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Chapter One

Introduction

1.1 FROM LINES AND PLANES TO THE ZARISKI
TOPOLOGY OF PN

Let K be any field. Choosing Kn as our set of points, and solution sets of
systems of linear equations as our preferred subsets, we get what is called n-
dimensional affine geometry over K, though n-dimensional linear geometry over
K might be a better name. It is frequently denoted by AffnK . Following Kepler
(1571–1630) and Desargues (1591–1661) we add points at infinity to get n-
dimensional projective geometry over K; the general case appears in the works
of von Staudt [vS1857], Fano [Fan1892], and Veblen [Veb1906]. We denote it by
ProjnK .

Thus the n-dimensional affine or projective geometries over K consist of

• point sets

Points
(
AffnK

)
= {(x1, . . . , xn) ∈ Kn}, or

Points
(
ProjnK

)
= {(x0: · · · :xn) ∈ (Kn+1 \ {0})/K×}, and

• the linear subspaces as distinguished subsets of the point set.

By definition, the algebra of the field K determines the affine and the projective
geometries. The Fundamental Theorem of Projective Geometry—which should
be called the Fundamental Theorem of Linear Geometry—says that, conversely,
the geometry of AffnK or of ProjnK determines the algebra of the field K.

The key ideas go back to Menelaus of Alexandria (c. 70–140 AD) and Gio-
vanni Ceva (1647–1734). The first proof is due to von Staudt [vS1857]. A gap
was noticed by Klein [Kle1874], and correct versions can be found in Reye’s
lectures [Rey1866] (starting with the second edition). General forms are given
by Russell [Rus1903], Whitehead [Whi1906], and Veblen and Young [VY1908];
see also the books by Baer [Bae52] and Artin [Art57]. We state the two versions
separately, although they are really the same.
Theorem 1.1.1 (Affine form). Let K,L be fields and n,m ≥ 2. Let

Φ: Points
(
AffnK

)
↔ Points

(
AffmL

)
be a bijection that maps linear subspaces to linear subspaces. Then n = m, and
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there is a unique field isomorphism ϕ : K ∼= L, vector (c1, . . . , cm) ∈ Lm and
matrix M ∈ GLm(L) such that

Φ(x1, . . . , xn) =
(
ϕ(x1) + c1, . . . , ϕ(xn) + cn

)
·M.

Theorem 1.1.2 (Projective form). Let K,L be fields and n,m ≥ 2. Let

Φ: Points
(
ProjnK

)
↔ Points

(
ProjmL

)
be a bijection that maps linear subspaces to linear subspaces. Then n = m, and
there is a unique field isomorphism ϕ : K ∼= L and matrix M ∈ PGLm+1(L)
such that

Φ(x0: · · · :xn) =
(
ϕ(x0): · · · :ϕ(xn)

)
·M.

Remark 1.1.3. The identity is the only automorphism of R, thus for K = L =
R we get that Φ(x0: · · · :xn) = (x0: · · · :xn) ·M for some M ∈ PGLm+1(R). That
is, the coordinatization of RPn is unique, up to linear changes of the coordinates.

By contrast, the automorphism group of C is huge, of cardinality 2|C|.

Remark 1.1.4. With some care, one can see that (1.1.1) and (1.1.2) also apply
to non-commutative fields, but from now on we consider only commutative fields.

The next natural geometry to consider is circle geometry, where we work
with lines and circles in the plane. It was discovered by Hipparchus of Nicaea
(c. 190-120 BC) that, using stereographic projection, it is better to view this as
the geometry whose points are given by the sphere

S2 := {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1},

and whose subsets are the circles contained in S2. These are also the intersections
of S2 with planes.

More generally, let K be any field of characteristic 6= 2. Let SphnK denote
spherical geometry of dimension n over K. That is, its points are

SnK := {(x0:x1: · · · :xn+1) ∈ Projn+1
K : x2

1 + · · ·+ x2
n+1 = x2

0},

and its distinguished subsets are the intersections of SnK with linear subspaces.
(These are spheres ifK is a subfield of R. However, ifK = C then the intersection
with (x3 = · · · = xn−1 = xn − x0 = 0) is a pair of lines, so the name ‘spherical’
may be misleading.) The Fundamental Theorem of Spherical Geometry now says
the following.
Theorem 1.1.5. Let K,L be fields and n,m ≥ 2. Let

Φ: Points
(
SphnK

)
↔ Points

(
SphmL

)
be a bijection that maps linear intersections to linear intersections. Then n = m
and there is a unique field isomorphism ϕ : K ∼= L and matrix M ∈ POn+1,1(L)
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such that
Φ(x0: · · · :xn+1) =

(
ϕ(x0): · · · :ϕ(xn+1)

)
·M.

