mathbf{E}\left\{\frac{1}{nh}\sum_{i=1}^{n}k\left(\frac{X_{i}-x}{h}\right)\right\} - f(x) \\ &= h^{-1}\mathbf{E}\left[k\left(\frac{X_{1}-x}{h}\right)\right] - f(x) \\ &\text{(by identical distribution)} \\ &= h^{-1}\int f(x_{1})k\left(\frac{x_{1}-x}{h}\right)dx_{1} - f(x) \\ &= h^{-1}\int f(x+hv)k(v)h\,dv - f(x) \\ &\text{(change of variable, } x_{1}-x=hv) \\ &= \int \left\{f(x) + f^{(1)}(x)hv + \frac{1}{2}f^{(2)}(x)h^{2}v^{2} + O(h^{3})\right\}k(v)\,dv \\ &- f(x) \\ &= \left\{f(x) + 0 + \frac{h^{2}}{2}f^{(2)}(x)\int v^{2}k(v)\,dv + O\left(h^{3}\right)\right\} - f(x) \\ &\text{by (1.10)} \\ &= \frac{h^{2}}{2}f^{(2)}(x)\int v^{2}k(v)\,dv + O\left(h^{3}\right), \end{aligned}$$
(1.12)

where the  $O(h^3)$  term comes from

$$(1/3!)h^3 \left| \int f^{(3)}(\tilde{x})v^3k(v) \right| \, dv \le Ch^3 \int \left| v^3k(v)dv \right| = O\left(h^3\right),$$

where C is a positive constant, and where  $\tilde{x}$  lies between x and x + hv.

Note that in the above derivation we assume that f(x) is threetimes differentiable. We can weaken this condition to f(x) being twice differentiable, resulting in  $(O(h^3)$  becomes  $o(h^2)$ , see Exercise 1.5)

bias 
$$(\hat{f}(x)) = E(\hat{f}(x)) - f(x)$$
  
=  $\frac{h^2}{2} f^{(2)}(x) \int v^2 k(v) \, dv + o(h^2).$  (1.13)

Next we consider the variance term. Observe that

$$\operatorname{var}\left(\hat{f}(x)\right) = \operatorname{var}\left[\frac{1}{nh}\sum_{i=1}^{n} k\left(\frac{X_{i}-x}{h}\right)\right]$$
$$= \frac{1}{n^{2}h^{2}}\left\{\sum_{i=1}^{n}\operatorname{var}\left[k\left(\frac{X_{i}-x}{h}\right)\right] + 0\right\}$$
$$(by independence)$$
$$= \frac{1}{nh^{2}}\operatorname{var}\left(k\left(\frac{X_{1}-x}{h}\right)\right)$$
$$(by identical distribution)$$
$$= \frac{1}{nh^{2}}\left\{\operatorname{E}\left[k^{2}\left(\frac{X_{1}-x}{h}\right)\right] - \left[\operatorname{E}\left(k\left(\frac{X_{1}-x}{h}\right)\right)\right]^{2}\right\}$$
$$= \frac{1}{nh^{2}}\left\{\int f(x_{1})k^{2}\left(\frac{x_{1}-x}{h}\right)dx_{1}\right]^{2}\right\}$$
$$= \frac{1}{nh^{2}}\left\{h\int f(x+hv)k^{2}(v)dv$$
$$- \left[h\int f(x+hv)k^{2}(v)dv\right]^{2}\right\}$$
$$= \frac{1}{nh^{2}}\left\{h\int \left[f(x) + f^{(1)}(\xi)hv\right]k^{2}(v)dv - O\left(h^{2}\right)\right\}$$
$$= \frac{1}{nh}\left\{f(x)\int k^{2}(v)dv + O\left(h\int |v|k^{2}(v)dv\right) - O(h)\right\}$$
$$= \frac{1}{nh}\left\{\kappa f(x) + O(h)\right\}, \qquad (1.14)$$

where  $\kappa = \int k^2(v) dv$ .

Equations (1.12) and (1.14) complete the proof of Theorem 1.1.  $\Box$ Theorem 1.1 implies that (by Theorem A.7 of Appendix A)

$$\hat{f}(x) - f(x) = O_p\left(h^2 + (nh)^{-1/2}\right) = o_p(1).$$

By choosing  $h = cn^{-1/\alpha}$  for some c > 0 and  $\alpha > 1$ , the conditions required for consistent estimation of f(x),  $h \to 0$  and  $nh \to \infty$ ,

#### 1.1. UNIVARIATE DENSITY ESTIMATION

are clearly satisfied. The overriding question is what values of c and  $\alpha$  should be used in practice. As can be seen, for a given sample size n, if h is small, the resulting estimator will have a small bias but a large variance. On the other hand, if h is large, then the resulting estimator will have a small variance but a large bias. To minimize  $MSE(\hat{f}(x))$ , one should balance the squared bias and the variance terms. The optimal choice of h (in the sense that  $MSE(\hat{f}(x))$  is minimized) should satisfy  $dMSE(\hat{f}(x))/dh = 0$ . By using (1.11), it is easy to show that the optimal h that minimizes the leading term of  $MSE(\hat{f}(x))$  is given by

$$h_{\rm opt} = c(x)n^{-1/5},$$
 (1.15)

where  $c(x) = \left\{ \kappa f(x) / [\kappa_2 f^{(2)}(x)]^2 \right\}^{1/5}$ .

 $MSE(\hat{f}(x))$  is clearly a "pointwise" property, and by using this as the basis for bandwidth selection we are obtaining a bandwidth that is optimal when estimating a density *at a point x*. Examining c(x) in (1.15), we can see that a bandwidth which is optimal for estimation at a point x located in the tail of a distribution will differ from that which is optimal for estimation at a point located at, say, the mode. Suppose that we are interested not in tailoring the bandwidth to the pointwise estimation of f(x) but instead in tailoring the bandwidth globally for all points x, that is, for all x in the support of  $f(\cdot)$  (the support of x is defined as the set of points of x for which f(x) > 0, i.e.,  $\{x : f(x) > 0\}$ ). In this case we can choose h optimally by minimizing the "integrated MSE" (IMSE) of  $\hat{f}(x)$ . Using (1.11) we have

IMSE
$$(\hat{f}) \stackrel{\text{def}}{=} \int E\left[\hat{f}(x) - f(x)\right]^2 dx = \frac{1}{4}h^4\kappa_2^2 \int \left[f^{(2)}(x)\right]^2 dx + \frac{\kappa}{nh} + o\left(h^4 + (nh)^{-1}\right).$$
 (1.16)

Again letting  $h_{\text{opt}}$  denote the optimal smoothing parameter that minimizes the leading terms of (1.16), we use simple calculus to get

$$h_{\rm opt} = c_0 n^{-1/5},$$
 (1.17)

where  $c_0 = \kappa_2^{-2/5} \kappa^{1/5} \left\{ \int \left[ f^{(2)}(x) \right]^2 dx \right\}^{-1/5} > 0$  is a positive constant. Note that if  $f^{(2)}(x) = 0$  for (almost) all x, then  $c_0$  is not well defined. For example, if X is, say, uniformly distributed over its support, then  $f^{(s)}(x) = 0$  for all x and for all  $s \ge 1$ , and (1.17) is not defined in this case. It can be shown that in this case (i.e., when X is uniformly

distributed),  $h_{\text{opt}}$  will have a different rate of convergence equal to  $n^{-1/3}$ ; see the related discussion in Section 1.3.1 and Exercise 1.16.

