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I NTRO DU CTIO N

An urban park bench is about the last place I would expect to find a 
fossil reef, but there’s no mistaking the corals within the stone benches 
at Miami’s Maurice A. Ferré Park. Instead of sitting on a bench, I’m 
stooped over inspecting one as joggers sprint past, music blares from 
somewhere, and kids shriek while playing in the grass nearby. As I look 
more closely at the large rectangle of stone that forms the seat of the 
bench, I can see the shapes of star coral skeletons, pockmarked with tiny 
stars where the coral animals once lived. And there are some with larger 
star shapes, called great star coral. The sinuous lines of brain coral wind 
across the left end of the park bench, and numerous fossil clam shells 
are suspended in the rock on the right side. The curved shells look like 
smiles in cross section. I stand up to find a dog walker looking at me as 
if I’m crazy. His suspicions are probably confirmed when I start taking 
photos of the bench. But I can’t help myself—the fossil reef within it 
looks so much like the fossil reefs I used to study. This limestone rock, 
formed from a coral reef long ago, was excavated from a quarry and then 
made into benches for an oceanfront park in downtown Miami with a 
backdrop of skyscrapers, but it’s still a fossil reef to me. It’s a piece of 
coral reef history.

If you were to sit on the bench’s fossil reef and look out to sea, you 
would get a view of the Port of Miami. A lineup of massive cruise ships 
takes up one side of the paved, human-built island at the port’s center. 
On the island’s other side are container ships and giant metal cranes 
that look somewhat like the AT-AT walkers from Star Wars. Despite the 
entirely unnatural concrete and steel environment of the port, and 
the potential dangers of pollution, extreme heat, and other human-
caused problems, small corals live below the lines of ships. A few 
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months before I found the fossil corals in this bench, researchers pub-
lished a study about the living corals that are able to persist in the 
nonideal waters of the port.1 There’s other life in the port too. Coral 
City Camera, an underwater live stream from the seafloor below the 
port, regularly captures images of fish, rays, and dolphins as they swim 
by.2 But not all marine life can survive the port. And even in parts of 
the ocean that are arguably far more natural than the port, it’s become 
more challenging for tropical marine life to survive. Overall, the ocean 
is becoming a less hospitable place.

A stone’s throw from the park bench and the port, other corals live 
in the Frost Museum of Science. There, researchers are growing small 
coral colonies in saltwater tanks to help species survive. Some of the 
new colonies are on display in an exhibit with blue-tinted light, each 
growing on its own tiny pedestal. Looking through the glass of the tank 
at the corals organized in rows is like looking through the glass wall of a 
hospital nursery to see the newborns. When I visited, staghorn coral 
and finger coral were growing in the nursery. If all goes well, one day 
those corals will be thriving in the sea.

The corals in the park bench lived in a past world without much, if 
any, human influence. The corals currently living in the Port of Miami 
are somehow persisting today despite our environmental mess. And the 
corals in the Frost Museum of Science will be used in the future to re-
build reefs we’ve destroyed. After spending more than a year writing 
about the past, present, and possible future of coral reefs, I felt it was 
apropos to find all three together in the shadow of the Miami skyline. All 
three are related—the stories of how reefs lived in the past, when they 
thrived and when they floundered, can help us understand reefs today 
and find ways to help reefs persist into the future, as we’ll explore in 
this book.

\

The living corals in the port and in the museum, like those that we see 
snorkeling, are typically colonies of tiny organisms called coral polyps. 
Most living coral polyps within a colony are smaller than the eraser at 
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the end of a pencil.3 A tiny coral colony that’s just getting started might 
have only a handful of polyps. An enormous colony will have many 
thousands of polyps. Coral polyps may be small, but these invertebrates, 
millions of them together within a reef, build limestone skeletons so 
large that some can be seen from space.4 Their construction projects, 
coral reefs, become ocean epicenters of biodiversity, creating habitat for 
as many as a million species,5 including tiny fish like bluehead wrasse 
that dart between branches of coral, damselfish that defend their terri-
tory with intimidating snapping sounds, sharks that loiter in sandy 
patches between corals, bright orange scallops that use long spines to 
wedge themselves in reef crevasses, turtles that soar placidly over a reef ’s 
colorful diversity, shrimp that make constant crackling noises, snails 
that cling to sea fans, lobsters that duck into holes, and countless mi-
crobes that are unseen by divers.

