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Chapter 1

Density Estimation

The estimation of probability density functions (PDFs) and cumulative
distribution functions (CDFs) are cornerstones of applied data analysis
in the social sciences. Testing for the equality of two distributions (or
moments thereof) is perhaps the most basic test in all of applied data
analysis. Economists, for instance, devote a great deal of attention to
the study of income distributions and how they vary across regions and
over time. Though the PDF and CDF are often the objects of direct
interest, their estimation also serves as an important building block
for other objects being modeled such as a conditional mean (i.e., a
“regression function”), which may be directly modeled using nonpara-
metric or semiparametric methods (a conditional mean is a function of
a conditional PDF, which is itself a ratio of unconditional PDFs). Af-
ter mastering the principles underlying the nonparametric estimation
of a PDF, the nonparametric estimation of the workhorse of applied
data analysis, the conditional mean function considered in Chapter 2,
progresses in a fairly straightforward manner. Careful study of the ap-
proaches developed in Chapter 1 will be most helpful for understanding
material presented in later chapters.

We begin with the estimation of a univariate PDF in Sections 1.1
through 1.3, turn to the estimation of a univariate CDF in Sections 1.4
and 1.5, and then move on to the more general multivariate setting in
Sections 1.6 through 1.8. Asymptotic normality, uniform rates of con-
vergence, and bias reduction methods appear in Sections 1.9 through
1.12. Numerous illustrative applications appear in Section 1.13, while
theoretical and applied exercises can be found in Section 1.14

We now proceed with a discussion of how to estimate the PDF
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4 1. DENSITY ESTIMATION

fX(x) of a random variable X. For notational simplicity we drop the
subscript X and simply use f(x) to denote the PDF of X. Some of the
treatments of the kernel estimation of a PDF discussed in this chapter
are drawn from the two excellent monographs by Silverman (1986) and
Scott (1992).

1.1 Univariate Density Estimation

To best appreciate why one might consider using nonparametric meth-
ods to estimate a PDF, we begin with an illustrative example, the
parametric estimation of a PDF.

Example 1.1. Suppose X1, X2,. . . , Xn represent independent and
identically distributed (i.i.d.) draws from a normal distribution with
mean µ and variance σ2. We wish to estimate the normal PDF f(x).

By assumption, f(x) has a known parametric functional form (i.e.,
univariate normal) given by f(x) = (2πσ2)−1/2 exp

[−1
2(x − µ)2/σ2

]
,

where the mean µ = E(X) and variance σ2 = E[(X−E(X))2] = var(X)
are the only unknown parameters to be estimated. One could estimate
µ and σ2 by the method of maximum likelihood as follows. Under the
i.i.d. assumption, the joint PDF of (X1, . . . , Xn) is simply the product
of the univariate PDFs, which may be written as

f(X1, . . . , Xn) =
n∏

i=1

1√
2πσ2

e−
(Xi−µ)2

2σ2 =
1

(2πσ2)n/2
e−

1
2σ2

Pn
i=1(Xi−µ)2 .

Conditional upon the observed sample and taking the logarithm, this
gives us the log-likelihood function

L(µ, σ2) ≡ ln f(X1, . . . , Xn; µ, σ2)

= −n

2
ln(2π) − n

2
lnσ2 − 1

2σ2

n∑

i=1

(Xi − µ)2.

The method of maximum likelihood proceeds by choosing those param-
eters that make it most likely that we observed the sample at hand
given our distributional assumption. Thus, the likelihood function (or
a monotonic transformation thereof, e.g., ln) expresses the plausibility
of different values of µ and σ2 given the observed sample. We then
maximize the likelihood function with respect to these two unknown pa-
rameters.
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1.1. UNIVARIATE DENSITY ESTIMATION 5

The necessary first order conditions for a maximization of the log-
likelihood function are ∂L(µ, σ2)/∂µ = 0 and ∂L(µ, σ2)/∂σ2 = 0. Solv-
ing these first order conditions for the two unknown parameters µ and
σ2 yields

µ̂ =
1
n

n∑

i=1

Xi and σ̂2 =
1
n

n∑

i=1

(Xi − µ̂)2.

µ̂ and σ̂2 above are the maximum likelihood estimators of µ and σ2,
respectively, and the resulting estimator of f(x) is

f̂(x) =
1√

2πσ̂2
exp

[
−1

2

(
x − µ̂

σ̂

)2
]

.

The “Achilles heel” of any parametric approach is of course the
requirement that, prior to estimation, the analyst must specify the ex-
act parametric functional form for the object being estimated. Upon
reflection, the parametric approach is somewhat circular since we ini-
tially set out to estimate an unknown density but must first assume
that the density is in fact known (up to a handful of unknown param-
eters, of course). Having based our estimate on the assumption that
the density is a member of a known parametric family, we must then
naturally confront the possibility that the parametric model is “mis-
specified,” i.e., not consistent with the population from which the data
was drawn. For instance, by assuming that X is drawn from a nor-
mally distributed population in the above example, we in fact impose
a number of potentially quite restrictive assumptions: symmetry, uni-
modality, monotonically decreasing away from the mode and so on. If
the true density were in fact asymmetric or possessed multiple modes,
or was nonmonotonic away from the mode, then the presumption of
distributional normality may provide a misleading characterization of
the true density and could thereby produce erroneous estimates and
lead to unsound inference.

At this juncture many readers will no doubt be pointing out that,
having estimated a parametric PDF, one can always test whether the
underlying distributional assumption is valid. We are, of course, com-
pletely sympathetic toward such arguments. Often, however, the rejec-
tion of a distributional assumption fails to provide any clear alternative.
That is, we can reject the assumption of normality, but this rejection
leaves us where we started, perhaps having ruled out but one of a large
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6 1. DENSITY ESTIMATION

number of candidate distributions. Against this backdrop, researchers
might instead consider nonparametric approaches.

Nonparametric methods circumvent problems arising from the need
to specify parametric functional forms prior to estimation. Rather than
presume one knows the exact functional form of the object being es-
timated, one instead presumes that it satisfies some regularity condi-
tions such as smoothness and differentiability. This does not, however,
come without cost. By imposing less structure on the functional form
of the PDF than do parametric methods, nonparametric methods re-
quire more data to achieve the same degree of precision as a correctly
specified parametric model. Our primary focus in this text is on a class
of estimators known as “nonparametric kernel estimators” (a “kernel
function” is simply a weighting function), though in Chapters 14 and
15 we provide a treatment of alternative nonparametric methodologies
including nearest neighbor and series methods.

Before proceeding to a formal theoretical analysis of nonparametric
density estimation methods, we first consider a popular example of
estimating the probability of a head on a toss of a coin which is closely
related to the nonparametric estimation of a CDF. This in turn will
lead us to the nonparametric estimation of a PDF.

Example 1.2. Suppose we have a coin (perhaps an unfair one) and we
want to estimate the probability of flipping the coin and having it land
heads up. Let p = P(H) denote the (unknown) population probability of
obtaining a head. Taking a relative frequency approach, we would flip
the coin n times, count the frequency of heads in n trials, and compute
the relative frequency given by

p̂ =
1
n
{# of heads } , (1.1)

which provides an estimate of p. The p̂ defined in (1.1) is often referred
to as a “frequency estimator” of p, and it is also the maximum likelihood
estimator of p (see Exercise 1.2). The estimator p̂ is, of course, fully
nonparametric. Intuitively, one would expect that, if n is large, then
p̂ should be “close” to p. Indeed, one can easily show that the mean
squared error (MSE) of p̂ is given by (see Exercise 1.3)

MSE (p̂) def= E
[
(p̂ − p)2

]
=

p(1 − p)
n

,

so MSE (p̂) → 0 as n → ∞, which is termed as p̂ converges to p in
mean square error; see Appendix A for the definitions of various modes
of convergence.
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1.1. UNIVARIATE DENSITY ESTIMATION 7

We now discuss how to obtain an estimator of the CDF of X, which
we denote by F (x). The CDF is defined as

F (x) = P[X ≤ x].

With i.i.d. data X1,. . . ,Xn (i.e., random draws from the distribution
F (·)), one can estimate F (x) by

Fn(x) =
1
n
{ # of Xi’s ≤ x } . (1.2)

Equation (1.2) has a nice intuitive interpretation. Going back to our
coin-flip example, if a coin is such that the probability of obtaining a
head when we flip it equals F (x) (F (x) is unknown), and if we treat the
collection of data X1, . . . , Xn as flipping a coin n times and we say that a
head occurs on the ith trial if Xi ≤ x, then P(H) = P(Xi ≤ x) = F (x).
The familiar frequency estimator of P(H) is equal to the number of
heads divided by the number of trials:

P̂(H) =
# of heads

n
=

1
n
{ # of Xi’s ≤ x } ≡ Fn(x). (1.3)

Therefore, we call (1.2) a frequency estimator of F (x). Just as be-
fore when estimating P(H), we expect intuitively that as n gets large,
P̂(H) should yield a more accurate estimate of P(H). By the same rea-
soning, one would expect that as n → ∞, Fn(x) yields a more accurate
estimate of F (x). Indeed, one can easily show that Fn(x) → F (x) in
MSE, which implies that Fn(x) converges to F (x) in probability and
also in distribution as n → ∞. In Appendix A we introduce the con-
cepts of convergence in mean square error, convergence in probability,
convergence in distribution, and almost sure convergence. It is well es-
tablished that Fn(x) indeed converges to F (x) in each of these various
senses. These concepts of convergence are necessary as it is easy to show
that the ordinary limit of Fn(x) does not exist, i.e., limn→∞ Fn(x) does
not exist (see Exercise 1.3, where the definition of an ordinary limit
is provided). This example highlights the necessity of introducing new
concepts of convergence modes such as convergence in mean square
error and convergence in probability.

