CONTENTS

	Introduction	1
1	Welcome to the Rock Factory	12
2	The Present as the Key to the Past	32
3	Reefs at the Shallow End of Deep Time	54
4	Into the Death Assemblage	75
5	When Reefs Fall Apart	93
6	When Reefs Persist	121
7	Lying Low to Avoid Extinction	140
8	Designing Reefs That Can Survive Us	168
9	Survival of the Heat Tolerant	193
10	The Anthropocene Coral Paradox and the Future of Reefs	214
	Acknowledgments	235
	Notes	237
	Index	267

INTRODUCTION

An urban park bench is about the last place I would expect to find a fossil reef, but there's no mistaking the corals within the stone benches at Miami's Maurice A. Ferré Park. Instead of sitting on a bench, I'm stooped over inspecting one as joggers sprint past, music blares from somewhere, and kids shriek while playing in the grass nearby. As I look more closely at the large rectangle of stone that forms the seat of the bench, I can see the shapes of star coral skeletons, pockmarked with tiny stars where the coral animals once lived. And there are some with larger star shapes, called great star coral. The sinuous lines of brain coral wind across the left end of the park bench, and numerous fossil clam shells are suspended in the rock on the right side. The curved shells look like smiles in cross section. I stand up to find a dog walker looking at me as if I'm crazy. His suspicions are probably confirmed when I start taking photos of the bench. But I can't help myself—the fossil reef within it looks so much like the fossil reefs I used to study. This limestone rock, formed from a coral reef long ago, was excavated from a quarry and then made into benches for an oceanfront park in downtown Miami with a backdrop of skyscrapers, but it's still a fossil reef to me. It's a piece of coral reef history.

If you were to sit on the bench's fossil reef and look out to sea, you would get a view of the Port of Miami. A lineup of massive cruise ships takes up one side of the paved, human-built island at the port's center. On the island's other side are container ships and giant metal cranes that look somewhat like the AT-AT walkers from *Star Wars*. Despite the entirely unnatural concrete and steel environment of the port, and the potential dangers of pollution, extreme heat, and other human-caused problems, small corals live below the lines of ships. A few

1

2 INTRODUCTION

months before I found the fossil corals in this bench, researchers published a study about the living corals that are able to persist in the nonideal waters of the port. There's other life in the port too. Coral City Camera, an underwater live stream from the seafloor below the port, regularly captures images of fish, rays, and dolphins as they swim by. But not all marine life can survive the port. And even in parts of the ocean that are arguably far more natural than the port, it's become more challenging for tropical marine life to survive. Overall, the ocean is becoming a less hospitable place.

A stone's throw from the park bench and the port, other corals live in the Frost Museum of Science. There, researchers are growing small coral colonies in saltwater tanks to help species survive. Some of the new colonies are on display in an exhibit with blue-tinted light, each growing on its own tiny pedestal. Looking through the glass of the tank at the corals organized in rows is like looking through the glass wall of a hospital nursery to see the newborns. When I visited, staghorn coral and finger coral were growing in the nursery. If all goes well, one day those corals will be thriving in the sea.

The corals in the park bench lived in a past world without much, if any, human influence. The corals currently living in the Port of Miami are somehow persisting today despite our environmental mess. And the corals in the Frost Museum of Science will be used in the future to rebuild reefs we've destroyed. After spending more than a year writing about the past, present, and possible future of coral reefs, I felt it was apropos to find all three together in the shadow of the Miami skyline. All three are related—the stories of how reefs lived in the past, when they thrived and when they floundered, can help us understand reefs today and find ways to help reefs persist into the future, as we'll explore in this book.

The living corals in the port and in the museum, like those that we see snorkeling, are typically colonies of tiny organisms called coral polyps. Most living coral polyps within a colony are smaller than the eraser at

INTRODUCTION 3

the end of a pencil.³ A tiny coral colony that's just getting started might have only a handful of polyps. An enormous colony will have many thousands of polyps. Coral polyps may be small, but these invertebrates, millions of them together within a reef, build limestone skeletons so large that some can be seen from space.⁴ Their construction projects, coral reefs, become ocean epicenters of biodiversity, creating habitat for as many as a million species,⁵ including tiny fish like bluehead wrasse that dart between branches of coral, damselfish that defend their territory with intimidating snapping sounds, sharks that loiter in sandy patches between corals, bright orange scallops that use long spines to wedge themselves in reef crevasses, turtles that soar placidly over a reef's colorful diversity, shrimp that make constant crackling noises, snails that cling to sea fans, lobsters that duck into holes, and countless microbes that are unseen by divers.

With thousands of coral polyps in a large colony, and hundreds to thousands of colonies in a reef, corals are powerful. Together, they are strong enough to buffer storm waves, protecting coasts, including our cities and towns, and creating habitat for reef life that prefers calm water protected from the waves. Yet reefs are in trouble today, in large part because corals have been weakened by warming seawater, pollution, overfishing, disease, and other problems (all of which we'll explore in the coming chapters). Some problems, like coral disease, are exacerbated by other environmental changes. Disease has been particularly problematic in the Caribbean—scores of corals have been killed by a disease that debuted in 2014 not far from the park bench and port. And extreme heat is too much for many corals to bear worldwide. For decades, climate change has caused widespread coral bleaching events that have weakened the corals; as I write this, corals are bleaching and dying en masse in particularly hot waters.

It isn't change itself that is problematic for these ecosystem-building organisms. Corals naturally live with change. They cope with cycles of tides and seasonal heat. They also live with regular oscillations between El Niño and La Niña—changes in winds and ocean currents that cause tropical climate and sea surface temperatures to swing warmer and cooler every few years. But these natural sources of change are

4 INTRODUCTION

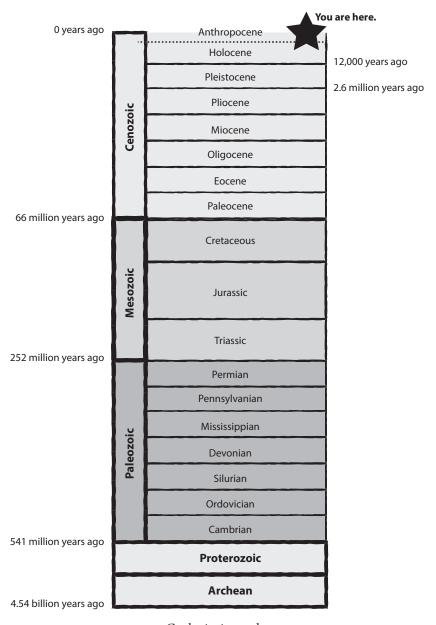
cyclical—water warms and cools each year with the seasons, for example—unlike problems affecting modern reefs, which only increase over time in an unsustainable way. Predictions about how long coral reefs may hold on in the coming decades are becoming increasingly dire.

