© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CONTENTS

6
INTRODUCTION

20

BUILDING A HOME
52
FINDING FOOD
IN A COMPLEX WORLD

92
FROM EGG TO ADULT

134

FINDING TRUE LOVE

166
THE SOCIAL BEES:
LIVING WITH YOUR SISTERS
210
STAYING SAFE \& HEALTHY

244

HUMANS IN A WORLD OF BEES

278 Glossary

282 Further reading
284 Index
288 Acknowledgments

For general queries, contact info@press.princeton.edu

South American Benthic Bee
 Waterproof brood cells

SCIENTIFIC NAME : Epicharis zonata
FAMILY : Apidae
LIFESTYLE : Solitary
NESTING HABITAT : Underground tunnels

Epicharis zonata is a neotropic bee found from Mexico to southern Brazil. The genus Epicharis, along with Centris, form an ancient lineage of floral oil-collecting bees and are likely the sister group of modern pollencollecting bees. All of these bees build their nests in soil, on inclines or flat ground.

They feed their larvae pollen and floral oils, collecting this oil with combs on their front legs. The oils are used as brood cell lining and as larval food, essentially replacing floral nectar for these tropical bee species. Floral oils are the consistency of olive oil and are much more energetically dense than the simple carbohydrates of nectar. The South American Benthic Bee is a floral specialist and collects oil only on flowers from plants in the family Malpighiaceae.

The nest architecture of the South American Benthic Bee (after Roubik \& Michener, 1980)

1. The lateral burrows are soil filled. 2. A sand-filled cell at the top with pollen packed in the bottom. 3. A sand-filled cell with larval frass at the bottom.

In the mid-1970s David Roubik and Charles Michener studied a nesting population of South American Benthic Bees $71 / 2$ miles (12 km) south of Kourou, French Guiana in South America. This site was dominated by small trees and shrubs. Females were seen foraging and nest building but males were not observed on flowers in the area. This site was characterized by a large number of nests, each built by a single female. They consisted of a vertical tunnel with branching burrows that ended in single brood cells.

Each cell was positioned vertically and lined with floral oils. The wall was made of three layers, with the innermost made of floral oil. There was a thicker middle layer, perhaps made of resin, and an outer layer with silt. Pollen provisions were placed at the bottom of the cell and a single egg, or developing larvae, was in each cell. At the top of each tapered cell was a resin plug and all tunnels were filled in after cell closure. The larvae itself did not construct a cocoon. In the mid-1970s annual rainfall in this region of French Guiana could reach up to $16 \frac{1}{2}$ feet (5 m). During the dry season the soil was wet enough that the bees could construct nests, but the area was inundated with water during the wet season. It is thought that these waterproof cells, at 14 inches (35 cm) deep, are adaptations to this wet environment.

[^0]© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

For general queries, contact info@press.princeton.edu

EUCERA (PEPONAPIS) PRUINOSA

Eastern Cucurbit Bee

Underground tunnel nests

nectar in pumpkin and squash flowers, where mating occurs. Eastern Cucurbit Bees have greatly expanded their geographic range from their original habitats in central Mexico following the human cultivation of Curcurbita crops. Domestication by Meso-American societies of these crops began some 10,000 years ago, and they then spread through continental North America in pre-Columbian times. The bees followed and are now distributed as far as southern Canada.

The underground nest of the Eastern Cucurbit Bee
Individual females construct the underground nest with a central tunnel and chambers to each side where they provision the developing larvae with pollen and nectar.

[^1]© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

For general queries, contact info@press.princeton.edu

Common Eastern Bumble Bee

 Renovating underground rodent burrows

 Renovating underground rodent burrows}

Abstract

In North America, the typical black-and-yellow bees of summer, Eastern Bumble Bees, are a vital part of agriculture, providing pollination services to crops including blueberry, raspberry, cucumber, pumpkin, and squash.

They are also raised commercially, on an industrial scale, for pollination in greenhouses, particularly of tomatoes and cucumbers. Whole colonies are raised in boxes just larger than a shoe box and can be shipped in regular mail. Unlike honey bees, which will fly to the top of a greenhouse and ignore flowers, bumble bees are efficient pollinators in this environment.

Queens, males, and workers tend to look the same but the queens are slightly larger. Queens mate in the fall and hibernate over winter in an underground chamber (see page 29). When spring arrives the queen emerges to find an old rodent burrow about 2 feet (61 cm) underground to build their nest. The queen builds pots for nectar and pollen provision and then lays an egg. Once the first clutch of worker daughters emerge, the queen will spend the rest of her life in the nest, eating food collected by the workers and laying eggs. The workers will raise subsequent daughters,
reaching over 400 bees, until the end of the year when male and female reproductive are produced. The mated females will then start the cycle over again. The old queen, workers, and males all die at the end of the year.

In summer, Eastern Bumble Bee foragers will leave their burrows in the early morning and establish a "trapline" where they sample flowers. This is an efficient means of provision collection and it allows the bees to exploit their most preferred host plants. Once established they will forage on these plants until they deplete their resources and then switch to another species. It turns out that although they visit many flower types across a day or season, these bumble bees are cryptic specialists. Detailed experiments have shown they can detect and prefer a specific pollen type that contains a $5: 1$ protein-to-lipid ratio-certain plant species, and their most preferred plant, have just this ratio. This suggests other species of bee may have similar preferences.

[^2] adapted hairs.

For general queries, contact info@press.princeton.edu

APIS DORSATA

Giant

Honey Bee
Shimmering bee curtains

The Giant Honey Bee of the Asian tropics has been called "the most ferocious stinging insect on Earth." This is because of its large body size ($3 / 4$ inch, or up to 2 cm) accompanied by its large stinger and aggressive colonies.

These bees are distinguished by large vertical wax combs, often 3 feet (over 1 m) in length, suspending from branches or other substrates (see pages 33-35). Colonies tend to aggregate in "bee trees" where nearly every large branch is occupied.

The comb is organized into regions. The top nearest the branch is where honey is stored and brood is located below. The worker and any drone brood are reared together. The whole comb is covered by a curtain of bees that protects it from rain and insulates the brood. The bees in the quiescent zone, where the honey is produced, cover most of the comb and their heads face upward. The so-called mouth zone is in the bottom corner and is the area where foraging bees will land and take off. Returning forager bees also waggle dance in this zone to indicate the quality and location of resources on this vertical surface. Giant Honey Bees also seem to use the waggle dance to inform migration behavior.

Because the nest is so exposed there are many predators that must be deterred, from the Greater Death's Head

[^3]

SCIENTIFIC NAME	Apis dorsata
FAMILY	Apidae
LIFESTYLE	Eusocial
NESTING HABITAT	Open nesting

Hawk-moth (Acherontia Lachesis) to the Crested Honey Buzzard (Pernis ptilorhynchus). The bees do this by "shimmering"; as a predator approaches, the bees will wave their stinger-laden abdomens in a wave motion, similar to those done by fans at a sports game. This sudden flickering is enough to deter some of their most common enemies such as wasps.

The life cycle of the colony is similar to other tropical honey bee species. During periods of abundant flowering, the colonies grow and reproduce by a process of colony fission called swarming. When flowers are not available, such as in dry or rainy periods, these bees can migrate to new locations. Giant Honey Bee queens mate with 13 or more males. Drones are only produced at certain periods and will fly to congregation sites to encounter females. Upon mating they die, their evolutionary job complete. Newly emerged workers are house bees, forming the curtain or tending brood. As with other honey bees, older workers forage.

Humans have had a long history honey hunting Giant Honey Bees in southern Asia, and their close relatives, the Himalayan Giant Honey Bee (Apis laboriosa) in the Himalayas. In parts of southern Asian there is passive management of bee tree colonies. Here, a beekeeper will climb a tree at night when the bees are more quiescent, or in a period of inactivity, and heavily smoke the bees. Then a small portion near the top of the comb will be cut out, leaving the brood comb intact. This process allows the bees to rebuild, and honey harvesting to continue throughout the year.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

TETRAGONULA CARBONARIA

Sugarbag Bee Spiral nests

SIIENTIFIC NAME $\begin{array}{l:l}\text { Tetragonula carbonaria }\end{array}$
family : Apidae
LIFESTYLE : Eusocial
NESTING HABITAT : Above-ground cavities

Sugarbag Bees, found in northeastern Australian forests and woodland, form an elaborate collection of structures made of a combination of plant resins and beeswax, secreted from special glands of worker bees, called cerumen. These nests are often located high in a cavity in the trunk of a tree.