An interesting extension of the above results can be found in Zinde-Walsh (2005), who examines the asymptotic process for the kernel density estimator by means of generalized functions and generalized random processes and presents novel results for characterizing the behavior of kernel density estimators when the density does not exist, i.e., when the density does not exist as a locally summable function.

# 1.2 Univariate Bandwidth Selection: Rule-of-Thumb and Plug-In Methods

Equation (1.17) reveals that the optimal smoothing parameter depends on the integrated second derivative of the unknown density through  $c_0$ . In practice, one might choose an initial "pilot value" of h to estimate  $\int [f^{(2)}(x)]^2 dx$  nonparametrically, and then use this value to obtain  $h_{\text{opt}}$  using (1.17). Such approaches are known as "plug-in methods" for obvious reasons. One popular way of choosing the initial h, suggested by Silverman (1986), is to assume that f(x) belongs to a parametric family of distributions, and then to compute h using (1.17). For example, if f(x) is a normal PDF with variance  $\sigma^2$ , then  $\int [f^{(2)}(x)]^2 dx = 3/[8\pi^{1/2}\sigma^5]$ . If a standard normal kernel is used, using (1.17), we get the pilot estimate

$$h_{\rm pilot} = (4\pi)^{-1/10} \left[ (3/8)\pi^{-1/2} \right]^{-1/5} \sigma n^{-1/5} \approx 1.06\sigma n^{-1/5}, \quad (1.18)$$

which is then plugged into  $\int [\hat{f}^{(2)}(x)]^2 dx$ , which then may be used to obtain  $h_{\text{opt}}$  using (1.17). A clearly undesirable property of the plug-in method is that it is not fully automatic because one needs to choose an initial value of h to estimate  $\int [f^{(2)}(x)]^2 dx$  (see Marron, Jones and Sheather (1996) and also Loader (1999) for further discussion).

Often, practitioners will use (1.18) itself for the bandwidth. This is known as the "normal reference rule-of-thumb" approach since it is the optimal bandwidth for a particular family of distributions, in this case the normal family. Should the underlying distribution be "close" to a normal distribution, then this will provide good results, and for exploratory purposes it is certainly computationally attractive. In practice,  $\sigma$  is replaced by the sample standard deviation of  $\{X_i\}_{i=1}^n$ , while Silverman (1986, p. 47) advocates using a more robust measure  $A = \min(\text{standard deviation}, \text{interquartile range}/1.34).$ 

We now turn our attention to a discussion of a number of fully automatic or "data-driven" methods for selecting h that are tailored to the sample at hand.

# 1.3 Univariate Bandwidth Selection: Cross-Validation Methods

In both theoretical and practical settings, nonparametric kernel estimation has been established as relatively insensitive to choice of kernel function. However, the same cannot be said for bandwidth selection. Different bandwidths can generate radically differing impressions of the underlying distribution. If kernel methods are used simply for "exploratory" purposes, then one might undersmooth the density by choosing a small value of h and let the eye do any remaining smoothing. Alternatively, one might choose a range of values for h and plot the resulting estimates. However, for sound analysis and inference, a principle having some known optimality properties must be adopted. One can think of choosing the bandwidth as being analogous to choosing the number of terms in a series approximation; the more terms one includes in the approximation, the more flexible the resulting model becomes, while the smaller the bandwidth of a kernel estimator, the more flexible it becomes. However, increasing flexibility (reducing potential bias) necessarily leads to increased variability (increasing potential variance). Seen in this light, one naturally appreciates how a number of methods discussed below are motivated by the need to balance the squared bias and variance of the resulting estimate.

## 1.3.1 Least Squares Cross-Validation

Least squares cross-validation is a fully automatic data-driven method of selecting the smoothing parameter h, originally proposed by Rudemo (1982), Stone (1984) and Bowman (1984) (see also Silverman (1986, pp. 48-51)). This method is based on the principle of selecting a bandwidth that minimizes the integrated squared error of the resulting estimate, that is, it provides an optimal bandwidth tailored to all x in the support of f(x).

The integrated squared difference between  $\hat{f}$  and f is

$$\int \left[\hat{f}(x) - f(x)\right]^2 dx = \int \hat{f}(x)^2 dx - 2 \int \hat{f}(x) f(x) dx + \int f(x)^2 dx.$$
(1.19)

As the third term on the right-hand side of (1.19) is unrelated to h, choosing h to minimize (1.19) is therefore equivalent to minimizing

$$\int \hat{f}(x)^2 \, dx - 2 \int \hat{f}(x) f(x) \, dx \tag{1.20}$$

with respect to h. In the second term,  $\int \hat{f}(x)f(x) dx$  can be written as  $E_X[\hat{f}(X)]$ , where  $E_X(\cdot)$  denotes expectation with respect to X and not with respect to the random observations  $\{X_j\}_{j=1}^n$  used for computing  $\hat{f}(\cdot)$ . Therefore, we may estimate  $E_X[\hat{f}(X)]$  by  $n^{-1}\sum_{i=1}^n \hat{f}_{-i}(X_i)$  (i.e., replacing  $E_X$  by its sample mean), where

$$\hat{f}_{-i}(X_i) = \frac{1}{(n-1)h} \sum_{j=1, j \neq i}^n k\left(\frac{X_i - X_j}{h}\right)$$
(1.21)

is the leave-one-out kernel estimator of  $f(X_i)$ .<sup>3</sup> Finally, we estimate the first term  $\int \hat{f}(x)^2 dx$  by

$$\int \hat{f}(x)^2 dx = \frac{1}{n^2 h^2} \sum_{i=1}^n \sum_{j=1}^n \int k\left(\frac{X_i - x}{h}\right) k\left(\frac{X_j - x}{h}\right) dx$$
$$= \frac{1}{n^2 h} \sum_{i=1}^n \sum_{j=1}^n \bar{k}\left(\frac{X_i - X_j}{h}\right),$$
(1.22)

where  $\bar{k}(v) = \int k(u)k(v-u) du$  is the twofold convolution kernel derived from  $k(\cdot)$ . If  $k(v) = \exp(-v^2/2)/\sqrt{2\pi}$ , a standard normal kernel, then  $\bar{k}(v) = \exp(-v^2/4)/\sqrt{4\pi}$ , a normal kernel (i.e., normal PDF) with mean zero and variance two, which follows since two independent N(0,1)random variables sum to a N(0,2) random variable.

<sup>&</sup>lt;sup>3</sup>Here we emphasize that it is important to use the leave-one-out kernel estimator for computing  $E_X(\cdot)$  above. This is because the expectations operator presumes that the X and the  $X_j$ 's are independent of one another. Without using the leave-one-out estimator, the cross-validation method will break down; see Exercise 1.6 (iii).

#### 1.3. UNIVARIATE BANDWIDTH: CROSS-VALIDATION

Least squares cross-validation therefore chooses h to minimize

$$CV_{f}(h) = \frac{1}{n^{2}h} \sum_{i=1}^{n} \sum_{j=1}^{n} \bar{k} \left( \frac{X_{i} - X_{j}}{h} \right) - \frac{2}{n(n-1)h} \sum_{i=1}^{n} \sum_{j \neq i, j=1}^{n} k \left( \frac{X_{i} - X_{j}}{h} \right), \quad (1.23)$$

which is typically undertaken using numerical search algorithms.

