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Chapter One

Gradient-Based Methods for Deterministic

Continuous Optimization

This chapter presents a summary of salient results in deterministic optimization, particularly
focusing on numerical methods. For basic definitions, and results we refer to standard
textbooks.

1.1 UNCONSTRAINED OPTIMIZATION

Consider a cost function J (), with J: ® C R4 — R, where @ is a decision vector. Throughout
this monograph, we seek to the find the minimum of J(6) for 6 € ®. As is standard in the
literature, we are not only interested in the value of the global minimum (if it exists) but
also its location, i.e., we seek the solution 6* to the problem

arg min J(6). (1.1)
9eRd

In the case that the global minimum is attained at several locations, 6* is one of these
locations. In the case that J(+) is an (affine) linear mapping, the above optimization problem
is called a linear problem and it can be addressed with methods from the theory of linear
optimization. See, for example, [84, 85, 224, 235] for details. In the case that J(-) is a
general “smooth” continuous real-valued function, the above problem is called a non-linear
problem and it is referred to as an NLP. The theory presented in this monograph is devoted
to the study of NLPs. It is worth noting that while the results presented here can also
be applied to linear problems, there are often more efficient methods available for linear
problems exploiting the linear nature of the problem.

We assume that R is equipped with a norm denoted by || - ||. Most results presented in
the following are independent of the choice of || - ||. Occasionally, we will work with the

Euclidean norm on R¢ given by
||x]| = ,/x% +... +xfi,

and when results only hold for this particular norm it will be stated in the text.
A particular class of applications arises when an input data vector x and corresponding

output data vector h(x) is available. Letting f(6,x) denote some parametrized mapping
proposed for replacing the unknown mapping /(x), considering

J(6,%) =1 £(8,x) = h(x)|*

For general queries, contact info@press.princeton.edu
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4 OPTIMIZATION AND LEARNING
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Figure 1.1. Plot showing various level curves for the function x> + (x +2)y +1/(y> +0.5).

and solving (1.1) for given x, yields then the best fit to the output. This is called supervised
learning in the literature. In this monograph, we will discuss classical optimization as well
as learning applications.

Definition 1.1. The level sets of a function J: R — R are defined for every level @ € R as:
Lo()={0eR: J(0) <a}.
When no confusion arises, the notation will be simplified to £,,.

Notation. Denote the n-times continuously differentiable mappings from R¢ to R by C”.
For J € C!, we denote the gradient of J(-) by VJ/(-), and for J € C2, we denote the Hessian
of J(-) by HJ(-) =V?%J(-). Following standard notation, vectors in R¢ are column vectors.
For x € R4, we denote the i-th element of x by x;. In case of a sequence of vectors {x,,}, with
xn € R, we denote the i-th element of x by x,, ;. The gradient is a row vector with components
0/00r,k=1,...d. The Hessian is a d X d matrix with (i, j)-components 82/66’i69j. For
a vector v € R? we write v > 0 if v; > 0 for all components i =1, ...,d.

A matrix BeR*? is negative (positive) definite if vTBv < (>)0 for all v e R¢ with
v#0, where vT denotes the transpose of v. It is called “semi”-definite if the strict inequality
equality “<” is replaced by inequality “<.” The notation B < (>)0 is often used. A square
matrix B is called symmetric if B=B". For symmetric matrices the following character-
ization of positive definiteness exists: if B is symmetric, then B >0 if and only if all its
eigenvalues are strictly positive.

Remark 1.1. The visual interpretation of the gradient of a function will be very useful
in the rest of this book. Refer to Figure 1.1. This is a “topographical” visualization of a
two—dimensional function, where the shades of gray indicate height. Each of the level sets
defines a boundary (in the example, they are ellipses). The gradient of the function (in this
case, x2 + 2y2) records the rate of growth of the function along each of the axes. Now, take
any point on a level set (refer to Figure 1.2). Because the function does not change along
this curve, then necessarily the gradient VJ must point perpendicular to the curve (i.e., the
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v(®)

J(6) =

Figure 1.2. Illustration of the gradient of a convex function at two points § and 6.

projection of the gradient on the curve is zero). For the example, it points outward in the
direction of growth.