Each nest has a large aggregation of brood cells in a characteristic spiral comb covered by a protective domethe involucrum. The queen lays eggs at the newly constructed spiral top so that the older developing brood is lower down, with the pupae near the bottom. A single egg will be laid in a comb cell that is provisioned with honey and pollen and then sealed. In addition, stores of honey and pollen are made outside the brood area in separate large pots. Wax entrance tubes may extend beyond the side of the nest, and entrance tunnels are guarded to prevent intruders.

Stingless bees, such as the Sugarbag Bee, and honey bees likely share a common ancestor and possess similar traits, including caste distinction, sterile workers, cooperative brood care, comb building, and production of honey. However, unlike honey bees, outside the colony, Sugarbag Bees will attack with a "fight swarm." This is a large aggregation of bees that will mob the intruder, regardless of size, and hopefully deter disturbing the nest. When young, the bees are house bees that take care of brood, build the nest, and other in-house activities. As these bees age they transition to foragers.

Unlike honey bees, which can communicate the location of the best floral resources, Sugarbag Bees collect nectar, pollen, and resin using an opportunistic strategy, but also by marking food sources with a pheromone for nestmates. Sugarbag Bee colonies have only one reproductive female, the queen. Studies have shown that she is the sole mother of the males, although other species of stingless bees can have queen-like workers that produce males as well.

The typical structure of a spiral brood combof a Sugarbag Bee nest
At the top are eggs, just below are developing larvae, and pupae are at the very bottom of the spiral. The brood comb is at the center of the nest and is surrounded by storage cells of pollen
\rightarrow The stingless Sugarbag and honey.

Bee from northeastern Australia, collecting pollen.
ght, Princeton University,
d, posted, or reproduced ithout prior written permiss

Communal Blue Orchid Bee

Resin nests

SCIENTIFIC NAME : Euglossa hyacinthina
FAMILY : Apidae
LIFESTYLE : Quasisocial
NESTING HABITAT : Above-ground nests

Abstract

These long-tongued bees of tropical Central America have jewel-like blue metallic bodies and translucent wings. Males and females of this species are very similar with a slight difference in the thorax. Bees in the tribe Euglossini, to which this species belongs, have no worker or queen bees. They also do not form large colonies.

Mated females build complex nests on the stems of plants in mixed tropical habitats. Completed nests are about $21 / 2$ inches $(6 \mathrm{~cm})$ long and $11 / 2$ inches (4 cm) in width and shaped like a top, with a narrow point at the bottom presumably to shed water-the plant stem runs through the center of the nest. A single female constructs the nest by making successive trips to collect resin. The resin is deposited in sequential layers and shaped into arches that eventually form the spheroid shape. Once completed, the nest will have a single entrance covered by a small resin roof.

Building a nest

Detailed observations by Wcislo et al., 2012, show how Communal Blue Orchid Bees make a nest by moving from side to side, from the exterior to the interior. Each arc represents a 1- to 2-minute work session over a 26 -minute construction period.

Nests are inhabited either by a single female or by a group of females. Unlike in other bee species, the females living in the latter arrangement are all similarly reproductive and do not show a division of labor. Having two nesting strategies is unusual and seems likely to be advantageous under different environmental conditions. Solitary nesting females have a higher number of offspring but their nests are left unattended for longer periods and become prey to predators. Co-nesting females have fewer offspring but provide their brood with more protection.

Orchid bees get their name from the fact that males of the species are pollinators of large orchids in the American tropics. Male bees collect aromatic fragrances from the orchids and use these to attract females during territorial mating displays. Males will collect the fragrance in hind leg pouches in the early morning and then fly to a relatively open territory area to encounter females. The fragrance is thought to evaporate and act as a pheromone-like attractant for females. Orchids visited by these males have evolved fantastic structures to attract the bees and to place pollinia in exactly the right position to ensure pollination of another plant of the same species.

\rightarrow A female Communal Blue Orchid Bee on her resin nest.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. means without prior written permission of the publisher.

FINDING FOOD IN A COMPLEX WORLD

Choosing from the floral buffet

Flowers vary tremendously in their shapes, colors, scents, and the types and amount of the food rewards they provide. How do bees choose which flowers to visit? Do they visit all flowers available, or specialize in a few?

Most bee species obtain all their nutritional resources from the nectar and pollen provided by flowering plants. Nectar serves as bees' primary source of carbohydrates, while pollen is their primary source of protein and fats. Nectar can also contain amino acids, while pollen provides essential sterols, vitamins, and
minerals. The quantity and the nutritional composition of nectar and pollen vary significantly across plant species, and this can shape the foraging preferences of bees. Not all bee species use nectar and pollen, however: we will discuss the special cases of oilcollecting and meat-eating bees later in this chapter.

Feeding and pollination

COMMON FLOWER PARTS
When bees visit flowers to collect nectar, pollen, or oils, pollen from the anthers attaches to their bodies. This pollen is transferred to the stigma, which results in the production of seeds in the ovary. The structure of flowers differs greatly among species. The petals of a flower are known as the corolla, while all the sepals of the flower are called the calyx.

SPECIALIST OR GENERALIST?

Ecologists who watch bees on flowers have long recognized that some species visit one plant family or genera, while others go to a great variety. This has led to distinguishing bees in a pollinator community as specialists or as generalists.

Most bees are nectar generalists, visiting a wide range of plants for nectar rewards. Flowers may sometimes limit the bees that visit by making floral nectaries inaccessible to bees of a certain size or shape. However, some bees do have preferences for certain nectar concentration, sugar types, or volume. Long-tongued bees have been reported to like sucrose-rich nectars, and short-tongued bees tend to prefer nectars with more glucose and fructose. Sucrose is a disaccharide while glucose and fructose are monosaccharides.
\uparrow Pollen grains comes in many different shapes and colors, and vary between plant species. Scientists can look at bee-collected pollen under the microscope to determine which plant species that bee was foraging on.

In terms of pollen foraging, bee species are classified as polylectic (collecting pollen from a variety of flowering plant species, genera, and families), oligolectic (collecting pollen from a few related plant species), or monolectic (collecting pollen from only one species). For example, Andrena florea (see page 80) collects pollen from Bryonia plant species (vines in the bryony gourd family); Eastern Cucurbit Bees (Eucera [Peponapis] pruinosa; see page 42) collect pollen only from Cucurbita plant species, which include squashes and gourds; while Macrotera (Perdita) texana collects pollen from Opuntia species, commonly known as prickly pear.
\uparrow Buff-tailed Bumble Bee (Bombus terrestris) foraging on Common Heather (Calluna vulgaris). Compounds in the nectar of this plant help the bee fight off infections of a gut parasite.
π Some mason bee species, such as the Spined Mason Bee (Osmia [Hoplosmia] spinusola) shown here, specialize on Asteraceae pollen. Other Osmia bees and Osmia parasites cannot survive on Asteraceae pollen. By using this pollen, the Spined Mason Bee may avoid competition or parasitization.

Interestingly, recent studies of Bombus impatiens bumble bees (see page 44) suggest that these polylectic bees may be selectively foraging for pollen that matches a particular protein-to-lipid ratio. Thus, although the bees may be foraging across a number of plant species, they may be acting as cryptic nutritional specialists.

Alternatively, studies of the Asteraceae specialist, Osmia californica (a species of mason bee), found that its larvae can survive on pollen from other plant species, but larvae from a polylectic Osmia species (Osmia lignaria), or from wasps that parasitize Osmia nests, cannot develop well on Asteraceae pollen. Thus, these O. californica bees may be specializing not to obtain
a particular nutritional content, but rather to avoid paratisization or competition with other bee species.

Pollen and nectar also contain plant compounds that can be toxic or beneficial to bees. For example, Common Heather (Calluna vulgaris) nectar contains the compound callunene, which reduces infections of a gut parasite (Crithidia bombi) in the Buff-tailed Bumble Bee (Bombus terrestris; see page 264), by causing the parasite to lose the structure (the flagellum) that anchors it to the bee's intestinal cells. In other cases, bees will mix pollen from different plant species in order to dilute toxins in the diets of their larvae.