With thousands of coral polyps in a large colony, and hundreds to 
thousands of colonies in a reef, corals are powerful. Together, they are 
strong enough to buffer storm waves, protecting coasts, including our 
cities and towns, and creating habitat for reef life that prefers calm water 
protected from the waves. Yet reefs are in trouble today, in large part 
because corals have been weakened by warming seawater, pollution, 
overfishing, disease, and other problems (all of which we’ll explore in 
the coming chapters). Some problems, like coral disease, are exacer-
bated by other environmental changes. Disease has been particularly 
problematic in the Caribbean—scores of corals have been killed by a 
disease that debuted in 2014 not far from the park bench and port. And 
extreme heat is too much for many corals to bear worldwide. For 
decades, climate change has caused widespread coral bleaching events 
that have weakened the corals; as I write this, corals are bleaching and 
dying en masse in particularly hot waters.

It isn’t change itself that is problematic for these ecosystem-building 
organisms. Corals naturally live with change. They cope with cycles of 
tides and seasonal heat. They also live with regular oscillations between 
El Niño and La Niña—changes in winds and ocean currents that cause 
tropical climate and sea surface temperatures to swing warmer and 
cooler every few years. But these natural sources of change are 
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cyclical—water warms and cools each year with the seasons, for 
example—unlike problems affecting modern reefs, which only increase 
over time in an unsustainable way. Predictions about how long coral 
reefs may hold on in the coming decades are becoming increasingly dire.

To get some perspective amid the current spate of problems, this 
book looks to the past, exploring the history of coral reefs. Fossil coral 
reefs make it possible to understand how reefs lived before human influ-
ence, helping us understand what today’s reefs would be like if we 
weren’t changing their environments. They give us a window into an 
alternate universe, where coral reefs are subject only to the stressors 
found in nature instead of the myriad problems humans have caused 
and continue to cause. This is not just a nostalgic desire to escape the 
current mess. Looking into the past can also help us understand what 
reefs need in order to have a future.

Research on the remains of long-dead reefs can also help us under-
stand how reef ecosystems function over hundreds to thousands of 
years, at much longer timescales than those of studies that observe liv-
ing reefs. By studying both fossil and living reefs, scientists can gain 
much stronger insight into how contemporary changes in coral compare 
to reefs across their long history. Understanding the past and present 
will in turn help us understand coral reefs’ future—and maybe even 
how to save them. The stories of how past reefs persisted and when they 
didn’t can help us understand how to play the long game: take actions 
now that will help coral reefs have a brighter future in hundreds and 
thousands of years, even if the near term is rough.

When they aren’t in park benches, the remains of ancient corals and 
other reef life can be found fossilized in rock outcrops, often on tropical 
islands and coasts. Most of the fossilized reefs we’ll explore in this book 
lived about 125,000 years ago, a time when there likely weren’t even a 
million humans living on Earth, so they lived with little or no human 
disruption. We’ll also look at the not-yet-fossilized skeletons of coral 
and other reef life that lived decades to several thousand years ago, 
which hold a record of both human disruptions and natural environ-
mental changes. These, combined with fossil reefs and modern reefs, add 
up to a timeline of reefs. By tracking the history of reefs from before 
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human influence to the present day, we can learn what has changed. 
What went wrong? And when did it start to go wrong? The answers, as 
we’ll see, are often complex, without a single smoking gun.

\

If you are a fan of dinosaurs, trilobites, or other extinct fauna, even the 
oldest fossils described in this book will seem very young. This book 
focuses mostly on coral reefs that lived far less than a million years ago. 
While that’s a very long time from a human perspective, it’s nothing in 
the long span of over 4.5 billion years that is Earth’s history (known as 
geologic time or deep time). The same coral species alive today also 
lived in reefs at this shallow end of deep time (with a couple of excep-
tions). By comparing contemporary corals with their relatively recent 
ancestors in the fossil record, we can easily see connections between the 
past and present.

While this book focuses on young fossil reefs, there are much older 
fossil reefs in the world. One of the oldest known fossil reefs sits in the 
middle of Canada and formed nearly three billion years ago from 
mounds of blue-green algae called stromatolites in a very different 
world.6 There are fossil coral reefs in the US Midwest that formed in the 
Paleozoic era, approximately 460 to 360 million years ago. In the Gua-
dalupe Mountains of Texas, a huge fossil reef, 400 miles long, is filled 
with fossil sponges, algae, and other creatures that lived about 275 mil-
lion years ago, toward the end of the Paleozoic.7 Reefs have existed for 
a long time, but it’s the geologically younger reefs, with the same species 
that make up reefs today, that can best inform us about what today’s 
reefs need and what their future may hold.