Definition 1.2. A function J: R? — R is called concave (convex) if for all x, y e R¢ and
a€(0,1),
Jax+(1-a)y) =2 () aJ(x)+(1—-a)J(y). (1.2)

Strict concavity (convexity) is obtained when the above inequalities are strict. For J € C?,
an equivalent condition is that the Hessian of the function be negative (positive) semi-
definite: V2J (+) £ (=) 0, and strict concavity (convexity) follow when the Hessian is negative
(positive) definite throughout the domain of J.

Definition 1.3. A point * € R can be characterized as follows:

o If J(6*) < J(0), for all @ €R¥, then 0" is a called global minimum. It is called a local
minimum if there is a p > 0 such that ||0 — 6*|| < p implies J(0) > J(6%).

« If J(6*) > J(0), for all # € R?, then 6* is called a global maximum. It is called a local
maximum if there is a p > 0 such that ||0 — 6*|| < p implies J(0) < J(6%).

o If the function may increase or decrease in a small neighborhood of the point, depending
on the direction of motion, then 8* € R is a saddle point.

If, in the definition of a maximum (respectively, minimum), the inequality J(6") < J(6)
(respectively, J(6*) > J(6)) can be replaced by a strict inequality, then we say that the
maximum (respectively, minimum) is strict.

Let o % min J(6), with @* =J(0*). Then we say that J(6) has a proper minimum, and
we call a* the value of the minimum and 6* the location of the minimum (the concepts
are defined for maxima analogously). Consider the mapping J(0) = e~? for § € R. For this
function we have 0 = a* =infy J(0) but there exists no value 6 so that J(6) attains 0. In this
case, we will say that J(#) has O as an improper minimum. Even at this early stage, it is
conceivable that any gradient-based search algorithm will run into (numerical) difficulties in
the presence of improper minima. In the following, we will only consider proper minima, and
we call them minima for short. Whenever appropriate, we will also discuss improper minima,
but this will be on an ad hoc basis. Note that the value of a (proper) minimum is unique
(provided it exists) but there may be more than one location yielding the same minimal
value of J(6). In fact the level set of J(0) for level a*, denoted as L ,~, yields the set of all
locations of the global minima of J(6). Figure 1.3 shows an example with various minima,
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6 OPTIMIZATION AND LEARNING

Figure 1.3. Example of a function with several maxima, minima, and saddle points.

4
maxima, and saddle points. The function is (4 —2. 19% + %)9% +010,+ (-4 + 40%)26'2, the
so-called six-hump camel back function.

Definition 1.4. The points § € R¢ that satisfy VJ/ () =0 are called stationary points of J.
The following theorem provides conditions for deciding the type of a stationary point.
Theorem 1.1. Let J € C.

e A local minimum (local maximum) 6* of J is a stationary point, that is, it satisfies the
first-order optimality condition:

VI (6%)=0. (1.3)

e A decision value 0" is a local minimum (local maximum) of J if in addition to (1.3), the
following is also satisfied

V26 >0  (V2J(8%) <0). (1.4)

Equation (1.4) is called second-order optimality condition.
e [fJ is a convex (concave) function, then (1.3) is necessary and sufficient for 0* being a
global minimum (maximum).

Proof. For a twice continuously differentiable function J(6), i.e., J € C2, the Taylor series
expansion with remainder yields the following expression of the value of J at a point 8 + 17,
for 7€ R? and t € R*:

2
J(O+1)=J(0) +1VI(O)n+ %nTvzj(e’) 1, (1.5)

where 6’ =6+t n, for some “intermediate” value 0 <1’ <t.

Use the above expression around 6* to express J(6* +tn) for an arbitrary direction
1. The definition of a positive definite matrix implies that 7 V2J(8*)n >0 for all n € RY.
In addition, V2J(-) is continuous, so use a sufficiently small value of 7 to complete the
arguments. The details are left as an exercise. O

Example 1.1. A well-known historical problem is that of explaining the phenomenon of
refraction of light when traversing two different media. Since Ptolemy (circa 140 AD),

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

GRADIENT-BASED METHODS 7

~

£0,(0)

G=—>b __ _JVb2i(d-6)

2= cos(a,(6))

B=(d,-b)

Figure 1.4. Problem is to find the optimal crossing point 6.

scientists were concerned with finding the relationship between the angles of refraction and
the media’s characteristics. The law of refraction was described by Ibn Sahl of Baghdad
(978 AD), who used it to shape lenses, and in 1621 by the Dutch astronomer Snellius. It
is now called Snell’s Law in English. In 1637 Descartes found the same principle using
conservation of moments, and in French it is called the Law of Snell-Descartes. We are
mostly interested in Fermat, who in 1657 used variational calculus and his principle of
“least time” to derive this law through an optimization problem.