To get some perspective amid the current spate of problems, this book looks to the past, exploring the history of coral reefs. Fossil coral reefs make it possible to understand how reefs lived before human influence, helping us understand what today's reefs would be like if we weren't changing their environments. They give us a window into an alternate universe, where coral reefs are subject only to the stressors found in nature instead of the myriad problems humans have caused and continue to cause. This is not just a nostalgic desire to escape the current mess. Looking into the past can also help us understand what reefs need in order to have a future.

Research on the remains of long-dead reefs can also help us understand how reef ecosystems function over hundreds to thousands of years, at much longer timescales than those of studies that observe living reefs. By studying both fossil and living reefs, scientists can gain much stronger insight into how contemporary changes in coral compare to reefs across their long history. Understanding the past and present will in turn help us understand coral reefs' future—and maybe even how to save them. The stories of how past reefs persisted and when they didn't can help us understand how to play the long game: take actions now that will help coral reefs have a brighter future in hundreds and thousands of years, even if the near term is rough.

When they aren't in park benches, the remains of ancient corals and other reef life can be found fossilized in rock outcrops, often on tropical islands and coasts. Most of the fossilized reefs we'll explore in this book lived about 125,000 years ago, a time when there likely weren't even a million humans living on Earth, so they lived with little or no human disruption. We'll also look at the not-yet-fossilized skeletons of coral and other reef life that lived decades to several thousand years ago, which hold a record of both human disruptions and natural environmental changes. These, combined with fossil reefs and modern reefs, add up to a timeline of reefs. By tracking the history of reefs from before

INTRODUCTION 5


human influence to the present day, we can learn what has changed. What went wrong? And when did it start to go wrong? The answers, as we'll see, are often complex, without a single smoking gun.

 \sim

If you are a fan of dinosaurs, trilobites, or other extinct fauna, even the oldest fossils described in this book will seem very young. This book focuses mostly on coral reefs that lived far less than a million years ago. While that's a very long time from a human perspective, it's nothing in the long span of over 4.5 billion years that is Earth's history (known as geologic time or deep time). The same coral species alive today also lived in reefs at this shallow end of deep time (with a couple of exceptions). By comparing contemporary corals with their relatively recent ancestors in the fossil record, we can easily see connections between the past and present.

While this book focuses on young fossil reefs, there are much older fossil reefs in the world. One of the oldest known fossil reefs sits in the middle of Canada and formed nearly three billion years ago from mounds of blue-green algae called stromatolites in a very different world.⁶ There are fossil coral reefs in the US Midwest that formed in the Paleozoic era, approximately 460 to 360 million years ago. In the Guadalupe Mountains of Texas, a huge fossil reef, 400 miles long, is filled with fossil sponges, algae, and other creatures that lived about 275 million years ago, toward the end of the Paleozoic.⁷ Reefs have existed for a long time, but it's the geologically younger reefs, with the same species that make up reefs today, that can best inform us about what today's reefs need and what their future may hold.

Earth's history is represented graphically as a stack of layers in the geologic timescale. It's like a map of deep time. The oldest layers, the Proterozoic and Archean, are on the bottom of the stack. The Cenozoic era is at the top of the stack with its most recent time layers: the Pleistocene and the Holocene, the latter of which started 12,000 years ago and appears to end at the top of the graphic. The top of the geologic timescale is the time we're living in now.

Geologic timescale.

INTRODUCTION 7

We could be seeing humanity as a part of this long story of the planet, but more often than not, we explore human history and deep time separately. Yet both are made up of seconds, minutes, hours, days, and years. In deep time, the record is usually compressed, making the smaller increments of time indiscernible, but overall, time is time. This makes me want to wander the halls of geology departments and classrooms around the country and the world, adding "you are here" stars to the top of every geologic timescale posted in the style of way-finding maps on hotel room doors.

Our "you are here" star should be in a time period called the Anthropocene, but it's rare to find that word listed at the top of geologic time-scales (except for the one in this book). More than two decades after atmospheric scientist Paul J. Crutzen proposed the Anthropocene as a new time period that we've entered because of our enormous effect on the planet, the group of timekeepers that determines the official periods of geologic time, the International Commission on Stratigraphy, decided that, no, the Anthropocene will not become an official epoch of geologic time. This was in 2024 after years of deliberation and research, after a subcommittee voted that we are, in fact, in the Anthropocene, and after a four-year search for an appropriate start date landed on the mid-twentieth century.

Perhaps the Anthropocene will eventually be added to the top of the stack of layers in the official geologic timescale. But even if it isn't, the Anthropocene still describes this time when human impacts are a dominant force on the planet, changing the climate and ecosystems worldwide, and this makes it a useful concept for this book as we plow through the many thousands of years at the current end of geologic time in search of coral reefs. No matter when, specifically, it started, we are most likely still at the beginning of the Anthropocene since it does not seem possible that humans will stop being a dominant force anytime soon, which begs the question: What will the rest of this time layer be like?

This book looks to answer this question for coral reefs, understanding how the story of coral reefs will likely continue through the Anthropocene given what we know about their past in deep time, their

8 INTRODUCTION

more recent history, and the present-day world at the current end of geologic time.

 \sim

I spent my childhood searching for shells on pebbled Cape Cod beaches. I spent my twenties doing much the same as a scientist working on my PhD, although most of those shells were within fossilized coral reefs on tropical islands. Over several years, I headed to the Bahamas for weeks to study the shells and skeletons of marine invertebrates that lived in coral reefs. I was a professional shell collector. And because most of the shells I studied were fossilized, I was also a time traveler, living in the past. I daydreamed about business cards that announced my twin specialties: Dr. Gardiner, Shell Collector and Time Traveler.

In the years since I left research science for the world of climate and geoscience education, I've focused on scary prospects for the future, like climate change and other looming disasters, rather than on the geologic past. For the most part, geologists and paleontologists look back in time, and climate scientists look forward (although there are climate scientists who study ancient climates and geologists who project into the future). I like both the past and the future, perhaps because I tend to have trouble living in the present. There's an anxiety to the present, especially when it's filled with unprecedented environmental problems like the warming climate and its ill effects.

Researching geologically young fossil reefs and seeing their living counterparts in decline just offshore, I found it impossible not to wonder about the ecosystem's future. And it was apparent to me that understanding the past can help us put the present-day trouble into context.

What I've learned while researching and speaking with experts for this book is that the future won't necessarily continue on a predictable trajectory. As we'll see, coral reefs are facing grim times and there will continue to be losses, but there's evidence that we can help turn this around. If we have the power to crumble reefs, we also have the power to fix them, and myriad scientists and conservationists are finding

INTRODUCTION 9

creative ways to apply our understanding of past and present coral reefs to help them have a future. The corals in the Frost Museum's aquarium are part of one such project. This book takes the stance that we can do a lot to improve the prospects for future coral reefs, especially if we use what we know about how reefs have survived in the past and take action on climate change.