Tools for collecting food

Abstract

Bees have many physical structures to help them access the nectar or pollen from different plants, and efficiently collect and carry their food back to their nest. These structures include the proboscis, which allows them to collect nectar, and specialized hairs that allow them to collect and transport pollen or floral oils. Different bee species have hairs on different parts of their body, which allow them to efficiently collect pollen or oils from their preferred plant species.

A typical corbiculate bee
Bees have many structures that allow them to detect and collect floral resources. Corbiculate bees (including honey bees, bumble bees, stingless bees, and orchid bees) have special pollen baskets on their hind legs.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

SHAPE IS KEY

For visiting bees, the shape and size of flowers and the position of their reproductive parts is all important. There is something of a lock-and-key relationship in the shape of flowers. The length and diameter of the corolla (made of petals) and calyx (made up of sepals) can determine which bee can access the floral rewards. For example, if a flower has a deep and narrow corolla, only a bee with a long tongue can reach the nectar at the bottom of the corolla. The internal arrangement of the male and female reproductive parts relative to the nectar and pollen rewards bees of the right size and shape in exactly the right place to receive pollen or pollinate the female stigma. The degree to which the shape of flowers accommodates many species, a few, or just one, is the subject of a great deal of research.
\uparrow The open shape of the coneflower (Echinacea) means it is accessible to many different kinds of bees.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

FINDING FOOD IN A COMPLEX WORLD

COLLECTING NECTAR

Most bees extract nectar from flower nectaries using their proboscis. Nectaries can be found in different parts of the flower. Petals can be folded, cupped, or curled to form nectar reservoirs in the base of an open flower. Many bee flowers have petal nectaries. Sepals, which in many flowers are green at the base of the colored petals, can be similarly modified to hold nectar. Stamens, which bear the male pollen and the male reproductive structures, can also have secretory nectaries. Often these are found at the base of the filament in the form of a tail or nectar spur. Gynoecial nectaries are associated with the ovary bearing carpel tissue that is found in the center of most flowers. Petal and sepal nectaries tend to be shallow and thus accessible to short-tongued bees, while staminal and gynoecial nectaries are deeper and more easily accessed by long-tongued bees.

The mouthparts of a bee are intricate and involve many movable structures that fold and unfold as needed. The proboscis (essentially the
\rightarrow A Green-eyed Flower Bee (Anthophora bimaculata) taking nectar and pollen from a Common Fleabane (Pulicaria dysenterica) flower. The pollen is clearly visible on its scopa.
\downarrow While the shape of a flower can make it more accessible for certain types of pollinators, bees can find ways to get nectar and pollen from a variety of different flower shapes. Here, a Western Honey Bee (Apis mellifera) is entering a flower with a deep corolla to reach the pollen and nectar inside.

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
tongue of the bee, see page 58) is a hardened, straw-like tube made up of intricately fitted labial palps at the posterior and galeae at the anterior. This tube can be folded back when not in use, making it easier for the bee to fly. Inside this tube is the hair-covered glossa, which automatically fills with hemolymph (analogous to blood) when a bee is presented with nectar (or when sugar is sensed)—not dissimilar to a child's party blower. The glossa expands out of the harder casing, acting as a dipstick. The watery nectar becomes trapped in the hairs and is pulled into the food canal inside the proboscis. Muscle attachments allow the bee to manipulate the exact positioning of the glossa to maximize nectar extraction even deeper within flowers.

In this way, sugar-rich nectar can be consumed directly. Foraging honey bees (Apis spp.) and some other bee species draw the nectar into a honey crop to transport back to the hive. The honey crop is located in the abdomen, just before the bee's digestive tract, and can take up half the abdomen when filled with nectar. The bee can consume the nectar or regurgitate it back at the nest into a wax cell to be chemically processed and dried by her sisters for long-term storage as honey.

COLLECTING POLLEN

Bees have several physical adaptations to help them collect and transport pollen. Compared to wasps, bees generally have more hairs, to which the pollen attaches while they are interacting with the flower. Bees will groom and pack the pollen collected on their bodies onto specialized hairs called scopa. Different bee species carry the pollen on different parts of the body. For example, Alfalfa Leafcutting Bees (Megachile rotundata; page 84) collect pollen on scopa on the bottom surface of their abdomens, while sweat bees (Agapostemon spp.) collect pollen on scopa on the bottom surface of their legs. Corbiculate bees-which include honey bees, bumble bees, stingless bees, and orchid bees-have evolved special pollen baskets on their hind legs, which allow them to pack and transport large amounts of pollen. Cellophane bees (Hylaeus spp.) eat pollen and nectar and store it in their stomach, before regurgitating it to create the food provisions for their larvae.

POLLEN COLLECTION ADAPTATIONS

Female bees must collect large quantities of pollen from flowers and carry it back to their nests to feed their larvae. Different bee taxa have developed different strategiesand anatomical features - to carry pollen. In most bees, specialized hairs called scopa are used to keep the pollen attached to the body.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

COLLECTING OIL

Some plants produce oils as rewards. These oils are mixed with pollen to feed to offspring, or are used to line the bees' nest. To collect floral oils, bees also use hairs on their legs or abdomen. These hairs can be dipped into or rubbed against pools or layers of oil found on the flowers, to collect the oil by capillary action or by mopping. The position of the hairs on the body and the morphology of the flowers and its oil-containing sections coevolve so that specific bee species can collect oil from and pollinate specific plants. For example when the oil bee Rediviva peringueyi (page 82) visits Pterygodium, Corycium, and Disperis orchids, each orchid genera deposits its pollinaria at a different location on the bee's body, ensuring it is
transferred to the female parts of the same orchid species. Similarly, when Centris (Paracentris) brethesi bees visit Monttea aphylla flowers to collect oil, they insert their forelegs into the corolla tube to soak up the oil. As the head inserts in the flower, the anthers deposit pollen on the underside of the head and between the forelegs. This area is difficult to groom, ensuring the pollen is transferred to the next flower.
\downarrow Female Dark-legged Yellow Loosestrife Bees (Macropis nuda) have specialized hairs on their hind legs to collect both pollen and oil from their preferred host plants, Loosestrifes (Lysimachia spp.).

Finding flowers

Abstract

Flowers, the true gems of the biological world, have evolved marvelous design innovations to help bees and other pollinators find and remember nectar and pollen food resources in complex landscapes.

CONSTANT COMPANIONS

The uniqueness of flower types assures that, once identified as a good resource by a bee, a plant species will be the only one visited within a given time period, a behavior called "floral constancy." Therefore, pollen will only be transferred between plants of the same species. While wind-pollinated plants produce copious amounts of pollen that blanket the landscape in the hope of finding a plant of the same species, flowering plants have harnessed the behavior of bees, and other pollinators, for precision pollination.

For pollination biologists, the floral structure (see page 54) is a clue to which animal may pollinate the flower. Floral form is influenced by a number of factors. The anatomy of the animal, or groups of animals that are the most efficient pollinators, such as body size and

π To make sure the right pollinator finds and forages from them, flowers come in many shapes and sizes, with different colors and scents, and different types of nutritional rewards. Bee-pollinated flowers include Agastache foeniculum (A), Echium vulgare (B), and Digitalis purpurea (C). Fly-pollinated flowers include Angelica sy/vestris (D). Butterfly-pollinated flowers include Lantana camara (E). Bird-pollinated flowers include Campsis radicans (F). Batpollinated flowers include Mucuna holtonii (G).
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

HOW DO BEES SMELL FLOWERS?

Bees and other insects can detect chemical odors through sensory neurons found in their antennae, mouthparts, and legs. Generally, the sensory neurons in the antennae detect odors that are volatile-they disperse easily in the air-while the mouthparts and legs detect chemicals through direct contact. Thus the antennae can "smell" while the mouthparts and legs can "taste." In the antennae of bees, the sensory neurons are underneath circular plate sensilla that indent the surface; small holes in these allow the odor molecules to pass through and bind with these neurons. Thus, the chemical signal is changed into the electrical signal language of the brain.