The version of the problem that we give here is the pedagogical version of Richard
Feynman. Imagine that you are walking on the beach when you see a person drowning and
shouting for help. To get from where you are to the drowning person in the fastest way, you
should not move along the straight line, because you run faster on the sand than you can
swim. The distance from your position to the water is a, the distance from the water to the
person is b, and the length of shoreline between the two points is d, as shown in Figure 1.4.

In Cartesian coordinates the drowning person is at B = (d,—b) and your position is
A=(0,a). Here we assume that the waterfront is a straight line for simplicity. The speed
on sand is v; and in the water v, with vy <v. We call 6 the crossing point.

Fermat reasoned that light chooses not the shortest path but the one that saves more
energy, which is the fastest path. It is easy to argue the existence of a solution for this
problem: any value of 6 to the left of the crossing point of the straight line between points
A and B will give a slower path than the straight line because of vy <vq. On the other
hand, any point (0, 8), with 6 > d, will require unnecessary additional travel time compared
to crossing at (0, d), therefore there must be a minimum point between these two points.
That the travel times are continuously differentiable follows from the linear relationships
between distance and time.

At speed v, the distance traveled in time ¢ is vz, so the total travel time can be
expressed as

3 1 a 1 b
~ 1 cos(@1(8)) vz cos(az(8))

J(0)

-4 sec(a(0)) + £ sec(a2(0)),
Vi V2

For general queries, contact info@press.princeton.edu
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Figure 1.5. Plot of the function J(6).

where the angles «;(6) are as labeled in Figure 1.4. Figure 1.5 shows the plot of the time as
a function of the crossing point 6.

According to Theorem 1.1, we now find the stationary points of J(6). We use the
following identities:

tan aq(0) = Q (1.6a)
a’

tan ay(0) = %, (1.6b)

itan(a/) =sec’(a) =cos *(a), (1.6¢)

da

isec(a/) =sec(a) tan(a). (1.6d)

da

To obtain the first-order optimality condition, differentiate J(@) and set it equal to zero:

a’l( ) da;(6)
do

J(0)=— sec(al (0)) tan(a@((0)) ————=+ — sec(az(e)) tan(az(0)) =0.
Vi V2
By identity (1.6) it holds tan(a(6))/60 =1/a = constant. Differentiating both sides of this

equation with respect to 6 yields

goectan(on (€57 | - D =0 = S = vt @) costn @)
Similarly,
daje(e) T4 i 9 sin(a2(0)) cos(az(0)).

Replacing these values in J’(6) and again using the identities in (1.6), one reaches the
conclusion that J’(6*) =0 is achieved at the unique point that satisfies

sin(a1(6) _ v
sin(aa(@)) vy’ o

known as Snell’s Law of refraction. Going back to the person at the beach, knowing Snell’s
Law is not very useful because he or she still has to determine the optimal crossing point
(0,6%), however, (1.7) gives it as an implicit solution. oK
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Figure 1.6. A function with “vanishing gradient.”

When solving a problem of the form (1.1) analytically, one first looks for all points
that satisfy (1.3). After the set of candidates is determined, one then evaluates the Hessian
V2J(6) to verify which are local minima. If several local minima are found and if, in
addition, it can be shown that J(0) tends to co as ||@] tends to infinity, then the location
of the global minimum 6* can be found by comparing the values of the local minima. It is
worth noting that if there exists a unique stationary point, this analysis can be simplified.
Indeed, if 6* is the unique stationary point of J(6) and if J(6) tends to oo as ||6|| tends to
infinity, then 6* is the unique location of the global minimum of J(6).