It can be shown that the leading term of  $CV_f(h)$  is  $CV_{f0}$  given by (ignoring a term unrelated to h; see Exercise 1.6)

$$CV_{f0}(h) = B_1 h^4 + \frac{\kappa}{nh},$$
 (1.24)

where  $B_1 = (\kappa_2^2/4) \left[ \int [f^{(2)}(x)]^2 dx \right] (\kappa_2 = \int v^2 k(v) dv, \ \kappa = \int k^2(v) dv).$ Thus, as long as  $f^{(2)}(x)$  does not vanish for (almost) all x, we have  $B_1 > 0.$ 

Let  $h^0$  denote the value of h that minimizes  $CV_{f0}$ . Simple calculus shows that  $h^0 = c_0 n^{-1/5}$  where

$$c_0 = \left[\kappa/(4B_1)\right]^{1/5} = \kappa^{1/5} \kappa_2^{-2/5} \left\{ \left[\int f^{(2)}(x)\right]^2 dx \right\}^{-1/5}$$

A comparison of  $h^0$  with  $h_{opt}$  in (1.17) reveals that the two are identical, i.e.,  $h^0 \equiv h_{opt}$ . This arises because  $h_{opt}$  minimizes  $\int E[\hat{f}(x) - f(x)]^2 dx$ , while  $h^0$  minimizes  $E[CV_f(h)]$ , the leading term of  $CV_f(h)$ . It can be easily seen that  $E[CV_f(h)] + \int f(x)^2 dx$  is an alternative version of  $\int E[\hat{f}(x) - f(x)]^2 dx$ ; hence,  $E[CV_f(h)] + \int f(x)^2 dx$  also estimates  $\int E[\hat{f}(x) - f(x)]^2 dx$ . Given that  $\int f(x)^2 dx$  is unrelated to h, one would expect that  $h^0$  and  $h_{opt}$  should be the same.

Let  $\hat{h}$  denote the value of h that minimizes  $CV_f(h)$ . Given that  $CV_f(h) = CV_{f0} + (s.o.)$ , where (s.o.) denotes smaller order terms (than  $CV_{f0}$ ) and terms unrelated to h, it can be shown that  $\hat{h} = h^0 + o_p(h^0)$ , or, equivalently, that

$$\frac{\hat{h} - h^0}{h^0} \equiv \frac{\hat{h}}{h^0} - 1 \to 0 \text{ in probability.}$$
(1.25)

Intuitively, (1.25) is easy to understand because  $CV_f(h) = CV_{f0}(h) + (s.o.)$ , thus asymptotically an h that minimizes  $CV_f(h)$  should be

close to an h that minimizes  $CV_{f0}(h)$ ; therefore, we expect that  $\hat{h}$  and  $h^0$  will be close to each other in the sense of (1.25). Härdle, Hall and Marron (1988) showed that  $(\hat{h} - h^0)/h^0 = O_p(n^{-1/10})$ , which indeed converges to zero (in probability) but at an extremely slow rate.

We again underscore the need to use the leave-one-out kernel estimator when constructing  $CV_f$  as given in (1.23). If instead one were to use the standard kernel estimator, least squares cross-validation will break down, yielding  $\hat{h} = 0$ . Exercise 1.6 shows that if one does not use the leave-one-out kernel estimator when estimating  $f(X_i)$ , then h = 0 minimizes the objective function, which of course violates the consistency condition that  $nh \to \infty$  as  $n \to \infty$ .

Here we implicitly impose the restriction that  $f^{(2)}(x)$  is not a zero function, which rules out the case for which f(x) is a uniform PDF. In fact this condition can be relaxed. Stone (1984) showed that, as long as f(x) is bounded, then the least squares cross-validation method will select h optimally in the sense that

$$\frac{\int [\hat{f}(x,\hat{h}) - f(x)]^2 dx}{\inf_h \int [\hat{f}(x,h) - f(x)]^2 dx} \to 1 \text{ almost surely}, \qquad (1.26)$$

where  $\hat{f}(x, \hat{h})$  denotes the kernel estimator of f(x) with cross-validation selected  $\hat{h}$ , and  $\hat{f}(x, h)$  is the kernel estimator with a generic h. Obviously, the ratio defined in (1.26) should be greater than or equal to one for any n. Therefore, Stone's (1984) result states that, asymptotically, cross-validated smoothing parameter selection is optimal in the sense of minimizing the estimation integrated square error. In Exercise 1.16 we further discuss the intuition underlying why  $\hat{h} \to 0$  even when f(x)is a uniform PDF.

#### 1.3.2 Likelihood Cross-Validation

Likelihood cross-validation is another automatic data-driven method for selecting the smoothing parameter h. This approach yields a density estimate which has an entropy theoretic interpretation, since the estimate will be close to the actual density in a Kullback-Leibler sense. This approach was proposed by Duin (1976).

Likelihood cross-validation chooses h to maximize the (leave-oneout) log likelihood function given by

$$\mathcal{L} = \ln L = \sum_{i=1}^{n} \ln \hat{f}_{-i}(X_i),$$

#### 1.4. UNIVARIATE CDF ESTIMATION

where  $\hat{f}_{-i}(X_i)$  is the leave-one-out kernel estimator of  $f(X_i)$  defined in (1.21). The main problem with likelihood cross-validation is that it is severely affected by the tail behavior of f(x) and can lead to inconsistent results for fat tailed distributions when using popular kernel functions (see Hall (1987*a*, 1987*b*)). For this reason the likelihood crossvalidation method has elicited little interest in the statistical literature.

However, the likelihood cross-validation method may work well for a range of standard distributions (i.e., thin tailed). We consider the performance of likelihood cross-validation in Section 1.3.3, when we compare the impact of different bandwidth selection methods on the resulting density estimate, and in Section 1.13, where we consider empirical applications.

### 1.3.3 An Illustration of Data-Driven Bandwidth Selection

Figure 1.1 presents kernel estimates constructed from n = 500 observations drawn from a simulated bimodal distribution. The second order Gaussian (normal) kernel was used throughout, and least squares crossvalidation was used to select the bandwidth for the estimate appearing in the upper left plot of the figure, with  $h_{\rm lscv} = 0.19$ . We also plot the estimate based on the normal reference rule-of-thumb ( $h_{\rm ref} = 0.34$ ) along with an undersmoothed estimate ( $1/5 \times h_{\rm lscv}$ ) and an oversmoothed estimate ( $5 \times h_{\rm lscv}$ ).<sup>4</sup>

Figure 1.1 reveals that least squares cross-validation appears to yield a reasonable density estimate for this data, while the reference rule-of-thumb is inappropriate as it oversmooths somewhat. Extreme oversmoothing can lead to a unimodal estimate which completely obscures the true bimodal nature of the underlying distribution. Also, undersmoothing leads to too many false modes. See Exercise 1.17 for an empirical application that investigates the effects of under- and oversmoothing on the resulting density estimate.

# 1.4 Univariate CDF Estimation

In Section 1.1 we introduced the empirical CDF estimator  $F_n(x)$  given in (1.2), while Exercise 1.4 shows that it is a  $\sqrt{n}$ -consistent estimator

<sup>&</sup>lt;sup>4</sup>Likelihood cross-validation yielded a bandwidth of  $h_{\rm mlcv} = 0.15$ , which results in a density estimate virtually identical to that based upon least squares crossvalidation for this dataset.

