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CHAPTER 1
Introduction

We define Kähler groups in Section 1.1 and give a brief introduction to their
study. In Section 1.2, we give a detailed description of the content of each
chapter of the book. Section 1.3 lists a few topics related to the study of
Kähler groups that we will not discuss here. Finally, a very short list of open
problems is presented in Section 1.4.

1.1 Kähler Groups

LetM be a complex manifold and let h be a hermitian metric onM. The real
part of h is a Riemannian metric on M and its imaginary part is a 2-form.
We always write g=Re(h) and ω=−Im(h). The metric h is said to beKähler
if the imaginary part of h is closed, i.e., if

dω= 0.

There are many characterizations of this property [447, §3.2]. Let us mention
only one of them: the metric h is Kähler if and only if the complex struc-
ture J:TM→TM is parallel with respect to the Levi-Civita connection of
g. A Kähler manifold is a complex manifold that admits a Kähler metric. We
refer you to [264] for the original article introducing these metrics, to [265]
for a historical account, and to [25, 250, 447, 449] for various more modern
introductions. The Fubini–Study metric on the complex projective space Pn

is Kähler. Indeed, if h0 is the standard hermitian scalar product of Cn+1, one
can define the (1, 1) form ω associated to the Fubini–Studymetric as follows.
We pick a point p∈Pn and a local holomorphic section s of the projection
Cn+1 −{0}→Pn, defined near p. One then has

ω= i
2
∂∂ log h0(s, s),

near p. This shows that ω is closed. In a standard affine chart

Cn → Pn,

z �→ [1 : z]
1
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the corresponding hermitian metric reads

h[1:z](u, v)= (1+ |z|2)h0(u, v)− h0(u, z)h0(z, v)
(1+ |z|2)2 ,

where z∈Cn and u, v∈Cn are tangent vectors at z. Since the restriction of a
Kähler metric to a complex submanifold is again a Kähler metric, it follows
that any smooth projective variety (i.e., any complex submanifold of a com-
plex projective space) is Kähler. This provides plenty of examples of Kähler
manifolds.

We are now ready to introduce the main characters of this book:

Definition 1.1 A Kähler group is a group that can be realized as the funda-
mental group of a closed Kähler manifold.

Let us describe a small assemblage of Kähler groups.

Example 1.2 Free abelian groups of even rank are Kähler; indeed, any com-
plex torus Cn/� (where � < Cn is a lattice) admits a Kähler metric and its
fundamental group � is isomorphic to Z2n.

Example 1.3 Fundamental groups of closed Riemann surfaces are Kähler
groups.

Example 1.4 All finite groups are fundamental groups of smooth projective
varieties, as was proved by Serre [393]. In particular, they are Kähler groups.
See also [5] for an exposition of the proof.

Before introducing the next example, and since this notion will appear
several times in the text, we recall that a lattice � in a Lie group G is a dis-
crete subgroup such that the homogeneous space G/� has finite Haar mea-
sure.1 We then say that � is cocompact or uniform if G/� is compact, and
nonuniform otherwise.

Example 1.5 LetZ be a hermitian symmetric space of nonpositive curvature.
As examples, one can think of the unit ball of Cn—this is one model for the
complex hyperbolic space—or the Siegel space

Sg :={M ∈Mg(C) : tM=M, ImM� 0}

1A right-invariant Haar measure on G induces naturally a measure on G/�.
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of symmetric g× g complex matrices with positive definite imaginary part.
Then any discrete cocompact subgroup � of the group of holomorphic
isometries of Z is Kähler. This is clear if � is torsion-free. In general this
follows from a trick due to Kollár; see [5, p. 7]. Many nonuniform lattices are
also known to be Kähler, thanks to a theorem of Toledo [435].

Example 1.6 There are examples of 2-steps nilpotent (non-virtually abelian)
Kähler groups, discovered by Campana [80] and Carlson and Toledo [96].
Let us describe one family of examples. Consider the real Heisenberg group
Hk of dimension 2k+ 1. A model for it is the following. If ω0 is the standard
symplectic form of R2k,Hk identifies with R2k×R with the product given by

(u, t) · (v, s)= (u+ v, s+ t+ω0(u, v)).

Thus it fits into a central extension,

1 �� R �� Hk �� R2k �� 1.

One can prove that a lattice � <Hk is Kähler if and only if k≥ 4; see, for
instance, [5, ch. 8].

Example 1.7 Stover and Toledo [421] recently constructed (in all complex
dimensions ≥ 2) a wealth of examples of compact Kähler manifolds admit-
ting Kähler metrics of negative sectional curvature that do not have the
homotopy type of locally symmetric spaces. They are obtained by taking
branched coverings of certain ball quotients. The fundamental groups of the
correspondingmanifolds are Kähler.Moreover, they are Gromov hyperbolic
groups2 and are not isomorphic to lattices in PU(n, 1). Yet many of their
group theoretical properties remain unclear. For instance, it is not known
whether these groups are residually finite. Prior to [421], such examples of
negatively curvedKähler manifolds were only known in complex dimensions
2 and 3, thanks to the work of Mostow and Siu [345], Zheng [457, 458], and
Deraux [148, 149].