In many ways, this book is a search for examples of coral reef perseverance. Stories of how reefs have survived in the past can hold clues to how reefs might survive climate change and other environmental challenges, now and in the future. As we explore these stories from the past, we'll find that over long timescales—millennia or even hundreds of thousands of years—coral reef ecosystems have been able to persist even when individual reefs could not, relocating and rebuilding where corals could survive, lying low when conditions weren't great. Yet this doesn't appear to be the case over short timescales, like the past several decades.

On short timescales, this perseverance is resilience. In ecology, the term "resilience" describes the ability of an ecosystem to recover from disturbances. For example, a coral reef with resilience is more likely to bounce back after a hurricane, even if it takes a few years. Resilience also describes the ability of animals to bounce back—the ability of coral to recover instead of dying after spending weeks or months in overheated water, for example. When it comes to resilience, we have something in common with corals: resilience also describes our ability to recover from stress or trauma and avoid post-traumatic stress disorder (PTSD). At a larger scale, resilience also describes the ability of our cities and towns to recover from extreme weather events and climate impacts.

There are plenty of unknowns about whether corals and reef ecosystems have enough resilience to recover from current challenges and future climate change. We don't know whether they'll be able to persist. Some say coral reefs may be among the first ecosystems to become extinct. Yet the fossil record shows that reefs have been able to survive tough times over the long term. Learning what happened to reefs in the past can help us understand coral reef resilience and persistence, how

10 INTRODUCTION

the world shaped them, how they shaped the world, and what we need to do to help corals thrive now and in the future.

 \sim

In this book, we'll explore fossil reefs at the fringes of tropical islands and dive into modern reefs to connect the past and present. In chapter 1 we'll look at the big picture of how coral reefs and other tropical marine life create limestone that preserves an often-detailed fossil record. This record in rock is what allows us to track reefs through time. Then in chapter 2 we will explore how the idea of uniformitarianism—that the present is the key to the past—helped lay the foundational understanding of coral reefs before Anthropocene reef declines started. As we'll see in chapter 3, the ecological patterns of modern reefs are also found in fossil reefs, an example of uniformitarianism, although living reefs have changed so much that the present is often no longer the key to the past.

We will then step back in time to explore disruption in reefs. This includes the tumult in modern reefs and what dead coral skeletons on the seafloor can tell us about changes in reefs (chapter 4), evidence of Caribbean reef transformation over decades and centuries, preserved in history archives and subfossils (chapter 5), and how reefs coped with environmental change long ago (chapter 6).

Evidence of how reefs have been able to persist over the long term can help us understand how the same strategies could allow reefs that have been decimated to someday return. In chapter 7, we'll explore how one of these strategies, protective refugia where corals shelter in place during difficult times, may help coral species survive. And in chapter 8 we'll see how reef restoration projects are creating human-built refugia, increasing the number of safe places to help reefs persist. In chapter 9, we'll explore other strategies—adaptation and acclimatization of corals to warmer temperatures—which could help corals survive as the climate warms, and how reef restoration projects have been speeding up this process through artificial selection. We'll then consider the possible future of coral reefs based on what we know of their past and present in chapter 10.

INTRODUCTION 11

Some of the most well-studied fossil reefs in the world are in the Caribbean, which is one reason why this book tends to have a Caribbean focus, although reefs—past and present—from the Indian and Pacific Oceans and the Red Sea make appearances too. Fossil reefs in the Caribbean tend to be well studied because they are often found on land, which makes them easier for scientists to access and study than fossil reefs deep underground or underwater. Also, the first modern reefs to decline are in the Caribbean, with ecological transformations starting decades to centuries ago, which allows us to now look at this decline, and what went wrong, with the benefit of hindsight.

Understanding coral reefs' past, present, and projected future is a multidisciplinary effort. Tracing reef stories from the past to the present gets geologists, paleontologists, paleoecologists, and historical ecologists involved. Marine biologists, ecologists, and conservation experts typically focus on living corals and reefs. Since corals make limestone, geologists do research on living reefs too, not just fossilized ones. Plus, because corals are sensitive to their physical environment, oceanographers, chemists, and climate scientists are also involved in reef research. Many of the scientists highlighted in this book work in interdisciplinary ways to understand reefs. I find hope in the fact that so many experts are looking at questions from many different perspectives to help reefs have a future.

As with most environmental challenges we're currently facing, witnessing both the vulnerability and resilience of coral reefs today provokes feelings of both loss and hope. But knowing what has helped build reef resilience in the past lets us understand what can be done to help corals and other reef species. Just as it takes large numbers of animals to build a reef, it will take large numbers of people to help reefs survive an increasingly inhospitable world.

INDEX

acclimatization, 204, 209-10, 212, 224, 226 Acropora cervicornis. See staghorn coral Acropora corals, 87-88, 148-49, 166-67, 171, Acropora hyacinthus. See tabletop coral Acropora millepora, 147 Acropora palmata. See elkhorn coral Acropora prolifera, 148-49. See also prolifera coral adaptation: of cauliflower coral, 207; evidence of, 207; experiment regarding, 200; future of, 226; human-assisted evolution for, 201; map of, 199; of peppered moths, 196-97; prediction regarding, 226; at the Red Sea, 197-98; timeframe for, 197, 224; for water temperature, 195. See also natural selection Aktuo-paläontologie (actualistic paleontology or actuopaleontology), 83 algae, 21, 22. See also specific types American Museum of Natural History, Andersen, Inger, 224 Andros Island, 21 Anthropocene, 7, 222 Aoki, Nadège, 187 aquaculture methodology, 182 Aronson, Rich, 89, 95, 174 artificial reef, 185-86, 188-89 atolls: Charles Darwin and, 26, 43, 44, 45, 47; defined, 51; description of, 42; Enewetak and Bikini Atolls, 52; forming of, 41, 42, 45, 46, 47; hazards of, 42; limestone

formation and, 44-45, 143; overview of, 26; size of, 42; theories regarding, 50-51; volcanoes and, 45, 51 Australia, 130, 132. See also Great Barrier Reef (Australia) Australian Institute of Marine Science, 99 Bab el-Mandeb, sea level changes at, 198 Bachman, Scott, 164 backreef zone, 59, 60, 61, 151, 174, 208 bacteria, 19, 65, 95, 197, 205 Bahamas/Bahamian reefs, 21, 25, 28-29, 121, 125-26, 143. See also specific locations banana production, 107 Barbados, 27, 66, 132, 133-34, 218 barrier reefs, 25-26, 76 baseline shift, 175–76, 230 Bay of Concepción, 43 beachrock, 35 Belize, 115, 157-58, 171, 174. See also specific locations Belize Barrier Reef Reserve System, 179 Berwald, Juli, 230 Bikini Atolls, 52. See also atolls bioerosion, 86, 220. See also erosion Biscayne National Park, 76 blacknose sharks, in refugium, 147-48. See also sharks Blanchon, Paul, 144 bluehead wrasse, 3 Bocas del Toro, Panama, 107 Bood, Nadia, 178-79