#### 1. DENSITY ESTIMATION



Figure 1.1: Univariate kernel estimates of a mixture of normals using least squares cross-validation, the normal reference rule-of-thumb, undersmoothing, and oversmoothing (n = 500). The correct parametric data generating process appears as the solid line, the kernel estimate as the dashed line.

of F(x). However, this empirical CDF  $F_n(x)$  is not smooth as it jumps by 1/n at each sample realization point. One can, however, obtain a smoothed estimate of F(x) by integrating  $\hat{f}(x)$ . Define

$$\hat{F}(x) = \int_{-\infty}^{x} \hat{f}(v) \, dv = \frac{1}{n} \sum_{i=1}^{n} G\left(\frac{x - X_i}{h}\right), \tag{1.27}$$

where  $G(x) = \int_{-\infty}^{x} k(v) dv$  is a CDF (which follows directly because  $k(\cdot)$  is a PDF; see (1.10)). The next theorem provides the MSE of  $\hat{F}(x)$ .

For general queries, contact webmaster@press.princeton.edu

#### 1.4. UNIVARIATE CDF ESTIMATION

**Theorem 1.2.** Under conditions given in Bowman, Hall and Prvan (1998), in particular, assuming that F(x) is twice continuously differentiable, k(v) = d G(v)/dv is bounded, symmetric, and compactly supported, and that  $d^2F(x)/dx^2$  is Hölder-continuous,  $0 \le h \le Cn^{-\epsilon}$  for some  $0 < \epsilon < \frac{1}{8}$ , then as  $n \to \infty$ ,

$$MSE(\hat{F}) = E\left[\hat{F}(x) - F(x)\right]^2$$
  
=  $c_0(x)n^{-1} - c_1(x)hn^{-1} + c_2(x)h^4 + o\left(h^4 + hn^{-1}\right),$ 

where  $c_0 = F(x)(1 - F(x))$ ,  $c_1(x) = \alpha_0 f(x)$ ,  $\alpha_0 = 2 \int v G(v) k(v) dv$ , f(x) = dF(x)/dx,  $c_2(x) = [(\kappa_2/2)F^{(2)}(x)]^2$ ,  $\kappa_2 = \int v^2 k(v) dv$ , and where  $F^{(s)}(x) = d^s F(x)/dx^s$  is the sth derivative of F(x).

*Proof.* Note that  $E\left[\hat{F}(x)\right] = E\left[G\left(\frac{x-X_i}{h}\right)\right]$ . Then we have  $\left(\int = \int_{-\infty}^{\infty}\right)$ 

$$E\left[G\left(\frac{x-X_{i}}{h}\right)\right] = \int G\left(\frac{x-z}{h}\right)f(z)dz$$
  
=  $h\int G(v)f(x-hv)\,dv = -\int G(v)dF(x-hv)$   
=  $-\left[G(v)F(x-hv)\right]|_{v=-\infty}^{v=\infty} + \int k(v)F(x-hv)\,dv$   
=  $\int k(v)\left[F(x) - F^{(1)}(x)hv + (1/2)h^{2}F^{(2)}(x)v^{2}\right]\,dv$   
+  $o(h^{2})$   
=  $F(x) + (1/2)\kappa_{2}h^{2}F^{(2)}(x) + o(h^{2}),$  (1.28)

where at the second equality above we used

$$-\int_{\infty}^{-\infty} [\dots] \, dv = \int_{-\infty}^{\infty} [\dots] \, dv.$$

Also note that we did not use a Taylor expansion in  $\int G(v)F(x-hv) dv$ since  $\int v^m G(v) dv = +\infty$  for any  $m \ge 0$ . We first used integration by parts to get k(v), and then used the Taylor expansion since  $\int v^m k(v) dv$ is usually finite. For example, if k(v) has bounded support or k(v) is a standard normal kernel function, then  $\int v^m k(v) dv$  is finite for any  $m \ge 0$ .

Similarly,

$$E\left[G^2\left(\frac{x-X_i}{h}\right)\right] = \int G^2\left(\frac{x-z}{h}\right)f(z)dz = h\int G^2(v)f(x-hv)\,dv = -\int G^2(v)dF(x-hv) = 2\int G(v)k(v)F(x-hv)\,dv = 2\int G(v)k(v)[F(x)-F^{(1)}(x)hv]\,dv + O(h^2) = F(x) - \alpha_0 hf(x) + O(h^2),$$

$$(1.29)$$

where  $\alpha_0 = 2 \int v G(v) k(v) dv$ , and where we have used the fact that

$$2\int_{-\infty}^{\infty} G(v)k(v)\,dv = \int_{-\infty}^{\infty} dG^2(v) = G^2(\infty) - G^2(-\infty) = 1,$$

because  $G(\cdot)$  is a (user-specified) CDF kernel function.

From (1.28) we have  $bias[\hat{F}(x)] = (1/2)\kappa_2 h^2 F^{(2)}(x) + o(h^2)$ , and from (1.28) and (1.29) we have

$$\operatorname{var}\left[\hat{F}(x)\right] = n^{-1}\operatorname{var}\left[G\left(\frac{x-X_i}{h}\right)\right]$$
$$= n^{-1}\left\{\operatorname{E}\left[G^2\left(\frac{x-X_i}{h}\right)\right] - \left[\operatorname{E}G\left(\frac{x-X_i}{h}\right)\right]^2\right\}$$
$$= n^{-1}F(x)[1-F(x)] - \alpha_0 f(x)hn^{-1} + o(h/n).$$

Hence,

$$E\left(\hat{F}(x) - F(x)\right)^{2} = \left[bias\left(\hat{F}(x)\right)\right]^{2} + var\left[\hat{F}(x)\right]$$
$$= n^{-1}F(x)\left[1 - F(x)\right] + h^{4}(\kappa_{2}/2)^{2}\left[F^{(2)}(x)\right]^{2}$$
$$- \alpha_{0}f(x)\frac{h}{n} + o(h^{4} + n^{-1}h).$$
(1.30)

This completes the proof of Theorem 1.2.

From Theorem 1.2 we immediately obtain the following result on the IMSE of  $\hat{F}$ :

IMSE
$$(\hat{F}) = \int E\left[\hat{F}(x) - F(x)\right]^2 dx$$
  
=  $C_0 n^{-1} - C_1 h n^{-1} + C_2 h^4 + o\left(h^4 + h n^{-1}\right), \quad (1.31)$ 

where  $C_j = \int c_j(x) dx$  (j = 0, 1, 2). Letting  $h_0$  denote the value of h that minimizes the leading term of IMSE, we obtain

$$h_0 = a_0 n^{-1/3},$$

where  $a_0 = [C_1/(4C_2)]^{1/3}$ , hence the optimal smoothing parameter for estimating univariate a CDF has a faster rate of convergence than the optimal smoothing parameter for estimating a univariate PDF  $(n^{-1/3}$ versus  $n^{-1/5}$ ). With  $h \sim n^{-1/3}$ , we have  $h^2 = O(n^{-2/3}) = o(n^{-1/2})$ . Hence,  $\sqrt{n}[\hat{F}(x) - F(x)] \rightarrow N(0, F(x)[1 - F(x)])$  in distribution by the Liapunov central limit theorem (CLT); see Theorem A.5 in Appendix A for this and a range of other useful CLTs.

As is the case for nonparametric PDF estimation, nonparametric CDF estimation has widespread potential application though it is not nearly as widely used. For instance, it can be used to test stochastic dominance without imposing parametric assumptions on the underlying CDFs; see, e.g., Barrett and Donald (2003) and Linton, Whang and Maasoumi (2005).