Here POn+1,1(L) ⊂ PGLn+2(L) is the projective othogonal group, that is,
the subgroup of those matrices that leave the sphere SnK invariant.

Although this seems like a new result, it easily reduces to the linear geometry
case as follows. Fix a point p ∈ SnK . If K is a subfield of R then stereographic
projection shows that SnK \ {p} (with the spherical subsets containing p as our
subsets) is isomorphic to AffnK . For arbitrary K, we get the same conclusion for
SnK \ {all lines through p in SnK}.

The next natural topic could be conic geometry. Here we start with sets of
points Points

(
Aff2

K

)
or Points

(
Proj2K

)
, but we work with lines and conics as

distinguished subsets.
However, nothing new happens, since we can tell which curves are conics

and which are lines. Indeed, in conic geometry, C is a line if and only if C ∩ C ′
consists of at most two points for every other curve C ′ (which is a conic or a
line, not containing C). Thus we recover affine geometry.

What if we fix a degree d and consider degree-d geometry in the plane? It
has the same point set as before, but we use all algebraic curves of degree ≤ d
as distinguished subsets. That is, solution sets of the form

• {(x, y) ∈ Aff2
K : f(x, y) = 0} where deg f ≤ d (affine case), or

• {(x:y:z) ∈ Proj2K : F (x:y:z) = 0} where degF ≤ d (projective case).

As before, it is not hard to show that if |K| ≥ d+ 1, then C is a line if and
only if it has at least d + 1 points and C ∩ C ′ consists of at most d points for
every other curve C ′ (of degree ≤ d that does not contain C). Thus we get the
same fundamental theorems as in the linear case.

While restricting to small values of d may be natural, it is very unlikely
that specific large values of d are of much interest. So we should instead let d
become infinite and work with all algebraic plane curves and their K-points.
This is planar algebraic geometry. We focus now on the projective case; see
(2.2.15) for some comments on the affine setting. As the natural continuation of
(1.1.1)–(1.1.5), the next question to consider is the following.

Question 1.1.6. Let K,L be fields and

Φ: Points
(
Proj2K

)
↔ Points

(
Proj2L

)
a bijection that maps algebraic curves to algebraic curves. Is there a field iso-
morphism ϕ : K ∼= L and a matrix M ∈ PGL3(L) such that

Φ(x0:x1:x2) =
(
ϕ(x0):ϕ(x1):ϕ(x2)

)
·M?

In a surprising departure from the previous results, the answer is very field-
dependent. For illustration, let us see what happens with finite fields, R and C.
For finite fields the answer is negative for trivial reasons (though of course the
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cardinality of Points
(
Proj2K) determines K).

Proposition 1.1.7. Let K be a finite field. For every subset S ⊂ Points
(
Proj2K

)
there is a homogeneous polynomial FS such that

S = {(x:y:z) ∈ Proj2K : FS(x:y:z) = 0}.

Thus every subset of Points
(
Proj2K

)
is an algebraic curve, hence every bijection

Points
(
Proj2K

)
↔ Points

(
Proj2K

)
maps algebraic curves to algebraic curves.

Clearly, here the problem is that for finite fields K, the K-points of a high
degree curve C tell us very little about C. While identifying a line with its K-
points is harmless over any field, and identifying a (nonempty) conic with its
K-points works whenever |K| > 3, thinking of C as its K-points tends to be
helpful only if there are infinitely many K-points on C.

In the real case the answer is again negative, but this is more unexpected.
We use RP2 to denote the real projective plane with its Euclidean topology.
Theorem 1.1.8 ([KM09]). Every diffeomorphism Ψ : RP2 ↔ RP2 can be ap-
proximated by diffeomorphisms Φ : RP2 ↔ RP2 that map algebraic curves to
algebraic curves.