Example 1.2. This example is provided to illustrate the terminology used in the field of
optimization. Consider the function J: R — R plotted in Figure 1.6. This function has a
unique global minimum that is attained at 6" ~ —3. Now consider the same function but
limit its domain to (0, 00). Because limg_, o, J(6) =0 we find that J(6) has 0 as an improper
minimum. Indeed, 0 is not attained by any value for 6. In addition note that J’ () approaches
0 as 6 tends to infinity. Loosely speaking we could express this by saying that “6 =+oco is
a stationary point of J(6).” The fact that J’(6) tends to zero as 6 tends to infinity is called
the vanishing gradient problem, to which we shall return in later chapters. HK

1.2 NUMERICAL METHODS FOR UNCONSTRAINED OPTIMIZATION

In most cases, as in Example 1.1, it is impossible to solve the inversion problem VJ =0
analytically and numerical methods are used for finding a root 6* of V4J =0. A numerical
iterative algorithm for approximating the solution 8* of V4J =0 is a recursion of the form

On+1 =8n+€nd(9n)’ (1.8)

where, for each n, €, is called the stepsize or gain size, d(6,,) is called the direction of the
algorithm, and {¢,} is called the stepsize sequence or gain sequence. Occasionally, €, is
also referred to as learning rate.

Methods for approximating 8 can be classified according to the choice of the step-
size rule and the directions. Together with an initial value 8y and a stopping rule, (1.8)
constitutes a numerical algorithm that terminates hopefully close to the true optimum,
where “closeness” has to be defined appropriately. Analysis of such algorithms, however,
are not based on a finite termination time, but are studied as the number of iterations
grows to infinity. Stopping times for the algorithm are usually based on the convergence
analysis.
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Definition 1.5. A descent direction of a differentiable function J(0) on ©, or descent
direction for short, is any vector d(6) such that VJ/(0) d(8) < 0 for all nonstationary points
fe@®CRY,

A descent direction d(#) is pointing
away from the direction VJ/(6). Indeed
—VJ(0) d(0) >0 implies that there is an
angle of less than 90 degrees between V3@
d(0) and —VJ(0). The figure to the right
depicts the situation. Recall that VJ(0) ,
points toward the direction of growth of

the function, and it can be shown that J(6)

locally decreases along any descent direc-

tion d(6), see Exercise 1.3. For a detailed

geometric interpretation of the gradient, we

refer to Section A.3 in Appendix A.

L~ J®)=x

Ng } descent directions
\\! ak Pomt 6

—/>
PN

Algorithms that update along a decent direction are are called descent algorithms.
Gradient-based methods for optimization, also called gradient descent methods, use d(6,,) =
—-VJ(6,)" as a direction in the algorithm, and are a subclass of descent algorithms. There
are many methods available for gradient-based optimization. Typically these algorithms are
tailored to specific classes of function such as the conjugate-gradient method and variations
thereof, which are suitable for optimization of quadratic functions.

For later use we state here a result showing that the negative gradient rotated by a
positive definite matrix remains a descent direction.

Lemma 1.1. Let J(0) be a differentiable function, and let K (6) € R*? be a positive definite
matrix for all 8, then —K (0)VJ(0)T is a descent direction on RY.

Proof. Since K(8) is positive definite, it holds that xT K (6)x > 0 for any non-zero vector x.
Letting x" =VJ(6) shows that VJ(6)KVJ(6)T > 0. Premultiplying by —1, then yields the
result. O

Newton-Raphson Method

One of the most efficient methods for unconstrained optimization is the method developed
by Newton (published in 1685) and Raphson (1690). It was originally designed to find the
zeroes of a polynomial. In the context of finding stationary points of J(6), § € R?, let the
vector G (0) represent the gradient VJ(6)T. From a point 6,,, use a linear approximation of
G (0), that is, using Taylor’s expansion

G (Ons1) G (0) + VG (0)(Ons1 = 0n),

where now VG () = V2J(0) is a d x d matrix for each 6.

To approximate the zero in one step, simply set G (6,+1) =0 in the approximation and
solve the right hand side for 6,,,1. Assuming that the inverse matrix of VG (6) exists, this
yields

Oni1 =00~ [VG(6:)]7'G(6). (1.9)

Comparing (1.9) with (1.8), it follows that Newton’s method is a gradient descent method
with adaptive stepsize sequence ¢, :=€(6,) = [VG(6,)] .

Theorem 1.2. Let J: RY - R € C? be a convex function, and assume that the Hessian is
invertible. Choose an initial point 6y € R? and let {6,,} be the sequence defined by (1.9),
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with G=VJ7, that is,
9n+1 = Hn - [VZJ(HH)]_IVJ(Qn)T~

Suppose that 6 is an accumulation point of the sequence {0,,} such that V>J(8) > 0, then 6
is a local minimum of J(0) and the rate of convergence is superlinear, that is, there exists a
sequence {cy} such that c,, tends to zero as n tends to oo and for some finite N itholds that

||9n+1_9_|| SCn”gn_é”» nxN.