# 1.5 Univariate CDF Bandwidth Selection: Cross-Validation Methods

Bowman et al. (1998) suggest choosing h for  $\hat{F}(x)$  by minimizing the following cross-validation function:

$$CV_F(h) = \frac{1}{n} \sum_{i=1}^n \int \left\{ \mathbf{1}(X_i \le x) - \hat{F}_{-i}(x) \right\}^2 dx, \qquad (1.32)$$

where  $\hat{F}_{-i}(x) = (n-1)^{-1} \sum_{j \neq i}^{n} G\left(\frac{x-X_j}{h}\right)$  is the leave-one-out estimator of F(x).

Bowman et al. (1998) show that  $CV_F = E[CV_F] + (s.o.)$  and that

(see Exercise 1.9)

$$E[CV_F(h)] = \int F(1-F) \, dx + \frac{1}{n-1} \int F(1-F) \, dx - C_1 h n^{-1} + C_2 h^4 + o\left(hn^{-1} + h^4\right).$$
(1.33)

We observe that (1.33) has the same leading term as  $\text{IMSE}(\hat{F})$ given in (1.31). Thus, asymptotically, selecting h via cross-validation leads to the same asymptotic optimality property for  $\hat{F}(x)$  that would arise when using  $h_0$ , the optimal deterministic smoothing parameter. If we let  $\hat{h}$  denote the cross-validated smoothing parameter, then it can be shown that  $\hat{h}/h_0 \to 1$  in probability. Note that when using  $\hat{h}$ , the asymptotic distribution of  $\hat{F}(x, \hat{h})$  is the same as  $\hat{F}(x, h_0)$  (by using a stochastic equicontinuity argument as outlined in Appendix A), that is,

$$\sqrt{n}\left(\hat{F}(x) - F(x)\right) \xrightarrow{d} N\left(0, F(x)(1 - F(x))\right), \qquad (1.34)$$

where  $\hat{F}(x)$  is defined in (1.27) with *h* replaced by  $\hat{h}$ . Note that no bias term appears in (1.34) since  $\operatorname{bias}(\hat{F}(x)) = O(h_0^2) = O(n^{-2/3}) = o(n^{-1/2})$ , which was not the case for PDF estimation. Here the squared bias term has order smaller than the leading variance term of  $O(n^{-1})$  (i.e.,  $\operatorname{var}(\hat{F}(x)) = O(n^{-1})$ ).

We now turn our attention to a generalization of the univariate kernel estimators developed above, namely multivariate kernel estimators. Again, we consider only the continuous case in this chapter; we tackle discrete and mixed continuous and discrete data cases in Chapters 3 and 4.

### **1.6** Multivariate Density Estimation

Suppose that  $X_1, \ldots, X_n$  constitute an i.i.d. *q*-vector  $(X_i \in \mathbb{R}^q, \text{ for some } q > 1)$  having a common PDF  $f(x) = f(x_1, x_2, \ldots, x_q)$ . Let  $X_{is}$  denote the *s*th component of  $X_i$   $(s = 1, \ldots, q)$ . Using a "product kernel function" constructed from the product of univariate kernel functions, we estimate the PDF f(x) by

$$\hat{f}(x) = \frac{1}{nh_1 \dots h_q} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right), \qquad (1.35)$$

#### 1.6. MULTIVARIATE DENSITY ESTIMATION

where  $K\left(\frac{X_{i}-x}{h}\right) = k\left(\frac{X_{i1}-x_1}{h_1}\right) \times \cdots \times k\left(\frac{X_{iq}-x_q}{h_q}\right)$ , and where  $k(\cdot)$  is a univariate kernel function satisfying (1.10).

The proof of MSE consistency of f(x) is similar to the univariate case. In particular, one can show that

bias 
$$\left(\hat{f}(x)\right) = \frac{\kappa_2}{2} \sum_{s=1}^q h_s^2 f_{ss}(x) + O\left(\sum_{s=1}^q h_s^3\right),$$
 (1.36)

where  $f_{ss}(x)$  is the second order derivative of f(x) with respect to  $x_s$ ,  $\kappa_2 = \int v^2 k(v) \, dv$ , and one can also show that

$$\operatorname{var}\left(\hat{f}(x)\right) = \frac{1}{nh_1\dots h_q} \left[\kappa^q f(x) + O\left(\sum_{s=1}^q h_s^2\right)\right] = O\left(\frac{1}{nh_1\dots h_q}\right),$$
(1.37)

where  $\kappa = \int k^2(v) dv$ . The proofs of (1.36) and (1.37), which are similar to the univariate X case, are left as an exercise (see Exercise 1.11).

Summarizing, we obtain the result

$$MSE\left(\hat{f}(x)\right) = \left[bias\left(\hat{f}(x)\right)\right]^2 + var\left(\hat{f}(x)\right)$$
$$= O\left(\left(\sum_{s=1}^q h_s^2\right)^2 + (nh_1 \dots h_q)^{-1}\right).$$

Hence, if as  $n \to \infty$ ,  $\max_{1 \le s \le q} h_s \to 0$  and  $nh_1 \dots h_q \to \infty$ , then we have  $\hat{f}(x) \to f(x)$  in MSE, which implies that  $\hat{f}(x) \to f(x)$  in probability.

As we saw in the univariate case, the optimal smoothing parameters  $h_s$  should balance the squared bias and variance terms, i.e.,  $h_s^4 = O\left((nh_1 \dots h_q)^{-1}\right)$  for all s. Thus, we have  $h_s = c_s n^{-1/(q+4)}$  for some positive constant  $c_s$   $(s = 1, \dots, q)$ . The cross-validation methods discussed in Section 1.3 can be easily generalized to the multivariate data setting, and we can show that least squares cross-validation can optimally select the  $h_s$ 's in the sense outlined in Section 1.3 (see Section 1.8 below).

We briefly remark on the independence assumption invoked for the proofs presented above. Our assumption was that the data is independent across the *i* index. Note that no restrictions were placed on the *s* index for each component  $X_{is}$  (s = 1, ..., q). The product kernel is used simply for convenience, and it certainly *does not* require that the  $X_{is}$ 's

are independent across the s index. In other words, the multivariate kernel density estimator (1.35) is capable of capturing general dependence among the different components of  $X_i$ . Furthermore, we shall relax the "independence across observations" assumption in Chapter 18, and will see that all of the results developed above carry over to the weakly dependent data setting.

# 1.7 Multivariate Bandwidth Selection: Rule-of-Thumb and Plug-In Methods

In Section 1.2 we discussed the use of the so-called normal reference rule-of-thumb and plug-in methods in a univariate setting. The generalization of the univariate normal reference rule-of-thumb to a multivariate setting is straightforward. Letting q be the dimension of  $X_i$ , one can choose  $h_s = c_s X_{s,sd} n^{-1/(4+q)}$  for  $s = 1, \ldots, q$ , where  $X_{s,sd}$  is the sample standard deviation of  $\{X_{is}\}_{i=1}^n$  and  $c_s$  is a positive constant. In practice one still faces the problem of how to choose  $c_s$ . The choice of  $c_s = 1.06$  for all  $s = 1, \ldots, q$  is computationally attractive; however, this selection treats the different  $X_{is}$ 's symmetrically. In practice, should the joint PDF change rapidly in one dimension (say in  $x_1$ ) but change slowly in another (say in  $x_2$ ), then one should select a relatively small value of  $c_1$  (hence a small  $h_1$ ) and a relatively large value for  $c_2$  $(h_2)$ . Unlike the cross-validation methods that we will discuss shortly, rule-of-thumb methods do not offer this flexibility.

