© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Contents

Foreword to the Princeton Science Library Edition ix
Acknowledgments xv
Introduction 1
CHAPTER ONE
Greek Beginnings 9
Chapter Two
The Route to Germany 52
Chapter Three
Two New Irrationals 92
Chapter Four
Irrationals, Old and New 109
Chapter Five
A Very Special Irrational 137
Chapter Six
From the Rational to the Transcendental 154
Chapter Seven
Transcendentals 182
Chapter Eight
Continued Fractions Revisited 211
Chapter Nine
The Question and Problem of Randomness 225
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
Chapter Ten
One Question, Three Answers 235
Chapter Eleven
Does Irrationality Matter? 252
APPENDIX A
The Spiral of Theodorus 272
APPENDIX B
Rational Parameterizations of the Circle 278
Appendix C
Two Properties of Continued Fractions 281
Appendix D
Finding the Tomb of Roger Apéry 286
APPENDIX E
Equivalence Relations 289
APPENDIX F
The Mean Value Theorem 294
Index 295
> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Introduction

Trial on air quashed as unsound (10)
1 Down, Daily Telegraph crossword 26,488, 1 March 2011

Irrational numbers have been acknowledged for about 2,500 years, yet properly understood for only the past 150 of them. This book is a guided tour of some of the important ideas, people and places associated with this long-term struggle.

The chronology must start around 450 B.C.E. and the geography in Greece, for it was then and there that the foundation stones of pure mathematics were laid, with one of them destined for highly premature collapse. And the first character to be identified must be Pythagoras of Samos, the mystic about whom very little is known with certainty, but in whom pure mathematics may have found its earliest promulgator. It is the constant that sometimes bears his name, $\sqrt{2}$, that is generally (although not universally) accepted as the elemental irrational number and, as such, there is concord that it was this number that dislodged his crucial mathematical-philosophical keystone: positive integers do not rule the universe. Yet those ancient Greeks had not discovered irrational numbers as we would recognize them, much less the symbol $\sqrt{2}$ (which would not appear until 1525); they had demonstrated that the side and diagonal of a square cannot simultaneously be measured by the same unit or, put another way, that the diagonal is incommensurable with any unit that measures the side. An early responsibility for us is to reconcile the incommensurable with the irrational.

This story must begin, then, in a predictable way and sometimes it progresses predictably too, but as often it meanders along roads less travelled, roads long since abandoned or concealed in the dense undergrowth of the mathematical monograph. As the pages turn so we unfold detail of some of the myriad results which have shaped the history of irrational numbers, both great and small, famous and obscure, modern and classical - and these last we give in their near original form, costly though that can be. Mathematics
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
can have known no greater aesthete than G. H. Hardy, with one of his most widely used quotations ${ }^{1}$:

There is no permanent place in the world for ugly mathematics.
Perhaps not, but it is in the nature of things that first proofs are often mirror-shy. ${ }^{2}$ They should not be lost, however, and this great opportunity has been taken to garner some of them, massage them a little, and set them beside the approaches of others, whose advantage it has been to use later mathematical ideas.

At journey's end we hope that the reader will have gained an insight into the importance of irrational numbers in the development of pure mathematics, ${ }^{3}$ and also the very great challenges sometimes offered up by them; some of these challenges have been met, others intone the siren's call.

What, then, is meant by the term irrational number? Surely the answer is obvious:

It is a number which cannot be expressed as the ratio of two integers.
Or, alternatively:
It is a number the decimal expansion of which is neither finite nor recurring.

Yet, in both cases, irrationality is defined in terms of what it is not, rather like defining an odd number to be one that is not even. Graver still, these answers are fraught with limitations: for example, how do we use them to define equality between, or arithmetic operations on, two irrational numbers? Although these are familiar, convenient and harmless definitions, they are quite useless in practice. By them, irrational numbers are being defined in terms of one of their characteristic qualities, not as entities in their own right. Who is to say that they exist at all? For novelty, let us adopt a third, less well-known approach:

Since every rational number r can be written

$$
r=\frac{(r-1)+(r+1)}{2}
$$

[^0]© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
every rational number is equidistant from two other rational numbers (in this case $r-1$ and $r+1$); therefore, no rational number is such that it is a different distance from all other rational numbers.

With this observation we define the irrational numbers as:
The set of all real numbers having different distances from all rational numbers.