Furthermore, if J € C? then the rate of convergence is quadratic, that is, there exists a
constant ¢ > 0 such that, for large n

1641 =61l < cll6 —61I*.

The proof of the result (omitted here) uses Taylor’s approximation. Once the trajectory
6, reaches a neighborhood of a local minimum 6*, the Hessian V2J(6,,) becomes posi-
tive definite, which implies that it is invertible and that the Newton step moves along a
descent direction, see Lemma 1.1. Although very efficient for convex functions, Newton’s
method has a number of practical problems when applied as a general-purpose optimization
method:

* Newton’s method finds zeros of the gradient, which may be locations of minima or
inflection points for general functions. Consequently, it cannot be guaranteed that the
Hessian is positive definite at every stationary point.

e The Hessian may not be invertible at every point.

* Finally, it needs calculation of gradients, Hessians, and Hessian inversion, all of which
may be lengthy numerical operations, rendering the method slow. In some cases the
Hessian can be approximately computed by repeated numerical function evaluation and
we refer to Section 11.1.2 for details.

For deterministic problems, the efficiency of a method is defined in terms of CPU time to
achieve a given precision ¢. A number of algorithms have been proposed under the common
name of “quasi-Newton” methods, which attempt to increase the efficiency of the method,
overcoming the problems pointed out above.

* Cauchy’s Method

The method known as steepest descent (or Cauchy’s) for minimization of a cost function
J(0) chooses d(6,,) =—VJ(6,) at each iteration of (1.8). Originally proposed by Cauchy
in 1847, instead of premultiplying by the matrix [V2J(6,)]!, the method chooses the
stepsize to “move” along the direction d(6,,) to reach the minimum on that line, that is,

€,:=€(0,)=arg m>i1(}(J(0n —eVJO,))).

Gradient-Based Methods: Nonadaptive Stepsizes

As mentioned before, Newton’s method has a good convergence rate, but every iteration
may require too much computational time. Cauchy’s method can have slow convergence
due to possible zigzagging of the iterations, and several modifications have been proposed
for adaptive stepsizes (where €, depends on 6,,,J(6,,), VJ(6,), etc). Common methods use
Wolfe’s conditions [327, 328] and Armijo’s rules [7] (and [29, 169] in combination with
projection), which ensure that all accumulation points are local minima. For deterministic
optimization adaptive stepsizes are undoubtedly superior to nonadaptive stepsizes. However,
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the focus of the present text is to extend the basic methodology for deterministic optimiza-
tion to problems where the observations of the function J(#) and its gradients (if available)
are noisy, and the noise models may be very complex. For such scenarios, non adaptive
stepsizes are simpler to analyze. The gradient-based methods use d(0) =—VJ(6) as the
direction of the algorithm, and the stepsizes can be of two kinds: either decreasing: €, | 0,
or constant: €, = €.

Without any detailed analysis, inspecting the mere structure of (1.8) allows us already
to deduce properties of the stepsize sequence. To see this, insert the expression for 8,, on the
right-hand side of (1.8), which yields 6,41 =0,,-1 + €,d(0,) + €,-1d(0,,-1) and continuing
the recurrence

n
Onr1 =60+ Z € d(6;).
=0

Suppose that d(+) is bounded. Then, for the algorithm to find 6*, the stepsizes have to satisfy

ienzoo, (1.10)

n=1

so that the sequence {6, } is not confined to some bounded set (or, equivalently, will cover
any bounded set as it can potentially reach any point in R). Further conditions are required
in order to ensure convergence of the algorithm to the optimal 8%, as we will show in the
upcoming theorem. Before we state and prove the main result in this section, we provide a
useful technical result. The result and its proof is an adaptation of Lemma 1 in [34].

Lemma 1.2. Consider the real-valued recursion:
xn+l:xn_gn+hna XOER,

where g, > 0 for all n, and the sequence h,, is summable, i.e., ), |h,| < co. Then either (i)
Xp — —o0 or (ii) x, converges to a finite value and ), g, converges.