Given the wide diversity of scents in the world, how do bees detect them all? Bees, like other animals, including humans, use a "combinatorial code"; they have a number of different receptors (60 have been found in honey bees), and each receptor can detect multiple odor molecules. A single odor activates a set of different receptors and receptor neurons, and different odors activate various combinations of receptors. Thus, bees are able to detect and learn single odors or blends of odors because they activate a distinct combination of receptors compared to other odors.

The olfactory systems of different bee species may be "tuned" to be more sensitive to odors produced by their preferred plant species. For example, studies of Andrena vaga, a specialist on willow (Salix) plants, found that this bee had a much greater neuronal response in its olfactory system to a Salix-specific odor, 4 -oxoisophorone, than the generalist Western Honey Bee (Apis mellifera) did.
\rightarrow Willow (Salix) flowers are a favorite of the Grey-backed Mining Bee (Andrena vaga).

tongue length, influence the size of the flower and the depth of the nectary. Bees tend to favor medium-sized flowers with relatively long corolla tubes. Floral scents and colors help pollinators locate and remember flowers in a complex environment. They also learn how to handle specific flower types to be efficient in gathering rewards.

Bees generally prefer blue to purple flowers with sweet floral scents and medium nectar concentrations. Since bees have a limited ability to see in the red range they tend to avoid these flowers, many of which are instead pollinated by birds. Bees in most parts of the world are active from the morning to midday and their flowers bloom at this time. But it is important to remember that environmental context, competitors, and floral availability will influence which flowers bees visit. Although bee species have innate preferences, they are also excellent at learning so are able to exploit resources of plants that they have not coevolved with.

SCENT

Bees live in a chemical world. Sensory neurons on their antennae and mouthparts can detect tens of thousands of chemical compounds. Flowers produce particular bouquets of scents to attract their most efficient pollinators, often from a distance. They can also emit repellent compounds to dissuade non-pollinating visitors. To further increase efficiency, floral scents are emitted when their pollinators are most active. Flowers that attract bees have scents that are often described as sweet, fresh, and pleasant. In contrast, flowering plants that attract flies as their pollinators usually have floral scents that smell quite putrid, like rotting meat, offering a scent to which the flies are already more sensitive and responsive.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
FINDING FOOD IN A COMPLEX WORLD

In studies conducted in Germany, plant species with flowers of this color seem to produce a higher-quality nectar reward than co-flowering plant species with different-colored flowers, suggesting an adaptive relationship. But bees have a great potential to learn, allowing for ecological flexibility in which flowers they visit.

These color preferences can vary in individual bees and among bee populations. This can allow for individuals from the same species to take advantage of different resources in the same landscape, or allow for populations to evolve to become adapted to locally
available resources. For example, among bumble bee species-populations of the same species and different nestmates within a colony-there can be variations in the degree to which they prefer blue-purple versus red flowers. This variation has been associated with differences in foraging efficiency, where colonies with greater blue-purple preference perform better in landscapes where there are more rewarding blue-purple flowers. Interestingly, the Giant Patagonian Bumble Bee (Bombus dahlbomii; see page 266) may have evolved to perceive red.

Cognitive ecology of bee foraging

Bees require complex cognitive skills to efficiently collect floral resources. First, bees need to be able to effectively explore the landscape to locate rewarding flowers. They then need to learn and remember where a rewarding flower is, when the flower is providing nectar and pollen (since flowers can open at different times of day), and how to access its nectaries or anthers. When a flower's resources have been depleted or a plant stops blooming, the bee needs to learn to stop visiting these flowers.

FORAGING STRATEGIES

Bee species use a variety of strategies for searching the surrounding landscape for flowering resources. Some bee species, such as bumble bees, honey bees, and orchid (Euglossine) bees, use "traplining," where they follow the same route every day to visit the same set of flowering plants, as a human trapper would examine their traps along a same route every time. This behavior allows the bees to obtain floral resources more efficiently, since they find the shortest route, learn and remember how to handle the flowers to obtain these resources, and can visit the most resource-rich plants first. Moreover, many flowering plants release their pollen over several days. If one of the flowering plants on the trapline ceases to flower, the bee will continue to visit the plant for several days (a hallmark of traplining behavior). Studies with bumble bees have suggested that traplining is particularly effective if floral resources are limited or hard to find.

Social bee species have developed a number of behaviors to recruit nestmates to flowering plants. Some stingless bee species, such as Trigona recursa, lay a scent trail by marking the flowering plant and plants found along the route to the flowering plant from the nest with pheromones. The stingless bee Melipona panamica (see page 86) recruits nestmates to food resources using the scent of the floral resource, sound signals within the nest, and directional (zig-zag) flights outside the nest.
\uparrow A sleeping habit shared with many other solitary bee species that don't have a hive to return to at night, this orchid bee (Euglossa spp.) passes the night suspended in the air by biting into a leaf in Utría National Natural Park, Colombia.
\leftarrow Euglossine bees approaching orchid flowers (Gongora leucochila) located on their traplining route in Gamboa, Panama.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

DANCE LANGUAGE OF HONEY BEES

Honey bees use a symbolic language to communicate information. A foraging honey bee that finds a highly rewarding food resource can recruit her sister foragers to it through this dance language. The behavioral biologist Karl von Frisch received the Nobel Prize in 1973 for elucidating the basic components of this dance language; subsequent research has continuously revealed new insights into how this language is generated and interpreted by honey bees.

When the successful forager returns to the colony, she will perform a dance on the honeycomb. The nearby bees will orient toward the dancing forager, touching her with their antennae and following her through the dance. If the foraging resource is nearby (less than 160 feet $/ 50 \mathrm{~m}$) the bee will perform a "round dance," where she dances in a circle and changes direction between the dance "runs." If the foraging resource is further away, the bee will perform a "waggle dance" in the shape of a sideways figure eight.

Translating the waggle dance

Foragers inside the colony follow the waggle dance of a successful forager. When they leave the colony, they translate the directions of the dance into landmarks. In this case, the bees will locate the sun, and then fly 50 degrees to the right of the sun to search for the food source.

Waggle dance

Western Honey Bees (Apis mellifera) will dance in a figure-eight pattern on the surface of the honeycomb. The central "straight" run of the dance is angled to the vertical axis according to where the food source is relative to the sun. Here, the bee is dancing 50 degrees to the right of the sun.

In the middle part of the figure eight, the bee will waggle her abdomen vigorously from side to side.

The waggle dance provides information on the direction, distance, and quality of the food resource. The direction of the middle part of the dance indicates the direction of the food source from the colony entrance, relative to the sun. The duration of this waggle run-how many milliseconds it takes the bees to complete it-provides information about the distance to the food resources. The quality of the food resource is provided by the time it takes for the bee to return to the middle part of the dance from the side loops of the figure eight, and how often she waggles her abdomen during the middle part of the run.
\rightarrow Western Honey Bee (A. mellifera) performs the waggle dance on a honeycomb to communicate the location of flowering plants with nectar and pollen to other colony members.
abdomen 58,96, 103
Agapostemon See sweat bee
Alkali Bee 12, 27, 27, 247, 272, 273
alleles 100, 236
Allodapini 17,196
altruism 8,98,184-5
reciprocal 182, 184
Amegilla dawsoni See Dawson's
Burrowing Bee
Ammoplanidae 8
Andrena 18, 117, 153, 160
A. florea See mining bee, Bryony
A. nigroaenea See mining bee, Buffish
A. scotica See mining bee, Chocolate
A. vaga See mining bee, Grey-backed
territorial marking 142, 142
Andrenidae 17,212
Andreninae 18, 18
Angiosperm Terrestrial
Revolution 247
antennae 58,227
Anthidiellum 38
A. notatum See resin bee, Northern Rotund
Anthidium septemspinosum See
woolcarder bee, Seven-
spined
Anthophila 23
Anthophora 62
A. bimaculata See Green-eyed

Flower Bee
Anthophorinae 16
Apidae 16-17, 16, 212
Apinae 196
Apis 215
A. andreniformis See honey bee, Black Dwarf
A. breviligula See honey bee, Giant Philippine
A. cerana See honey bee, Asian
A. cerana japonica See honey bee, Japanese
A. dorsata See honey bee, Giant
A. florea See honey bee, Red Dwarf
A. laboriosa See honey bee, Himalayan Giant
A. mellifera See honey bee, Western
A. mellifera capensis See honey bee, Cape
A. mellifera iberica 249
A. mellifera lamarckii See honey bee, Egyptian
A. mellifera scutellata See honey bee, Eastern African Lowland 250, 270, 271
apitherapy 215
arrhenotoky 99
Austroplebeia australis See
stingless bee, Australian
batumen 224, 228, 238, 239,
260
beebread 77,90
bee-eaters 216,216
bee hotels 14,14
bee milk 90
biosynthesis 136
Bombus 8, 215
B. affinis See bumble bee,