268 INDEX

Channel Caye, Belize, 89-90, 95 borings: at Cockburn Town fossil reef, 127; at Coral Gardens reef, 159; at Devil's Chile, earthquake in, 43 Point fossil reef, 123, 124, 125; in Florida Christ of the Abyss, 85 Keys reef, 86 cirrus clouds, 190 boring sponges, 86, 125-26 clams: encrusting death assemblage, 85, 86; in fossil reefs, 20, 55, 125-26 boulder star coral, 91, 148-49 brain coral, 1, 12, 13, 16, 18, 123, 180, 201 climate change: actions regarding, 224; branching corals, 87, 108, 146 control of, 231-32; effects of, on coral brine shrimp, 122 reefs, 3, 94, 119; in El Niño-Southern Oscillation (ENSO), 220; future of, 119, Broken Nature exhibit (MoMA), 188-89 bryozoans, in death assemblage, 85 162-63, 231-32; as greatest threat to reef burrows, 33, 124 health, 160; greenhouse gas emission buttresses, 60 reduction for, 162, 190; intensification of, 157; limestone production and, 223; calcium carbonate (CaCO₂), 15, 21, 85, limiting, 162, 189-90, 224; mangroves and, 152; projections and likely coral 127-28 caliche, 123 survival, 223; refugia from, 141; sea levels carbon dioxide emissions, 92, 118–19, 222, and, 131; sea temperature change and, 159; sediment runoff in, 183; strategies for, 224, 225 190; water temperature and, 92, 118. Caribbean/Caribbean reefs: *Acropora* corals in, 148, 171; coral nurseries in, 171-72; as See also ice age cul-de-sac of the ocean, 70; currents in, climax community, forming of, 125 161; decline of, 69-70, 93, 97-98; disease cloud condensation nuclei (CCN), 191 in, 96; disturbances to, 116; elkhorn coral clouds, 190-91 coal mining, 196-97 in, 93, 106, 206; fossil reefs in, 20; human changing to, 101; Hurricane Allen in, 96; coastal development, risks in, 152, 231 isolation of, 70; overfishing and, 108–16; Cockburn Town, San Salvador, 55 parrotfish in, 112–15; persistence of, 97; Cockburn Town fossil reef (San Salvador): pillar coral in, 215; recovery chances of, coralclams at, 126-27; coral species 116; refugia search in, 161; resilience of, 97; pattern in, 58; destruction to, 126-27; sea temperatures in, 158-59; sea urchins ecosystem of, 62-63; erosion in, 63, 123, in, 95; species in, 71; staghorn coral in, 93, 127; introduction to, 56; pattern of reef 106, 206; statistics regarding, 93; stony zones in, 63; photo of, 128; sea level coral tissue loss disease (SCTLD) in, changes at, 127, 129, 130, 231; unconfor-180-81; threats to coral in, 203; timeline mity at, 127 regarding, 105-6; water quality in, 106-8; coconut trees, 49 white band disease in, 89-90, 94-95, 150, Cocos Keeling Islands, 42, 45-46, 47, 221. See also specific locations 52,66 Carne, Lisa, 174, 176, 178, 179-80, 184, 201, Cocos Malay, 46-47 202, 234 Cohen, Anne, 211 Carysfort Reef, 76–77 Cold War, 52 Carysfort Reef Light, 77 Connell, Joseph, 116

coral bleaching: adaptation to prevent,

195; causes of, 118; from climate change,

cauliflower coral, 193, 194–95, 207, 212–13

Cenozoic era, 5

INDEX 269

69; clouding and, 190-91; conditions causing, 198; at Coral Gardens Reef (Belize), 219; in coral nurseries, 193; defined, 3, 19; degree heating weeks (DHW) and, 198-200; effects on fish, 220; effects on invertebrates, 220; in El Niño-Southern Oscillation (ENSO), 219-20; expansion of, 94; experiment regarding, 194-95, 200; global events, 219; in Golfo Dulce (Costa Rica), 193; in Great Barrier Reef (Australia), 99; hunting capabilities during, 192; increase of, 160; internal waves and, 163-64; marine cloud brightening for, 191; overview of, 19; persistence during, 200; recovery from, 213; seawater mist for preventing, 190; in Thailand, 163; in turbid waters, 166-67; water temperature and, 92. See also heat tolerance

Coral City Camera, 2
coralclams, 126
coral disease, 3, 160. See also specific diseases
Coral Gardens Reef (Belize): Acropora
prolifera in, 148–49; boulder star coral
in, 148–49; coral bleaching at, 219;
description of, 155; destruction of, 190;
elkhorn coral in, 148–49; fish in, 155–56;
photo of, 155; refugia in, 148–49, 219; sea
temperature change in, 157, 159; staghorn
corals in, 148–50, 154–55, 156–57, 158, 219;
topography of, 155
Coral Ghosts (documentary), 69

corallites: of elkhorn coral, 63; growth of, 16–18; of staghorn coral, 167
coral nursery: coral bleaching in, 193; coral types in, 171; description of, 169; development of, 171–72; fragmentation in, 171; in Golfo Dulce (Costa Rica), 183; growth in, 169; at Hol Chan Marine Reserve (Belize), 168–69; locations for, 173; stony coral tissue loss disease (SCTLD) in, 170; structure of, 169, 172, 182

coral larvae, 140, 186-87, 188

coralline algae, 21, 85, 87

coral reefs: age of, 5; benefits of, 229; coastal development and, 152; concerns regarding, 3, 8; death assemblage in, 77; decline of, 69-70; future for, 8-9, 28; geological shutdown of, 137; glacier impact on, 129; hiatus in, 134; historical contact with, 102; human populations near, 151; life assemblage in, 77; location of, 5, 26; management process of, 179; multidisciplinary effort regarding, 11; paradox of, 217-18; pattern of zones of, 58-59, 60, 61-62; persistence of, 9–10, 72; phase shifts in, 97, 99; resilience of, 9-10, 71; shark populations and, 111; shifting baselines in, 100-101; soundtrack in, 187; statistics regarding, 229; types of, 25-26; uniqueness of, 61; wave energy in, 61, 62; weakening of, 3. See also fossil coral reefs; specific reefs

Coral Reefs and Atolls (Gardiner), 51 Coral Reef Watch (NOAA), 159 corals: acclimatization of, 204, 209-10; adaptation of, 195, 197–200; calculation of, 156; changes to, 3-4; as collectives, 205; cyclical changes and, 3-4; disturbances and, 16; environments of, 19, 135; estimation of percent live, 156; extinction of, 70; feeding, 191–92; fossilization chances of, 80-81; fragmentation of, 171; genetic diversity of, 176; growth process of, 42; microbiomes of, 205; number of species, 70–71; origin of, 129; polyps of, 2-3, 16, 17, 18, 19, 205; power of, 3; relocation of, 140; reproduction of, 18-19, 171, 178, 202; resilience of, 144; as sessile, 129; shape of, 60-61; spaces between, 20; sunlight importance to, 132, 165; at sunlit depths, 44, 48; tentacles of, 192; threats to, 210; upward growth of, 45; and wave energy, 48-49, 61. See also specific types

