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Introduction

Trial on air quashed as unsound (10)

1 Down, Daily Telegraph crossword 26,488, 1 March 2011

Irrational numbers have been acknowledged for about 2,500
years, yet properly understood for only the past 150 of them.
This book is a guided tour of some of the important ideas, people
and places associated with this long-term struggle.

The chronology must start around 450 b.c.e. and the geography
in Greece, for it was then and there that the foundation stones
of pure mathematics were laid, with one of them destined for
highly premature collapse. And the first character to be identi-
fied must be Pythagoras of Samos, the mystic about whom very
little is known with certainty, but in whom pure mathematics
may have found its earliest promulgator. It is the constant that
sometimes bears his name,

√
2, that is generally (although not

universally) accepted as the elemental irrational number and, as
such, there is concord that it was this number that dislodged his
crucial mathematical–philosophical keystone: positive integers do
not rule the universe. Yet those ancient Greeks had not discov-
ered irrational numbers as we would recognize them, much less
the symbol

√
2 (which would not appear until 1525); they had

demonstrated that the side and diagonal of a square cannot simul-
taneously be measured by the same unit or, put another way,
that the diagonal is incommensurable with any unit that mea-
sures the side. An early responsibility for us is to reconcile the
incommensurable with the irrational.

This story must begin, then, in a predictable way and sometimes
it progresses predictably too, but as often it meanders along roads
less travelled, roads long since abandoned or concealed in the
dense undergrowth of the mathematical monograph. As the pages
turn so we unfold detail of some of the myriad results which have
shaped the history of irrational numbers, both great and small,
famous and obscure, modern and classical – and these last we give
in their near original form, costly though that can be. Mathematics
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2 I N T R O D U C T I O N

can have known no greater aesthete than G. H. Hardy, with one of
his most widely used quotations1:

There is no permanent place in the world for ugly mathematics.

Perhaps not, but it is in the nature of things that first proofs
are often mirror-shy.2 They should not be lost, however, and this
great opportunity has been taken to garner some of them, mas-
sage them a little, and set them beside the approaches of others,
whose advantage it has been to use later mathematical ideas.

At journey’s end we hope that the reader will have gained an
insight into the importance of irrational numbers in the develop-
ment of pure mathematics,3 and also the very great challenges
sometimes offered up by them; some of these challenges have
been met, others intone the siren’s call.

What, then, is meant by the term irrational number? Surely the
answer is obvious:

It is a number which cannot be expressed as the ratio of two
integers.

Or, alternatively:

It is a number the decimal expansion of which is neither finite
nor recurring.

Yet, in both cases, irrationality is defined in terms of what it is
not, rather like defining an odd number to be one that is not even.
Graver still, these answers are fraught with limitations: for exam-
ple, how do we use them to define equality between, or arithmetic
operations on, two irrational numbers? Although these are famil-
iar, convenient and harmless definitions, they are quite useless in
practice. By them, irrational numbers are being defined in terms
of one of their characteristic qualities, not as entities in their own
right. Who is to say that they exist at all? For novelty, let us adopt
a third, less well-known approach:

Since every rational number r can be written

r = (r − 1)+ (r + 1)
2

,

1A Mathematician’s Apology (Cambridge University Press, 1993).
2As indeed was Hardy.
3Even if they have no accepted symbol to represent them.



I N T R O D U C T I O N 3

every rational number is equidistant from two other rational
numbers (in this case r − 1 and r + 1); therefore, no rational
number is such that it is a different distance from all other
rational numbers.

With this observation we define the irrational numbers as:

The set of all real numbers having different distances from all
rational numbers.

With its novelty acknowledged, the list of limitations of the def-
inition is as least as long as before. It is an uncomfortable fact
that, if we allow ourselves the integers (and we may not), a rig-
orous and workable definition of the rational numbers is quite
straightforward, but the move from them to the irrational num-
bers is a problem of quite another magnitude, literally as well
as figuratively: the set of rational numbers is the same size as
the set of integers but the irrational numbers are vastly more
numerous. This problem alone simmered for centuries and analy-
sis waited ever more impatiently for its resolution, with the
nineteenth-century rigorists posing ever more challenging ques-
tions and ever more perplexing contradictions, following Zeno of
Elea more than 2,000 years earlier. In the end the resolution was
decidedly Germanic, with various German mathematicians pro-
viding three near-simultaneous answers, rather like the arrival of
belated buses. We discuss them in the penultimate chapter, not in
the detail needed to convince the most skeptical, for that would
occupy too many pages with tedious checking, but we hope with
sufficient conviction for hand-waving to be a positive signal.

For whom, then, is this story intended? At once to the reader
who is comfortable with real variable calculus and its associated
limits and series, for they might read it as one would read a history
book: sequentially from start to finish. But also to those whose
mathematical training is less but whose curiosity and enthusi-
asm are great; they might delve to the familiar and sometimes the
new, filling gaps as one might attempt a jigsaw puzzle. In the end,
the jigsaw might be incomplete but nonetheless its design should
be clear enough for recognition. In as much as we have invested
great effort in trying to explain sometimes difficult ideas, we must
acknowledge that the reader must invest energy too. Borrowing
the words of a former president of Princeton University, James
McCosh:



4 I N T R O D U C T I O N

The book to read is not the one that thinks for you but the one
that makes you think.4

The informed reader may be disappointed by the omission of
some material, for example, the base ϕ number system, Phinary
(which makes essential use of the defining identity of the Golden
Ratio), and Farey sequences and Ford Circles, for example. These
ideas and others have been omitted by design and undoubtedly
there is much more that is missing by accident, with the high ideal
of writing comprehensively diluted to one that has sought simply
to be representative of a subject which is vast in its age, vast in its
breadth and intrinsically difficult. Each chapter of this book could
in itself be expanded into another book, with each of these books
divided into several volumes.

We apologize for any errors, typographic or otherwise, that have
slipped through our mesh and we seek the reader’s sympathy with
a comment from Eric Baker:

Proofreading is more effective after publication.

4He continued: “No book in the world equals the Bible for that.” That
acknowledged, we regard the sentiment as wider.
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The Spiral of Theodorus



lim
m→∞ lim

n→∞ cos2n(m!πx) =
{

1 : x is rational

0 : x is irrational
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