Example 1.8 Toledo [436] has discovered the first examples of nonresidually
finite Kähler groups. See [5, ch. 8] for further examples.

Example 1.9 Let � <PU(n, 1) be a torsion-free nonuniform lattice acting on
the unit ball Bn of Cn. If the parabolic subgroups of � are purely unipotent,

2The reader will find in [60] a definition and an introduction to this notion as well as to the notion
of a CAT(0) group, which will appear in Section 1.3.3.
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the ends of the space Bn/� are biholomorphic to the unit disk bundle
minus the zero section in the total space of a line bundle over an abelian
variety. More precisely, there exists a compact set K such that for each con-
nected component O of

Bn/� −K

there is an abelian variety A of dimension n− 1 and a line bundle L→A
endowed with a metric h such that O is biholomorphic to the open set

{v∈L, 0< h(v, v) < 1}. (1.1)

Hence such a quotient Bn/� can be naturally compactified into a mani-
fold X� by adding finitely many abelian varieties: the open set O is “closed”
by adding the zero section to it, in the identification of O with (1.1);
see [249, 333]. Hummel and Schroeder [249] have proved that after possibly
replacing � by a deep enough finite index subgroup, the manifoldX� is Käh-
ler and carries a Riemannian metric of nonpositive curvature. This provides
interesting examples of nonpositively curvedKähler groups.We observe that
the manifolds X�, called toroidal compactifications of the quotients Bn/�,
have been studied by many authors, from many different points of view. See,
for instance, [23, 48, 76, 156, 158, 186, 333, 376, 386] for variousworks related
to these compactifications.

We will mention a few additional constructions of examples in Sec-
tion 1.3.3.

As the fundamental group of a closed manifold, any Kähler group is
finitely presented. A proof of this classical fact can be found in [60, I.8.10].
A natural problem is then to obtain restrictions on this class of groups
among finitely presented groups and to build interesting examples. There
are many results establishing restrictions on Kähler groups i.e., stating that
certain finitely presented groups are not Kähler. On the other hand, new
constructions of Kähler groups with interesting properties remain scarce
and difficult. Building new examples is an arduous task; see, e.g., [412]
for a discussion of this problem. Looking at the list of examples above,
the reader can convince themselves that besides the cases of Examples 1.2
and 1.3, all the constructions that we havementioned rely on nontrivial tools,
either to construct the groups under consideration or to prove that they are
Kähler. In Example 1.4 one makes a subtle use of Lefschetz’s hyperplane
theorem [5, p. 6]; the statement in Example 1.5 is easy but relies on
the construction of lattices in Lie groups; Example 1.6 relies on some non-
trivial results of complex Morse theory; etc.

What makes this topic interesting is the wide mix of techniques that
it involves: classical Hodge theory, analytic techniques via L2 methods or
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harmonicmaps, topology, geometric group theory. Among themany authors
who have worked on this topic, let us mention for now Campana, Carlson
and Toledo, Delzant, Gromov, and Simpson. Many other names will appear
in this book, notably in Section 1.3. Before going further in this introduction,
we mention one elementary restriction on Kähler groups that follows from
classical Hodge theory.

Proposition 1.10 If � is a Kähler group, the space H1(�,R) is even-
dimensional. In particular, a free group is never Kähler.

Proof.Assume that� is realized as the fundamental group of a closedKähler
manifold X . Then the space H1(�,R) identifies with H1(X ,R). The latter
space can be thought of as a de Rham cohomology group. By Hodge theory,
any class a∈H1(X ,R) can be represented in a unique way as a sum,

a= [α +α],
where α is a holomorphic 1-form on X . This identifies H1(X ,R) with the
complex vector space �1(X) of holomorphic 1-forms onX , which obviously
has even real dimension.

For the second assertion of the proposition, we consider a free groupFk of
rank k. If k is odd, the previous discussion implies that Fk is not Kähler. If it
is even, we pick an index 2 subgroupH<Fk. TheEuler characteristic3 of H is
then equal to

χ(H)= 2χ(Fk)= 2(1− k). (1.2)

SinceH is free, its rank is equal to 1−χ(H), which is odd according to (1.2).
Hence H cannot be Kähler. Since finite index subgroups of Kähler groups
are Kähler, too, this proves that � cannot be Kähler. �

We now summarize a number of the results on Kähler groups that are
contained in the book [5], before turning in Section 1.2 to a description of
the material treated in this book.

• There exist many criteria that ensure the existence of a fibration onto a
hyperbolic Riemann surface for a given closed Kähler manifold [5, ch. 2].
Some of these criteria are purely topological and sometimes depend only
on the fundamental group.