Coral Triangle, internal waves in, 165

270 INDEX

crown-of-thorns starfish, 99 crust, Earth's, 130 Crutzen, Paul J., 7 cumulus clouds, 190 Curaçao, 66–67 Curran, Al, 57, 121, 123, 124, 144, 149, 151, 153, 215, 216 Curran, Jane, 153, 215 currents, sea temperature and, 161

Dairy Bull Reef, 98 damselfish, 3, 187 Darwin, Charles: on atolls, 26, 43, 44, 45, 47; in Chile, 43; at Cocos Keeling Islands, 42, 45-46; on the Cocos Malays, 46-47; on coral growth, 42, 45; coral reef paradox of, 217; on coral zones, 48-49; on criticism, 50-51; influences, 40-41; on Isla Santa María, 43; On the Origin of Species, 196; pigeon interest of, 195; Principles of Geology (Lyell) and, 40-41; The Structure and Distribution of Coral Reefs, 45-46, 50; on subsidence, 43; in Tahiti, 44-45; theory sharing by, 50; uniformitarianism and, 36, 41; on uplift, 52; The Voyage of the Beagle, 41 date mussels, 126 death assemblage, 77, 78-80, 84, 85, 86, 87-88. See also skeletons debris, for artificial reefs, 185-86 deep reef refugia hypothesis, 165-66 degree heating weeks (DHW), 198-200 Devil's Point fossil reef: conditions of, 121; coralclams at, 126; coral return in, 219; corals at, 128-29; date mussels at, 126; description of, 122, 124; erosion at, 124; reef identification in, 123; sea level changes at, 123, 124, 126, 129, 130; staghorn

125, 126, 128, 228
Discovery Bay, Jamaica, 97, 98
disturbances, 116–18, 122, 206. See also
climate change; environmental changes;
sea levels; sea temperature
Dobbs, David, 51

coral at, 128; unconformity at, 123, 124,

Dominican Republic, 89, 149 drowned reef, 132–33, 139 Dry Tortugas National Park, 76

Earth, 5, 26, 36, 130
earthquakes, 43
Eastern Tropical Pacific: internal waves in, 165; marginal reefs in, 135; as paltry, 213; reef challenges in, 193; reef return in, 139; sea temperatures in, 158–59; unconformity at, 145. See also specific locations ecological succession, 125 ecosystems, 71, 97, 116–17, 125
Efremov, Ivan, 83
Egypt, 67–68
elkhorn coral: ages of, 171; in Caribbean

Ikhorn coral: ages of, 171; in Caribbean reefs, 93, 106, 206; in Cockburn Town fossil reef, 62–63; in Coral Gardens Reef (Belize), 148–49; corallites of, 63; decline of, 106; description of, 20, 59, 63; disease of, 68, 71; environment for, 59; in Hurricane Allen, 96; in Jamaica, 62; in Laughing Bird Caye (Belize), 175, 176, 178; observation of, 62; photo of, 64; in reef crests, 59, 63, 67, 71, 72; reproduction of, 178; restoration projects for, 181; in sea level changes, 148; sugar plantations and, 108; in Telephone Pole Reef, 73; in Treasure Beach, Jamaica, 130; white band disease and, 94–95, 96–97

El Niño-Southern Oscillation (ENSO), 3, 135–36, 157, 159, 219–20 encrusting corals, 97 encrusting organisms, 85, 125 endangerment, 203, 214–15, 219 Enewetak Atoll, 51–52 environmental changes: acclimatization to, 204; as cyclical, 222; examples of, 210, 221; extinction avoidance during, 139; gene expression and, 204; geological shutdown of reefs in, 137; natural selection and, 196–97; research regarding, 134–35;

unconformity and, 134. See also climate

change; disturbances

INDEX 271

epigenetic inheritance, 204
equator, refugia and, 162–63
Eritrea, 68
erosion, 36–37, 63, 65, 133, 139, 147
evolution, 147, 196, 201–2. *See also* natural selection
extinction, 70, 133, 142, 219

Faux, Victor, 174, 179

flamingos, 122

Fernandez Bay (San Salvador, Bahamas), 72 fertilizers, 107 50 Reefs initiative, 160 finches, 147 Fine, Maoz, 198, 200 finger coral, 2, 59, 73 fish: bioerosion by, 86; coral bleaching effects on, 220; food for, 22; fossilization of, 83, 113–14; herbivores, 112–16; poop, in limestone, 22; population increase, 225; preservation of, 22; at shipwrecks, 185–86; as soundtrack, 187. See also overfishing; specific fish FitzRoy, Robert, 42, 48

Florida Keys: charting of, 103; drowning reefs in, 139; environmental stressors in, 138; expansion and contraction of reefs in, 137; Florida Reef Tract in, 76, 85, 90–91, 92; fossil reefs in, 65; limestone loss in, 137; map comparison of, 104–5; overfishing in, 109; reef restoration in, 181–82; runoff and declining water quality in, 107; sea temperature in, 138; shallow reef zones in, 76; stony coral tissue loss disease (SCTLD) in, 220; uniformitarianism in, 137

Florida Keys National Marine Sanctuary, 76, 181

Florida Reef Tract, 76, 85, 90–91, 92 footprints (tracks), 33–34 foraminifera (forams), 21, 85 forams, 85 forereef, 60–61 Forman-Castillo, Kirah, 168–73, 181

formation (geological), defined, 57 Fort Lauderdale, Florida, 186 fossil coral reefs: disturbances in, 117; ecological record in, 14-15; ecological succession, 125-26; erosion of, 65; insight from, 4; lack of preservation of, 65; locations of, 4, 14, 26; pattern of reef zones in, 62-65; sea level records in, 129-30; on sinking atolls, 52; time averaging of, 125; uplift of, 66-68, 117. See also coral reefs; specific locations fossil fuels, 222-23 fossilization, 80-81, 83, 85 fossil record: analysis of, 227-28; bias in, 82; challenge of finding resilience in, 97; gaps in, 228; incompleteness of, 83; persistence evidence in, 122; refugia in, 141-42; taphonomy and, 83; unconformity in, 229-30

fossil soil (paleosol), 57 fragmentation, process of, 171 Fragments of Hope, 173, 174–81, 201–2 fringing reefs, 26 Frost Museum of Science, 2, 9, 234 functional redundancy, 71

Galápagos Islands, 165 gametes, 19 Gardiner, John Stanley, 51 Garifuna, 115 gas (fossil fuel), 222-23 Gauld, George, 103-4 Geister, Jörn, 61 gene expression, 203-4, 209-10 genetics, 147, 171, 176, 195 geologic time scale, 5-7 geology, 15, 33 Gerace Research Centre, 32, 54 ghost shrimp, 33 glacial periods: challenges in, 142; defined, 26; ice sheets and glaciers in, 129; limestone platforms in, 143, 144, 145; reef refugia during, 145; sea level changes in, 131-32, 142; shallow tropical ocean during, 142; survival on land during, 141