Rusty-patched
B. appositus 10
B. breviceps 220
B. campestris See cuckoo bee, Field
B. dahlbomii See bumble bee,

Giant Patagonian
B. flavifrons 10,236
B. haemorrhoidalis 220
B. humulis See carder bee,

Brown-banded
B. impatiens See bumble bee, Common Eastern
B. melanopygus See bumble bee, Black-tailed
B. occidentalis See bumble bee, Western
B. pensylvanicus See bumble bee,American
B. polaris See bumble bee, Polar
B. pullatus See bumble bee, South American Blackclothed
B. rotundiceps 220
B. terrestris See bumble bee, Buff-tailed
B. trifasciatus 220
B. vancouverensis 236

Braunsapis
B. kaliago See Indian Allodapine Bee
B. mixta 200
brood care $8,48,106-17$
communal species 174
cooperative $170-1,172$, 174, 202
division of labor 176-80, 190
feeding See brood food
nurse bees $90,114,114$, 176, 176, 178
optimal allocation theory 110
seasonal variation 124
sex differentiation 120,126
social species $48,106-7$, 168-9, 170, 172-3, 176
solitary species $108-9,170$, 172
brood cells $10-11,22,22,27$, 140
bumble bees 28-9
combs 30,31, 32, 32, 46, 48, 90, 94-5, 104-5, 104-5, 176, 178
hexagonal 30,31,32
honey bees 104-5, 105 queen larvae 114
sex differentiation 104-5, 105,120
single potter nests 156,156
solitary species 172
waterproof 40,126
brood food 94, 96, 110-11
floral oils 40
manipulating nutrition
110-11,114
mass provisioning 170,172 , 204
nectar $11,22,27,28,29,84$, 90
optimal allocation theory 110
pollen $11,22,27,28,29,84$,

$$
90,114
$$

progressive provisioning 170, 172
royal jelly 114,172
sex differentiation 104, 106, 126
social species 170,176
solitary species 172
vulture bees 88,89
bumble bee $8,12,16,62,66-7$, 67
American 221, 221, 254
Black-tailed 236, 237
Buff-tailed 12, 56, 57, 101, 142, 254, 256, 264, 265, 266
buzz pollination 74
caste differentiation 173, 173,190
colony cycle 107
Common Eastern 12, 44,
45, 57, 97, 190, 254, 264
cuckoo 196, 196
development 96-7
facultative social parasitism 195-6
Giant Patagonian 67,254,
264, 266, 267
life cycle $29,169,173$
mating 153, 153
nests 10,28-9
Polar 194, 194
queen 28-9, 169, 173, 173
reproduction 101
robbing nectar 74-5
Rusty-patched 254
sociality $10,28-9,169,194$, 196
South American Blackclothed 142
territorial marking 141,142
traplining 69
warning coloration 101, 220, 220, 236, 237
Western 254
workers $169,173,173$, 178-9, 190
Burrowing Bee 62
buzz pollination 72-4, 73

Calliopsis

C. laeta 126
C. persimilis See Groundcherry Bee
C. verbenae 126

Callomelittinae 19
carder bee 17
Brown-banded 196
carpenter bee $16,17,37,152$
buzz pollination 74
Double-banded 37, 75
Eastern 74, 268, 269
Eurasian 37
Green (Golden-green) 37, 152,162, 163
Groove-legged 225, 234, 235
Mediterranean Small 99, 118, 119
robbing nectar 74
Small 190, 190
caste differentiation 48 ,
110-11, 114, 171, 173, 173,
174, 175
cellophane bee $18,19,61,62,120$

Red-thighed 74
Centris 40,198
C. bicornuta 198
C. brethesi 63

Ceratina 33

C. australensis See carpenter bee, Small
C. calcarata See Spurred Ceratina Bee
C. cyanea See carpenter bee, Eurasian
C. dallatorreana See carpenter bee, Mediterranean Small
cerumen $31,38,224,260$
Chelostoma florisomne
See Sleep Scissor Bee
climate change $8,13,254,258$,
259
cocoons 116
Coelioxys chichimeca
See Leafcutting Cuckoo Bee
cognitive skills 68-77
memory 68-9,72
social learning 74-5, 84, 240
Colletes 19, 120
C. cunicularius SeeVernal Colletes Bee
C. halophilus See mining bee, Sea Aster
Colletidae 18-19
Colletinae 19, 19
colony cycle 107
communication
chemical $31,48,71,86$, 136-64,227
dance $33,46,70-1,70,71$, 86, 177
directional flights 69
evolution 71
sound signals $69,71,86,238$
traplining 44, 69
complementary sex
determination 100
compound eyes 58, 79
corbiculate bees $16,58,61,62$,
145
courtship rituals 150
Ctenocolletes 19
cuckoo bee 17, 160, 161
Field 196
Leafcutting 195, 198, 199
Cucurbit Bee, Eastern 42, 43, 56
cuticular hydrocarbons 138,227

Dark-legged Yellow Loosestrife Bee 63
Darwin, Charles 184, 185
Dasypodainae 16
Dasypoda plumipes See
Palearctic Bee
Dawson's Burrowing Bee 130, 131,151, 151
declining populations 8 , 13-15, 252-9, 264
defense $8,10,11,33,35,46$,
176, 179, 190, 212-42
entombing 228
flight swarms 48
guard bees $176,179,183$,
190, 204, 205, 224-5,
225, 227, 234
honey bees 90
nest defense 222-9
parasitic species 195
pathogens, against 230-1, 230,231
soldier bees 176,179
sting $8,46,173,179,195$, 212-18
warning coloration 101, 220-1,236, 237
desert bees 16, 17, 117
Diadasia 222
D. rinconis 117

Dianthidium 38
diapause $97,106,114-17,116$,
$130,132,169,173,259$
diet $22,27,54-7,88,89,90$
Diphaglossinae 19
Discoscapa apicula 247, 247
diseases 230-1, 230, 231,257
drones See male bees

Dufour's gland 138, 138,140, 153, 229, 272
dwarf eldest daughter 111,128
ecdysone 96
eggs 22, 96, 102-3, 102, 106
brood cells See brood cells
fertilization 98, 102-3, 104
sex determination 28,42 ,
98-101,104-5,106, 122
social species 11
trophic 204
electroantennography 147
endophallus 164,164
Epeolus cruciger See cellophane
bee, Red-thighed
Ephialtes manifestator See
Ichneumon Wasp
Epicharis zonata See South
American Benthic Bee 40-1, 41
Eucera
E. Iongicornis 142
E. pruinosa See Cucurbit Bee, Eastern
Eucerini 16
Euglossa 11, 39, 68, 69
E. dilemma See orchid bee, Green
E. hyacinthina See orchid bee, Communal Blue
E. imperialis 137
E. intersecta See orchid bee, Three-sectioned
Euglossini 50
Euphorb Mini-fairy Bee 8, 8
Euryglossinae 19
evolution 8, 16, 23, 246-7, 254 adaptive 67
altruism 182, 184-5
buzz pollination 74
coevolution 10, 75, 246-7, 258
dance language, of 71
sociality $172,175,182-91$
speciation 101
warning coloration 220
Exoneura bicolor See Reed Bee