Now we take up the question of how to estimate a PDF f(x) without
making parametric presumptions about it’s functional form. From the
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8 1. DENSITY ESTIMATION

definition of f(x) we have1

f(x) =
d

dx
F (x). (1.4)

From (1.2) and (1.4), an obvious estimator of f(x) is2

f̂(x) =
Fn(x + h) − Fn(x − h)

2h
, (1.5)

where h is a small positive increment.
By substituting (1.2) into (1.5), we obtain

f̂(x) =
1

2nh
{ # of X1, . . . , Xn falling in the interval [x − h, x + h] }.

(1.6)
If we define a uniform kernel function given by

k(z) =
{

1/2 if |z| ≤ 1
0 otherwise,

(1.7)

then it is easy to see that f̂(x) given by (1.5) can also be expressed as

f̂(x) =
1

nh

n∑

i=1

k

(
Xi − x

h

)
. (1.8)

Equation (1.8) is called a uniform kernel estimator because the ker-
nel function k(·) defined in (1.7) corresponds to a uniform PDF. In
general, we refer to k(·) as a kernel function and to h as a smoothing
parameter (or, alternatively, a bandwidth or window width). Equation
(1.8) is sometimes referred to as a “näıve” kernel estimator.

In fact one might use many other possible choices for the kernel
function k(·) in this context. For example, one could use a standard
normal kernel given by

k(v) =
1√
2π

e−
1
2
v2

, −∞ < v < ∞. (1.9)

This class of estimators can be found in the first published paper on
kernel density estimation by Rosenblatt (1956), while Parzen (1962) es-
tablished a number of properties associated with this class of estimators

1We only consider the continuous X case in this chapter. We deal with the discrete
X case in Chapters 3 and 4.

2Recall that the definition of the derivative of a function g(x) is given by

d g(x)/dx = limh→0
g(x+h)−g(x)

h
, or, equivalently, d g(x)/dx = limh→0

g(x+h)−g(x−h)
2h

.
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1.1. UNIVARIATE DENSITY ESTIMATION 9

and relaxed the nonnegativity assumption in order to obtain estimators
which are more efficient. For this reason, this approach is sometimes
referred to as “Rosenblatt-Parzen kernel density estimation.”

We will prove shortly that the kernel estimator f̂(x) defined in (1.8)
constructed from any general nonnegative bounded kernel function k(·)
that satisfies

(i)
∫

k(v) dv = 1

(ii) k(v) = k(−v)

(iii)
∫

v2k(v) dv = κ2 > 0

(1.10)

is a consistent estimator of f(x). Note that the symmetry condition (ii)
implies that

∫
vk(v) dv = 0. By consistency, we mean that f̂(x) → f(x)

in probability (convergence in probability is defined in Appendix A).
Note that k(·) defined in (1.10) is a (symmetric) PDF. For recent work
on kernel methods with asymmetric kernels, see Abadir and Lawford
(2004).

To define various modes of convergence, we first introduce the con-
cept of the “Euclidean norm” (“Euclidean length”) of a vector. Given
a q × 1 vector x = (x1, x2, . . . , xq)′ ∈ Rq, we use ||x|| to denote the
Euclidean length of x, which is defined by

||x|| = [x′x]1/2 ≡
√

x2
1 + x2

2 + · · · + x2
q .

When q = 1 (a scalar), ||x|| is simply the absolute value of x.
In the appendix we discuss the notation O(·) (“big Oh”) and o(·)

(“small Oh”). Let an be a nonstochastic sequence. We say that an =
O(nα) if |an| ≤ Cnα for all n sufficiently large, where α and C (> 0) are
constants. Similarly, we say that an = o(nα) if an/nα → 0 as n → ∞.
We are now ready to prove the MSE consistency of f̂(x).

Theorem 1.1. Let X1, . . . , Xn denote i.i.d. observations having a
three-times differentiable PDF f(x), and let f (s)(x) denote the sth or-
der derivative of f(x) (s = 1, 2, 3). Let x be an interior point in the
support of X, and let f̂(x) be that defined in (1.8). Assume that the
kernel function k(·) is bounded and satisfies (1.10). Also, as n → ∞,
h → 0 and nh → ∞, then

MSE
(
f̂(x)

)
=

h4

4

[
κ2f

(2)(x)
]2

+
κf(x)

nh
+ o

(
h4 + (nh)−1

)

= O
(
h4 + (nh)−1

)
, (1.11)
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where κ2 =
∫

v2k(v) dv and κ =
∫

k2(v) dv.

Proof of Theorem 1.1.

MSE
(
f̂(x)

)
≡ E

{[
f̂(x) − f(x)

]2
}

= var
(
f̂(x)

)
+

[
E

(
f̂(x)

)
− f(x)

]2

≡ var
(
f̂(x)

)
+

[
bias

(
f̂(x)

)]2
.

We will evaluate the bias(f̂(x)) and var(f̂(x)) terms separately.

For the bias calculation we will need to use the Taylor expansion
formula. For a univariate function g(x) that is m times differentiable,
we have

g(x) =g(x0) + g(1)(x0)(x − x0) +
1
2!

g(2)(x0)(x − x0)2+

· · · + 1
(m − 1)!

g(m−1)(x0)(x − x0)m−1 +
1
m!

g(m)(ξ)(x − x0)m,

where g(s)(x0) = ∂sg(x)
∂xs |x=x0 , and ξ lies between x and x0.
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we have

g(x) =g(x0) + g(1)(x0)(x − x0) +
1
2!

g(2)(x0)(x − x0)2+

· · · + 1
(m − 1)!

g(m−1)(x0)(x − x0)m−1 +
1
m!

g(m)(ξ)(x − x0)m,

where g(s)(x0) = ∂sg(x)
∂xs |x=x0 , and ξ lies between x and x0.
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The bias term is given by

bias
(
f̂(x)

)
= E

{
1

nh

n∑

i=1

k

(
Xi − x

h

)}
− f(x)

= h−1E
[
k

(
X1 − x

h

)]
− f(x)

(by identical distribution)

= h−1

∫
f(x1)k

(
x1 − x

h

)
dx1 − f(x)

= h−1

∫
f(x + hv)k(v)h dv − f(x)

(change of variable, x1 − x = hv)

=
∫ {

f(x) + f (1)(x)hv +
1
2
f (2)(x)h2v2 + O(h3)

}
k(v) dv

− f(x)

=
{

f(x) + 0 +
h2

2
f (2)(x)

∫
v2k(v) dv + O

(
h3

)} − f(x)

by (1.10)

=
h2

2
f (2)(x)

∫
v2k(v) dv + O

(
h3

)
, (1.12)

where the O
(
h3

)
term comes from

(1/3!)h3

∣∣∣∣
∫

f (3)(x̃)v3k(v)
∣∣∣∣ dv ≤ Ch3

∫ ∣∣v3k(v)dv
∣∣ = O

(
h3

)
,

where C is a positive constant, and where x̃ lies between x and x+hv.
Note that in the above derivation we assume that f(x) is three-

times differentiable. We can weaken this condition to f(x) being twice
differentiable, resulting in (O(h3) becomes o(h2), see Exercise 1.5)

bias
(
f̂(x)

)
= E

(
f̂(x)

)
− f(x)

=
h2

2
f (2)(x)

∫
v2k(v) dv + o

(
h2

)
. (1.13)
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Next we consider the variance term. Observe that

var
(
f̂(x)

)
= var

[
1

nh

n∑

i=1

k

(
Xi − x

h

)]

=
1

n2h2

{
n∑

i=1

var
[
k

(
Xi − x

h

)]
+ 0

}

(by independence)

=
1

nh2
var

(
k

(
X1 − x

h

))

(by identical distribution)

=
1

nh2

{
E

[
k2

(
X1 − x

h

)]
−

[
E

(
k

(
X1 − x

h

))]2
}

=
1

nh2

{∫
f(x1)k2

(
x1 − x

h

)
dx1

−
[∫

f(x1)k
(

x1 − x

h

)
dx1

]2
}

=
1

nh2

{
h

∫
f(x + hv)k2(v) dv

−
[
h

∫
f(x + hv)k(v) dv

]2
}

=
1

nh2

{
h

∫ [
f(x) + f (1)(ξ)hv

]
k2(v) dv − O

(
h2

)}

=
1

nh

{
f(x)

∫
k2(v) dv + O

(
h

∫
|v|k2(v) dv

)
− O (h)

}

=
1

nh
{κf(x) + O(h)} , (1.14)

where κ =
∫

k2(v) dv.
Equations (1.12) and (1.14) complete the proof of Theorem 1.1.

Theorem 1.1 implies that (by Theorem A.7 of Appendix A)

f̂(x) − f(x) = Op

(
h2 + (nh)−1/2

)
= op(1).