272 INDEX

hardground surfaces, fossils on, 124-25 glaciers, 129, 130, 138. See also ice Goad, Alex, 188 Harrison, Daniel, 190 Godfrey, Dale, 174 Hawaii, 132, 142, 192, 226 Golfo Dulce (Costa Rica), 183-84, 193, 194, heat tolerance: of brain coral, 201; of cauliflower coral, 207; in coral nurseries, goliath groupers, 109-11 194–95; degree heating weeks (DHW) Goreau, Nora, 62, 96 and, 198-200; experiment regarding, Goreau, Thomas F., 62, 65, 96, 101, 106 200, 209-10; genetics for, 201; in Gulf of Aqaba, 198; human-assisted evolution Goreau, Thomas J., 68, 69 for, 201; in Laughing Bird Caye National Grand Cayman, 65, 111–12 Great Bahama Bank, 28-29 Park (Belize), 201–2; map of Red Sea coral Great Barrier Reef (Australia): Acropora adapted for, 199; microbiomes and, 206; corals in, 108; annual report on, 99-100; observation of, 201-2; ocean modeling to find locations of, 211; in Ofu (American climate models for, 161–62; coral bleaching Samoa), 210; at the Red Sea, 197-98; in, 99; crown-of-thorns starfish in, 99; currents in, 161; disturbances to, 116; reproduction for, 202; symbionts for, limestone under, 26, 29; marine cloud 207; of tabletop coral, 208-9; testing brightening in, 190-91; phase shift in, 99; of, 211; time for adaptation for, 200-201. protected areas of, 225; refugia in, 147, 161, See also coral bleaching; sea temperature 162-63; sea level changes in, 132-33, 137; Hell (Grand Cayman), rock features at, 65 sea temperature at, 161, 162; threats to, hermit crab, 34 99; water quality changes in, 108, 166-67 historical ecology, 102 Great Barrier Reef Foundation, 190 Hol Chan Marine Reserve (Belize), 168-69, Great Inagua, 63, 122, 137, 144 170, 172, 173, 177, 216 great star coral, 1. See also star coral Holland, Steve, 33–34 Holocene thermal maximum, 138 greenhouse gas emissions, 162, 190, 222, 224-25 Holocene time, 5, 26 greenhouse periods, 26 Homotrema rubrum, 85 Greenstein, Ben, 75, 90 Hooker, Joseph, 196 Greer, Lisa: Belize research of, 149–50, 153, human-assisted evolution, 201 155-59; Dominican Republic research humanity, as paradox, 232 of, 88-89, 149; on Hurricane Earl, 158; at Huon Peninsula, Papua New Guinea, 67 Laughing Bird Caye (Belize), 201, 226, Hurricane Allen, 68, 96 233; photo of, 155; on pillar coral, 215, 216; Hurricane Earl, 157-58 on reef restoration, 168, 226; on staghorn hurricanes, 68, 94, 96, 119, 157-58 coral, 158, 159 Hutton, James, 36-40, 42-43, 123, 228 Grotto Beach Formation, 57 hybrid reefs, 189 Grottoli, Andréa, 200 Gulf of Aden, 198 ice, 129, 130, 138. See also glaciers Gulf of Aqaba, 198, 200 ice ages, 26, 70, 129, 141 Gulf of Mexico, 147-48 Illustrations of the Huttonian Theory of the Earth (Playfair), 40 Halimeda algae, 20-21, 33 imperialism, 41 Hall, Sir James, 37 Inagua National Park, 122

INDEX 273

Inagua parrots, 122 Indian Ocean, 67, 142, 198, 201 individuals, in natural selection, 204-5 Indonesia, 29, 189 Indo-Pacific/Indo-Pacific reefs, 61, 70, 71, 99 interglacial periods, 26, 129, 141, 143, 144, 148 Intergovernmental Panel on Climate Change (IPCC), 119, 160 internal waves, 163-65 International Commission on Stratigraphy, 7 International Ocean Discovery Program (IODP; formerly known as the Deep Sea Drilling Project), 132, 133 International Union for Conservation of Nature (IUCN), 93 invertebrates, coral bleaching effects on, 220 Isla Santa María, Chile, 43, 52 Isthmus of Panama, 70

Jackson, Jeremy, 72, 101, 105
Jamaica, 63, 65, 68, 69, 96
James Hutton Trail, Scotland, 37
John Pennekamp Coral Reef State Park, 76
Joulter Cays, 21

Kelly, Mark, 204
Kelly, Scott, 204
Key West, Florida, overfishing in, 109.
See also Florida Keys
Kleypas, Joanie, 164, 183–84, 193, 195, 212, 213
Knowlton, Nancy, 225
Konzhukova, Elena Dometevna, 83

Lagerstätten, forming of, 82
Lake Rosa, Great Inagua, 122
La Niña, 3, 136
Laughing Bird Caye National Park (Belize), 174–81, 201–2, 232–33
lava, 25
Lazarus taxa, 142
life assemblage, 77, 79, 87
lime mud, 22
limestone: abundance of, 23; accounting

of, 136; atolls and, 44-45; chemistry of,

15; climate change and, 223; destruction of, 136; dissolving of, 123; forming of, 15–16, 19, 21, 27–28, 29, 143; fossils in, 20; in glacial periods, 143, 144, 145; in interglacial periods, 143, 144; layers of, 23–24; locations for, 23; oil and gas in, 222–23; platforms of, 24–25, 27–29, 143; quarries of, 1, 56; reef geologic growth of, 136, 137; reef restoration and production of, 181; in San Salvador, 14; shells in, 15; sinking of, 24–25; skeletons in, 15. *See also specific locations*

Line Islands, 230 lobsters, 3 Lucayan communities, 102 Lyell, Mary, 40, 50 Lyell, Sir Charles, 40, 49, 50, 196

macroalgae: in Caribbean reefs, 93–94, 98; on coral skeletons, 173; defined, 93–94; in Discovery Bay, 97; on finger coral, 73; grazing of, 116; green turtles and, 111; growth of, 69, 96; management of, 181–82; parrotfish and, 112; phase shift and, 97–98; proportion challenges of, 98; sea urchins and, 95–96; statistics regarding, 98; water quality and, 107–8

quality and, 107–8
Malaysia, 29
Maldives, 29, 188
mangroves, 152, 225
marginal reefs, 135, 136, 138, 183, 193
marine cloud brightening, process of, 191
marine hardgrounds, 124–25
marine heat waves, 219. See also sea temperature
Marshall Islands, 211
Martin, Anthony, 22–23

massive corals, 62, 97
Maurice A. Ferré Park, 1
Maya communities, 102
Maya hamlet, 179
McClenachan, Loren, 104, 109, 119
McWhorter, Jennifer, 161–62, 166
medicine, coral reef benefits to, 229