With its novelty acknowledged, the list of limitations of the definition is as least as long as before. It is an uncomfortable fact that, if we allow ourselves the integers (and we may not), a rigorous and workable definition of the rational numbers is quite straightforward, but the move from them to the irrational numbers is a problem of quite another magnitude, literally as well as figuratively: the set of rational numbers is the same size as the set of integers but the irrational numbers are vastly more numerous. This problem alone simmered for centuries and analysis waited ever more impatiently for its resolution, with the nineteenth-century rigorists posing ever more challenging questions and ever more perplexing contradictions, following Zeno of Elea more than 2,000 years earlier. In the end the resolution was decidedly Germanic, with various German mathematicians providing three near-simultaneous answers, rather like the arrival of belated buses. We discuss them in the penultimate chapter, not in the detail needed to convince the most skeptical, for that would occupy too many page with tedious checking, but we hope with sufficient conviction for hand-waving to be a positive signal.

For whom, then, is this story intended? At once to the reader who is comfortable with real variable calculus and its associated limits and series, for they might read it as one would read a history book: sequentially from start to finish. But also to those whose mathematical training is less but whose curiosity and enthusiasm are great; they might delve to the familiar and sometimes the new, filling gaps as one might attempt a jigsaw puzzle. In the end, the jigsaw might be incomplete but nonetheless its design should be clear enough for recognition. In as much as we have invested great effort in trying to explain sometimes difficult ideas, we must acknowledge that the reader must invest energy too. Borrowing the words of a former president of Princeton University, James McCosh:
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

The book to read is not the one that thinks for you but the one that makes you think. ${ }^{4}$

The informed reader may be disappointed by the omission of some material, for example, the base φ number system, Phinary (which makes essential use of the defining identity of the Golden Ratio), and Farey sequences and Ford Circles, for example. These ideas and others have been omitted by design and undoubtedly there is much more that is missing by accident, with the high ideal of writing comprehensively diluted to one that has sought simply to be representative of a subject which is vast in its age, vast in its breadth and intrinsically difficult. Each chapter of this book could in itself be expanded into another book, with each of these books divided into several volumes.

We apologize for any errors, typographic or otherwise, that have slipped through our mesh and we seek the reader's sympathy with a comment from Eric Baker:

Proofreading is more effective after publication.

[^1]© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

The moderation of men gaoled for fiddling pension at last $(6,4)$
3 Down, Daily Telegraph crossword 26,501, 16 March 2011

Pythag ϕ ras and the w ϕ rld's m ϕ st irrati ϕ nal number

Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Pythagoras, $\sqrt{2}$ and tangrams

Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

The Spiral of Theodorus
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
$\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \cos ^{2 n}(m!\pi x)= \begin{cases}1: & x \text { is rational } \\ 0: & x \text { is irrational }\end{cases}$
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Index

Abel, Niels, 132, 235
Abu Kamil, 57
al-Karajī, 60
Al-Khwārizmī, 57, 253
algebraic irrationals, 180
Almagest, 65
analytic geometry, 77
Anderhub, J. H., 32
angle
trisection of, 201
Apéry, Roger, 138
aperiodic tiling, 258
apotome, 50
Arago, Dominique François Jean, 97
Archimedean spiral, 276
Archimedes, 49
Aristotle, 13
arithmetic axioms, 249
Arithmetica Integra, 74
Arithmetica infinitorum, 85
Arithmetical Theorem, 135
Aryabhata, 254
Axiom of Eudoxus, 40, 43, 49, 167,251

Beatty, Samuel, 261
Bell numbers, 293
Berlin Academy, 104
Bernoulli, Jacob, 96
Besicovitch's Constant, 233
Besicovitch, A. S., 233
Bézout's Identity, 166
Bhaskara II, 54
Binet formula, 221
binomial, 50
Blake, William, 152
Bolzano, Bernard, 237
Borel, Emil, 230
bride's chair, 45
Brouncker, Lord, 93
Burkert, Walter, 12

Caliph
al-Ma'mūn, 56
Harun al-Rashid, 56
Omar ibn Khattab, 56
Cantor, Georg, 204, 239
Cantor-Heine-Méray
Model, 242
Cartwright, Dame Mary, 113
Catalan constant, 112
catenery, 253
Cauchy
distribution, 252
sequence, 242
Cauchy, Augustin-Louis, 237
Cavalieri Principle, 86
Chaitin, Gregory, 231
Champernowne's
Constant, 232
Champernowne, David, 232
Chaucer, 66
Cicero, 65
commensurability, 13
commensurable in square, 48
common elements, 134
complementary sequences, 262
complete ordered field, 250
completeness axiom, 250
constructible numbers, 203
continued fractions, 92, 183
Conway Constant, 136
Conway, John Horton, 133
Copeland, A. H., 233
Copeland-Erdős Constant, 233
coprime, 252
Cosmological Theorem, 135
countable set, 204
counter-earth, 14
Crelle, August, 236