For plug-in methods, on the other hand, the leading (squared) bias and variance terms of  $\hat{f}(x)$  must be estimated, and then  $h_1, \ldots, h_q$  must be chosen to minimize the leading MSE term of  $\hat{f}(x)$ . However, the leading MSE term of  $\hat{f}(x)$  involves the unknown f(x) and its partial derivative functions, and pilot bandwidths must be selected for *each* variable in order to estimate these unknown functions. How to best select the initial pilot smoothing parameters can be tricky in highdimensional settings, and the plug-in methods are not widely used in applied settings to the best of our knowledge, nor would we counsel their use other than for exploratory data analysis.

27

# 1.8 Multivariate Bandwidth Selection: Cross-Validation Methods

#### 1.8.1 Least Squares Cross-Validation

The univariate least squares cross-validation method discussed in Section 1.3.1 can be readily generalized to the multivariate density estimation setting. Replacing the univariate kernel function in (1.23) by a multivariate product kernel, the cross-validation objective function now becomes

$$CV_f(h_1, \dots, h_q) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \bar{K}_h(X_i, X_j) - \frac{2}{n(n-1)} \sum_{i=1}^n \sum_{j\neq i, j=1}^n K_h(X_i, X_j), \quad (1.38)$$

where

$$K_{h}(X_{i}, X_{j}) = \prod_{s=1}^{q} h_{s}^{-1} k\left(\frac{X_{is} - X_{js}}{h_{s}}\right),$$
  
$$\bar{K}_{h}(X_{i}, X_{j}) = \prod_{s=1}^{q} h_{s}^{-1} \bar{k}\left(\frac{X_{is} - X_{js}}{h_{s}}\right),$$

and  $\bar{k}(v)$  is the twofold convolution kernel based upon  $k(\cdot)$ , where  $k(\cdot)$  is a univariate kernel function satisfying (1.10).

Exercise 1.12 shows that the leading term of  $CV_f(h_1, \ldots, h_q)$  is given by (ignoring a term unrelated to the  $h_s$ 's)

$$CV_{f0}(h_1, \dots, h_q) = \int \left[\sum_{s=1}^q B_s(x)h_s^2\right]^2 dx + \frac{\kappa^q}{nh_1\dots h_q},$$
 (1.39)

where  $B_s(x) = (\kappa_2/2) f_{ss}(x)$ .

Defining  $a_s$  via  $h_s = a_s n^{-1/(q+4)}$   $(s = 1, \ldots, q)$ , we have

$$CV_{f0}(h_1,\ldots,h_q) = n^{-4/(q+4)} \chi_f(a_1,\ldots,a_q),$$
 (1.40)

where

$$\chi_f(a_1, \dots, a_q) = \int \left[\sum_{s=1}^q B_s(x) a_s^2\right]^2 dx + \frac{\kappa^q}{a_1 \dots a_q}.$$
 (1.41)

Let the  $a_s^0$ 's be the values of the  $a_s$ 's that minimize  $\chi_f(a_1, \ldots, a_q)$ . Under the same conditions used in the univariate case and, in addition, assuming that  $f_{ss}(x)$  is not a zero function for all s, Li and Zhou (2005) show that each  $a_s^0$  is uniquely defined, positive, and finite (see Exercise 1.10). Let  $h_1^0, \ldots, h_q^0$  denote the values of  $h_1, \ldots, h_q$  that minimize  $CV_{f0}$ . Then from (1.40) we know that  $h_s^0 = a_s^0 n^{-1/(q+4)} = O(n^{-1/(q+4)})$ .

Exercise 1.12 shows that  $CV_{f0}$  is also the leading term of  $E[CV_f]$ . Therefore, the nonstochastic smoothing parameters  $h_s^0$  can be interpreted as optimal smoothing parameters that minimize the leading term of the IMSE.

Let  $\hat{h}_1, \ldots, \hat{h}_q$  denote the values of  $h_1, \ldots, h_q$  that minimize  $CV_f$ . Using the fact that  $CV_f = CV_{f0} + (s.o.)$ , we can show that  $\hat{h}_s = h_s^0 + o_p(h_s^0)$ . Thus, we have

$$\frac{\hat{h}_s - h_s^0}{h_s^0} = \frac{\hat{h}_s}{h_s^0} - 1 \to 0 \quad \text{in probability, for } s = 1, \dots, q.$$
(1.42)

Therefore, smoothing parameters selected via cross-validation have the same asymptotic optimality properties as the nonstochastic optimal smoothing parameters.

Note that if  $f_{ss}(x) = 0$  almost everywhere (a.e.) for some s, then  $B_s = 0$  and the above result does not hold. Stone (1984) shows that the cross-validation method still selects  $h_1, \ldots, h_q$  optimally in the sense that the integrated estimation square error is minimized; see also Ouyang et al. (2006) for a more detailed discussion of this case.

### 1.8.2 Likelihood Cross-Validation

Likelihood cross-validation for multivariate models follows directly via (multivariate) maximization of the likelihood function outlined in Section 1.3.2, hence we do not go into further details here. However, we do point out that, though straightforward to implement, it suffers from the same defects outlined for the univariate case in the presence of fat tail distributions (i.e., it has a tendency to oversmooth in such situations).

# 1.9 Asymptotic Normality of Density Estimators

In this section we show that  $\hat{f}(x)$  has an asymptotic normal distribution. The most popular CLT is the Lindeberg-Levy CLT given in

#### 1.9. ASYMPTOTIC NORMALITY OF DENSITY ESTIMATORS

Theorem A.3 of Appendix A, which states that  $n^{1/2}[n^{-1}\sum_{i=1}^{n}Z_i] \rightarrow N(0,\sigma^2)$  in distribution, provided that  $Z_i$  is i.i.d.  $(0,\sigma^2)$ . Though the Lindeberg-Levy CLT can be used to derive the asymptotic distribution of various semiparametric estimators discussed in Chapters 7, 8, and 9, it cannot be used to derive the asymptotic distribution of  $\hat{f}(x)$ . This is because  $\hat{f}(x) = n^{-1}\sum_i Z_{i,n}$ , where the summand  $Z_{i,n} = K_h(X_i, x)$  depends on n (since h = h(n)). We shall make use of the Liapunov CLT given in Theorem A.5 of Appendix A

**Theorem 1.3.** Let  $X_1, \ldots, X_n$  be i.i.d. q-vectors with its PDF  $f(\cdot)$  having three-times bounded continuous derivatives. Let x be an interior point of the support of X. If, as  $n \to \infty$ ,  $h_s \to 0$  for all  $s = 1, \ldots, q$ ,  $nh_1 \ldots h_q \to \infty$ , and  $(nh_1 \ldots h_q) \sum_{s=1}^q h_s^6 \to 0$ , then

$$\sqrt{nh_1\dots h_q}\left[\hat{f}(x) - f(x) - \frac{\kappa_2}{2}\sum_{s=1}^q h_s^2 f_{ss}(x)\right] \xrightarrow{d} N(0, \kappa^q f(x)).$$