Proof. Note that
Xn12 =Xntl = &nil + Myl

=Xn = (8n+8n+1) + (hy + hpsr).

Repeating this argument m times yields the telescopic sum

m+n—1 m+n—1

Xm+n =Xn — Z git+ Z hi. (1.11)
i=n i=n

By assumption g, > 0, which implies

m+n—1

Xpin < X + Z |h;] < co. (1.12)

i=n

Use now —oo < 3.2, | ;| < oo to show that for all n

m+n—1 m+n-1 ©
lim sup Z |h;] = lim Z |hi|:Z|hi|<oo (1.13)
m—oeo i=n mee i=n i=n
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and

n—oo

liminfE |h;] = lim E |h;] =0. (1.14)
n—oo
i=n i=n

Moreover, we have by (1.12) that

xm+n§xn+Z|h,-|<oo. (1.15)

i=n

By (1.13), taking the limit superior on both sides of the inequality (1.15) as m tends to oo
yields for all n

(o]
lim sup x4y < X, + Z |hil,
m—o0 i=n

and, since lim sup,,,_,, X, =lim sup,,,_, ., X;+n, We arrive at

limsupx,, <x, + Z | ;).
m i=n
By (1.14) together with (1.15), taking the limit inferior on both sides of the above inequality
gives
lim sup x,,, < liminf x,, < oo,
n—00

m—oo

and, as liminf,, 0 X, <limsup,,_,, X, by definition, we arrive at

lim sup x,,, =liminf x,,,,
m—oo m—oo

which implies that either x,, converges to some finite X € R, or x,, — —o0.
In the case that lim,, x,, =X € R, letting n=0in (1.11) yields

m—1 m-—1
Zgi: hi = X, + X0,
i=0 i=0

and as the right-hand side of the above equation converges as m — co to a finite value so
does the left-hand side, which proves the claim. O

Next, we introduce two important concepts.

Definition 1.6. Let ® c R? be an open connected set. A mapping f:©® — R is called
Lipschitz continuous if L € R exists such that for any x, x + A € ® is holds that

I1f(x) = f(x+ D) < LA
The constant L is called Lipschitz constant.

Definition 1.7. We say that a sequence {x,,} with limit X achieves the limit in finite time if
there exist a finite index m < co such that x,, =x for n > m.

We are now ready to state the gradient-descent theorem for decreasing stepsize.

Theorem 1.3. Let J € C* and assume that VJ is Lipschitz continuous on RY. For given
initial value 0y, let {6,,} be given through the algorithm

0n+1=0n_6nVJ(0n)T, (1.16)
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where the gain sequence {€,}, with €, >0 for all n, satisfies

ien=+00, i6,21<oo. (1.17)

n=1 n=1
If {IIVJ(0,)]|:n>0} is bounded, then any (finite) limit 0 of {6,} is a stationary
point of J(0). If, in addition, 0" is not attained in finite time, then, for n sufficiently large,
{J(Ok), k = n} is a strictly monotone decreasing sequence.

Proof. Approximating J(6,41) via a Taylor series expansion developed at 6, (e.g., let
n=0,+1 — 6, and t =1 in (1.5)), yields

J(9n+l) = J(en) + VJ(gn)(gnH - en) + %(enﬂ - Qn)TVZJ(g)(QrH_] - en)a (118)

where £ =a 0, + (1 — @)0,4 for some a € [0, 1]. Inserting (1.16) into the above represen-
tation of J(0,,41) yields

2
J(0n41) =T (0,) = €IV (8,)] |7 + %w(enwzf(f)wwn)f (1.19)

Recall that ||-|| denotes the Euclidean norm. Call g,=e¢,||V/(6,)||> and h,=
€2V (0,)V2J(€)VI(6,)T /2, then

J(0n+1) :J(gn) _gn+hn-

From Lipschitz continuity of VJ(6) it follows (see Exercise 1.7 below) that

2
€
|hn| < fLIIVJ(Gn)IIZ,

for some finite constant L. Boundedness of the gradient along the trajectory together with
3 €2 < o0, shows that £, is absolutely summable, so we can apply Lemma 1.2 to conclude
that J(0,,) either tends to —oo, or it converges and
D ellVI (0] < oo, (1.20)
n=0
Suppose that € R is the limit of 6,, and achieved in finite time. Then 6,, = for all n
larger than some k, which can only happen if the update €,VJ(6, =8) =0 for n > k. This
shows that @ is a stationary point. In case @ is not achieved in finite time, we have from (1.20)
together with continuity of VJ that ||V/(0)|| = 1im; e ||V (6, )]| = 0. This shows that 6 is
a stationary point.
We turn to the proof of the second part of the statement. As before, we denote the limit
of 0, by 6. We apply the bound