By choosing h = cn−1/α for some c > 0 and α > 1, the condi-
tions required for consistent estimation of f(x), h → 0 and nh → ∞,
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Next we consider the variance term. Observe that

var
(
f̂(x)

)
= var

[
1

nh

n∑

i=1

k

(
Xi − x

h

)]

=
1

n2h2

{
n∑

i=1

var
[
k

(
Xi − x

h

)]
+ 0

}

(by independence)

=
1

nh2
var

(
k

(
X1 − x

h

))

(by identical distribution)

=
1

nh2

{
E

[
k2

(
X1 − x

h

)]
−

[
E

(
k

(
X1 − x

h

))]2
}

=
1

nh2

{∫
f(x1)k2

(
x1 − x

h

)
dx1

−
[∫

f(x1)k
(

x1 − x

h

)
dx1
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}

=
1

nh2

{
h

∫
f(x + hv)k2(v) dv

−
[
h

∫
f(x + hv)k(v) dv

]2
}

=
1

nh2

{
h

∫ [
f(x) + f (1)(ξ)hv

]
k2(v) dv − O

(
h2

)}

=
1

nh

{
f(x)

∫
k2(v) dv + O

(
h

∫
|v|k2(v) dv

)
− O (h)

}

=
1

nh
{κf(x) + O(h)} , (1.14)

where κ =
∫

k2(v) dv.
Equations (1.12) and (1.14) complete the proof of Theorem 1.1.

Theorem 1.1 implies that (by Theorem A.7 of Appendix A)

f̂(x) − f(x) = Op

(
h2 + (nh)−1/2

)
= op(1).

By choosing h = cn−1/α for some c > 0 and α > 1, the condi-
tions required for consistent estimation of f(x), h → 0 and nh → ∞,
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are clearly satisfied. The overriding question is what values of c and α
should be used in practice. As can be seen, for a given sample size n,
if h is small, the resulting estimator will have a small bias but a large
variance. On the other hand, if h is large, then the resulting estimator
will have a small variance but a large bias. To minimize MSE(f̂(x)),
one should balance the squared bias and the variance terms. The op-
timal choice of h (in the sense that MSE(f̂(x)) is minimized) should
satisfy dMSE(f̂(x))/dh = 0. By using (1.11), it is easy to show that
the optimal h that minimizes the leading term of MSE(f̂(x)) is given
by

hopt = c(x)n−1/5, (1.15)

where c(x) =
{
κf(x)/[κ2f

(2)(x)]2
}1/5

.
MSE(f̂(x)) is clearly a “pointwise” property, and by using this as

the basis for bandwidth selection we are obtaining a bandwidth that
is optimal when estimating a density at a point x. Examining c(x) in
(1.15), we can see that a bandwidth which is optimal for estimation at
a point x located in the tail of a distribution will differ from that which
is optimal for estimation at a point located at, say, the mode. Suppose
that we are interested not in tailoring the bandwidth to the pointwise
estimation of f(x) but instead in tailoring the bandwidth globally for
all points x, that is, for all x in the support of f(·) (the support of x is
defined as the set of points of x for which f(x) > 0, i.e., {x : f(x) > 0}).
In this case we can choose h optimally by minimizing the “integrated
MSE” (IMSE) of f̂(x). Using (1.11) we have

IMSE(f̂) def=
∫

E
[
f̂(x) − f(x)

]2
dx =

1
4
h4κ2

2

∫ [
f (2)(x)

]2
dx

+
κ

nh
+ o

(
h4 + (nh)−1

)
. (1.16)

Again letting hopt denote the optimal smoothing parameter that
minimizes the leading terms of (1.16), we use simple calculus to get

hopt = c0n
−1/5, (1.17)

where c0 = κ
−2/5
2 κ1/5

{∫ [
f (2)(x)

]2
dx

}−1/5
> 0 is a positive constant.

Note that if f (2)(x) = 0 for (almost) all x, then c0 is not well defined.
For example, if X is, say, uniformly distributed over its support, then
f (s)(x) = 0 for all x and for all s ≥ 1, and (1.17) is not defined in
this case. It can be shown that in this case (i.e., when X is uniformly
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distributed), hopt will have a different rate of convergence equal to
n−1/3; see the related discussion in Section 1.3.1 and Exercise 1.16.

An interesting extension of the above results can be found in Zinde-
Walsh (2005), who examines the asymptotic process for the kernel den-
sity estimator by means of generalized functions and generalized ran-
dom processes and presents novel results for characterizing the behavior
of kernel density estimators when the density does not exist, i.e., when
the density does not exist as a locally summable function.

1.2 Univariate Bandwidth Selection:
Rule-of-Thumb and Plug-In Methods

Equation (1.17) reveals that the optimal smoothing parameter depends
on the integrated second derivative of the unknown density through
c0. In practice, one might choose an initial “pilot value” of h to es-
timate

∫ [
f (2)(x)

]2
dx nonparametrically, and then use this value to

obtain hopt using (1.17). Such approaches are known as “plug-in meth-
ods” for obvious reasons. One popular way of choosing the initial h,
suggested by Silverman (1986), is to assume that f(x) belongs to
a parametric family of distributions, and then to compute h using
(1.17). For example, if f(x) is a normal PDF with variance σ2, then∫ [

f (2)(x)
]2

dx = 3/[8π1/2σ5]. If a standard normal kernel is used, us-
ing (1.17), we get the pilot estimate

hpilot = (4π)−1/10
[
(3/8)π−1/2

]−1/5
σn−1/5 ≈ 1.06σn−1/5, (1.18)

which is then plugged into
∫

[f̂ (2)(x)]2 dx, which then may be used to
obtain hopt using (1.17). A clearly undesirable property of the plug-in
method is that it is not fully automatic because one needs to choose
an initial value of h to estimate

∫
[f (2)(x)]2 dx (see Marron, Jones and

Sheather (1996) and also Loader (1999) for further discussion).
Often, practitioners will use (1.18) itself for the bandwidth. This

is known as the “normal reference rule-of-thumb” approach since it
is the optimal bandwidth for a particular family of distributions, in
this case the normal family. Should the underlying distribution be
“close” to a normal distribution, then this will provide good results,
and for exploratory purposes it is certainly computationally attractive.
In practice, σ is replaced by the sample standard deviation of {Xi}n

i=1,
while Silverman (1986, p. 47) advocates using a more robust measure
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distributed), hopt will have a different rate of convergence equal to
n−1/3; see the related discussion in Section 1.3.1 and Exercise 1.16.

An interesting extension of the above results can be found in Zinde-
Walsh (2005), who examines the asymptotic process for the kernel den-
sity estimator by means of generalized functions and generalized ran-
dom processes and presents novel results for characterizing the behavior
of kernel density estimators when the density does not exist, i.e., when
the density does not exist as a locally summable function.

1.2 Univariate Bandwidth Selection:
Rule-of-Thumb and Plug-In Methods

Equation (1.17) reveals that the optimal smoothing parameter depends
on the integrated second derivative of the unknown density through
c0. In practice, one might choose an initial “pilot value” of h to es-
timate

∫ [
f (2)(x)

]2
dx nonparametrically, and then use this value to

obtain hopt using (1.17). Such approaches are known as “plug-in meth-
ods” for obvious reasons. One popular way of choosing the initial h,
suggested by Silverman (1986), is to assume that f(x) belongs to
a parametric family of distributions, and then to compute h using
(1.17). For example, if f(x) is a normal PDF with variance σ2, then∫ [

f (2)(x)
]2

dx = 3/[8π1/2σ5]. If a standard normal kernel is used, us-
ing (1.17), we get the pilot estimate

hpilot = (4π)−1/10
[
(3/8)π−1/2

]−1/5
σn−1/5 ≈ 1.06σn−1/5, (1.18)

which is then plugged into
∫

[f̂ (2)(x)]2 dx, which then may be used to
obtain hopt using (1.17). A clearly undesirable property of the plug-in
method is that it is not fully automatic because one needs to choose
an initial value of h to estimate

∫
[f (2)(x)]2 dx (see Marron, Jones and

Sheather (1996) and also Loader (1999) for further discussion).
Often, practitioners will use (1.18) itself for the bandwidth. This

is known as the “normal reference rule-of-thumb” approach since it
is the optimal bandwidth for a particular family of distributions, in
this case the normal family. Should the underlying distribution be
“close” to a normal distribution, then this will provide good results,
and for exploratory purposes it is certainly computationally attractive.
In practice, σ is replaced by the sample standard deviation of {Xi}n

i=1,
while Silverman (1986, p. 47) advocates using a more robust measure
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of spread which replaces σ with A, an “adaptive” measure of spread
given by

A = min(standard deviation, interquartile range/1.34).

We now turn our attention to a discussion of a number of fully
automatic or “data-driven” methods for selecting h that are tailored to
the sample at hand.

1.3 Univariate Bandwidth Selection:

Cross-Validation Methods

In both theoretical and practical settings, nonparametric kernel esti-
mation has been established as relatively insensitive to choice of ker-
nel function. However, the same cannot be said for bandwidth selec-
tion. Different bandwidths can generate radically differing impressions
of the underlying distribution. If kernel methods are used simply for
“exploratory” purposes, then one might undersmooth the density by
choosing a small value of h and let the eye do any remaining smooth-
ing. Alternatively, one might choose a range of values for h and plot the
resulting estimates. However, for sound analysis and inference, a prin-
ciple having some known optimality properties must be adopted. One
can think of choosing the bandwidth as being analogous to choosing the
number of terms in a series approximation; the more terms one includes
in the approximation, the more flexible the resulting model becomes,
while the smaller the bandwidth of a kernel estimator, the more flexi-
ble it becomes. However, increasing flexibility (reducing potential bias)
necessarily leads to increased variability (increasing potential variance).
Seen in this light, one naturally appreciates how a number of methods
discussed below are motivated by the need to balance the squared bias
and variance of the resulting estimate.