Davis, Philip J., 277
De Divina Proportione, 74
De Morgan, Augustus, 47
de Stainville, M. J., 109
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Dedekind
cut, 241, 244
Model, 244
Dedekind, Richard, 39, 239
Dehn, Max, 269
Delian Problem, 201
dense set, 167
Descartes, René, 77
Diehard test suite, 229
Diophantine approximation, 154
Dirichlet's Diophantine
Approximation Theorem, 163, 269
Dirichlet's Simultaneous
Approximation Theorem, 270
Dirichlet, Johann Peter Gustav
Lejeune, 162
Discourse on Method, 80
Dobinski's formula, 293
Drawer Principle, 162
Dudeney, Henry, 268
dunce's cap, 64
Duns Scotus, 64
duplication of the cube, 201
dynamical systems, 258
Dyson, Freeman, 184

Einstein's field equations, 253
equimultiples, 41
equivalence relation, 289, 290
Eratosthenes, 49
Erdős, Paul, 112, 233
Euclid, 38
Euclid's Elements, 10, 11, 21, 39
Eudemian Summary, 10, 14
Eudemus of Rhodes, 14
Eudoxus of Cnidus, 39, 41, 49
Eudoxus's method of exhaustion, 49, 238
Euler's Constant, 263
Euler, Leonhard, 96, 182, 274
Euler-Mascheroni constant, 112
exotic elements, 134
factorial function, 274
Fermat's Last Theorem, 199
Fermat, Pierre de, 77
Fibonacci of Pisa, 60, 62
Fibonacci Sequence, 166
field, 250

Floor function, 113, 146, 157, 261, 266
Flos, 63
Folium of Descartes, 84
Fourier, Joseph, 109
Fraenkel, Aviezri S., 267
Frederick II, 63
Frege, Gottlob, 251
Freiman's constant, 175
Galois, Évariste, 132
Gamma Function, 274
Gelfond Schneider Theorem, 198
Gelfond, Aleksandr, 184, 199
geometric
curves, 80
mean, 50
Golden Ratio, 28, 74, 174, 220, 236, 255
Gray, Robert, 208
Great Year, 65
greatest common divisors, 166, 213

Hall's Ray, 176
Hall, Marshall, 176
Hamilton, Sir William Rowan, 237
Hankel, Hermann, 238
Hardy, G. H., 32
harmonic
oscillator, 253
series, 138, 238
height of a polynomial, 205
Hermite Identity, 192
Hermite, Charles, 113, 190, 193
hexagram, 27
Hilbert, David, 11, 169, 198, 248
Hindu civilization, 53
Hippasus of Metapontum, 20
Hobbes, Thomas, 85
Horn Angle, 40
House of Wisdom, 56
Hurwitz, Adolf, 169
incommensurability, 48
indicator function, 257
irrational numbers, 29, 53, 63, 65, $74,77,97,165,167,172,174$, 176, 199, 204, 209, 232, 233, 237, 242, 245, 247 addition of, 126
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
alternative definition of, 3
and rational approximation, 160
and the Littlewood Conjecture, 172
and the quintic equation, 132
and the Zeta function, 153
as non-surd algebraic, 132
birth of, 9
Cantor's construction of, 209
Cauchy definition of, 237
denseness of, 167
elementary definition of, 2
generation of using
polynomials, 131
nineteenth-century definition of, 239
non-existence of, 204
quadratic, 176
Stifel's view of them, 74
the most irrational, 219
Weierstrass view of, 239
Iwamoto, Y., 119
Johannes of Palermo, 63
Jowett, Benjamin, 29
Kant, Immanuel, 18
Khinchin, Aleksandr, 210
Klein, Felix, 169
Knorr, Wilbur R., 33, 47
Kronecker, Leopold, 204
La Disme, 76
Lady Isobel's Casket, 268
Lagrange Spectrum, 174
Lambek, Joachim (Jim), 265
Lambert, Johann Heinrich, 104
least common multiple, 145
Lehmer, Dick, 229
Leibniz, Gottfried Wilhelm, 182
Liber Abaci, 62, 74
Library of
Alexandria, 11, 56
Babel, 234
Life of Brian, The, 52
Lindemann, Ferdinand, 194
Lindemann-Weierstrass Theorem, 200
Liouville Approximation Theorem, 183
Liouville Number, 183, 186