Earth’s history is represented graphically as a stack of layers in the 
geologic timescale. It’s like a map of deep time. The oldest layers, 
the Proterozoic and Archean, are on the bottom of the stack. The Ce-
nozoic era is at the top of the stack with its most recent time layers: the 
Pleistocene and the Holocene, the latter of which started 12,000 years 
ago and appears to end at the top of the graphic. The top of the geologic 
timescale is the time we’re living in now.
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We could be seeing humanity as a part of this long story of the planet, 
but more often than not, we explore human history and deep time 
separately. Yet both are made up of seconds, minutes, hours, days, and 
years. In deep time, the record is usually compressed, making the 
smaller increments of time indiscernible, but overall, time is time. This 
makes me want to wander the halls of geology departments and class-
rooms around the country and the world, adding “you are here” stars to 
the top of every geologic timescale posted in the style of way-finding 
maps on hotel room doors.

Our “you are here” star should be in a time period called the Anthro-
pocene, but it’s rare to find that word listed at the top of geologic time
scales (except for the one in this book). More than two decades after 
atmospheric scientist Paul J. Crutzen proposed the Anthropocene as a 
new time period that we’ve entered because of our enormous effect on 
the planet,8 the group of timekeepers that determines the official peri-
ods of geologic time, the International Commission on Stratigraphy, 
decided that, no, the Anthropocene will not become an official epoch 
of geologic time.9 This was in 2024 after years of deliberation and re-
search, after a subcommittee voted that we are, in fact, in the Anthropo-
cene,10 and after a four-year search for an appropriate start date landed 
on the mid-twentieth century.11

Perhaps the Anthropocene will eventually be added to the top of 
the stack of layers in the official geologic timescale. But even if it isn’t, 
the Anthropocene still describes this time when human impacts are a 
dominant force on the planet, changing the climate and ecosystems 
worldwide, and this makes it a useful concept for this book as we plow 
through the many thousands of years at the current end of geologic 
time in search of coral reefs. No matter when, specifically, it started, 
we are most likely still at the beginning of the Anthropocene since it 
does not seem possible that humans will stop being a dominant force 
anytime soon, which begs the question: What will the rest of this time 
layer be like?

This book looks to answer this question for coral reefs, understand-
ing how the story of coral reefs will likely continue through the An-
thropocene given what we know about their past in deep time, their 
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more recent history, and the present-day world at the current end of 
geologic time.

\

I spent my childhood searching for shells on pebbled Cape Cod beaches. 
I spent my twenties doing much the same as a scientist working on my 
PhD, although most of those shells were within fossilized coral reefs on 
tropical islands. Over several years, I headed to the Bahamas for weeks 
to study the shells and skeletons of marine invertebrates that lived in 
coral reefs. I was a professional shell collector. And because most of the 
shells I studied were fossilized, I was also a time traveler, living in the 
past. I daydreamed about business cards that announced my twin spe-
cialties: Dr. Gardiner, Shell Collector and Time Traveler.

In the years since I left research science for the world of climate and 
geoscience education, I’ve focused on scary prospects for the future, 
like climate change and other looming disasters, rather than on the geo-
logic past. For the most part, geologists and paleontologists look back 
in time, and climate scientists look forward (although there are climate 
scientists who study ancient climates and geologists who project into 
the future). I like both the past and the future, perhaps because I tend 
to have trouble living in the present. There’s an anxiety to the present, 
especially when it’s filled with unprecedented environmental problems 
like the warming climate and its ill effects.

Researching geologically young fossil reefs and seeing their living 
counterparts in decline just offshore, I found it impossible not to won
der about the ecosystem’s future. And it was apparent to me that un-
derstanding the past can help us put the present-day trouble into 
context.

What I’ve learned while researching and speaking with experts for 
this book is that the future won’t necessarily continue on a predictable 
trajectory. As we’ll see, coral reefs are facing grim times and there will 
continue to be losses, but there’s evidence that we can help turn this 
around. If we have the power to crumble reefs, we also have the power 
to fix them, and myriad scientists and conservationists are finding 
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creative ways to apply our understanding of past and present coral reefs 
to help them have a future. The corals in the Frost Museum’s aquarium 
are part of one such project. This book takes the stance that we can do 
a lot to improve the prospects for future coral reefs, especially if we use 
what we know about how reefs have survived in the past and take action 
on climate change.

In many ways, this book is a search for examples of coral reef perse-
verance. Stories of how reefs have survived in the past can hold clues to 
how reefs might survive climate change and other environmental chal-
lenges, now and in the future. As we explore these stories from the past, 
we’ll find that over long timescales—millennia or even hundreds of 
thousands of years—coral reef ecosystems have been able to persist 
even when individual reefs could not, relocating and rebuilding where 
corals could survive, lying low when conditions weren’t great. Yet this 
doesn’t appear to be the case over short timescales, like the past several 
decades.