197 (8,)V2I ()Y (6,) Il < LIVI (6) I
(see Exercise 1.7) to (1.19) and thereby establish that
1
J(Oin1) <J(0:) - (Ei —5L 6,2) IV ()11
Since ¢; tends to zero as i tends to infinity, we have for sufficiently large i that L ¢ <2,
and thus (¢; — L «51.2/2)||VJ(05)||2 >0, for ||VJ(8;)|| #0. Hence, if 8 is not attained in finite

time, so that ||VJ(6;)|| #0 for all i, then there exists iy, such that {J(6;):i > iy} is strictly
monotone decreasing toward J(8). O
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Figure 1.7. An example of a function with unique minimum and uniformly bounded gradient.

As the theorem shows, a gradient descent algorithm will find a stationary point of J(6),
but the nature of that point cannot be deduced from the algorithm alone and it requires some
knowledge on the curvature of J(6) in a neighborhood of 6*; see Theorem 1.1. A sufficient
condition for the algorithm to converge to a minimum, which then is also the unique global
minimum, is convexity of J(6). Exercise 1.12 asks to show this result.!

Theorem 1.3 provides sufficient conditions under which the sequence obtained via a
gradient descent algorithm finds a stationary point of J (). Next to more generic conditions
such as the choice of the stepsize and sufficient smoothness of J(6), the key condition
is that of boundedness of the gradient along the trajectory {6,}. A nontrivial example
of a mapping with bounded gradient is J(#)=1-2/(2+6?%), see Figure 1.7. Note that
lim|g| e J'(6) =0, shown in Figure 1.7.

However, typically the assumption of boundedness of the gradient along {6,} is not
straightforward to check except for simple cases as the following example shows.

Example 1.3. When the gradient is not bounded for all 6, it is sometimes useful to apply
the argument that the algorithm will not persistently move “away from the minimizer.”
For illustration, consider J(#) = 62 + ¢, for some constant ¢. The minimization problem has
unique solution #* =0 and, by computation,

00411 =165 _fnjl(gn” =16, —2€,0,| = |9n(1 =2€,)|=10n| 11 = 2€,].

So, as soon as €, < 1/2 for some n, we see that |6,,11| < |6,,| for all m > n, and the trajectory

stays inside a bounded set, which implies finiteness of the gradient along the trajectory.
Next we discuss a more challenging example.

Example 1.4. Let us consider again the function in Example 1.2 illustrated in Figure 1.6.

Following the same argument as for the function 6 + ¢ in the previous example, one can

show that the gradient of the function in Example 1.2 is bounded along the trajectories
that start at initial values 6 < 0. Moreover, if 6y >0, then the negative gradient will be

IWhile it cannot be guaranteed that the gradient descent finds a local minimum, it is worth noting that the
algorithm “goes in the right direction” and the likelihood that the algorithm gets trapped at a saddle point is
small in practice. See Exercise 1.15 for an example of a case where the algorithm provably gets trapped in a
saddle point. The problem of convergence to a saddle point can be avoided by using specific adaptive stepsizes.
However, as explained in our discussion at the beginning of this section, non adaptive stepsizes are preferable
when the observations of J () are noisy, which is the main focus of this monograph; deterministic optimization
is introduced here, but it is not the topic of our work.
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positive and 6,, becomes an increasing sequence. While it is true that the limit here satisfies
lim, e J'(6,,) =0, the corresponding limit point lim,_,« 6, = oo is not finite, and 0 is an
improper minimum on (0, c0). Even worse, for initial value 6y > 0, the descent direction
moves away from the actual solution, creating a numerical instability, and the algorithm
should be properly modified.