1.3.1 Least Squares Cross-Validation

Least squares cross-validation is a fully automatic data-driven method
of selecting the smoothing parameter h, originally proposed by Rudemo
(1982), Stone (1984) and Bowman (1984) (see also Silverman (1986,
pp. 48-51)). This method is based on the principle of selecting a band-
width that minimizes the integrated squared error of the resulting es-
timate, that is, it provides an optimal bandwidth tailored to all x in
the support of f(x).
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The integrated squared difference between f̂ and f is

∫ [
f̂(x) − f(x)

]2
dx =

∫
f̂(x)2 dx − 2

∫
f̂(x)f(x) dx +

∫
f(x)2 dx.

(1.19)
As the third term on the right-hand side of (1.19) is unrelated to h,
choosing h to minimize (1.19) is therefore equivalent to minimizing

∫
f̂(x)2 dx − 2

∫
f̂(x)f(x) dx (1.20)

with respect to h. In the second term,
∫

f̂(x)f(x) dx can be written as
EX [f̂(X)], where EX(·) denotes expectation with respect to X and not
with respect to the random observations {Xj}n

j=1 used for computing
f̂(·). Therefore, we may estimate EX [f̂(X)] by n−1

∑n
i=1 f̂−i(Xi) (i.e.,

replacing EX by its sample mean), where

f̂−i(Xi) =
1

(n − 1)h

n∑

j=1,j �=i

k

(
Xi − Xj

h

)
(1.21)

is the leave-one-out kernel estimator of f(Xi).3 Finally, we estimate the
first term

∫
f̂(x)2 dx by

∫
f̂(x)2 dx =

1
n2h2

n∑

i=1

n∑

j=1

∫
k

(
Xi − x

h

)
k

(
Xj − x

h

)
dx

=
1

n2h

n∑

i=1

n∑

j=1

k̄

(
Xi − Xj

h

)
, (1.22)

where k̄(v) =
∫

k(u)k(v−u) du is the twofold convolution kernel derived
from k(·). If k(v) = exp(−v2/2)/

√
2π, a standard normal kernel, then

k̄(v) = exp(−v2/4)/
√

4π, a normal kernel (i.e., normal PDF) with mean
zero and variance two, which follows since two independent N(0, 1)
random variables sum to a N(0, 2) random variable.

3Here we emphasize that it is important to use the leave-one-out kernel estimator
for computing EX(·) above. This is because the expectations operator presumes that
the X and the Xj ’s are independent of one another. Without using the leave-one-out
estimator, the cross-validation method will break down; see Exercise 1.6 (iii).
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As the third term on the right-hand side of (1.19) is unrelated to h,
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h

)
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is the leave-one-out kernel estimator of f(Xi).3 Finally, we estimate the
first term

∫
f̂(x)2 dx by

∫
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1
n2h2
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n∑
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∫
k

(
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h

)
k

(
Xj − x

h

)
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=
1

n2h
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j=1

k̄

(
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h

)
, (1.22)

where k̄(v) =
∫

k(u)k(v−u) du is the twofold convolution kernel derived
from k(·). If k(v) = exp(−v2/2)/

√
2π, a standard normal kernel, then

k̄(v) = exp(−v2/4)/
√

4π, a normal kernel (i.e., normal PDF) with mean
zero and variance two, which follows since two independent N(0, 1)
random variables sum to a N(0, 2) random variable.

3Here we emphasize that it is important to use the leave-one-out kernel estimator
for computing EX(·) above. This is because the expectations operator presumes that
the X and the Xj ’s are independent of one another. Without using the leave-one-out
estimator, the cross-validation method will break down; see Exercise 1.6 (iii).

�

�

“book” — 2006/8/16 — 10:01 — page 17 — #39 �

�

�

�

�

�

1.3. UNIVARIATE BANDWIDTH: CROSS-VALIDATION 17

Least squares cross-validation therefore chooses h to minimize

CVf (h) =
1

n2h

n∑

i=1

n∑

j=1

k̄

(
Xi − Xj

h

)

− 2
n(n − 1)h

n∑

i=1

n∑

j �=i,j=1

k

(
Xi − Xj

h

)
, (1.23)

which is typically undertaken using numerical search algorithms.
It can be shown that the leading term of CVf (h) is CVf0 given by

(ignoring a term unrelated to h; see Exercise 1.6)

CVf0(h) = B1h
4 +

κ

nh
, (1.24)

where B1 = (κ2
2/4)

[∫
[f (2)(x)]2 dx

]
(κ2 =

∫
v2k(v) dv, κ =

∫
k2(v) dv).

Thus, as long as f (2)(x) does not vanish for (almost) all x, we have
B1 > 0.

Let h0 denote the value of h that minimizes CVf0. Simple calculus
shows that h0 = c0n

−1/5 where

c0 = [κ/(4B1)]
1/5 = κ1/5κ

−2/5
2

{[∫
f (2)(x)

]2

dx

}−1/5

.

A comparison of h0 with hopt in (1.17) reveals that the two are identical,
i.e., h0 ≡ hopt. This arises because hopt minimizes

∫
E[f̂(x)−f(x)]2 dx,

while h0 minimizes E[CVf (h)], the leading term of CVf (h). It can
be easily seen that E[CVf (h)] +

∫
f(x)2 dx is an alternative version

of
∫

E[f̂(x) − f(x)]2 dx; hence, E[CVf (h)] +
∫

f(x)2 dx also estimates∫
E[f̂(x)−f(x)]2 dx. Given that

∫
f(x)2 dx is unrelated to h, one would

expect that h0 and hopt should be the same.
Let ĥ denote the value of h that minimizes CVf (h). Given that

CVf (h) = CVf0 +(s.o.), where (s.o.) denotes smaller order terms (than
CVf0) and terms unrelated to h, it can be shown that ĥ = h0 + op(h0),
or, equivalently, that

ĥ − h0

h0
≡ ĥ

h0
− 1 → 0 in probability. (1.25)

Intuitively, (1.25) is easy to understand because CVf (h) = CVf0(h)
+ (s.o.), thus asymptotically an h that minimizes CVf (h) should be
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close to an h that minimizes CVf0(h); therefore, we expect that ĥ and
h0 will be close to each other in the sense of (1.25). Härdle, Hall and
Marron (1988) showed that (ĥ − h0)/h0 = Op(n−1/10), which indeed
converges to zero (in probability) but at an extremely slow rate.

We again underscore the need to use the leave-one-out kernel esti-
mator when constructing CVf as given in (1.23). If instead one were
to use the standard kernel estimator, least squares cross-validation will
break down, yielding ĥ = 0. Exercise 1.6 shows that if one does not
use the leave-one-out kernel estimator when estimating f(Xi), then
h = 0 minimizes the objective function, which of course violates the
consistency condition that nh → ∞ as n → ∞.

Here we implicitly impose the restriction that f (2)(x) is not a zero
function, which rules out the case for which f(x) is a uniform PDF. In
fact this condition can be relaxed. Stone (1984) showed that, as long
as f(x) is bounded, then the least squares cross-validation method will
select h optimally in the sense that

∫
[f̂(x, ĥ) − f(x)]2 dx

infh
∫

[f̂(x, h) − f(x)]2 dx
→ 1 almost surely, (1.26)

where f̂(x, ĥ) denotes the kernel estimator of f(x) with cross-validation
selected ĥ, and f̂(x, h) is the kernel estimator with a generic h. Obvi-
ously, the ratio defined in (1.26) should be greater than or equal to one
for any n. Therefore, Stone’s (1984) result states that, asymptotically,
cross-validated smoothing parameter selection is optimal in the sense
of minimizing the estimation integrated square error. In Exercise 1.16
we further discuss the intuition underlying why ĥ → 0 even when f(x)
is a uniform PDF.

1.3.2 Likelihood Cross-Validation

Likelihood cross-validation is another automatic data-driven method
for selecting the smoothing parameter h. This approach yields a den-
sity estimate which has an entropy theoretic interpretation, since the
estimate will be close to the actual density in a Kullback-Leibler sense.
This approach was proposed by Duin (1976).

Likelihood cross-validation chooses h to maximize the (leave-one-
out) log likelihood function given by

L = lnL =
n∑

i=1

ln f̂−i(Xi),
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close to an h that minimizes CVf0(h); therefore, we expect that ĥ and
h0 will be close to each other in the sense of (1.25). Härdle, Hall and
Marron (1988) showed that (ĥ − h0)/h0 = Op(n−1/10), which indeed
converges to zero (in probability) but at an extremely slow rate.

We again underscore the need to use the leave-one-out kernel esti-
mator when constructing CVf as given in (1.23). If instead one were
to use the standard kernel estimator, least squares cross-validation will
break down, yielding ĥ = 0. Exercise 1.6 shows that if one does not
use the leave-one-out kernel estimator when estimating f(Xi), then
h = 0 minimizes the objective function, which of course violates the
consistency condition that nh → ∞ as n → ∞.