3The Euler characteristic of a group G is defined as the Euler characteristic of any K(G, 1), i.e., of
any CW-complex whose fundamental group is isomorphic to G and whose higher homotopy groups
vanish. When there is a K(G, 1) which is a finite complex, this is well defined, i.e., independent from
the choice of the finite K(G, 1).
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• There are many restrictions on nilpotent quotients of Kähler groups, and
in particular on nilpotent Kähler groups [5, ch. 3].

• Gromov [223] introduced the use of L2 methods in the study of Kähler
groups and proved that an infinite Kähler group has only one end; these
methods are discussed in [5, ch. 4].

• Several chapters of [5] deal with the study of harmonicmaps fromKähler
manifolds to locally symmetric spaces and their applications to the study
of linear representations of Kähler groups; see [5, ch. 5–7]. This includes
a presentation of Corlette and Simpson’s nonabelian Hodge theory.

• Finally, the last chapter of [5] contains descriptions of many examples of
Kähler groups.

1.2 What Is to Be Found in This Book?

As was already mentioned in the preface, this text should be considered as
a place to find proofs of a few key theorems for people entering the field of
Kähler groups. Of course, our exposition is biased by our personal tastes and
expertise. We are mostly guided by four principles:

(1) Study the actions of Kähler groups on spaces of nonpositive curva-
ture. Among these, trees and symmetric spaces (possibly infinite dimen-
sional) play the most important role.

(2) Study the connectivity properties at infinity of infinite covering spaces
of closed Kähler manifolds (in other words, study their ends) and the
connectivity properties of level sets of pluriharmonic functions defined
on these covering spaces.

We follow the philosophy developed by Delzant and Gromov [141], which
consists in applying ideas from large scale geometry or geometric group the-
ory to the field of Kähler groups. We quote them, as in [73]. According
to [141], a central problem in the study of Kähler groups is to

identify the constraints imposed by the Kähler nature of the space on
the asymptotic invariants of its fundamental group and then express
these invariants in terms of algebraic properties.

The works [138, 139, 141, 223, 350] are representative of this philosophy.

(3) Kähler manifolds are complex manifolds whose geometry reduces to
linear algebra. This sentence is taken from [5, p. 2]. It refers to the
following characterization of Kähler metrics. A hermitian metric h on
a complex manifold M is Kähler if and only if for each point p of
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M one can find holomorphic coordinates centered at p such that the
coefficients (hij(z)) of h in these coordinates are of the form

hij(z)= hij(0)+O(|z|2).

It is easy to see that a hermitian metric with this property is Kähler,
and a proof of this characterization can be found in [447, Prop. 3.14].
It implies that any identity involving only the metric and its first order
derivatives is true on aKählermanifold if and only if it is true inCn with
its flat metric. Illustrations of this principle can be found in the study
of the formality of closed Kähler manifolds [5, ch. 3] or in the classical
Castelnuovo–de Franchis theorem that we present in Chapter 4.Wewill
not discuss this principle at length here but refer instead to [5] for more
on this philosophy.

(4) Establish factorization theorems! This refers to the following idea. Let
G be a “target” group. Suppose that we want to study representations
of Kähler groups intoG. One tries to associate toG amodel spaceB (in
general a projective or a Kähler manifold), or a family of model spaces,
with the following property.

If X is a closed Kähler manifold and if φ : π1(X)→G is a homomor-
phism, then there exists a holomorphic map f : X→B to (one of ) the model
space(s) such that φ can be decomposed as φ = θ ◦ f∗, where θ is a homomor-
phism from the fundamental group of B to G.

Definition 1.11 In the situation above, one says that the representation φ

factors through the holomorphic map f .

One should thus try to identify some model Kähler manifolds whose funda-
mental group admits natural representations into G and such that any rep-
resentation of a Kähler group into G factors through a holomorphic map to
one of the model spaces. Of course, there are many variations on this prin-
ciple: one can restrict to certain classes of homomorphisms (e.g., reductive,
Zariski dense if G is an algebraic group); one can consider the orbifold fun-
damental group if B is an orbifold; etc. An elementary illustration of this
principle is given by the case where G is torsion-free abelian. In this case one
can take the family of model spaces to be the family of all complex tori. The
factorization is then realized by the Albanese map (see Section 11.4 or [447,
ch. 12] for the definition of this map). Further illustrations can be found in
Chapters 6, 8, and 9. Earlier descriptions of this general principle can be
found in [5, ch. 2] and in [228].
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Finally, the reader will certainly notice that fibrations onto Riemann sur-
faces play a prominent role in this book. They appear in every single chapter,
with the exception of Chapter 10. Indeed, surface groups4 are very flexible;
for instance, they surject onto free groups and so can be represented in any
group. Many structure theorems on Kähler groups take the form of a fac-
torization theorem in the sense of the last principle above, with the family
of model spaces being the family of hyperbolic Riemann surfaces or hyper-
bolic two-dimensional orbifolds and the holomorphic map f being a fibra-
tion. This can be seen as a manifestation of the rigidity of Kähler groups.
There are many spaces on which they do not act, unless it is through a fibra-
tion onto an (orbi-)Riemann surface.