Liouville, Joseph, 183
Littlewood, John Edensor, 172
logarithmic spiral, 253, 276
Look and Say Sequence, 133
Louis XIV, 286
Luther, Martin, 75
Madhava of Sangamagramma, 55
Markov
numbers, 175, 223
spectrum, 222
McCabe, Robert L., 33
mean, 20
proportion, 50
Mean Value Theorem, 184, 294
mechanical curves, 80
medial, 50
Méray, Charles, 239
method of normals, 80
Minkowski, Hermann, 169
Moser, Leo, 265
Murray, James, 23
National Institute of Standards and
Technology, 254
Test Suite, 229
Newcomb, Simon, 252
Niven polynomial, 116
Niven, Ivan, 116
normal, 230
distribution, 253
in base $b, 230$
numbers, 230
number of the beast, 75
Ohm, Martin, 236
Omar Khayyam, 61
Rubaiyat, 61
Online Encyclopedia of Integer
Sequences, 209
order axioms, 250
ordered field, 250
Oresme, Nicole, 66, 138, 259
Pacioli, Luca, 74
Patruno, Gregg N., 127
Penrose Tiles, 258
pentagram, 25
Père Lachaise, 153, 286
permeability of free space, 254
Perron, Oskar, 175
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Pigeonhole Principle, 162, 226
Plato, 12, 21, 29
Plato's Dialogues, 29
Poincaré, Henri, 190, 239
Poinsot, Louis, 110
Poisson distribution, 253
Pope Leo X, 75
prime counting function, 147
Prime Number Theorem, 147
Proclus, 10, 15, 38
Profound Doctor, 66
Proteus, 90
Pythagoras
constant, 1
of Samos, 9, 10
Pythagoras's Theorem, 18, 38, 45
quadratic
irrationals, 176, 186
surd, 212
quadratrix, 81
quadrature, 85
rational
line, 278
point, 278
roots theorem, 130
Rayleigh, Lord, 261
Riccati Equation, 102
Riccati, Count Jacopo Francesco, 102
Riemann Hypothesis, 199
Rolle's Theorem, 294
Roth, Klaus, 181
Ruffini, Paolo, 132
Schneider, Theodor, 199
schnitt, 241
sexagesimal, 63
Siegel, Carl, 184, 199
Sierpiński, Waclaw, 231
similar figures, 36
simple
continued fractions, 211
pendulum, 252
simply normal in base $b, 230$
size of a polynomial, 208
Skolem, Thoralf, 268

Smith, Henry, 162
Spiral of Theodorus, 7, 35, 47, 272
squaring the circle, 15,201
Śrīpati, 53
star polygon, 25
Steinhaus, Hugo, 259
Stevin, Simon, 76
Stifel, Michael, 74
Stupor Mundi, 63
Subtle Doctor, 64
Sum of Two Squares, 80
surd, 125
etymology of, 57
Swineshead, Richard, 66
Tannery, Paul, 248
Thales of Miletus, 9, 10, 12, 16
Theodorus Constant, 277
Thomae, Carl, 251, 257
Thomas Bradwardine, 66
Thue, Axel, 184
transcendental functions, 81
numbers, 183, 185, 197, 199, 204, 210, 232
transuranic elements, 134
triangle inequality, 156
van der Poorten, Alfred, 139
van Pesch, J. G., 14
van Roomen, Adriaan, 70
Vesica Pisces, 28
Vièta, Francois, 70
Waclaw Sierpiński, 259
Wallis, John, 85, 93
Wantzel, Pierre, 202
Weierstrass, Karl, 200, 236
Weierstrass-Heine Model, 241
well-tempered musical scale, 254
Weyl, Hermann, 199
Wiles, Andrew, 199
Year of the Irrational, 239
zero
etymology of, 62
Zeta function, 137

[^0]: ${ }^{1}$ A Mathematician's Apology (Cambridge University Press, 1993).
 ${ }^{2}$ As indeed was Hardy.
 ${ }^{3}$ Even if they have no accepted symbol to represent them.

[^1]: ${ }^{4} \mathrm{He}$ continued: "No book in the world equals the Bible for that." That acknowledged, we regard the sentiment as wider.