As an example, the simplest non-linear algebraic diffeomorphisms of RP2 are
given by

x 7→ x
(
(c6 − 1)y2z2 − c2(c2x2 + c4y2 + z2)2

)
,

y 7→ y
(
(c6 − 1)z2x2 − c2(c2y2 + c4z2 + x2)2

)
,

z 7→ z
(
(c6 − 1)x2y2 − c2(c2z2 + c4x2 + y2)2

)
,

for any c ∈ R \ {±1}.
For C, and more generally for algebraically closed fields of characteristic 0,

we have a positive answer.
Theorem 1.1.9. Let K,L be algebraically closed fields of characteristic 0, and

Φ: Points
(
Proj2K

)
↔ Points

(
Proj2L

)
a bijection that maps algebraic curves to algebraic curves. Then there is a unique
field isomorphism ϕ : K ∼= L and a matrix M ∈ PGL3(L) such that

Φ(x0:x1:x2) =
(
ϕ(x0):ϕ(x1):ϕ(x2)

)
·M.

It is not unexpected that there could be a difference between the real and
complex cases, since we can get only limited information about a real polynomial
if we ignore its complex roots. Thus we should not forget about the complex
points when dealing with a projective space over R.

Note that if i is a root of a real polynomial, then so is −i. In general, working
with real polynomials only, we can detect conjugate pairs of complex numbers,
but not individual complex numbers. In order to understand how this works for
other fields, we need to think about what the basic objects of algebraic geometry
are.
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Definition 1.1.10 (Affine n-space in algebraic geometry). Let K be a field and
K ⊃ K an algebraic closure. We denote the Zariski topological space of affine
n-space by |AnK |. It consists of the following.

(1) A point set, which can be given in two equivalent ways.

(a) (Geometric form) Points in K
n
modulo conjugation. That is,

|AnK |set := {(x1, . . . , xn) ∈ Kn}/(x1 . . . , xn) ∼ (σ(x1), . . . , σ(xn)),

where σ ∈ Gal(K/K) is any automorphism of K that fixes K.

(b) (Algebraic form) The set of maximal ideals of K[x1, . . . , xn].

(2) A topology whose closed sets are the solution sets of systems of equations

{(x1 . . . , xn) ∈ Kn
: f1(x1, . . . , xn) = · · · = fr(x1, . . . , xn) = 0},

where fi ∈ K[x1, . . . , xn] are polynomials.

The advantage of this definition is that the connection between geometry and
algebra is now very tight. For example, Hilbert’s Nullstelensatz implies that two
polynomials f, g ∈ K[x1, . . . , xn] have the same zero sets in |AnK | if and only if
they have the same irreducible factors.

A disadvantage is that it is no longer clear how to distinguish K-points
from K-points. In fact, the arguments of [WK81] show that if K is a finite
field, then the group of homeomorphisms is transitive on |A2

K |; see (10.3.1) for
details. While this may be the only such example, we have a good solution of
this problem only in the projective case.

Remark 1.1.11 (Non-closed points). The above is the traditional definition
of AnK ; see [Sha74]. In the modern scheme-theoretic version, the points of AnK
correspond to all prime ideals of K[x1, . . . , xn]. Thus our |AnK | is the set of
closed points of the scheme-theoretic AnK ; see (2.3.1) for details. For our current
purposes, the distinction is not important.

Definition 1.1.12 (Projective n-space in algebraic geometry). Let K be a field
and K ⊃ K an algebraic closure. We denote the underlying Zariski topological
space of projective n-space by |PnK |. It consists of

(1) a point set

|PnK |set := {(x0: · · · :xn) ∈ Kn+1 \ {0}}/(x0: · · · :xn) ∼ (cσ(x0): · · · :cσ(xn)),

where c ∈ K× and σ ∈ Gal(K/K), and
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(2) a topology, whose closed sets are

{(x0: · · · :xn) ∈ Kn+1
: F1(x0: · · · :xn) = · · · = Fr(x0: · · · :xn) = 0},

where Fi ∈ K[x0, . . . , xn] are homogeneous polynomials.