On short timescales, this perseverance is resilience. In ecology, the 
term “resilience” describes the ability of an ecosystem to recover from 
disturbances. For example, a coral reef with resilience is more likely to 
bounce back after a hurricane, even if it takes a few years. Resilience 
also describes the ability of animals to bounce back—the ability of 
coral to recover instead of dying after spending weeks or months in 
overheated water, for example. When it comes to resilience, we have 
something in common with corals: resilience also describes our ability 
to recover from stress or trauma and avoid post-traumatic stress dis-
order (PTSD). At a larger scale, resilience also describes the ability of 
our cities and towns to recover from extreme weather events and cli-
mate impacts.

There are plenty of unknowns about whether corals and reef ecosys-
tems have enough resilience to recover from current challenges and 
future climate change. We don’t know whether they’ll be able to persist. 
Some say coral reefs may be among the first ecosystems to become ex-
tinct.12 Yet the fossil record shows that reefs have been able to survive 
tough times over the long term. Learning what happened to reefs in the 
past can help us understand coral reef resilience and persistence, how 
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the world shaped them, how they shaped the world, and what we need 
to do to help corals thrive now and in the future.

\

In this book, we’ll explore fossil reefs at the fringes of tropical islands 
and dive into modern reefs to connect the past and present. In chapter 1 
we’ll look at the big picture of how coral reefs and other tropical marine 
life create limestone that preserves an often-detailed fossil record. This 
record in rock is what allows us to track reefs through time. Then in 
chapter 2 we will explore how the idea of uniformitarianism—that the 
present is the key to the past—helped lay the foundational understand-
ing of coral reefs before Anthropocene reef declines started. As we’ll see 
in chapter 3, the ecological patterns of modern reefs are also found in 
fossil reefs, an example of uniformitarianism, although living reefs have 
changed so much that the present is often no longer the key to the past.

We will then step back in time to explore disruption in reefs. This 
includes the tumult in modern reefs and what dead coral skeletons on 
the seafloor can tell us about changes in reefs (chapter 4), evidence of 
Caribbean reef transformation over decades and centuries, preserved 
in history archives and subfossils (chapter 5), and how reefs coped with 
environmental change long ago (chapter 6).

Evidence of how reefs have been able to persist over the long term 
can help us understand how the same strategies could allow reefs that 
have been decimated to someday return. In chapter 7, we’ll explore how 
one of these strategies, protective refugia where corals shelter in place 
during difficult times, may help coral species survive. And in chapter 8 
we’ll see how reef restoration projects are creating human-built refugia, 
increasing the number of safe places to help reefs persist. In chapter 9, 
we’ll explore other strategies—adaptation and acclimatization of corals 
to warmer temperatures—which could help corals survive as the cli-
mate warms, and how reef restoration projects have been speeding up 
this process through artificial selection. We’ll then consider the possible 
future of coral reefs based on what we know of their past and present in 
chapter 10.
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Some of the most well-studied fossil reefs in the world are in the 
Caribbean, which is one reason why this book tends to have a Caribbean 
focus, although reefs—past and present—from the Indian and Pacific 
Oceans and the Red Sea make appearances too. Fossil reefs in the 
Caribbean tend to be well studied because they are often found on land, 
which makes them easier for scientists to access and study than fossil 
reefs deep underground or underwater. Also, the first modern reefs to 
decline are in the Caribbean, with ecological transformations starting 
decades to centuries ago, which allows us to now look at this decline, 
and what went wrong, with the benefit of hindsight.

Understanding coral reefs’ past, present, and projected future is a 
multidisciplinary effort. Tracing reef stories from the past to the present 
gets geologists, paleontologists, paleoecologists, and historical ecologists 
involved. Marine biologists, ecologists, and conservation experts typically 
focus on living corals and reefs. Since corals make limestone, geologists 
do research on living reefs too, not just fossilized ones. Plus, because 
corals are sensitive to their physical environment, oceanographers, chem-
ists, and climate scientists are also involved in reef research. Many of the 
scientists highlighted in this book work in interdisciplinary ways to un-
derstand reefs. I find hope in the fact that so many experts are looking 
at questions from many different perspectives to help reefs have a future.

As with most environmental challenges we’re currently facing, wit-
nessing both the vulnerability and resilience of coral reefs today pro-
vokes feelings of both loss and hope. But knowing what has helped build 
reef resilience in the past lets us understand what can be done to help 
corals and other reef species. Just as it takes large numbers of animals to 
build a reef, it will take large numbers of people to help reefs survive an 
increasingly inhospitable world.
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