Fabre, Jean-Henri 25, 25
female bees
caste differentiation 48, 110-11, 114, 171, 173, 173,174, 175
dwarf eldest daughter 111, 128
foundress 208
larvae $104,110-11,114$
nurse bees $90,114,114$, 176, 176, 178
pheromones 138-40, 138, 152
queen See queen
reproductive division of labor 170-1,172,174, 175, 190
sex determination 28,42 , 98-101, 104-5, 110
solitary species $108-9,122$, 168
sting 212, 214
workers See workers
Fideliinae 17
flight swarms 48
floral constancy 64
floral oils 8,11, 11, 16, 22, 27,
$40,50,54,63,63,82,83$
perfumes to attract mates $10,11,136,137,144-6$, 148-9
flowering plants $8,10,54,54$ attracting pollinators 10 , 65-7, 144-6, 144, 145, 146,158, 246
bee mimicry 75
coevolution 75, 246-7, 258
declining biodiversity 254-5, 256, 258
nectar See nectar
pollen See pollen; pollination shape and structure 59,59 , $60,64-5,64,69,72,82,84$
foraging See also
communication
cognitive skills 68-77
division of labor 176-80, 190
flower shape, color, and scent $10,64-7$
honey bees 90
physical collection structures 58-63
strategies 69
Frisch, Karl von 70
fungicides 14,256
furrow bee
Bloomed 192, 192-3, 194
Orange-legged 192, 194, 206, 207, 229, 229
Sharp-collared 190, 191, 191,208, 209
gas chromatography 147
genes
evolution 186-7
genetic diversity 143,154
genetic relatedness 184 , 184, 186
haplodiploidy 98-9, 184, 186
mutation 101
phenotypes 101, 101
relatedness in sister bees 98
sex determination 100
Globe Mallow Goblin Bee 117, 132, 133, 151
Green-eyed Flower Bee 61
Groundcherry Bee 109, 126, 127
guard bees $176,179,183,190$,
$204,205,224-5,225,227,234$

Halictidae 18, 18, 194
Halictinae 18, 196
Halictus rubicundus
See furrow bee,
Orange-legged
haplodiploidy 98-9, 184, 186
Hawthorn Bee See mining bee,

Chocolate
head 58,96
heat-balling 227,262, 262
herbicides 14, 256
Heriades truncorum See resin bee,
Large-headed
hibernation 14, 28, 29, 44
holometabolous insects 94
honey bee $8,12,16,66,216$
advanced eusociality 168-9, $171,173,174,175,186$
Africanized 270
anarchist populations 189
Asian 12, 33, 71, 222, 227, 257, 257, 262, 263
beebread 77,90
beekeeping $12,12,250-3$, 256
bee milk 90
Black Dwarf 33, 71, 164
brood cells 104-5, 105
Cape 99, 229
caste differentiation 173
declining populations 8,13 , 252-9
diseases 230,231, 231
division of labor 176-80
drones 90, 94-5, 104, 143, 143
Eastern African Lowland 250,270, 271
Egyptian 250
Giant 33, 33, 35, 46, 47, 71
Giant Philippine 71
Himalayan Giant 46, 71
honeycomb 32-3, 32, 46, 48, 90, 94-5, 104-5, 104-5,176, 178
honey crop 8, 61, 90
humans and 250-3
Japanese 262, 262
larvae 104, 110-11,

$$
114,114
$$

mating 142-3, 164, 164
nests $32-5,32,33,34,35,164$
nurse bees $90,114,114$, 176, 176, 178
pollen collection $54-9,62$, 69, 76, 115
queen $90,102-3,102,103$,
104-5, 107, 114, 114,
$143,143,168,172-3$, 173, 191
Red Dwarf 33, 33, 34, 71, 142-3, 164, 165
robbing behavior 75, 227
royal jelly $90,114,172$
scopa 61
sex determination 100, 104-5
social behavior $11,33,48$, 104, 168, 168
sting 213, 221
swarming 107, 189
traplining 44,69
waggle dance $33,46,70-1$, 70, 71
wax 32-3, 48
Western 9, 12, 12, 33, 61, 65, 66, 71, 71, 90, 91, 100, 104, 142-3, 143, 164, 188, 189, 189, 227, 228, 257, 257
workers 32-3, 32, 90, 91,
$104,106,106,107,114$,
$114,143,168,168,172-3$
honey crop 8,61,90
Honeyguide 12
Hoplitis tridentata See mason
bee,Tridentate Small
hormones 96
Horned-faced bee 117, 117, 256, 274, 275
humans and bees $12-13,32$,
32,248-68
Hylaeinae 19, 19
Hylaeus See cellophane bee
hypopharyngeal glands 114, 138, 176
immune system 230-1
inclusive fitness theory 184-6, 208

Indian Allodapine Bee 195,

$$
200,201
$$

instars 96
integrated pest management 14
invasive species $254,257,264$,
266
involucrum 31,38

Jataí Eusocial Bee 183,204, 205,224, 225
juvenile hormone 96
kin recognition 138, 227
kin selection theory 184-6
Koschevnikov gland 138
land degradation $8,12-13$, 254, 256, 256
larvae $22,31,94-8,96-7,106$, 110
caste differentiation 48 , 110-11, 114, 171, 173, 174, 175
cleptoparasitic 195, 198
drumming 232
instars 96
queen $114,114,171,172$
Lasioglossum
L. albipes See furrow bee, Bloomed
L. lanarium See sweat bee, Woolly
L. malachurum See furrow bee, Sharp-collared
L. versatum See sweat bee, Experienced
L. zephyrum 153
leafcutter bee $17,28,28,62$
Alfalfa $12,61,84,85,97$, $108,110,229,231,272$
Apical 111, 124, 125
nests $28,38,84,124,125$
legs 58,65
Lestrimelitta limao See Robber
Bee, Brazilian
life cycle 106
bumble bee $29,169,173$
diapause $97,106,114-17$, $116,130,132,169,173$, 259
division of labor 176-80, 204
temporal polyethism 204
Lisotrigona furva (cacciae) 242
Lithurginae 17
long-horned bees 142
macroglomeruli 143,143
Macropis nuda See Dark-legged
Yellow Loosestrife Bee
Macrotera
M. portalis See Globe Mallow

Goblin Bee
M. texana 56
male bees $11,28-9,46$
honey bees $90,94-5,104$, 143, 143, 164, 164
pheromones $140,140,152$
sex determination 28,42 , 98-101, 104-5, 110
solitary species $108-9,110$, 122
territorial marking 140, 141,142-3
mandibles 58
Marsham's Nomad Bee 153,
160, 161, 195
mason bee $12,17,25,25,116$, 274
California 57, 274
nests $14,17,38,112,113$, 274
Red 108, 108, 109, 109, 152, 152, 274
Spined 57
Tridentate Small 232, 233
Two-colored 112
maternal heterochrony 187
mating $11,28,29,150-64$
chemical signaling 136-64
courtship rituals 150
mate-guarding 153, 153
mating plug 153, 153
monandry 264
perfumes See floral oils
rendezvous sites 150-1
meat-eating species 88,89
Megachile 28, 28, 62
M. apicalis See leafcutter bee, Apical
M. parietina 25
M. pluto See Wallace's Giant Bee
M. rotundata See leafcutter bee, Alfalfa
Megachilidae 17,212
Megachilinae 17
Megalopta genalis See sweat bee,
Nocturnal
Meganomiinae 16
Melipona
M. beecheii See stingless bee, Maya
M. flavolineata See Uruçú-Amarela
M. marginata $179,180-1$
M. panamica See stingless bee, Panamanian
M. scutellaris See Uruçu