One of our theorems is the following answer to the higher dimensional version
of (1.1.6). We prove it in (8.1.4).
Theorem 1.1.13. Let K,L be fields. Assume that charK = 0 and fix n,m ≥ 2.
Let

Φ: |PnK | ↔ |PmL |

be a homemorphism (that is, a bijection that maps closed, algebraic subsets to
closed, algebraic subsets). Then n = m and there is a unique field isomorphism
ϕ : K ∼= L, and a unique matrix M ∈ PGLm+1(L) such that

Φ(x0: · · · :xn) =
(
ϕ(x0): · · · :ϕ(xn)

)
·M.

Clarification 1.1.14. We need to explain what ϕ(xi) means if xi is not in K.
Fix algebraic closures K ⊃ K and L ⊃ L. Then ϕ extends (non-uniquely) to a
field isomorphism ϕ : K ∼= L. However, if (x0: · · · :xn) ∈ |PnK | then(

ϕ(x0): · · · :ϕ(xn)
)
∈ |PmL |

is independent of the choice of ϕ and of the representative of (x0: · · · :xn).

1.2 THE MAIN THEOREM

The book is devoted to extending (1.1.13) from Pn to other algebraic varieties
by proving that in most cases the topological space |X| determines X. It is the
culmination of several reconstruction results proved in [KLOS20,Kol20]. (The
precise definition of a normal, projective, geometrically irreducible variety is
given in Section 2.1.)

Main Theorem 1.2.1. LetK be a field of characteristic 0, andXK , YL normal,
projective, geometrically irreducible varieties over K (resp. over an arbitrary
field L). Let Φ: |XK | → |YL| be a homeomorphism. Assume that

(1) dimX ≥ 4, or

(2) dimX ≥ 3 and K is a finitely generated field extension of Q, or

(3) dimX ≥ 2 and K is uncountable.

Then there is a field isomorphism ϕ : K
∼→ L and embeddings jK : XK ↪→ PNK
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and jL : YL ↪→ PNL for N = 2 dimX+1, such that we get a commutative diagram

|XK | |YL|

|PNK | |PNL |,

Φ

jK jL

Φ′

where Φ′(x0: · · · :xN ) =
(
ϕ(x0): · · · :ϕ(xN )

)
.

Examples (2.2.1) to (2.2.6) show that normality and geometric irreducibility
are necessary assumptions, but it is possible that dimX ≥ 4 can always be
weakened to dimX ≥ 2.

Projectivity is crucial for our proof, but may not be necessary. The charac-
teristic 0 assumption is also necessary, but there are natural conjectural versions
in positive characteristic; we elaborate on these in Section 2.2.

As an illustratrion of some of the methods, we prove a special case of (1.1.13).
The key is the following characterization of smooth rational curves in PnC.
Lemma 1.2.2. Let C ⊂ PmK be an irreducible curve. Consider the properties:

(1) C is smooth and rational.

(2) For every point p ∈ C there is a hypersurface H such that C ∩H = {p}.

Then (1) ⇒ (2) and if K = C then (2) ⇒ (1).

Proof. Set c := degC. Fix d such that H0(Pm,OPm(d)) → H0
(
C,OPm(d)|C

)
is

surjective. If C is smooth and rational then OC(c[p]) ∼= OPm(1)|C . Thus OPm(d)|C
has a section that vanishes only at p (with multiplicity cd), and it lifts to a section
of OPm(d) as needed.

Conversely, if (2) holds and d := degH, then OC
(
cd[p]

) ∼= OPm(d)|C . Since
the smooth points of C generate Pic(C), this implies that Pic(C)/〈OPm(1)|C〉
is a torsion group. Equivalently, the connected component Pic◦(C) is a torsion
group. Over C this holds only if Pic◦(C) is trivial, hence C is smooth and
rational.

This already shows why varieties over different fields behave differently. If
K = Fp then Pic◦(C) is a torsion group for every curve C over K. If K is any
field of positive characteristic, then Pic◦(C) is a torsion group whenever C is
rational with only cusps. If K is a number field then sometimes Pic◦(C) is a
torsion group even if C has large genus.
Corollary 1.2.3. Let K be a field and fix n,m ≥ 2. Let

Φ: |PnK | ↔ |PmC |

be a homemorphism. Then
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(1) Φ maps smooth rational curves to smooth rational curves, and

(2) if n = 2 then it maps lines to lines.