We now turn to a detailed description of the content of each chapter of
this book.

• Chapter 2 introduces the notion of orbifold strucure on a real surface
or on a Riemann surface. It describes the orbifold structure induced
by a fibration and proves a finiteness result for fibrations onto two-
dimensional hyperbolic orbifolds.

• Chapter 3 proves that if an infinite covering space of a closed Kähler
manifold admits a proper fibration onto an open Riemann surface, then
the fibration necessarily descends to a finite cover of the original closed
manifold. This is a classical result, which appears in several places in the
literature, and which can be proved by various methods.

• Chapter 4 studies the classical Castelnuovo–de Franchis theorem. In a
nutshell, this theorem states that the existence of two independent holo-
morphic 1-forms with vanishing exterior product on a closed Kähler
manifold implies the existence of a fibration of the given manifold onto a
Riemann surface. We also present several classical variants of this state-
ment: when one of the differential forms takes values in a flat holomor-
phic line bundle, or when the closed Kähler manifold is replaced by an
open complete Kähler manifold with bounded geometry and one consid-
ers L2 differential forms.

• Chapter 5 presents a few other criteria which give sufficient conditions for
the existence of a fibration of aKähler manifold onto aRiemann surface.

• Chapter 6 gives a complete proof of Gromov and Schoen’s theorem [230]
describing nonelementary actions of Kähler groups on simplicial trees:
any such action factors through a fibration onto a Riemann surface. This
proof, inspired by [143], does not rely on the theory of harmonic maps to
trees.

4See Definition 2.25.
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• Chapter 7 gives a complete proof of a theorem due to Napier and
Ramachandran [350] stating that if an infinite covering spaceY of a closed
Kähler manifold has at least three ends, then Y admits a proper fibration
onto an open Riemann surface. The proof in general relies on some non-
trivial potential theoretic notions (notably hyperbolicity/parabolicity of
Riemannian manifolds). We have tried to be as self-contained as possible
and have included a brief exposition of some of the necessary prerequi-
sites in the appendices.

• Chapter 8 is devoted to Corlette and Simpson’s description of irreducible
representations of Kähler groups in PSL2(C). We do not treat the case of
quasi-projective manifolds as in [118]. Our approach in the closed case
differs slightly from the one in [118]. Equipped with our simpler proof
of Gromov and Schoen’s theorem on Kähler group actions on trees, also
valid in the nonlocally finite case, we can consider the Bruhat–Tits tree
of SL2 for arbitrary fields endowed with a discrete valuation. This makes
the approach more direct. We also replace the original use of variations
of Hodge structure by an argument taken from [142].

• Chapter 9 constitutes an introduction to the theory of harmonic maps
from Kähler manifolds to locally symmetric spaces. We expose in details
two theorems: firstly, a factorization result for harmonic maps of low
rank, which was established in [142], and secondly, a classical theorem
of Carlson and Toledo [94] saying that a harmonic map from a Kähler
manifold to complex hyperbolic space that is of real rank 3 at a point
must be holomorphic or anti-holomorphics.5 Note that the latter result
can also be deduced from the work of Siu [413]. We give a down-to-earth
proof that uses less Lie theory than in the original article andmainly relies
on the structure of the curvature tensor of complex hyperbolic space. This
can serve as an introduction to the article [94].

• In Chapter 10, we build on the theory of harmonic maps studied in the
previous chapter and prove a theorem due to Simpson [406], stating that
if a lattice in a semisimple Lie group G is a Kähler group, then G must be
of Hodge type. This notion, involving the structure theory of semisimple
Lie groups, is defined and studied along the way.

• Chapter 11 contains an exposition of Delzant’s result about the Bieri–
Neumann–Strebel invariant of a Kähler group [139]. We have followed
closely the original article as well as [73], but have added a detailed intro-
duction to the theory of the BNS invariant. This takes roughly one half of

5We abuse notation andwhat we reallymean is either a harmonicmap from a closedKählermanifold
to a locally symmetric space or an equivariant harmonic map from the universal cover of a closed
Kähler manifold to a symmetric space.
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the chapter and is completely independent of the world of Kähler groups.
We follow mostly [47] for this exposition. We believe that this can be use-
ful for the reader who has no previous knowledge of the BNS invariant
but who is interested in understanding Delzant’s result.

• Chapter 12 describes results of Beauville and Delzant around the Green–
Lazarsfeld set of Kähler groups [33, 138]. We give a complete description
of this set, which was first obtained by combining the work of Beauville,
Campana, and Simpson. Delzant’s contribution allows us to simplify the
proofs and to state the results elegantly in terms of fibrations onto orb-
ifolds.We conclude the chapter with a proof of Delzant’s theorem stating
that solvable Kähler groups are virtually nilpotent [139].