Meliponinae 31
Melittidae 16, 16
Melittinae 16
metamorphosis 94, 106
Michener, Charles 22, 23, 40
migration 46,270
mimicry
Batesian 220, 221
bee mimic orchids 75,142 , 158
Müllerian 101, 220-1, 220, 221,236, 236
mining bee 229
Bryony 56, 80, 81
Buffish 139-40, 142, 146
Chocolate 150,151,154, 155, 171
Grey-backed 65, 65
Sea Aster 104, 120, 121
monolectic species 56
mouthparts $60-1,65,96,120$, 123, 178
mutualism 8,10,236
natural selection 182
reciprocal 75
nectar $8,14,57,256$
brood food 11,22, 27, 28, 29, 84
collection $10,48,54,60-1$, 74-5, 90, 176
foraging strategies 69 honey $11,61,90$
honey crop 8, 61,90
nutritional content 10 , 54
regurgitation 61,177
robbing $74-5,84$
storage $10,61,76,77,177$
neonicotinoids 256
Neopasiphaeinae 19
nested networks 258
nests $8,10-11,14,22-38,94$
above-ground $28,38,38$,

$$
39,88,90
$$

booby trapped 222,224, 228
brood cells See brood cells
bumble bees 28-9
camouflage 112,221
comb structures 31,32-3, $32,46,90,94-5,104-5$, 104-5,176
communal $17,130,154$, 158, 174, 268
defense 222-9
glandular secretions 11,22 , $28,38,82,120,229$
honey bees $32-5,32,33,34$, $35,46,47,90,164$
Indicator indicator bird 12
inheritance 182
involucrum 31
leafcutter bees $28,38,84$, 124, 125
mason bees $17,25,25,112$, 113
modifiers 28-35,44
multi-female 78
nesting aggregations 27
open $33,35,46,164$
overwintering 14
parasitizing $75,153,160$,
195, 196, 198, 200, 222
providing nesting habitats

$$
12,13,14
$$

resin bees $38,38,50$
robbing from 75, 227
single potter 156,156
solitary species $10,14,14$,
22,36-7,36,37, 168,229
spiral 31,48
temperature regulation 90 , 194,229
underground $8,22,24-7$,
24, 28, 29, 40, 42, 44, 80,
82, 120, 126, 130, 132,
154, 222
weather-proofing 38,40 , 120, 229, 272
wood-excavating species 22,36-7,36, 37
woolcarder bees 122,123
Nomada marshamella See
Marsham's Nomad Bee
Nomadinae 17
Nomia melanderi See Alkali Bee
Nominae 18
Nomioidinae 18
nurse bees $90,114,114,176$,
176, 178
obligate necrophagy 88
ocelli 58,79
Oil-collecting Bee 27,63, 82, 83
oligolectic species 56
optimal allocation theory 110
orchard bee
Blue 57,227, 231, 274
European 12, 274

Japanese 117, 117, 256, 274, 275
orchid bee $11,11,39,68,69$, 69
bee mimic orchids 75,142 , 158
buzz pollination 74
Communal Blue 38, 38,50, 51,224-5
European 12
floral oil collection 137, 144-6, 144, 145, 148-9
Green (Dilemma) 144, 146
Three-sectioned 145
Osmia 117
O. bicolor See mason bee, Two-colored
O. bicornis See mason bee, Red
O. californica See mason bee, California
O. cornifrons See Hornedfaced Bee; orchard bee, Japanese
O. cornuta See orchard bee, European
O. lignaria See orchard bee, Blue
O. rufa See mason bee, Red
O. spinusola See mason bee, Spined
ovarian groundplan 187
ovarioles 102, 102
ovipositor 212
Oxaeinae 18

Palearctic Bee 27
Panurginae 18
Pararhophitinae 17
parasitic species $8,75,96$, 195-200, 196, 257
brood parasites $11,17,195$
chemical disguises 153,160 , 195, 196
cleptoparasites $75,195,198$, 222
defense against 213,215
facultative social parasitism 195-6
obligate 195, 196
social parasites 11,102 , 195-6, 195, 200, 222, 227
Pariotrigona klossi See stingless
bee,Tear-drinking minute
Partamona bilineata 190
parthenogenesis 99,118
paternal genome elimination 99
Perdita minima See Euphorb Mini-fairy Bee
pesticides $13,14,256,258$
phenotypes 101, 101
pheromones $48,69,71,86$, 136, 152
biosynthesis 136, 138
chemical diguises 153,160
detection 143, 143
identifying 147
production 138-41, 138, 140
queen $138,139,189,190-1$, 208
territorial marking 140 ,

$$
141,142-3
$$

plasterer bee 120
Polistes dominula See wasps,
European Paper
pollen 55,56-7,256
brood food 11, 22, 27, 28, 29, 84, 114, 115
buzz pollination 72-4, 73
collection 8, 9, 16, 43,44, 48, 49, 54-9, 54, 61, 62, 72-4, 76, 84, 90, 91, 108, 115, 176
foraging strategies 69
nutritional content 10,54
pollinator-friendly plants 13, 13, 14
protein-to-lipid ratio 44,57 specialist and generalist species $55-7,270$
storage $32,32,48,76,77$
traplining 44,69
pollen baskets $16,58,61,62$,
76, 88, 90, 91, 145, 173,
173, 261
pollinaria $63,82,82,83,146-7$
pollination $8,10,50,54,54,258$
agricultural crops 12-13,
12, 90, 217, 254-5, 259, 264, 272, 274
attracting bees $10,65-7$,
144-6, 144, 145, 146,
158, 246
buzz 72-4, 73
coevolution 10,258
floral constancy 64
pollinia 50
pollution 13
polyester bee 120
polylectic species 56,57
proboscis $10,58,60-1,65,177$
propolis $33,176,190,229$
Pruinose Squash Bee 42, 43
Psithyrus 102,196,
pupa 96-7, 106
queen $11,28-9,30,102-3$,
102-3,114, 172, 175, 180-1
bumble bees $28-9,169$, 173, 173
caste differentiation 48 , 110-11,114, 171,173, 173, 174, 175
honey bees $90,102-3,102$, 103, 104-5, 107, 114, $114,143,143,168$, 172-3,173, 191
larvae $114,114,171,172$
life cycle 173
mating 28 oviposition 31
parasitic 195-6, 195, 196
pheromones $138,139,189$, 190-1,208
reproductive system 102
swarming 107

sharp-tailed bee 198, 199
shimmering 46
shivering 90, 194
sight, sense of $65,66-7,72$,
79, 249
nocturnal species 78,79
sleep 69,156
Sleep Scissor Bee 222
smell, sense of $65,71,143,143$,

$$
227
$$

social species $8,168-208$
advanced eusociality 168-9, 170, 171, 173, 174, 175, 182, 186
anarchist populations 189
behavioral traits $170-4$
brood care 48, 106-7, 168-9, 170, 172-3
bumble bees 10,28-9,169, 194
caste differentiation 48, 110-11, 114, 171, 173, 173, 174, 175
colony cycle 107
combs $10-45,32,32,90$, 104-5, 176, 178
communication See communication
division of labor 176-80, 190, 204, 225
evolution 172, 175, 182-91
facultatively social bees 192-4, 202
flexible behavior 170, 187, 192-7, 206
honey bees $11,33,48,90$, 104, 168, 168
immunity 231
multi-female nests 78
nests 28-9
nutrition 107
obligate eusociality 208
organization 188-91
overlapping generations 170-1,172, 174
primitive eusociality 174,182
quasisocial 174,202
queen See queen
reciprocal altruism 182, 184-5
recruitment strategies 86
relatedness 98,99
reproductive division of
labor 170-1,172, 174, 175, 190
reversion to solitary
behavior 170,192
semisocial 174
shivering 90, 194
social parasites $11,75,102$,
195-6, 195, 200, 227
stingless bees 88
swarming 107,189
workers See workers
soldier bees 176,179
solitary species $8,10,16,17$,
69,104, 168, 174
brood care 172
communal 268
male and female 108-9, 122
nests $10,14,14,22,36-7$,

$$
36,37,168,229
$$

speciation 101
spermatheca $98,102-3,102$,

$$
173,173
$$

spiracles 96
Spurred Ceratina Bee 111, 11,128, 129
Stenotritidae 19, 19, 212
Stenotritus 19
sting $8,46,173,179,195$,
212-18
stingless bees $11,31,48,69,86$,
99, 179, 212, 213, 238
advanced eusociality 180-1
Australian 228
Brazilian Robust 139, 139
Maya 252, 260, 261
Mexican Robust 139
nests 224
Panamanian 69, 86, 87
Tear-drinking minute 222, 242, 243
vulture bees 88,89

Sugarbag Bee 30,31, 31,48, 49
sunflower bee 222
swarming 107, 189
sweat bee $61,62,153,194,208$
buzz pollination 73,74
Experienced 26,27
Nocturnal 78, 79, 187, 225
Striped 73
Woolly 240, 241
tarsal glands 138,138
temporal polyethism 204
tergal glands 138,138
termites 186
territorial behavior 140, 141, 142-3, 150
Tetragonisca angustula
See Jataí Eusocial Bee
Tetragonula carbonaria
See Sugarbag Bee
thelytoky 99,118
thorax 58,96
traplining 44,69
Trigona 227
T.crassipes 88
T. hypogea See vulture bee,