*Proof.* Using (1.36) and (1.37), one can easily show that

$$\sqrt{nh_1\dots h_q} \left[ \hat{f}(x) - f(x) - \frac{\kappa_2}{2} \sum_{s=1}^q h_s^2 f_{ss}(x) \right]$$

has asymptotic mean zero and asymptotic variance  $\kappa^q f(x)$ , i.e.,

$$\begin{split} \sqrt{nh_1 \dots h_q} \left[ \hat{f}(x) - f(x) - \frac{\kappa_2}{2} \sum_{s=1}^q h_s^2 f_{ss}(x) \right] \\ &= \sqrt{nh_1 \dots h_q} \left[ \hat{f}(x) - \mathcal{E}\left(\hat{f}(x)\right) \right] \\ &+ \sqrt{nh_1 \dots h_q} \left[ \mathcal{E}\left(\hat{f}(x)\right) - f(x) - \frac{\kappa_2}{2} \sum_{s=1}^q h_s^2 f_{ss}(x) \right] \\ &= \sqrt{nh_1 \dots h_q} \left[ \hat{f}(x) - \mathcal{E}\left(\hat{f}(x)\right) \right] \\ &+ O\left(\sqrt{nh_1 \dots h_q} \sum_{s=1}^q h_s^3\right) \quad (by \ (1.36)) \\ &= \sum_{i=1}^n (nh_1 \dots h_q)^{-1/2} \\ &\times \left[ K\left(\frac{X_i - x}{h}\right) - \mathcal{E}\left(K\left(\frac{X_i - x}{h}\right)\right) \right] + o(1) \\ &\equiv \sum_{i=1}^n Z_{n,i} + o(1) \xrightarrow{d} N\left(0, \kappa^q f(x)\right), \end{split}$$

by Liapunov's CLT, provided we can verify that Liapunov's CLT condition (A.21) holds, where

$$Z_{n,i} = (nh_1 \dots h_q)^{-1/2} \left[ K\left(\frac{X_i - x}{h}\right) - E\left(K\left(\frac{X_i - x}{h}\right)\right) \right]$$

and

$$\sum_{i=1}^{n} \sigma_{n,i}^{2} \stackrel{\text{def}}{=} \sum_{i=1}^{n} \operatorname{var}(Z_{n,i}) = \kappa^{q} f(x) + o(1)$$

by (1.37). Pagan and Ullah (1999, p. 40) show that (A.21) holds under the condition given in Theorem 1.3. The condition that  $\int k(v)^{2+\delta} dv < \infty$  for some  $\delta > 0$  used in Pagan and Ullah is implied by our assumption that k(v) is nonnegative and bounded, and that  $\int k(v) dv = 1$ , because  $\int k(v)^{2+\delta} dv \leq C \int k(v) dv = C$  is finite, where  $C = \sup_{v \in \mathbb{R}^q} k(v)^{1+\delta}$ .

## **1.10** Uniform Rates of Convergence

Up to now we have demonstrated only the case of pointwise and IMSE consistency (which implies consistency in probability). In this section we generalize pointwise consistency in order to obtain a stronger "uniform consistency" result. We will prove that nonparametric kernel estimators are uniformly almost surely consistent and derive their uniform almost sure rate of convergence. Almost sure convergence implies convergence in probability; however, the converse is not true, i.e., convergence in probability may not imply convergence almost surely; see Serfling (1980) for specific examples.

We have already established pointwise consistency for an interior point in the support of X. However, it turns out that popular kernel functions such as (1.9) may not lead to consistent estimation of f(x)when x is at the boundary of its support, hence we need to exclude the boundary ranges when considering the uniform convergence rate. This highlights an important aspect of kernel estimation in general, and a number of kernel estimators introduced in later sections are motivated by the desire to mitigate such "boundary effects." We first show that when x is at (or near) the boundary of its support,  $\hat{f}(x)$  may not be a consistent estimator of f(x).

Consider the case where X is univariate having bounded support. For simplicity we assume that  $X \in [0,1]$ . The pointwise consistency result  $\hat{f}(x) - f(x) = o_p(1)$  obtained earlier requires that x lie in the

30

#### 1.10. UNIFORM RATES OF CONVERGENCE

interior of its support. Exercise 1.13 shows that, for x at the boundary of its support,  $\text{MSE}(\hat{f}(x))$  may not be o(1). Therefore, some modifications may be needed to consistently estimate f(x) for x at the boundary of its support. Typical modifications include the use of boundary kernels or data reflection (see Gasser and Müller (1979), Hall and Wehrly (1991), and Scott (1992, pp. 148–149)). By way of example, consider the case where x lies on its lowermost boundary, i.e., x = 0, hence  $\hat{f}(0) =$  $(nh)^{-1}\sum_{i=1}^{n} K((X_i - 0)/h)$ . Exercise 1.13 shows that for this case,  $\text{E}[\hat{f}(0)] = f(0)/2 + O(h)$ . Therefore,  $\text{bias}[\hat{f}(0)] = \text{E}[\hat{f}(0)] - f(0) =$ -f(0)/2 + O(h), which will not converge to zero if  $f(0) \neq 0$  (when f(0) > 0).

In the literature, various boundary kernels are proposed to overcome the boundary (bias) problem. For example, a simple boundary corrected kernel is given by (assuming that  $X \in [0, 1]$ )

$$k_{h}(x,y) = \begin{cases} h^{-1}k\left(\frac{y-x}{h}\right) / \int_{-x/h}^{\infty} k(v) \, dv & \text{if } x \in [0,h) \\ h^{-1}k\left(\frac{y-x}{h}\right) & \text{if } x \in [h,1-h] \\ h^{-1}k\left(\frac{y-x}{h}\right) / \int_{-\infty}^{(1-x)/h} k(v) \, dv & \text{if } x \in (1-h,1], \end{cases}$$
(1.43)

where  $k(\cdot)$  is a second order kernel satisfying (1.10). Now, we estimate f(x) by

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} k_h(x, X_i), \qquad (1.44)$$

where  $k_h(x, X_i)$  is defined in (1.43). Exercise 1.14 shows that the above boundary corrected kernel successfully overcomes the boundary problem.

We now establish the uniform almost sure convergence rate of f(x) - f(x) for  $x \in S$ , where S is a bounded set excluding the boundary range of the support of X. In the above example, when the support of x is [0, 1], we can choose  $S = [\epsilon, 1 - \epsilon]$  for arbitrarily *small* positive  $\epsilon$   $(0 < \epsilon < 1/2)$ . We assume that f(x) is bounded below by a positive constant on S.

**Theorem 1.4.** Under smoothness conditions on  $f(\cdot)$  given in Masry (1996b), and also assuming that  $\inf_{x \in S} f(x) \ge \delta > 0$ , we have

$$\sup_{x \in \mathcal{S}} \left| \hat{f}(x) - f(x) \right| = O\left( \frac{(\ln(n))^{1/2}}{(nh_1 \dots h_q)^{1/2}} + \sum_{s=1}^q h_s^2 \right) \text{ almost surely.}$$

A detailed proof of Theorem 1.4 is given in Section 1.12.

Since almost sure convergence implies convergence in probability, the uniform rate also holds in probability, i.e., under the same conditions as in Theorem 1.4, we have

$$\sup_{x \in \mathcal{S}} \left| \hat{f}(x) - f(x) \right| = O_p \left( \frac{(\ln(n))^{1/2}}{(nh_1 \dots h_q)^{1/2}} + \sum_{s=1}^q h_s^2 \right).$$

Using the results of (1.36) and (1.37), we can establish the following uniform MSE rate.