274 INDEX

Mesoamerican Barrier Reef, 26, 89, 102, 151, Ofu (American Samoa), 207-9, 210, 229-30 oil (fossil fuel), 222-23 Miami Beach, Florida, 189 Oliver, Thomas, 209 microbes/microbiomes, 3, 21, 205-7 Olson, Randy, 96 On the Origin of Species (Darwin), 196 microfragmentation, 180, 181 mineral crystals, 127-28 ooids, 21-22 Mission: Iconic Reefs (NOAA), 181, 182 opportunistic coral, 97 MIT General Circulation Model, 164-65 Orbicella. See star coral Modular Artificial Reef Structure (MARS), organ pipe orbicella (Orbicella nancyi), 188-89 133-34 mollusks, 55-56 overfishing, 69, 101, 108-16, 225 Owl's Hole Formation, 57 Monroe County Public Library (Florida), 100 Pacific Ocean, 135, 142, 148 Mooney, Aran, 187 Palau, 211 Mo'orea, 44 Moraga, José Andrés Marin, 193, 195 paleoecology, 57 Moreton Bay, Australia, 108 paleontology, 15 Morton Salt, 122 paleosol (fossil soil), 57 mudstone, forming of, 38 Palm Islands (Australia), 88 Museum of Modern Art (New York City), Palumbi, Anthony, 210 188-89 Palumbi, Steve, 208, 209, 210, 211, 218, 226 Panama, 135–36, 137, 207 National Oceanic and Atmospheric Pandolfi, John, 67, 72, 75, 117-18, 134, 227 Administration (NOAA), 75, 159, 161, 181 Papua New Guinea, 29, 117-18, 218-19 Paris Agreement, 223-24 natural selection, 195-97, 200-201, 204-5, 207. See also adaptation; evolution parrotfish, 22-23, 33, 112-13, 114-15, 187, 225 The Nature Conservancy, 211 parrots, 122 nautical charts, 103 patchiness, benefits of, 116 Neil, Amir, 174 patch reefs, 59, 86 Patterson, Joshua, 182 Nixon, Henry, 122–23 Norris, Dick, 113 Pauly, Daniel, 100-101 North Keeling Island, 47 Peckol, Paulette, 149 North Point, San Salvador, 34–35 peppered moths, 196-97 nuclear testing, 51-52 persistence, 97, 124, 128, 133, 150, 200 nurse shark, 169. See also sharks The Peterson Field Guide to Coral Reefs, 58 phase shifts, 97, 99 OceanOptimism, 225-26 photosynthesis, 19, 61, 166, 191-92, 206 oceans: acidity of, 118-19; carbon dioxide phytoplankton, 108 in, 118-19; circulation and the Caribbean, pigeons, 195 70; modeling of, 164-65, 211; movement pillar coral, 169-70, 214-16, 217, 232-33, of, 70; renewable energy from, 225; 234 shifting baseline syndrome in, 100-101; plankton, 187 temperature rise of, 71, 92, 118 Plant a Million Corals Foundation, 180

INDEX 275

plate corals, 62 Playfair, John, 37, 38-40, 49 Pleistocene reefs, 56-57, 102, 106 Pleistocene time, 5 Pocillopora. See cauliflower coral Pocillopora palmata, 134 pollution, water, 225 polyps, 2-3, 16, 17, 18, 19, 205 poop, fish, 22-23 Porites porites. See finger coral Port of Miami, Florida, 1, 2, 220 post-traumatic stress disorder (PTSD), 9 Precht, Bill, 89, 95, 174, 221 present, as key to the past, 35, 36, 40, 74 Principles of Geology (Lyell), 40 prolifera coral, 171, 172, 176. See also Acropora prolifera Proterozoic time, 5

quarries, for building stone, 56

Raising Coral, 183-84, 212 Red List of Threatened Species (IUCN), 93 Red Sea, 29, 67-68, 130, 142, 197-98, 199 reef cores, 113-14, 132-33, 134 reef crest, 59, 60, 67, 71, 72, 91 Reef Design Lab, 188 reef ecology, analysis of, 57-58 Reef Madness (Dobbs), 51 Reef Renewal USA, 182-83 reef restoration: benefits of, 234; defined, 184; effectiveness of, 226; in Florida Keys, 181-82; heat tolerance in, 195; in Indonesia, 189; process of, 201, 226; purpose of, 183; spiders structures in, 189; types of, 184. See also coral nursery reef sharks, overfishing of, 110-11. See also sharks refugia: characteristics of, 144, 147; in climate change, 141; Coral Gardens Reef (Belize) as, 148-49, 219; deep reef refugia hypothesis and, 165-66; defined, 141; equator and, 162-63; future of, 160,

231-32; genetic evidence of, 147; in glacial periods, 145; in Great Barrier Reef (Australia), 147, 161, 162-63; in Gulf of Aqaba, 200; in interglacial periods, 148; internal waves and, 163-64; as large scale, 141; scales of, 141; searching for, 160; size of, 141; as source of hope, 160, 230; turbid waters as, 166-67; in twilight zone, 166. See also reef restoration renewable energy, 224-25 reproduction, coral, 19, 171, 178, 202 resilience: of Caribbean reefs, 97; of corals, 144; defined, 9, 71; differences in, 218; fossil record implications for, 97; limitations of, 100, 159; low, 122; of staghorn coral, 149; of tabletop coral, 208-9; of zooxanthellae, 206–7 Richter, Rudolf, 83 ripples, in rocks, 38 rocks, 15, 37, 38 Rothko, Mark, 23 Royal Society of Edinburgh, 37 runoff, 106-8, 226

Sala, Enric, 230 sand dunes, 34-35 San Pedro, Belize, 151, 152-53, 157-58 San Salvador: beachrock at, 35; description of, 13-14; driving in, 54-55; fossil reefs in, 55; geography of, 14; Grotto Beach Formation in, 57; limestone in, 19-20, 21, 23, 25, 28, 29; Owl's Hole Formation in, 57; research of, 32-33; sea level changes at, 144; uniformitarianism in, 33, 35 sargassum, 93-94, 152-53 scallops, 3 Scotland, 36-40 scuba diving, 78, 96, 100-101, 145-46, 149, 154-55, 185 sea anemones, 16 sea fans, 146 seafood, evidence of ancestral eating of, 68 seagrass, 111