> Underground
T. necrophaga 88
T.spinipes 99

Trigona carbonaria 228
ultraviolet vision 66, 66
Uruçu 195, 196
Uruçú-Amarela 224, 238, 239
venom 138,212-15
Vernal Colletes Bee 146, 158, 158
vulture bee $8,22,88$
Underground 27,88, 89
waggle dance $33,46,70-1,70$, 71
Wallace's Giant Bee 8,8
wasps $8,16,23,23,213,237$

European Paper Wasp 182, 182
Ichneumon 212
parasitic 222, 223
Tarantula hawk 218, 219
water $13,14,15,90,176$, 229
wax $12,176,178,224,228$
bumble bees 10
combs 32-3, 46, 90, 104, 176, 178
honey bees $32,48,176$
nectar storage 10,176
wings 58,96
winter $14,28,29,44,90,118$
diapause $97,106,114-17$, 116, 169, 173, 259
wood-excavating bees 22 ,
36-7,36,37
woolcarder bee 17
Seven-spined 109, 122, 123
workers 11,28-9, 30, 31, 48, 106, 107, 175, 182
bumble bees $169,173,173$, 178-9
division of labor 176-80, 190, 204, 225, 234
honey bees $90,91,104,114$,
$114,143,168,168,172-3$
nurse bees $90,114,114$, 176, 176, 178

Xeromelissinae 19
Xylocopa 215
X. aeratus See carpenter bee, Golden-green (Green)
X. caerulea 37
X. caffra carpenter bee, See Double-banded
X. sulcatipes See carpenter bee, Groove-legged
X. varipuncta 152
X. virginica See carpenter bee, Eastern
Xylocopinae 17, 37, 196

PICTURE CREDITS

The publisher would like to thank the following for permission to reproduce copyright material:
© Ahmed Almansoori via via iNaturalist: 235; Alamy Stock Photo: John Abbot 144; Album 248; Animal Stock 180-181; Corry Anne 117; Kairi Aun 251; Avalon.red 10, 23;
Biosphoto 121, 123, 150, 191; Sabena Jane Blackbird 252; Christopher Blackman 225; Blickwinkel 107, 108, 109, 110, 228; Rick and Nora Bowers 101 center; Scott Camazine 45; Rebecca Cole 153; Simon Colmer 177 top; Sidney Cardoso 195; Lee Dalton 221; Design Pics Inc 256; Joe Dlugo 27, 116, 247 top, 273; Larry Doherty 207; ephotocorp 47; Martin Fowler 56; Bob Gibbons 25 bottom; JJ Gouin 230 right; George Grall 17; Hhelene 212; Grant Heilman Photography 103; Urs Havenstein 30; Frank Hecker 12 top; imageBROKER.com GmbH \& Co. KG 230 left, 265; Orest Lyzheckja 114; mauritius images GmbH 224; Jonathan Mbu (Pura Vida Exotics) 89; lilene MacDonald 215 top; Chris Melton 101 top, 132; MichaelGrantWildlife 267; Nature Collection 227; The Natural History Museum 8 top; Mint Images Limited 271; Nature Picture Library 8, 28, 101 bottom; Photo 1225 top; Tacio Philip Sansonovski 139; Gillian Pullinger 19 bottom; L.S.Sandiford 189; Antje Schulte-Insects 113; Geoff Smith 9; Paul Sparks 218-219; Steve Taylor ARPS 217; Nick Upton 112; Genevieve Vallee 131; Raj Valey 12 bottom; Henk Wallays 196-197; Geert Weggen 194; Wirestock, Inc 16, 125, 165; Konrad Woth 145; Xinhau 215 bottom; Zoonar GmbH 81; www.apicultural.co.uk 250; Nicky Bay: 79; Matt Bertone: 127; Wayne Blades: 15 top; © brendanegan via iNaturalist: 221 ; E. Christina Butler: 157; © Giuseppe Cortizo via iNaturalist: 226; Ashley Cox: 161; John Tann via Wikimedia Commons: 241; Wayne Davies/Professor David Hunt: 249; Louise Docker: 163; James Dorey: 30, 31 left, 31 right, 49; Dreamstime.com: Richard Griffin 64; Picture Partners 64; Pnwnature 236; Le Thuy Do 64; Wirestock 159, 209; el.gritchie via Flickr: 233; Judy Gallagher: 45, 148; Getty Images: Bruce Bland 500px 67; Creative Touch Imaging Ltd. NurPhoto 43; Gado 185; ktasimarr 263; Soumyabrata RoyNurPhoto 35; Arisa Thepbanchornchai 34; ViniSouza 128 205; Francisco Jose Gomez Marin via iNaturalist: 199; Simon Groove: 203; iStockphoto.com: Greenantphoto 105; Heibalhui 64; Pedro Turrini 183; Vllor 64; Vovaschevchuk 94-95; Jardin Boricua: 64; Bernhard Jacobi: 151; © Mary Keim via iNaturalist: 221; Paul Kitchener: 155; © Dwight Kuhn: 10, 96-97; Kushal Kulkarni: 243; Juergen Mangelsdorf: 63; Julia Mariette, Julie Carcaud and Jean-Christophe Sandoz: 143; Museo Argentino Ciencias Naturales: 24; Museum of America, Madrid: 253; Naturepl.com: Heather Angel 37 right, 75; Ingo Arndt 32, 71, 178 bottom, 179; Fabrice Cahez 66; Chien Lee 69; Simon Colmer 177 top; Michael Durham 91; Minden Pictures 149; Mark Moffett 72-73; Rolf Nussbaumer 269; Cyril Ruoso 136-137; Andy Sands 61, 74, 152, 222-223; Phil Savoie 55; Kim Taylor 213; Will Watson 142; Doug Wechsler 19 right; Gil Wizen 186; Roman Willi 36; Gil Wizen 178 top; David Woodfall 141; Christian Ziegler 68;/® Bernando Nino, Penn State: 188; Jorge Ramirez Pech: 26; Penn State Creative Commons: Patrick Mansell 13, 14; © Betzi Pérez Ortega via iNaturalist: 51; Gideon Pisanty via Wikimedia Commons: 119; George Poinar Jr.OSU: 247 bottom; Public Domain: 18 top, 18 bottom; © rmaum via iNaturalist: 221; Tom Robertson and Julie, Oregon State University: 38; David Roubik: 41, 87; Rushenb via Wikimedia Commons: 257; © Lisa Saffell: 26; Science Photo Library: Scoft Camazine 55; Bob Gibbons 177 bottom; Peggy Greb US Department of Agriculture 85; Michael Lustbader 57; Heath McDonald 192-193; Marek MIS 175; Colin Varndell 168; © Paula Sharp: 111, 129; Shutterstock: aDam Wildlife 190; alslutsky 5 left; Zety Akhzar 5 bottom right; anat chant 4, 4 center, 5 right; Robert Biedermann 64; Canislupusstorm 201; Chase D'animulls 3, 4 bottom, 5 bottom; Clarence Holmes Wildlife 19 left; Air Kanlaya 4 right; Ted Kinsman 66; Lizard 65; Lipatova Maryna 229; Matchou 15 bottom; Oren L 58; Paulrommer SL 4 bottom center; Ondrej Prosicky 216; Daniel Prudek 182; Max D Solomko 276-277; Pedro Turrini Neto 99; Science Photo Library: Danny Radius 2; © Tina via iNaturalist: 275; Eric Tourneret: 239; © USGS Bee Inventory and Monitoring lab: 187; Waugsberg via Wikimedia Commons: 172; © Cheong Weei Gan via iNaturalist: 37 leff; Alex Whitehead: 83; Alex Wild: 76, 77, 104, 115, 169, 173, 176, 213 bottom.
Every effort has been made to acknowledge correctly and contact the source and/or copyright holder of each picture and UniPress Books apologizes for any unintentional errors or omissions, which will be corrected in future editions of this publication.

[^0]: \rightarrow The South American Benthic Bee builds special nests that protect developing larvae from seasonal flooding.

[^1]: \rightarrow A female Eastern Cucurbit Bee collecting pollen from a squash flower.

[^2]: \rightarrow A Common Eastern Bumble Bee probing flowers with its antennae while nectaring. Note the pollen on specially

[^3]: \rightarrow Giant Honey Bees are the largest of the honey bees, with workers, such as the bee shown here, reaching $3 / 4$ inch (2 cm) in length.