Here we implicitly impose the restriction that f (2)(x) is not a zero
function, which rules out the case for which f(x) is a uniform PDF. In
fact this condition can be relaxed. Stone (1984) showed that, as long
as f(x) is bounded, then the least squares cross-validation method will
select h optimally in the sense that

∫
[f̂(x, ĥ) − f(x)]2 dx

infh
∫

[f̂(x, h) − f(x)]2 dx
→ 1 almost surely, (1.26)

where f̂(x, ĥ) denotes the kernel estimator of f(x) with cross-validation
selected ĥ, and f̂(x, h) is the kernel estimator with a generic h. Obvi-
ously, the ratio defined in (1.26) should be greater than or equal to one
for any n. Therefore, Stone’s (1984) result states that, asymptotically,
cross-validated smoothing parameter selection is optimal in the sense
of minimizing the estimation integrated square error. In Exercise 1.16
we further discuss the intuition underlying why ĥ → 0 even when f(x)
is a uniform PDF.

1.3.2 Likelihood Cross-Validation

Likelihood cross-validation is another automatic data-driven method
for selecting the smoothing parameter h. This approach yields a den-
sity estimate which has an entropy theoretic interpretation, since the
estimate will be close to the actual density in a Kullback-Leibler sense.
This approach was proposed by Duin (1976).

Likelihood cross-validation chooses h to maximize the (leave-one-
out) log likelihood function given by

L = lnL =
n∑

i=1

ln f̂−i(Xi),
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where f̂−i(Xi) is the leave-one-out kernel estimator of f(Xi) defined
in (1.21). The main problem with likelihood cross-validation is that it
is severely affected by the tail behavior of f(x) and can lead to in-
consistent results for fat tailed distributions when using popular kernel
functions (see Hall (1987a, 1987b)). For this reason the likelihood cross-
validation method has elicited little interest in the statistical literature.

However, the likelihood cross-validation method may work well for
a range of standard distributions (i.e., thin tailed). We consider the
performance of likelihood cross-validation in Section 1.3.3, when we
compare the impact of different bandwidth selection methods on the
resulting density estimate, and in Section 1.13, where we consider em-
pirical applications.

1.3.3 An Illustration of Data-Driven Bandwidth
Selection

Figure 1.1 presents kernel estimates constructed from n = 500 observa-
tions drawn from a simulated bimodal distribution. The second order
Gaussian (normal) kernel was used throughout, and least squares cross-
validation was used to select the bandwidth for the estimate appearing
in the upper left plot of the figure, with hlscv = 0.19. We also plot the es-
timate based on the normal reference rule-of-thumb (href = 0.34) along
with an undersmoothed estimate (1/5 × hlscv) and an oversmoothed
estimate (5 × hlscv).4

Figure 1.1 reveals that least squares cross-validation appears to
yield a reasonable density estimate for this data, while the reference
rule-of-thumb is inappropriate as it oversmooths somewhat. Extreme
oversmoothing can lead to a unimodal estimate which completely ob-
scures the true bimodal nature of the underlying distribution. Also,
undersmoothing leads to too many false modes. See Exercise 1.17 for
an empirical application that investigates the effects of under- and over-
smoothing on the resulting density estimate.

1.4 Univariate CDF Estimation

In Section 1.1 we introduced the empirical CDF estimator Fn(x) given
in (1.2), while Exercise 1.4 shows that it is a

√
n-consistent estimator

4Likelihood cross-validation yielded a bandwidth of hmlcv = 0.15, which results
in a density estimate virtually identical to that based upon least squares cross-
validation for this dataset.
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Figure 1.1: Univariate kernel estimates of a mixture of normals using
least squares cross-validation, the normal reference rule-of-thumb, un-
dersmoothing, and oversmoothing (n = 500). The correct parametric
data generating process appears as the solid line, the kernel estimate
as the dashed line.

of F (x). However, this empirical CDF Fn(x) is not smooth as it jumps
by 1/n at each sample realization point. One can, however, obtain a
smoothed estimate of F (x) by integrating f̂(x). Define

F̂ (x) =
∫ x

−∞
f̂(v) dv =

1
n

n∑

i=1

G

(
x − Xi

h

)
, (1.27)

where G(x) =
∫ x
−∞ k(v) dv is a CDF (which follows directly because k(·)

is a PDF; see (1.10)). The next theorem provides the MSE of F̂ (x).
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Figure 1.1: Univariate kernel estimates of a mixture of normals using
least squares cross-validation, the normal reference rule-of-thumb, un-
dersmoothing, and oversmoothing (n = 500). The correct parametric
data generating process appears as the solid line, the kernel estimate
as the dashed line.

of F (x). However, this empirical CDF Fn(x) is not smooth as it jumps
by 1/n at each sample realization point. One can, however, obtain a
smoothed estimate of F (x) by integrating f̂(x). Define

F̂ (x) =
∫ x

−∞
f̂(v) dv =

1
n

n∑

i=1

G

(
x − Xi

h

)
, (1.27)

where G(x) =
∫ x
−∞ k(v) dv is a CDF (which follows directly because k(·)

is a PDF; see (1.10)). The next theorem provides the MSE of F̂ (x).
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Theorem 1.2. Under conditions given in Bowman, Hall and Prvan
(1998), in particular, assuming that F (x) is twice continuously dif-
ferentiable, k(v) = dG(v)/dv is bounded, symmetric, and compactly
supported, and that d2F (x)/dx2 is Hölder-continuous, 0 ≤ h ≤ Cn−ε

for some 0 < ε < 1
8 , then as n → ∞,

MSE(F̂ ) = E
[
F̂ (x) − F (x)

]2

= c0(x)n−1 − c1(x)hn−1 + c2(x)h4 + o
(
h4 + hn−1

)
,

where c0 = F (x)(1 − F (x)), c1(x) = α0f(x), α0 = 2
∫

vG(v)k(v) dv,
f(x) = dF (x)/dx, c2(x) = [(κ2/2)F (2)(x)]2, κ2 =

∫
v2k(v) dv, and

where F (s)(x) = dsF (x)/dxs is the sth derivative of F (x).

Proof. Note that E
[
F̂ (x)

]
= E

[
G

(
x−Xi

h

)]
. Then we have (

∫
=

∫ ∞
−∞)

E
[
G

(
x − Xi

h

)]
=

∫
G

(
x − z

h

)
f(z)dz

= h

∫
G(v)f(x − hv) dv = −

∫
G(v)dF (x − hv)

= − [G(v)F (x − hv)] |v=∞
v=−∞ +

∫
k(v)F (x − hv) dv

=
∫

k(v)
[
F (x) − F (1)(x)hv + (1/2)h2F (2)(x)v2

]
dv

+ o(h2)

= F (x) + (1/2)κ2h
2F (2)(x) + o(h2), (1.28)

where at the second equality above we used

−
∫ −∞

∞
[. . . ] dv =

∫ ∞

−∞
[. . . ] dv.

Also note that we did not use a Taylor expansion in
∫

G(v)F (x−hv) dv
since

∫
vmG(v) dv = +∞ for any m ≥ 0. We first used integration by

parts to get k(v), and then used the Taylor expansion since
∫

vmk(v) dv
is usually finite. For example, if k(v) has bounded support or k(v) is
a standard normal kernel function, then

∫
vmk(v) dv is finite for any

m ≥ 0.
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Similarly,

E
[
G2

(
x − Xi

h

)]
=

∫
G2

(
x − z

h

)
f(z)dz = h

∫
G2(v)f(x − hv) dv

= −
∫

G2(v)dF (x − hv)

= 2
∫

G(v)k(v)F (x − hv) dv

= 2
∫

G(v)k(v)[F (x) − F (1)(x)hv] dv + O(h2)

= F (x) − α0hf(x) + O(h2),

(1.29)

where α0 = 2
∫

vG(v)k(v) dv, and where we have used the fact that

2
∫ ∞

−∞
G(v)k(v) dv =

∫ ∞

−∞
dG2(v) = G2(∞) − G2(−∞) = 1,

because G(·) is a (user-specified) CDF kernel function.
From (1.28) we have bias[F̂ (x)] = (1/2)κ2h

2F (2)(x) + o(h2), and
from (1.28) and (1.29) we have

var
[
F̂ (x)

]
= n−1var

[
G

(
x − Xi

h

)]

= n−1

{
E

[
G2

(
x − Xi

h

)]
−

[
EG

(
x − Xi

h

)]2
}

= n−1F (x)[1 − F (x)] − α0f(x)hn−1 + o(h/n).

Hence,

E
(
F̂ (x) − F (x)

)2
=

[
bias

(
F̂ (x)

)]2
+ var

[
F̂ (x)

]

= n−1F (x) [1 − F (x)] + h4(κ2/2)2
[
F (2)(x)

]2

− α0f(x)
h

n
+ o(h4 + n−1h). (1.30)

This completes the proof of Theorem 1.2.
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Similarly,

E
[
G2

(
x − Xi

h

)]
=

∫
G2

(
x − z

h

)
f(z)dz = h

∫
G2(v)f(x − hv) dv

= −
∫

G2(v)dF (x − hv)

= 2
∫

G(v)k(v)F (x − hv) dv

= 2
∫

G(v)k(v)[F (x) − F (1)(x)hv] dv + O(h2)

= F (x) − α0hf(x) + O(h2),

(1.29)

where α0 = 2
∫

vG(v)k(v) dv, and where we have used the fact that

2
∫ ∞

−∞
G(v)k(v) dv =

∫ ∞

−∞
dG2(v) = G2(∞) − G2(−∞) = 1,

because G(·) is a (user-specified) CDF kernel function.
From (1.28) we have bias[F̂ (x)] = (1/2)κ2h

2F (2)(x) + o(h2), and
from (1.28) and (1.29) we have

var
[
F̂ (x)

]
= n−1var

[
G

(
x − Xi

h

)]

= n−1

{
E

[
G2

(
x − Xi

h

)]
−

[
EG

(
x − Xi

h

)]2
}

= n−1F (x)[1 − F (x)] − α0f(x)hn−1 + o(h/n).