• Chapter 13 proves a factorization result for Kähler group actions on real
trees. Here again, the statement of the theorem is not new. The theorem
was already known to hold, thanks to the theory of harmonic maps to
real trees. However, we give again a proof that is “free of harmonic maps
to singular spaces”. Note that the theory of harmonic maps to CAT(0)
spaces is only briefly alluded to in Section 9.1.3.

Next come the appendices!

• Appendices A and B introduce basic notions concerning ends of groups
and spaces and groups acting on trees that are needed in the text.
Appendix C introduces classical facts about unitary representations and
amenability.

• Appendices D, E, and F all deal with the construction of harmonic func-
tions on Riemannian manifolds. The first two appendices explain how to
build harmonic functions with prescribed behavior along the ends of a
Riemannian manifold, first in the case where the manifold satisfies a lin-
ear isoperimetric inequality, then in a more general setting. In the Käh-
ler case, we also explain how to prove that these functions are plurihar-
monic if they are of finite energy, or at least of energy not growing too
fast. Appendix F explains how to build proper harmonic functions on
parabolic ends of Riemannian manifolds, following Nakai’s work [348].

• Appendix G explains the proof of a theorem due toDiederich andMazz-
illi dealing with complex analytic sets contained in a real analytic set of
Cn. This result is needed in the proof of one of the factorization results
established in Chapter 9.

• Finally, the short Appendix H gives a detailed proof of a curvature iden-
tity related to the so-called Bochner–Siu–Sampson formula, which shows
that harmonic maps from Kähler manifolds to Riemannian manifolds
satisfying a certain curvature condition are automatically pluriharmonic.
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This is needed in Chapter 9, but we have presented the proof separately
to avoid making that chapter too lengthy. The proof only involves linear
algebra computations and is independent of the other techniques pre-
sented in Chapter 9.

Although we discuss many developments that have appeared after the
book [5], there is unavoidably some overlap between this book and [5]. This
concerns mainly the chapters on the Castelnuovo–de Franchis theorem and
on harmonic maps as well as the various sections dealing with L2 methods.
We hope that this will help make this text slightly more self-contained. How-
ever, we strongly advise the reader to read [5] in parallel to this book, for a
more thorough introduction to the world of Kähler groups.

We close this sectionwith one important note for the reader: we do believe
that the construction of examples is a fundamental task in this field. How-
ever, we have not devoted any chapter to this topic. This is mainly because
the techniques involved are essentially disjoint from the ones used to estab-
lish constraints on Kähler groups. Besides the examples mentioned so far,
we discuss in Section 1.3.3 some of the new examples that have appeared
since [5]. Progress has been slow, but some new examples have appeared!

1.3 What Is Not to Be Found in This Book?

We give in this section a short survey of some developments in the field of
Kähler groups that occurred after the publication of the book [5] and that
we will not discuss in detail.

1.3.1 3-Manifold Groups and Kähler Groups

Carlson and Toledo [94] proved in the 1980s that the fundamental group
of a closed hyperbolic n-manifold is not isomorphic to a Kähler group if
n≥ 3. Their result is actually more general and will be discussed in Chap-
ter 9. Since many closed 3-manifolds carry hyperbolic structures, this result
motivated Reznikov [380] and Donaldson and Goldman (unpublished) to
ask, in the years following [94], the following question: which groups are at
the same time Kähler and the fundamental group of a closed 3-manifold?
See [300, 380] for an extensive historical discussion. This question was com-
pletely answered in [165] by Dimca and Suciu: a group sharing these two
properties must be finite. Different proofs of their result were later given by
Kotschick [300] and by Biswas, Mj, and Seshadri [51]. Later on, generaliza-
tions of this result (obtained by dealing with fundamental groups of quasi-
projective manifolds or quasi-Kähler manifolds or open 3-manifolds) were
obtained [192, 301].
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1.3.2 The Kodaira Problem

The following question is a well-known open problem in the field:

Is is true that any Kähler group is also the fundamental group of a
smooth projective variety?

It already appears implicitly in [5, p. 5] and a positive answer seems to
be expected by many people and is conjectured, e.g., in [114]. It is sometime
called theKodaira problem for the fundamental group. This refers to the (gen-
eral) Kodaira problem, which asks whether a compact Kähler manifold can
always be deformed to a smooth projective manifold; see, e.g., [145, 251] for
a discussion. Kodaira proved that the answer is positive for compact Käh-
ler surfaces [291]. Voisin proved in 2004 [445] that the answer is negative in
complex dimension at least 4. She achieved this by building, in any complex
dimension ≥ 4, examples of compact Kähler manifolds that do not have the
homotopy type of smooth projective varieties. In dimension 3, the answer to
the Kodaira problem is positive by the work of Lin [319]. For further work
related to the Kodaira problem, see [318, 446]. Further references can be
found in the bibliography of [318]. As for the Kodaira problem for the fun-
damental group, it is open in full generality but a positive answer is known
in some particular cases [87, 88, 113, 114], for instance, for groups that are
linear over C, thanks to the work of Campana, Claudon, and Eyssidieux.