276 INDEX

sea levels: climate change and, 131; at Cockburn Town fossil reef, 127, 129, 130, 231; coral reef formation and, 66: corals and, 131-32; at Devil's Point, 123, 124, 126, 129, 130; drowned reefs and, 132; Earth's crust and, 130; extinction and, 133; in fossil coral reefs, 129-30; future effects of, 231; in glacial periods, 131-32, 142; at Great Barrier Reef (Australia), 130, 132-33, 137; in Great Inagua, 137, 144; ice age cycles and, 52; rapid changes to, 131-32; at the Red Sea, 130, 142; reef disruption by, 27; at San Salvador, 144; at Treasure Beach, Jamaica, 130; vulnerabilities regarding, 131; at Yucatán fossil reefs, 130 sea temperature: in the Caribbean, 158-59; coral adaptation for, 195; at Coral Gardens Reef (Belize), 157, 159; currents and, 161; degree heating weeks (DHW) and, 198-200; in Eastern Tropical Pacific, 158–59; effects of suspended sediment on, 166; El Niño and, 159; evidence preserved in coral skeletons, 133; in Florida Keys, 138; in Golfo Dulce (Costa Rica), 212; at Great Barrier Reef (Australia), 161, 162; National Oceanic and Atmospheric Administration (NOAA) and, 161; in Ofu (American Samoa), 208; sensors for recording, 157; variations of, 163. See also heat tolerance sea turtles, 3, 111-12, 225-26 sea urchins, 69, 86, 94, 95-96, 98, 181-82 seawalls, development of, 151 seawater, building blocks from, 15 seawater mist, 190 sea whips, 146 sediment: burial for fossilization, 81; dangers to coral, 106, 166, 183; erosion creating, 36-37; on limestone platforms, 143; of parrotfish, 22-23; runoff increasing as climate changes, 183; sea temperature and, sedimentary rocks, 34–35, 36–40, 127 shallow reef zones, 76, 85

sharks, 3, 78, 110-11, 147-48, 169 shells, 15, 20, 72, 81-82 shifting baseline syndrome, 100-101 shipwrecks, as artificial reefs, 185-86 shrimp, 3, 147, 187 Siccar Point, Scotland, 37-40, 123-24 sinking, support for, 49 Sixth Assessment Report (IPCC), 162 skeletons: burying of, 81; calcium carbonate (CaCO₂) and, 15; coral bleaching and, 19; of corals, 16, 18; degradation of, 88; destruction of, 82; examination of, 84; fossilization of, 80-81; growth of, 18; at Hol Chan Marine Reserve (Belize), 172; illustration of, 18; in limestone, 15; macroalgae on, 173; photo of, 17; on pillar coral, 216; research regarding, 75-76; in Telephone Pole Reef, 73-74 Smithsonian National Museum of Natural History, 80 Smithsonian Tropical Research Institute, 113 snails, 3, 20 snappers, 110 soft corals, 146 solar energy, 224-25 soldierfish, 187 sound, for attracting coral larvae, 187 sounding line, process of, 103 South Keeling Islands, 47 spiders, in reef restoration structures, 189 staghorn coral: ages of, 171; in backreefs, 59; calculation of, 156-57; in Caribbean reefs, 93, 106, 206; in Channel Caye, Belize, 89–90; in Coral Gardens Reef (Belize), 148-50, 154-55, 156-57, 158, 219; in Dairy Bull Reef, 98; in death assemblage, 87–88; death of, 88-89; description of, 20, 154-55; at Devil's Point, 128; disease of, 68; in the Dominican Republic, 89, 149; excavation of, 149-50; fish in, 156; in Florida Reef Tract, 90-91; forming of, 149; in Frost Museum of Science, 2; growth of, 173; at Hol Chan Marine Reserve (Belize), 172,

INDEX 277

173; in Hurricane Allen, 96; at Laughing Bird Caye (Belize), 175; in the Mesoamerican Barrier Reef, 89, 165; observation of, 62; persistence of, 150; recovery of, 98; resilience of, 149; restoration projects for, 172, 173, 180, 181; in sea level changes, 148; study of, 89; in Telephone Pole Reef, 73; variations of, 176; white band disease and, 89-90, 94-95, 96 star coral, 1, 16, 17, 59, 180 stone tools, discovery of, 68 stony coral tissue loss disease (SCTLD), 92, 170, 180-81, 216, 220, 221 The Structure and Distribution of Coral Reefs (Darwin), 45–46, 50 subfossils, defined, 89 subsidence, 43, 49 Sue Point, San Salvador, 55 Summer Island (Maldives), 188 sunlight, 132, 165, 166, 190-91 Super Reefs Initiative, 210-11 survival of the fittest, 195

tabletop coral, 208-9 Tahiti, 44-45, 132 taphonomy, 83 Tarracino, Coral, 110 Tarracino, Mae, 110 Tarracino, Tony, 110 tectonic plates, 27, 51, 66 Tela Bay (Honduras), 230 Telephone Pole Reef, 73-74, 88, 95, 102 tentacles, coral, 192 Thailand, 163-64 3D printing, for artificial reefs, 188 tides, internal waves and, 163 time averaging, 125 Tortuguero, Costa Rica, 111–12 Toth, Lauren, 134-35, 180, 181, 231 trace fossil, 86 Treasure Beach, Jamaica, 130 trees, ecological succession and, 125 trilobite, 80

turbid waters, as refugia, 166-67

turtles, 3, 111, 225–26 twilight zone, 166

unconformity: at Cockburn Town fossil reef, 127; defined, 38-39; at Devil's Point, 123, 124, 125, 126, 128, 228; at Eastern Tropical Pacific, 145; environmental changes and, 134; in fossil record, 229-30; future layer of, 229-30; future view of, 229; at Siccar Point, Scotland, 123-24 uniformitarianism: Charles Darwin and, 36, 41; defined, 33; earthquakes and, 43; in Florida Keys, 137; James Hutton and, 36; limitations of, 35, 74; as puzzle, 42-43; rejection of, 36; in San Salvador, 33, 35; of sedimentary rocks, 34–35; support for, 40 United Nations Emissions Gap Report, 224 University of Miami, 189 uplift, 43, 52, 66 uranium-thorium dating, 88 Ussher, James, 36 USS Oriskany, 185 USS Spiegel Grove, 185 US Virgin Islands, 86, 187-88

Valdez, Narciso, 154, 169, 216

Vandenberg, 185

Vaughan, David, 180

Villalobos, Tatiana, 195

volcanoes/volcanic islands, 25, 45, 51, 117

The Voyage of the Beagle (Darwin), 41, 46

Walker, Sally, 29–30, 33–34, 121
Wallace, Alfred Russel, 196
wall dive, 145–47
water quality: decline in Caribbean, 106–8;
defined, 106; environmental change to,
222; in evidence from fossil reefs, 133;
pollution and, 225, 226; refugia and,
166–67; runoff and, 108
wave energy, 61, 62, 67
weedy coral, 97–98

278 INDEX

White, Brian, 57, 124
white band disease, 89–90, 92, 94–95, 96
"Will you become a fossil?" game, 80
Wilmot, Inilek, 69
Wilson, Mark, 121, 123, 124, 126–27
wind energy, 224–25
Windward Passage, 63
Wirth, Karl, 153, 201, 214, 215, 233
Woods Hole Oceanographic Institution, 211

World Wildlife Fund Mesoamerica, 178 worms, 125

Xcaret theme park (Cancún, Mexico), 65

Yucatán fossil reefs, 65, 130

zooplankton, 16, 191–92, 200 zooxanthellae, 19, 165, 191–92, 198, 206–7