Proof. Let C ⊂ PnK be a smooth rational curve. By (1.2.2) it satisfies (1.2.2(2)).
The latter is a purely topological property, so Φ(C) ⊂ PnC also satisfies (1.2.2(2)).
Thus Φ(C) is a smooth rational curve by (1.2.2).

If n = 2 then lines and conics are the only smooth rational curves; so we are
in the case of conic geometry, discussed after (1.1.5).

1.3 ORGANIZATION OF THE BOOK

Our approach naturally breaks into two, mostly independent, parts.

• Reconstruction of X from |X| together with the additional information of the
linear equivalence relation on divisors.

• Reconstruction of linear equivalence of divisors from |X|.

We briefly describe each of these two parts.

1.3.1 Reconstruction of X from |X| and its divisorial structure

Recall that a (Weil) divisor on a variety is a Z-linear combination of irreducible
closed subsets of codimension 1. Since ‘irreducible closed subset of codimension
1’ is a purely topological notion (the codimension 1 irreducible closed subsets
being the maximal proper ones), the group of Weil divisors on X is determined
by |X|. However, the linear equivalence relation on the group of divisors depends,
a priori, on more than just |X|.

The divisorial structure of X is the topological space |X| together with the
linear equivalence relation ∼ on the group of Weil divisors of X. Our main
reconstruction result for varieties together with the divisorial structure is as
follows (this is a slightly simplified version—see (4.1.14)).
Theorem 1.3.1. Let K,L be fields and let XK , YL be normal, proper, geomet-
rically integral varieties over K (resp. L). Let Φ: |XK | → |YL| be a homeomor-
phism such that for D1, D2 effective divisors on X, Φ(D1) ∼ Φ(D2) if and only
if D1 ∼ D2. Assume that

(1) either K is infinite and dimX ≥ 2,

(2) or K is a finite field of cardinality > 2 and dimX ≥ 3,

(3) or K ∼= F2, dimX ≥ 3, and X is Cohen-Macaulay.

Then Φ is the composite of a field isomorphism ϕ : K → L and an algebraic
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isomorphism of L-varieties Xϕ
L → YL.

Here, Xϕ
L refers to the base change of XK via the isomorphism ϕ. See (2.1.6)

for a concrete description of this construction.

1.3.2 Reconstruction of divisorial structure from |X|

Over fields of characteristic 0 one can often recover the linear equivalence relation
on divisors from the topological space |X|. Our main result in this regard is the
following, which is a slightly simplified version of (9.8.18).
Theorem 1.3.1. Let k be a field of characteristic 0 and X a normal, projective,
geometrically irreducible k-variety. Assume that

(1) dimX ≥ 4, or

(2) dimX ≥ 3 and k is a finitely generated field extension of Q, or

(3) dimX ≥ 2 and k is uncountable.

Then |X| determines linear equivalence of divisors.

Remark 1.3.2. Here is a very rough idea why small or very large fields help
us. Assume that f is a rational function on a variety X, and we know its zero
set Z0 := (f = 0) and its polar set Z∞ := (f = ∞). Note that if gn = c · fm
for some c ∈ k× and m,n ∈ N, then g and f have the same zero and polar sets.
If X is normal, projective, and geometrically irreducible, and Z0, Z∞ are both
irreducible, then the converse also holds. Thus we are in a better situation if
there are many rational functions with irreducible zero and polar sets.

If dimX ≥ 2 then Bertini’s theorem guarantees that almost every rational
function is such. If dimX = 1 and k is algebraically closed, there may not be any
such functions. However, if k is a finitely generated field extension of Q, then
Hilbert’s irreducibility theorem guarantees that there are many such functions.

We need to apply such considerations not to the original variety X, but in
the following setting: C ⊂ X is a curve, Y ⊂ X is an irreducible subvariety to
which the above considerations apply, and C ∩ Y is a single point. Except in
rare instances, this can be arranged only if dimX > 1 + dimY .

Such considerations lead to the notion of Bertini-Hilbert dimension of a field
(which is either 1 or 2; see (9.5.5)). Then (1.3.1) holds whenever the dimension
of X is greater than 1 + BH(k).