Hence,

E
(
F̂ (x) − F (x)

)2
=

[
bias

(
F̂ (x)

)]2
+ var

[
F̂ (x)

]

= n−1F (x) [1 − F (x)] + h4(κ2/2)2
[
F (2)(x)

]2

− α0f(x)
h

n
+ o(h4 + n−1h). (1.30)

This completes the proof of Theorem 1.2.
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From Theorem 1.2 we immediately obtain the following result on
the IMSE of F̂ :

IMSE(F̂ ) =

∫

E
[

F̂ (x) − F (x)
]2

dx

= C0n
−1 − C1hn−1 + C2h

4 + o
(

h4 + hn−1
)

, (1.31)

where Cj =
∫

cj(x) dx (j = 0, 1, 2). Letting h0 denote the value of h
that minimizes the leading term of IMSE, we obtain

h0 = a0n
−1/3,

where a0 = [C1/(4C2)]
1/3, hence the optimal smoothing parameter for

estimating univariate a CDF has a faster rate of convergence than the
optimal smoothing parameter for estimating a univariate PDF (n−1/3

versus n−1/5). With h ∼ n−1/3, we have h2 = O(n−2/3) = o(n−1/2).
Hence,

√
n[F̂ (x)−F (x)] → N(0, F (x)[1−F (x)]) in distribution by the

Liapunov central limit theorem (CLT); see Theorem A.5 in Appendix
A for this and a range of other useful CLTs.

As is the case for nonparametric PDF estimation, nonparametric
CDF estimation has widespread potential application though it is not
nearly as widely used. For instance, it can be used to test stochastic
dominance without imposing parametric assumptions on the underly-
ing CDFs; see, e.g., Barrett and Donald (2003) and Linton, Whang and
Maasoumi (2005).

1.5 Univariate CDF Bandwidth Selection:

Cross-Validation Methods

Bowman et al. (1998) suggest choosing h for F̂ (x) by minimizing the
following cross-validation function:

CVF (h) =
1

n

n
∑

i=1

∫

{

1(Xi ≤ x) − F̂−i(x)
}2

dx, (1.32)

where F̂−i(x) = (n−1)−1
∑n

j �=i G
(

x−Xj

h

)

is the leave-one-out estimator

of F (x).

Bowman et al. (1998) show that CVF = E[CVF ] + (s.o.) and that
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(see Exercise 1.9)

E[CVF (h)] =
∫

F (1 − F ) dx +
1

n − 1

∫
F (1 − F ) dx − C1hn−1

+ C2h
4 + o

(
hn−1 + h4

)
.

(1.33)

We observe that (1.33) has the same leading term as IMSE(F̂ )
given in (1.31). Thus, asymptotically, selecting h via cross-validation
leads to the same asymptotic optimality property for F̂ (x) that would
arise when using h0, the optimal deterministic smoothing parameter.
If we let ĥ denote the cross-validated smoothing parameter, then it can
be shown that ĥ/h0 → 1 in probability. Note that when using ĥ, the
asymptotic distribution of F̂ (x, ĥ) is the same as F̂ (x, h0) (by using a
stochastic equicontinuity argument as outlined in Appendix A), that
is, √

n
(
F̂ (x) − F (x)

)
d→ N (0, F (x)(1 − F (x))) , (1.34)

where F̂ (x) is defined in (1.27) with h replaced by ĥ. Note that no
bias term appears in (1.34) since bias(F̂ (x)) = O(h2

0) = O(n−2/3) =
o(n−1/2), which was not the case for PDF estimation. Here the squared
bias term has order smaller than the leading variance term of O(n−1)
(i.e., var(F̂ (x)) = O(n−1)).

We now turn our attention to a generalization of the univariate ker-
nel estimators developed above, namely multivariate kernel estimators.
Again, we consider only the continuous case in this chapter; we tackle
discrete and mixed continuous and discrete data cases in Chapters 3
and 4.

1.6 Multivariate Density Estimation

Suppose that X1, . . . , Xn constitute an i.i.d. q-vector (Xi ∈ Rq, for
some q > 1) having a common PDF f(x) = f(x1, x2, . . . , xq). Let Xis

denote the sth component of Xi (s = 1, . . . , q). Using a “product kernel
function” constructed from the product of univariate kernel functions,
we estimate the PDF f(x) by

f̂(x) =
1

nh1 . . . hq

n∑

i=1

K

(
Xi − x

h

)
, (1.35)
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(see Exercise 1.9)

E[CVF (h)] =
∫

F (1 − F ) dx +
1

n − 1

∫
F (1 − F ) dx − C1hn−1

+ C2h
4 + o

(
hn−1 + h4

)
.

(1.33)

We observe that (1.33) has the same leading term as IMSE(F̂ )
given in (1.31). Thus, asymptotically, selecting h via cross-validation
leads to the same asymptotic optimality property for F̂ (x) that would
arise when using h0, the optimal deterministic smoothing parameter.
If we let ĥ denote the cross-validated smoothing parameter, then it can
be shown that ĥ/h0 → 1 in probability. Note that when using ĥ, the
asymptotic distribution of F̂ (x, ĥ) is the same as F̂ (x, h0) (by using a
stochastic equicontinuity argument as outlined in Appendix A), that
is, √

n
(
F̂ (x) − F (x)

)
d→ N (0, F (x)(1 − F (x))) , (1.34)

where F̂ (x) is defined in (1.27) with h replaced by ĥ. Note that no
bias term appears in (1.34) since bias(F̂ (x)) = O(h2

0) = O(n−2/3) =
o(n−1/2), which was not the case for PDF estimation. Here the squared
bias term has order smaller than the leading variance term of O(n−1)
(i.e., var(F̂ (x)) = O(n−1)).

We now turn our attention to a generalization of the univariate ker-
nel estimators developed above, namely multivariate kernel estimators.
Again, we consider only the continuous case in this chapter; we tackle
discrete and mixed continuous and discrete data cases in Chapters 3
and 4.

1.6 Multivariate Density Estimation

Suppose that X1, . . . , Xn constitute an i.i.d. q-vector (Xi ∈ Rq, for
some q > 1) having a common PDF f(x) = f(x1, x2, . . . , xq). Let Xis

denote the sth component of Xi (s = 1, . . . , q). Using a “product kernel
function” constructed from the product of univariate kernel functions,
we estimate the PDF f(x) by

f̂(x) =
1

nh1 . . . hq

n∑

i=1

K

(
Xi − x

h

)
, (1.35)
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where K
(

Xi−x
h

)
= k

(
Xi1−x1

h1

)
× · · · × k

(
Xiq−xq

hq

)
, and where k(·) is a

univariate kernel function satisfying (1.10).
The proof of MSE consistency of f̂(x) is similar to the univariate

case. In particular, one can show that

bias
(
f̂(x)

)
=

κ2

2

q∑

s=1

h2
sfss(x) + O

(
q∑

s=1

h3
s

)
, (1.36)

where fss(x) is the second order derivative of f(x) with respect to xs,
κ2 =

∫
v2k(v) dv, and one can also show that

var
(
f̂(x)

)
=

1
nh1 . . . hq

[
κqf(x) + O

(
q∑

s=1

h2
s

)]
= O

(
1

nh1 . . . hq

)
,

(1.37)
where κ =

∫
k2(v) dv. The proofs of (1.36) and (1.37), which are similar

to the univariate X case, are left as an exercise (see Exercise 1.11).
Summarizing, we obtain the result

MSE
(
f̂(x)

)
=

[
bias

(
f̂(x)

)]2
+ var

(
f̂(x)

)

= O




(
q∑

s=1

h2
s

)2

+ (nh1 . . . hq)−1


 .

Hence, if as n → ∞, max1≤s≤q hs → 0 and nh1 . . . hq → ∞, then
we have f̂(x) → f(x) in MSE, which implies that f̂(x) → f(x) in
probability.

As we saw in the univariate case, the optimal smoothing parame-
ters hs should balance the squared bias and variance terms, i.e., h4

s =
O

(
(nh1 . . . hq)−1

)
for all s. Thus, we have hs = csn

−1/(q+4) for some
positive constant cs (s = 1, . . . , q). The cross-validation methods dis-
cussed in Section 1.3 can be easily generalized to the multivariate data
setting, and we can show that least squares cross-validation can opti-
mally select the hs’s in the sense outlined in Section 1.3 (see Section
1.8 below).

We briefly remark on the independence assumption invoked for the
proofs presented above. Our assumption was that the data is indepen-
dent across the i index. Note that no restrictions were placed on the s
index for each component Xis (s = 1, . . . , q). The product kernel is used
simply for convenience, and it certainly does not require that the Xis’s
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are independent across the s index. In other words, the multivariate
kernel density estimator (1.35) is capable of capturing general depen-
dence among the different components of Xi. Furthermore, we shall
relax the “independence across observations” assumption in Chapter
18, and will see that all of the results developed above carry over to
the weakly dependent data setting.