1.3.3 Examples of Kähler Groups

As already mentioned above, constructions of new examples of Kähler
groups are rare and difficult. We mention below some recent works giving
new examples of Kähler groups. Note that all the examples mentioned at the
beginning of the introduction are quite old, except for Example 1.7, which
highlights the recent work [421].

The articles [8, 187] by Aramayona–Funar and Eyssidieux–Funar prove
that certain quotients of the mapping class group of a closed surface are
(possibly virtually) fundamental groups of smooth projective varieties and
study some of their properties. It would be interesting to study further these
groups. It is an open question whether the mapping class group of a closed
oriented surface of genus at least 3 has a vanishing virtual first Betti num-
ber, i.e., whether the first Betti number of all its finite index subgroups van-
ishes [253]. If this vanishing were confirmed, the constructions in [8, 187]
would provide examples of Kähler groups with vanishing virtual first Betti
numbers. In particular the corresponding projective varieties would not fiber
onto hyperbolic 2-orbifolds and would have certain rigidity properties.
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Besides the construction of negatively curved Kähler manifolds men-
tioned in Example 1.7, there are other constructions in the literature that
yield aspherical smooth projective surfaces: Panov [366] introduced the
notion of a polyhedral Kähler metric on a complex surface and built exam-
ples of such metrics on P2. He used this construction to show the aspheric-
ity of certain (desingularized) ramified covers of P2 [367]; see also [430]. It
would be interesting to study whether one can build new examples of Käh-
ler groups that are hyperbolic using these constructions (and that are not
complex hyperbolic lattices). This is a subtle problem. Gromov suggested a
long time ago [222, §4.4] a way to build spaces with hyperbolic fundamental
groups by considering ramified covers of tori (instead of P2). The idea is to
take a ramification locus that is totally geodesic, so that the new space will
carry a locally CAT(0) metric, and that is complicated enough so as to kill
all flats. A delicate problem is that new flats can appear in this construction;
see [57, §2.6.3] for a discussion of this issue.

In the same vein, Stadler [418] studied ramified covers of the product

 ×
, where
 is a Riemann surface of genus at least 2, and the ramification
locus is the diagonal. Such complex surfaces carry a CAT(0) metric. Stadler
proved that they do not carry any smooth Riemannianmetric of nonpositive
curvature (answering an exercise raised byGromov [26, p. 2]). These ramified
covers are examples of Kodaira fibrations. The arguments certainly apply to
other constructions of Kodaira fibrations, such as the classical ones in [20,
292]. This provides interesting examples of Kähler groups that are CAT(0).

Finally let us mention another line of research, concerning Kähler
groups with exotic finiteness properties. We first recall a definition due to
C.T.C. Wall [448].

Definition 1.12 A group G is of type Fn if it admits a classifying space (i.e.,
a K(G, 1)) that is a CW-complex with finite n-skeleton.

Conditions F1 and F2 are equivalent respectively to being finitely gener-
ated and being finitely presented. The study of the finiteness conditions Fn

is a classical topic in geometric group theory; see, for instance, [43] and the
references therein for an introduction. Note that if G is of type Fn, all its
homology groups Hi(G,Q) are finite-dimensional for i≤ n. In general, one
says that a group has exotic finiteness properties if it violates the condition
Fn for some n.

In [164], Dimca, Papadima, and Suciu constructed the first examples of
smooth projective varieties whose fundamental groups have exotic finite-
ness properties. Actually, they prove that the homology of the groups under
consideration is infinite-dimensional in a certain degree. These groups are
subgroups of direct products of surface groups. Later on, further examples
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of Kähler groups with exotic finiteness properties were constructed: first
by Llosa Isenrich [320, 321]—these examples are again subgroups of direct
products of surfaces groups—and then by Bridson–Llosa Isenrich [62] and
Nicolás–Py [362]. The examples from [62, 362] are not subgroups of direct
products of surface groups.We also refer the reader to [268] for earlier related
work. For the study of the finiteness properties of certain subgroups of com-
plex hyperbolic lattices, we refer the reader to [322].

1.3.4 Lattices in PU(n, 1)

This is a very active topic. We mention the classification of fake projective
planes [281, 374, 379], the study of deformations of linear representations
of complex hyperbolic lattices [282, 283], and the recent discovery of a new
arithmeticity criterion for these lattices [22, 24]. There is also some activity
around the construction of new examples of non-arithmetic lattices in low
dimension [121, 151, 152, 153], after the discovery of the first such examples
in the 1980s by Mostow and Deligne–Mostow [136, 137, 342, 343, 344].