Finally, another problem occurs when the zero and polar sets have ‘unex-
pected’ irreducible components. In algebraic geometry it is usually easy to show
that ‘unexpected’ things can happen in only countably many ways. So, over
uncountable fields, most functions do not behave in ‘unexpected’ ways.

In combination with (1.3.1), this yields Main Theorem (1.2.1).
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1.3.3 Structure of the chapters

The book is broadly organized into two parts, corresponding to Sections 1.3.1
and 1.3.2. In the first part, consisting of Chapters 3 through 6, we prove (1.3.1)
by observing that the divisorial structure lets us define linear systems of effective
divisors, reconstructing the projective structure on linear systems using variants
of the Fundamental Theorem of Projective Geometry, and then reconstructing
rings of functions using these linear systems.

In Chapters 8 and 9, we prove (1.3.1) by first reconstructing a weaker equiv-
alence relation for divisors purely from the topology, then using that to recon-
struct various types of geometric data, and finally reconstructing the usual linear
equivalence relation for divisors. Beforehand, in Chapter 7, we give a simpler
argument following a similar strategy for varieties over an uncountable alge-
braically closed field and also collect various results about pencils that are used
in that chapter and subsequent ones.

Chapter 10 includes complements, counterexamples, and conjectures: a topo-
logical Gabriel theorem, various types of schemes for which results of the type
we describe here fail, and several questions and conjectures about extensions of
our results to larger classes of schemes and positive characteristic.

Ancillary results are collected in appendices. These are mostly known but
are included as we found it hard to find references for the precise statements
that we need. The reader may wish to consult the appendices only as needed
while reading the main parts of the book.

The first appendix recalls the definitions and basic properties of locally fi-
nite, Mordell-Weil, anti-Mordell-Weil, and Hilbertian fields. This appendix is
included at the end of Chapter 8, where these notions are first used. In the sec-
ond appendix, which appears at the end of Chapter 9, we introduce the notion of
weakly Hilbertian fields, (9.9.1). This notion is new and may be of independent
interest.

The appendices included in Chapter 11 contain various background material
that is used in the book, but follow more standard algebraic geometry terminol-
ogy. In Sections 11.1 and 11.2 we summarize properties of complete intersections
and various Bertini-type theorems. The theory of the Picard group, Picard va-
riety, and Albanese variety is recalled in Section 11.3. The literature is much
less complete about the class group and its scheme version, which does not even
seem to have a name. Basic results on commutative algebraic groups and the
multiplicative groups of Artin algebras are also studied in Section 11.3.
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(−)car, Cartier locus, 208
(−)lin, (−)prop,(−)tor,(−)unip,
maximal connected linear, resp.
proper, resp. multiplicative, resp.
unipotent subgroup, 209
≡s, numerical similarity, 98
∼, linear equivalence, 139
∼s, linear similarity, 98, 146
∼sa, linear similarity of ample
divisors, 150

Alb(X), Albanese variety, classical
version, 204

Albgr(X), Albanese variety,
Grothendieck version, 204

Alb(X,Σ), Albanese variety with
respect to Σ, 206

BH(k), Bertini-Hilbert dimension
of k, 154

Chow1
d(X/S), Chow variety, 95

Cl(X,Σ), Weil divisors Cartier
along Σ, 202

Cl◦(X), divisors alg. eq. to 0, 202
Cl◦(X,Σ), identity component of

Cl(Xk,Σk), 203
CL(k), set of curves with ample
line bundle over k, 169

Cox(X,M), Cox ring with respect
to a monoid, 147

Cox(X, |QD|), Cox ring with
respect to a divisor, 148

CX,A, category of constructible
étale A-modules, 177

d|D|(C), intersection number of C
with a pencil, 109

DP, category of divisorially proper
varieties, 56

Div(X), divisors of X, 55

Γ⊂B(Y,L), sections with support
in B, 143

ΓB(Y,L), sections with support B,
143

genmin(g), generic minimum, 111
Gr(1,P(V )),Gr(1,P(V ∨)), 22

H0(C,L, sZ), sections restricting
to a multiple of sZ , 153

Hdef,B
n , set of lines that are
definable or given by B, 84
|Hi,LC|, linear system with local
conditions, 191

|L, sZ |, subsystem restricting to a
multiple of sZ , 153
|L|set, linear system as set, 23
|L|var, linear system as projective
variety, 23
|L|, linear system as discrete
projective space, 23