1.7 Multivariate Bandwidth Selection:
Rule-of-Thumb and Plug-In Methods

In Section 1.2 we discussed the use of the so-called normal reference
rule-of-thumb and plug-in methods in a univariate setting. The gener-
alization of the univariate normal reference rule-of-thumb to a multi-
variate setting is straightforward. Letting q be the dimension of Xi, one
can choose hs = csXs,sdn

−1/(4+q) for s = 1, . . . , q, where Xs,sd is the
sample standard deviation of {Xis}n

i=1 and cs is a positive constant.
In practice one still faces the problem of how to choose cs. The choice
of cs = 1.06 for all s = 1, . . . , q is computationally attractive; how-
ever, this selection treats the different Xis’s symmetrically. In practice,
should the joint PDF change rapidly in one dimension (say in x1) but
change slowly in another (say in x2), then one should select a relatively
small value of c1 (hence a small h1) and a relatively large value for c2

(h2). Unlike the cross-validation methods that we will discuss shortly,
rule-of-thumb methods do not offer this flexibility.

For plug-in methods, on the other hand, the leading (squared) bias
and variance terms of f̂(x) must be estimated, and then h1, . . . , hq must
be chosen to minimize the leading MSE term of f̂(x). However, the
leading MSE term of f̂(x) involves the unknown f(x) and its partial
derivative functions, and pilot bandwidths must be selected for each
variable in order to estimate these unknown functions. How to best
select the initial pilot smoothing parameters can be tricky in high-
dimensional settings, and the plug-in methods are not widely used in
applied settings to the best of our knowledge, nor would we counsel
their use other than for exploratory data analysis.
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1.8 Multivariate Bandwidth Selection:
Cross-Validation Methods

1.8.1 Least Squares Cross-Validation

The univariate least squares cross-validation method discussed in Sec-
tion 1.3.1 can be readily generalized to the multivariate density esti-
mation setting. Replacing the univariate kernel function in (1.23) by
a multivariate product kernel, the cross-validation objective function
now becomes

CVf (h1, . . . , hq) =
1
n2

n∑

i=1

n∑

j=1

K̄h(Xi, Xj)

− 2
n(n − 1)

n∑

i=1

n∑

j �=i,j=1

Kh(Xi, Xj), (1.38)

where

Kh(Xi, Xj) =
q∏

s=1

h−1
s k

(
Xis − Xjs

hs

)
,

K̄h(Xi, Xj) =
q∏

s=1

h−1
s k̄

(
Xis − Xjs

hs

)
,

and k̄(v) is the twofold convolution kernel based upon k(·), where k(·)
is a univariate kernel function satisfying (1.10).

Exercise 1.12 shows that the leading term of CVf (h1, . . . , hq) is
given by (ignoring a term unrelated to the hs’s)

CVf0(h1, . . . , hq) =
∫ [

q∑

s=1

Bs(x)h2
s

]2

dx +
κq

nh1 . . . hq
, (1.39)

where Bs(x) = (κ2/2)fss(x).
Defining as via hs = asn

−1/(q+4) (s = 1, . . . , q), we have

CVf0(h1, . . . , hq) = n−4/(q+4)χf (a1, . . . , aq), (1.40)

where

χf (a1, . . . , aq) =
∫ [

q∑

s=1

Bs(x)a2
s

]2

dx +
κq

a1 . . . aq
. (1.41)
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Let the a0
s’s be the values of the as’s that minimize χf (a1, . . . , aq).

Under the same conditions used in the univariate case and, in addition,
assuming that fss(x) is not a zero function for all s, Li and Zhou (2005)
show that each a0

s is uniquely defined, positive, and finite (see Exercise
1.10). Let h0

1, . . . , h
0
q denote the values of h1, . . . , hq that minimize CVf0.

Then from (1.40) we know that h0
s = a0

sn
−1/(q+4) = O

(
n−1/(q+4)

)
.

Exercise 1.12 shows that CVf0 is also the leading term of E[CVf ].
Therefore, the nonstochastic smoothing parameters h0

s can be inter-
preted as optimal smoothing parameters that minimize the leading
term of the IMSE.

Let ĥ1, . . . , ĥq denote the values of h1, . . . , hq that minimize CVf .
Using the fact that CVf = CVf0 + (s.o.), we can show that ĥs =
h0

s + op(h0
s). Thus, we have

ĥs − h0
s

h0
s

=
ĥs

h0
s

− 1 → 0 in probability, for s = 1, . . . , q. (1.42)

Therefore, smoothing parameters selected via cross-validation have the
same asymptotic optimality properties as the nonstochastic optimal
smoothing parameters.

Note that if fss(x) = 0 almost everywhere (a.e.) for some s, then
Bs = 0 and the above result does not hold. Stone (1984) shows that
the cross-validation method still selects h1, . . . , hq optimally in the
sense that the integrated estimation square error is minimized; see also
Ouyang et al. (2006) for a more detailed discussion of this case.

1.8.2 Likelihood Cross-Validation

Likelihood cross-validation for multivariate models follows directly via
(multivariate) maximization of the likelihood function outlined in Sec-
tion 1.3.2, hence we do not go into further details here. However, we do
point out that, though straightforward to implement, it suffers from the
same defects outlined for the univariate case in the presence of fat tail
distributions (i.e., it has a tendency to oversmooth in such situations).

1.9 Asymptotic Normality of Density
Estimators

In this section we show that f̂(x) has an asymptotic normal distri-
bution. The most popular CLT is the Lindeberg-Levy CLT given in
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Theorem A.3 of Appendix A, which states that n1/2[n−1
∑n

i=1 Zi] →
N(0, σ2) in distribution, provided that Zi is i.i.d. (0, σ2). Though the
Lindeberg-Levy CLT can be used to derive the asymptotic distribution
of various semiparametric estimators discussed in Chapters 7, 8, and
9, it cannot be used to derive the asymptotic distribution of f̂(x). This
is because f̂(x) = n−1

∑
i Zi,n, where the summand Zi,n = Kh(Xi, x)

depends on n (since h = h(n)). We shall make use of the Liapunov
CLT given in Theorem A.5 of Appendix A

Theorem 1.3. Let X1, . . . , Xn be i.i.d. q-vectors with its PDF f(·)
having three-times bounded continuous derivatives. Let x be an interior
point of the support of X. If, as n → ∞, hs → 0 for all s = 1, . . . , q,
nh1 . . . hq → ∞, and (nh1 . . . hq)

∑q
s=1 h6

s → 0, then

√
nh1 . . . hq

[
f̂(x) − f(x) − κ2

2

q∑

s=1

h2
sfss(x)

]
d→ N(0, κqf(x)).

Proof. Using (1.36) and (1.37), one can easily show that

√
nh1 . . . hq

[
f̂(x) − f(x) − κ2

2

q∑

s=1

h2
sfss(x)

]

has asymptotic mean zero and asymptotic variance κqf(x), i.e.,

√
nh1 . . . hq

[
f̂(x) − f(x) − κ2

2

q∑

s=1

h2
sfss(x)

]

=
√

nh1 . . . hq

[
f̂(x) − E

(
f̂(x)

)]

+
√

nh1 . . . hq

[
E

(
f̂(x)

)
− f(x) − κ2

2

q∑

s=1

h2
sfss(x)

]

=
√

nh1 . . . hq

[
f̂(x) − E

(
f̂(x)

)]

+ O

(
√

nh1 . . . hq

q∑

s=1

h3
s

)
(by (1.36))

=
n∑

i=1

(nh1 . . . hq)−1/2

×
[
K

(
Xi − x

h

)
− E

(
K

(
Xi − x

h

))]
+ o(1)

≡
n∑

i=1

Zn,i + o(1) d→ N (0, κqf(x)) ,
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by Liapunov’s CLT, provided we can verify that Liapunov’s CLT con-
dition (A.21) holds, where

Zn,i = (nh1 . . . hq)−1/2

[
K

(
Xi − x

h

)
− E

(
K

(
Xi − x

h

))]

and
n∑

i=1

σ2
n,i

def=
n∑

i=1

var(Zn,i) = κqf(x) + o(1)

by (1.37). Pagan and Ullah (1999, p. 40) show that (A.21) holds under
the condition given in Theorem 1.3. The condition that

∫
k(v)2+δ dv <

∞ for some δ > 0 used in Pagan and Ullah is implied by our assumption
that k(v) is nonnegative and bounded, and that

∫
k(v) dv = 1, because∫

k(v)2+δ dv ≤ C
∫

k(v) dv = C is finite, where C = supv∈Rq k(v)1+δ.

1.10 Uniform Rates of Convergence

Up to now we have demonstrated only the case of pointwise and IMSE
consistency (which implies consistency in probability). In this section
we generalize pointwise consistency in order to obtain a stronger “uni-
form consistency” result. We will prove that nonparametric kernel es-
timators are uniformly almost surely consistent and derive their uni-
form almost sure rate of convergence. Almost sure convergence implies
convergence in probability; however, the converse is not true, i.e., con-
vergence in probability may not imply convergence almost surely; see
Serfling (1980) for specific examples.