1.3.5 Simpson’s Integrality Conjecture

Let � be a finitely generated group and let � : � →GLn(C) be a linear repre-
sentation. Recall that � is said to be rigid if any close enough representation
is conjugate to �. Note that this property is sometimes called local rigidity.
The representation � is said to be integral if it is conjugate to a representation
with values in

GLn(A),

where A⊂C is the ring of algebraic integers. Simpson [406] conjectured that
rigid representations of Kähler groups should be integral (this is actually a
particular case of a more general conjecture that we shall not state here). The
case where n= 2 has been settled by Corlette and Simpson [118]; see Chap-
ter 8. Very recently, Esnault and Groechenig proved this conjecture (under a
slightly stronger assumption) [181]; see [182, 280, 309] for related work.

1.3.6 Open or Singular Varieties

Note that the class of fundamental groups of quasi-projective varieties is
bigger than that of projective varieties. This is already apparent by looking
at Riemann surfaces: free groups appear as fundamental groups of punc-
tured Riemann surfaces, whereas they cannot appear as fundamental groups
of any closed Kähler manifolds. Yet there are restrictions on fundamental
groups of smooth quasi-projective varieties, although we will not deal with
this topic at all here. We instead refer the reader to [10, 17, 18, 63, 77, 118,
163, 167, 273].
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As for the study of fundamental groups of singular varieties, it is known
that many restrictions that hold for smooth projective varieties also hold for
normal projective varieties; see for instance, [15]. This topic is also briefly
discussed in [5, p. 9].

1.3.7 The Shafarevich Conjecture

Recall that a complex manifold M is said to be holomorphically convex if
for any sequence (xn)n≥0 of points of M that tends to infinity, there exists a
holomorphic function f : M→C such that

|f (xn)| −→
n→+∞+∞.

The Shafarevich conjecture predicts that the universal cover of a smooth pro-
jective manifold (or more generally of a compact Kähler manifold) should
be holomorphically convex.6 The only general results concerning this con-
jecture use harmonic maps and linear representations. Indeed, the conjecture
holds true for projective manifolds whose fundamental group is linear over
C; see [188] as well as [88] for the Kähler case and [184] for earlier results. We
refer the reader to [185] for a survey on this question. See also [186, 189, 386]
for proofs in some particular cases as well as [68, 147] for further develop-
ments. For arbitrary Kähler (or projective) manifolds, a “meromorphic” ver-
sion of the conjecture was established by Campana [79] and Kollár [293].

1.3.8 Rational Homotopy Theory

In algebraic topology, Sullivan’s theory of minimal models [426] has strong
consequences concerning the homotopy type of compact Kähler manifolds,
as shown byDeligne,Griffiths,Morgan, and Sullivan [135]. In particular, this
theory yields restrictions on nilpotent quotients of Kähler groups. We shall
not discuss this here but refer the reader instead to [9, §4] and to [5, ch.3].
See also [239, 340] in the same vein. For nonabelian aspects of this theory,
see [207], as well as [190, 310, 311] for more recent developments.

1.3.9 Miscellaneous

We refer the reader to [11, 12, 13, 50, 97, 124, 220, 240, 260, 274, 275,
284, 285, 299, 303, 311, 330, 332, 353, 361, 408, 438, 460, 461] for a few
more recent results around Kähler groups, harmonic maps, and linear rep-
resentations. For older surveys adopting a different perspective, more cen-
tered around algebraic geometry and the Shafarevich conjecture, we refer

6Actually, this only appears as a question in [396].
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the reader to [81, 294]. For a survey of results concerning discrete groups
of isometries of complex hyperbolic spaces, see [272].

1.4 Problems

It is difficult to single out a coherent list of open problems about Kähler
groups. Yet, here is a short and slightly arbitrary list of such problems.

Of course, the study of examples seems to be the key to better under-
stand the world of Kähler groups. (Although we have decided not to deal
with examples here!) As alreadymentioned in Section 1.3.3, it would be inter-
esting to construct further examples of Gromov hyperbolic Kähler groups,
or to study the properties of the fundamental groups of the negatively
curved Kähler manifolds built by Stover and Toledo (see Example 1.7). Let
us also mention some curious examples. Bogomolov and Tschinkel [53] as
well as Schoen [387] have studied some examples of surfaces in some four-
dimensional abelian varieties that are Lagrangian with respect to a holomor-
phic symplectic form on the abelian variety. Using Sullivan’s theory of min-
imal models [5, ch. 3] or some more elementary algebraic topology [35], one
can show that such surfaces admit non-virtually abelian 2-step nilpotent quo-
tients. It would be interesting to study further these examples.

On the side of restrictions, it is apparently still unknown whether a
cocompact lattice in the group Sp(n, 1) is Kähler. This is related to a
conjecture of Carlson and Toledo [94, p. 178] that we will state in Chapter 10.
This conjecture, together with partial results, is also discussed in [437, p. 524].
In another direction, it seems to be unknown whether there exists a single
example of a Kähler group that does not admit any linear representation
over C with infinite image. This is discussed, for instance, in [69].