µµ(P), proportion in P using sup,
81

µµB , proportion of a set B, 81
µµ(P), proportion in P, 81

NS(X), Néron-Severi group, 201
NScl(X), Néron-Severi class group,
202
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NScl(X,Σ), Néron-Severi class
group Cartier along Σ, 203

RK
k ( ), Weil restriction, 198

RW
V (D,L), monoid of sections
with prescribed support, 144

RW
V (D,L,m), image of sections
with prescribed support, 144

RA
k Gm, Weil restriction, 211

ρ(X), Picard number, 201
ρcl(X), class rank, 202

Sd, homogeneous degree d
polynomials, 80

Σ(Y ), points of dim 0, or dim 1
but not regular, or dimension
≥ 2 but depth ≤ 1, 142

T, category of divisorial structures,
57

τ(X), divisorial structure
associated to scheme X, 57

Tn1,n2 , sections giving definable
lines, 85

trA Z, trace, 210

V (Z), definable subspace
associated to Z, 62

WDiv(X,Σ), Weil divisors Cartier
along Σ, 202

X(1), codim 1 points of X, 58

(Z · |D|), intersection number of Z
with a pencil, 105
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abelian variety, 200
absolutely scip with finite defect,
125

admissible collection, 35
Albanese map, 206
Albanese variety, 204
algebraic group, 209
algebraic pencil of divisors, 97
ample degree function, 109
ample t-pencil, 107
ample-ci, 195
ample-sci, 195
anti-Mordell-Weil field, 135

base locus of local conditions, 191
base locus of pencil, 97
base locus of t-pencil, 107
Bertini-Hilbert dimension, 154

Cartier locus, 208
Chow variety, 95
ci, complete intersection, 194
class rank, 202
compatible pencils, 111
complete H-intersection, 195
complete intersection, 194
complete intersection property, 184
composite pencil, 98
constant field, 56

D-good, 35
definable projective space, 26
definable subspace, 62
degree function, 109
detects linear similarity, 148
dimension of definable projective

space, 26
divisorial structure, 56
divisorially proper variety, 55
category of, 56

essential open subscheme, 61
exact modulo torsion, 200

fiber of pencil, 97
field-locally thin subset, 145

general position, t-pencil, 110
generalized Jacobian, 210
generically scip, 118, 126
geometric member of a pencil, 98

H–isci, irreducible-sci, 195
H-ci, complete intersection, 195
H-sci, set-theoretic, 195
Hilbertian field, 136

inherited by general complete
|Hi|-intersections, 190

irrational pencil, 97
irreducible-sci, isci, 195
isci, irreducible-sci, 195
isogeny, 200

Jacobian, 210

L-linked, 140, 154
L-linking is free, 156
L-linking is minimally restrictive,
159

L-linking on Z ∪W2 determines
L-linking on Z ∪W1, 159

linear algebraic group, 209
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linear pencil, 97
linearly similar, 98, 146
linked (topologically, directly), 154
local conditions, 191
locally finite field, 135

maximal factorial open subset, 59
member of a pencil, 97
mobile linear system, 98
mobile pencil, 98
Mordell-Weil field, 135

Néron-Severi class group, 202
Néron-Severi group, 201
noetherian topology, 183
non–(Q-)Cartier center, 208
non–(Q-)Cartier locus, 208
non-composite pencil, 98
numerically equivalent 1-cycles, 109
numerically equivalent divisors, 109
numerically similar, ≡s, 98

pencil of divisors, 97
Picard group, 201
Picard number, 201

Q-Cartier locus, 208
Q-Mordell-Weil field, 135

rational pencil, 97
recognizable scheme, 177

sci, set-theoretic complete
intersection, 194

scip, 118, 126
scip with defect, 123
scip with finite defect, 123
semi-abelian, 209
set-theoretic complete intersection,
sci, 194

simple abelian variety, 200
stably dense, 147
sweep, 26

t-pencil, 106
thin, 144
topological pencil, 106
true member, 112

variety over a field K, 21

weakly Hilbertian field, 168
Weil restriction, 211