We have already established pointwise consistency for an interior
point in the support of X. However, it turns out that popular kernel
functions such as (1.9) may not lead to consistent estimation of f(x)
when x is at the boundary of its support, hence we need to exclude the
boundary ranges when considering the uniform convergence rate. This
highlights an important aspect of kernel estimation in general, and a
number of kernel estimators introduced in later sections are motivated
by the desire to mitigate such “boundary effects.” We first show that
when x is at (or near) the boundary of its support, f̂(x) may not be a
consistent estimator of f(x).

Consider the case where X is univariate having bounded support.
For simplicity we assume that X ∈ [0, 1]. The pointwise consistency
result f̂(x) − f(x) = op(1) obtained earlier requires that x lie in the
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interior of its support. Exercise 1.13 shows that, for x at the boundary of
its support, MSE(f̂(x)) may not be o(1). Therefore, some modifications
may be needed to consistently estimate f(x) for x at the boundary of its
support. Typical modifications include the use of boundary kernels or
data reflection (see Gasser and Müller (1979), Hall and Wehrly (1991),
and Scott (1992, pp. 148–149)). By way of example, consider the case
where x lies on its lowermost boundary, i.e., x = 0, hence f̂(0) =
(nh)−1

∑n
i=1 K((Xi − 0)/h). Exercise 1.13 shows that for this case,

E[f̂(0)] = f(0)/2 + O(h). Therefore, bias[f̂(0)] = E[f̂(0)] − f(0) =
−f(0)/2 + O(h), which will not converge to zero if f(0) �= 0 (when
f(0) > 0).

In the literature, various boundary kernels are proposed to overcome
the boundary (bias) problem. For example, a simple boundary corrected
kernel is given by (assuming that X ∈ [0, 1])

kh(x, y) =





h−1k
(y−x

h

)
/

∫ ∞
−x/h k(v) dv if x ∈ [0, h)

h−1k
(y−x

h

)
if x ∈ [h, 1 − h]

h−1k
(y−x

h

)
/

∫ (1−x)/h
−∞ k(v) dv if x ∈ (1 − h, 1],

(1.43)
where k(·) is a second order kernel satisfying (1.10). Now, we estimate
f(x) by

f̂(x) =
1
n

n∑

i=1

kh(x,Xi), (1.44)

where kh(x,Xi) is defined in (1.43). Exercise 1.14 shows that the above
boundary corrected kernel successfully overcomes the boundary prob-
lem.

We now establish the uniform almost sure convergence rate of f̂(x)−
f(x) for x ∈ S, where S is a bounded set excluding the boundary
range of the support of X. In the above example, when the support of
x is [0, 1], we can choose S = [ε, 1 − ε] for arbitrarily small positive ε
(0 < ε < 1/2). We assume that f(x) is bounded below by a positive
constant on S.

Theorem 1.4. Under smoothness conditions on f(·) given in Masry
(1996b), and also assuming that infx∈S f(x) ≥ δ > 0, we have

sup
x∈S

∣∣∣f̂(x) − f(x)
∣∣∣ = O

(
(ln(n))1/2

(nh1 . . . hq)1/2
+

q∑

s=1

h2
s

)
almost surely.
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A detailed proof of Theorem 1.4 is given in Section 1.12.
Since almost sure convergence implies convergence in probability,

the uniform rate also holds in probability, i.e., under the same condi-
tions as in Theorem 1.4, we have

sup
x∈S

∣∣∣f̂(x) − f(x)
∣∣∣ = Op

(
(ln(n))1/2

(nh1 . . . hq)1/2
+

q∑

s=1

h2
s

)
.

Using the results of (1.36) and (1.37), we can establish the following
uniform MSE rate.

Theorem 1.5. Assuming that f(x) is twice differentiable with bounded
second derivatives, then we have

sup
x∈S

E
{[

f̂(x) − f(x)
]2

}
= O

(
q∑

s=1

h4
s + (nh1 . . . hq)−1

)
.

Proof. This follows from (1.36) and (1.37), by noting that supx∈S f(x)
and supx∈S |fss(x)| are both finite (s = 1, . . . , q).

Note that although convergence in MSE implies convergence in
probability, one cannot derive the uniform convergence rate in proba-
bility from Theorem 1.5. This is because

E
{

sup
x∈S

[
f̂(x) − f(x)

]2
}

�= sup
x∈S

E
[
f̂(x) − f(x)

]2
,

and

P
[
sup
x∈S

∣∣∣f̂(x) − f(x)
∣∣∣ > ε

]
�= sup

x∈S
P

[∣∣∣f̂(x) − f(x)
∣∣∣ > ε

]
.

The sup and the E(·) or the P(·) operators do not commute with one
another.

Cheng (1997) proposes alternative (local linear) density estimators
that achieve automatic boundary corrections and enjoy some typical
optimality properties. Cheng also suggests a data-based bandwidth se-
lector (in the spirit of plug-in rules), and demonstrates that the band-
width selector is very efficient regardless of whether there are non-
smooth boundaries in the support of the density.

(continued...)
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semiparametric, 335, 337

central limit theorem
Degenerate U-statistics, 692
Hilbert-valued, 694
Liapunov, 689
Lindeberg-Feller, 688
Lindeberg-Levy, 688

central limit theorem (CLT), 23
characteristic function, 671
cointegration, 564
confusion matrix, 279
convergence

almost everywhere, 682
almost surely, 682
in rth mean, 682
in distribution, 682
in probability, 682
weak, 687

copula, 651
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Cramer-Wold theorem, 689
cumulative distribution func-

tion (CDF), 3,
7

cross-validation, 23
frequency, 7
nonsmooth, 182
smooth, 20, 184

curse of dimensionality, xvii

density estimation
least squares cross-

validation bandwidth se-
lection, 15,
27

likelihood cross-
validation bandwidth se-
lection, 18,
28

plug-in bandwidth selection,
14, 26

rule-of-thumb bandwidth se-
lection, 14,
26

Dirac delta function, 679

empirical distribution function, 19

fixed effects, 586
Fourier series, 512
frequency method, 6, 115

Gaussian process, 678
generalized method of mo-

ments (GMM),
512

hazard function, 198
Hilbert space, 674
hypothesis testing

conditional parametric
density function, 402

conditional parametric distri-
butions,
382

correct parametric func-
tional form, 355, 365,
398

equality of density functions,
362, 401

independence, 378
omitted variables, 370
parametric density function,

380
parametric single index model,

369
serial dependence, 404
significance, 375
significance test, 401

inequality
Cauchy, 690
Cauchy-Schwarz, see Cauchy
Chebychev, 690
Hölder, 690
Markov, 689
triangle, 481

instrumental variable, 506
integrated mean squared error

(IMSE), 13
integrated square error (ISE), 157

Kaplan-Meier estimator, 338
kernel

Aitchison and Aitken, 167
Bartlett, 405
convolution, 16
Daniell, 405
Epanechnikov, 35
Gaussian, 34
higher order, 33
Parzen, 405
triangular, 400
uniform, 8

Khinchin’s law of large numbers,
688

knots, 446
Kullback-Leibler, 382

latent variable, 316
law of iterated expectations, 690
Lebesgue-Stieltjes integral, 670
Lebesgue measure, 666
link function, 250, 295, 463
Lipschitz function, 672
local average, 64
local constant estimator, 60

AICc bandwidth selection, 72
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irrelevant regressors and band-
width selection,
73

least squares cross-validation,
69

plug-in bandwidths, 66
rule-of-thumb bandwidths, 66

local linear estimator, 79
least squares cross-validation,

83
local polynomial estimator, 85
location-scale model, 346

maximum likelihood estimation, 4
mean squared error (MSE), 6
measure, 666
measurement error, 92
minimax, 532
MINPIN, 230
mixing, 535

α-mixing, 535
β-mixing, 535
φ-mixing, 535
ρ-mixing, 535
Mixingale, 536
strong, see α-mixing

naïve kernel estimator, 8
Nadaraya-Watson estimator, see

local constant estimator
nearest neighbor, 416
neural network, 547
nonlinear-differencing, 606, 614
nonstationary data, 566
normal rule-of-thumb, 14

oracle estimator, 287
orthonormal basis, 674

panel data, 575
Parseval’s equality, 675
partially linear model, 222
partial derivative estimator, 80
pilot bandwidth, 14
Pitman local alternatives, 400
poolable, 578
power series, 512
probability density func-

tion (PDF),
3

product-limit estimator, see
Kaplan-Meier estimator

product kernel function, 24
discrete data, 126
mixed data, 137

quantile regression, 189

random effects, 578
Riemann-Stieltjes integral, 669
Riemann integral, 668
Rosenblatt-Parzen estimator, 9

selectivity model
parametric, 316
semiparametric, 317, 318, 320

semiparametric efficiency bound,
234, 267

sieves, 610
sigma-field, 664
single index model, 249
small o(·), 684
small op(·), 685
smoothing parameter, 8
smooth coefficient model, 301
Sobolev norm, 675
spectrum, 404
spline, 512
spline function, 446
stochastic equicontunity, 686
survival function, 198

time-differencing, 606, 607
Tobit

type-2, 316
type-3, 320

transformation model, 659
trimming, 254, 256, 260, 266, 359

U-statistic, 691
U-statistic H-decomposition, 691

wavelet, 428
weakly dependent, 535
weakly exogenous, 506
weighted integrated mean squared

error (WIMSE), 67
window width, see

smoothing parameter