**Theorem 1.5.** Assuming that f(x) is twice differentiable with bounded second derivatives, then we have

$$\sup_{x\in\mathcal{S}} \mathbb{E}\left\{\left[\hat{f}(x) - f(x)\right]^2\right\} = O\left(\sum_{s=1}^q h_s^4 + (nh_1\dots h_q)^{-1}\right).$$

*Proof.* This follows from (1.36) and (1.37), by noting that  $\sup_{x \in S} f(x)$  and  $\sup_{x \in S} |f_{ss}(x)|$  are both finite  $(s = 1, \ldots, q)$ .

Note that although convergence in MSE implies convergence in probability, one cannot derive the uniform convergence rate in probability from Theorem 1.5. This is because

$$\mathbb{E}\left\{\sup_{x\in\mathcal{S}}\left[\hat{f}(x)-f(x)\right]^{2}\right\}\neq\sup_{x\in\mathcal{S}}\mathbb{E}\left[\hat{f}(x)-f(x)\right]^{2},$$

and

$$\mathbf{P}\left[\sup_{x\in\mathcal{S}}\left|\hat{f}(x) - f(x)\right| > \epsilon\right] \neq \sup_{x\in\mathcal{S}}\mathbf{P}\left[\left|\hat{f}(x) - f(x)\right| > \epsilon\right].$$

The sup and the  $E(\cdot)$  or the  $P(\cdot)$  operators do not commute with one another.

Cheng (1997) proposes alternative (local linear) density estimators that achieve automatic boundary corrections and enjoy some typical optimality properties. Cheng also suggests a data-based bandwidth selector (in the spirit of plug-in rules), and demonstrates that the bandwidth selector is very efficient regardless of whether there are nonsmooth boundaries in the support of the density.

32

# Subject Index

absolutely continuous, 677 additive model, 283 additive partially linear model, 297almost everywhere (a.e.), 667 applications adolescent growth, 44, 92, 202 Boston housing, 200 conditionally independent private information auctions, 648continuous time models, 627 dining out, 145 direct marketing, 277 extramarital affairs, 172 female labor force participation. 175first price auction models, 645 growth convergence clubs, 385 inflation forecasting, 93 interest rate forecasting, 564 Italian income, 45, 206 job prestige, 92 labor productivity, 177 OECD growth rates, 178, 207 old faithful geyser, 44 political corruption, 171 right-heart catheterization, 642 strike volume, 147 unemployment and city size, 43value at risk, 203 wage inequality, 41 average treatment effects, 639

bandwidth, see smoothing parameter big  $O(\cdot)$ , 684 big  $O_p(\cdot)$ , 685 bootstrap, 360, 365 block, 563 i.i.d., 378 number of replications, 360 stationary, 558 wild, 289, 308, 357 Borel-Cantelli lemma, 689 Borel measurable function, 668 Borel measurable set, 667 boundary correction, 80 boundary effects, 30 Brownian motion, 678 censored model nonparametric, 343, 345, 346 parametric, 332 semiparametric, 335, 337 central limit theorem Degenerate U-statistics, 692 Hilbert-valued, 694 Liapunov, 689 Lindeberg-Feller, 688 Lindeberg-Levy, 688 central limit theorem (CLT), 23 characteristic function, 671 cointegration, 564 confusion matrix, 279 convergence almost everywhere, 682 almost surely, 682 in  $r^{\text{th}}$  mean. 682 in distribution, 682 in probability, 682 weak, 687

backfitting, 283

copula, 651

#### SUBJECT INDEX

Cramer-Wold theorem, 689 cumulative distribution function (CDF), 3, 7 cross-validation, 23 frequency, 7 nonsmooth, 182 smooth, 20, 184 curse of dimensionality, xvii density estimation least squares crossvalidation bandwidth selection, 15, 27likelihood crossvalidation bandwidth selection, 18, 28plug-in bandwidth selection, 14.26 rule-of-thumb bandwidth selection, 14, 26Dirac delta function, 679 empirical distribution function, 19 fixed effects, 586 Fourier series, 512 frequency method, 6, 115 Gaussian process, 678 generalized method of moments (GMM), 512hazard function, 198 Hilbert space, 674 hypothesis testing conditional parametric density function, 402 conditional parametric distributions, 382 correct parametric functional form, 355, 365, 398equality of density functions, 362, 401

independence, 378 omitted variables, 370 parametric density function, 380parametric single index model, 369serial dependence, 404 significance, 375 significance test, 401 inequality Cauchy, 690 Cauchy-Schwarz, see Cauchy Chebychev, 690 Hölder, 690 Markov, 689 triangle, 481 instrumental variable, 506 integrated mean squared error (IMSE), 13 integrated square error (ISE), 157 Kaplan-Meier estimator, 338 kernel Aitchison and Aitken, 167 Bartlett, 405 convolution, 16 Daniell, 405 Epanechnikov, 35 Gaussian, 34 higher order, 33 Parzen, 405 triangular, 400 uniform, 8 Khinchin's law of large numbers, 688 knots. 446 Kullback-Leibler, 382 latent variable, 316 law of iterated expectations, 690 Lebesgue-Stieltjes integral, 670 Lebesgue measure, 666 link function, 250, 295, 463 Lipschitz function, 672 local average, 64 local constant estimator, 60  $AIC_c$  bandwidth selection, 72

745

#### SUBJECT INDEX

irrelevant regressors and bandwidth selection. 73least squares cross-validation, 69 plug-in bandwidths, 66 rule-of-thumb bandwidths, 66 local linear estimator, 79 least squares cross-validation, 83 local polynomial estimator, 85 location-scale model, 346 maximum likelihood estimation, 4 mean squared error (MSE), 6 measure, 666 measurement error, 92 minimax, 532 MINPIN, 230 mixing, 535  $\alpha$ -mixing, 535  $\beta$ -mixing, 535  $\phi$ -mixing, 535  $\rho$ -mixing, 535 Mixingale, 536 strong, see  $\alpha$ -mixing naïve kernel estimator, 8 Nadaraya-Watson estimator, see local constant estimator nearest neighbor, 416 neural network, 547 nonlinear-differencing, 606, 614 nonstationary data, 566 normal rule-of-thumb, 14 oracle estimator, 287 orthonormal basis, 674 panel data, 575 Parseval's equality, 675 partially linear model, 222 partial derivative estimator, 80 pilot bandwidth, 14 Pitman local alternatives, 400 poolable, 578 power series, 512probability density function (PDF), 3

product-limit estimator, see Kaplan-Meier estimator product kernel function, 24 discrete data, 126 mixed data, 137 quantile regression, 189 random effects, 578 Riemann-Stieltjes integral, 669 Riemann integral, 668 Rosenblatt-Parzen estimator, 9 selectivity model parametric, 316 semiparametric, 317, 318, 320 semiparametric efficiency bound, 234, 267sieves, 610 sigma-field, 664 single index model, 249 small  $o(\cdot), 684$ small  $o_p(\cdot)$ , 685 smoothing parameter, 8 smooth coefficient model, 301 Sobolev norm, 675 spectrum, 404 spline, 512 spline function, 446 stochastic equicontunity, 686 survival function, 198 time-differencing, 606, 607 Tobit type-2, 316 type-3, 320 transformation model, 659 trimming, 254, 256, 260, 266, 359 U-statistic, 691 U-statistic H-decomposition, 691 wavelet, 428 weakly dependent, 535 weakly exogenous, 506 weighted integrated mean squared error (WIMSE), 67 window width, see smoothing parameter

#### 746