The study of nilpotentKähler groups is quite interesting. Although it was
believed at first that nilpotent Kähler groups should be virtually abelian [226,
p. 114], some truly 2-step nilpotent examples were built almost 30 years ago
(see Example 1.6). It seems to be still unknown whether there can exist 3-
step nilpotent examples (not virtually 2-step nilpotent). There are many con-
straints on these groups coming from (mixed) Hodge theory [5, ch. 3]. Clas-
sifying nilpotent Kähler groups is essentially the same thing as classifying
solvable Kähler groups according to Delzant’s theorem, stating that the lat-
ter are virtually nilpotent (see Chapter 12). It would also be interesting to
establish restrictions on general amenableKähler groups. We refer the reader
to Definition C.18 for the notion of amenable group.

Another question concerns the study of subgroups of Kähler groups. Are
there finitely generated groups that cannot be embedded in a Kähler group?
What can be said about subgroups of Kähler groups? Kapovich conjec-
tured that any finitely presented group can be embedded in a Kähler group;
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see [302]. For restrictions on normal subgroups of Kähler groups, see [361].
For the study of some examples, see [322].

Finally, as already discussed, many theorems in this book give sufficient
conditions for the existence of a fibration of a closed Kähler manifold onto
a Riemann surface. This gives many restrictions on Kähler groups. But it
is also interesting to try to establish positive results in this direction, i.e., to
prove that some concrete known examples of closed Kähler manifolds admit
fibrations ontoRiemann surfaces. In this spirit, the following question is well
known among people working onKähler groups and is still widely open. Let
� <PU(n, 1) be a torsion-free cocompact lattice. Let X =Bn/� be the quo-
tient of the unit ball of Cn by the action of �. Is it true that X has a finite
cover that admits a fibration onto a Riemann surface? Note that examples of
ball quotients admitting such fibrations are known to exist only when n≤ 3;
see [150] and [272, §8]. It seems natural to investigate first this question for
arithmetic lattices of the simplest type, which are known to have infinite vir-
tual first Betti numbers [56, 276, 399]. See Section 11.4.2 in Chapter 11 for
further discussion.

We have included a few more open problems in the text, and the reader
will find many more in the literature.

1.5 Some Conventions

We close this introduction by introducing a few notions and definitions that
will be used in several chapters of this book.

Definition 1.13 Let (X , h) be a hermitian manifold. We say that (X , h) has
bounded geometry if there exist positive constants C1 and C2 such that for
every point x∈X there exists an open neighborhood Ux of x and a holo-
morphic diffeomorphism fx : Ux→B(0, 1)⊂Cn such that

C1 f ∗x h0 ≤ h≤C2 f ∗x h0,

where h0 is the standard hermitian metric on Cn and B(0, 1)⊂Cn is the open
unit ball.

Note that there exist other definitions of a hermitian (or Riemannian)
manifold of bounded geometry in the literature, but we will use this one all
along. This is also the definition used in [5]. Any covering space (with the
induced metric) of a compact hermitian manifold has bounded geometry,
and this is the type of example that we will consider here in almost all situ-
ations. Some rare exceptions will appear in Chapter 7.
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Similarly, we shall make use of the following convention.

Convention 1.14 Unless otherwise stated, all the manifolds and the covering
spaces that we shall deal with will be connected. If p : Y→X is a covering
space of themanifoldX , we identify the group π1(Y) to a subgroup of π1(X)

via the map p∗. This means that we have implicitly chosen base points y∈Y
and x∈X so that p(y)= x. In this situation, we write π1(Y) < π1(X) without
further notice.

We also say a word about Stein factorization. Let us consider a proper
nonconstant holomorphic map f : X→S from a connected complex man-
ifold to a Riemann surface. Then such a map f can always be written as a
composition of holomorphic maps,

X
f ��

g

���
��

��
��

� S




π

���������

where 
 is another Riemann surface, π has finite fibers, and g is surjective, is
proper, and has connected fibers. This decomposition is called the Stein fac-
torization of f . It is a special case of a muchmore general result dealing with
holomorphic maps between arbitrary complex spaces; see [210, ch. 10]. We
shall only use it in the special case above, which is much simpler to establish.

We are possibly being slightly demanding with the reader, expecting good
knowledge of complex differential geometry, classical Hodge theory, and
complex analytic geometry, as well as topology and (geometric) group the-
ory.We have tried to be more or less coherent and to introduce notions in the
order inwhich they are used. This principle suffers from some exceptions. For
instance, harmonic maps are defined in Chapter 9, although they are alluded
to plenty of times before. Similarly, Theorem 9.31 is used inChapters 2 and 8,
prior to its proof. Hopefully, the reader will survive these inconsistencies.
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