This is an important situation that arises in practical applications, because the algorithm
could diverge if applied directly. Interestingly, the function in Figure 1.7 also has vanishing
gradients as 6 — +oo, but in that case this does not pose a problem because the negative
gradient is a descent direction and thus it “pulls” the sequence 6, toward the unique
minimum. SOK

On occasion, it is possible to measure the outcome J () of the performance of a system
but the gradient VJ(-) is analytically unavailable. Instead of a gradient, some methods use
a finite difference approximation. More generally, suppose that the algorithm is driven by a
biased approximation of the gradient:

On+1 =9n_5n(VJ(9n)T+ﬁn(9n))a (1.21)

where the decreasing bias terms satisfy 3,,(8,,) — 0. Lemma 1.3 provides an important
extension of Theorem 1.3 to biased algorithms. In the presence of bias, we have to exclude
the case that for some n, the update VJ(6,)T + 3,,(6,) becomes zero for ,, so that the
algorithm freezes at 8,, due to the bias.

Lemma 1.3. Let J € C? be such that the gradient is a Lipschitz continuous function on R¢
and consider the biased algorithm (1.21), where the bias and the stepsize sequence{e,},
with €, > 0 for all n, satisfy

[e9) [e9)

Dlen=to, Y e llBa(bn)l <, Y el <oo. (1.22)
n=1

n=1 n=1

If {IIVJ(6,)|| : n =0} is bounded, then any (finite) limit 0 of {0, } is a stationary point
of J(0). If, in addition, 6% is not attained in finite time, then, for n sufficiently large,
{J(Ok), k > n} is a strictly monotone decreasing sequence.

Proof. The method of proof for this lemma is the same as for Theorem 1.3. The Taylor
series for J(#) now involves the bias terms, and under the assumptions, the corresponding
terms gy, h, can be defined to apply Lemma 1.2. The details are left as an exercise, see
Exercise 1.9. O

Lemma 1.3 can be adapted to a setting with non-vanishing bias. This is explained in the
following example.

Example 1.5. Consider the biased algorithm (1.21) and assume that £,,(6,,) = 3, (8,) + 8,
for lim,, ||3,(6,)|] = 0 and some non-zero vector 8. Hence, the bias does not asymptotically
vanish. Let J(6) = J() + 87 6. Provided that the conditions in Lemma 1.3 are met for J(6)
and f3,,(6,), they straightforwardly extend to J(6) and f3,,(6,,). The algorithm then finds a
stationary point 6* of J(8) that satisfies VJ(6*) + 87 =0. Hence, the algorithm traces the
stationary point of the shifted performance function J(6). 3eRK

Example 1.6. Suppose that we do not know the function J(-) analytically, but for any point
@ itis possible to obtain the numerical value of J(0). In this situation, VJ(6) is not available
in closed-form either. A commonly used approximation to the derivative is given by finite
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differences (FD), which require that J € C3. In this example we will use a “centered” version
of the approximation as follows. For simplicity, let 6 € R and use a Taylor expansion around
6 to obtain

J 9n+cn -J 9;1 J Hn 1 77
( ) ( ) = ( ) +—J (9,1) Cn+ﬁ+(9n’cn)
2cn, 2 4

J(On) = J(On —cn) _J,(Hn) 1,
2, ) _ZJ (On) cn+B-(On, cn)

so that the centered, or two-sided FD satisfies

J(On+cn) = J (6, —cn)
2¢,

where 8,(60,x) =, (0,x) +B_(6,x) =0(x?), for fixed 6. Note that the terms containing
J"(8,) cancel out.

When implementing FD in the descent algorithm, it is necessary to show that
lim,, 00 81 (65, cn) =0 to conclude that the algorithm converges to the optimal value. Note
that the main problem in showing convergence lies in the fact that we do not know before-
hand the sequence {6, } visited by the algorithm. To establish convergence in (1.21), we
need to verify either (a) that the third derivative J’”(-) is uniformly bounded in 6, or (b)
that 6,, remains within a compact set along the sequence, which would imply that J"”’(0,,) is
uniformly bounded (as n — co0). When either (a) or (b) hold, we know that 3,,(6,,, x) — 0 for
any sequence {6, } visited by (1.21) as long as x — 0. Hence, we can choose ¢, = O(n~¢) for
some constant ¢ > 0, which implies 8,,(6,,, ¢,,) = O(n~%¢). In general the choice of c,, will
depend on how fast €, — 0. Assume that €, =O0(n~7), so that (1.22) holds for y € (0, 1].
From Lemma 1.3 it follows that Theorem 1.3 can be extended to finite difference algorithms

provided that
Z €nfn < 00 = Z n-(r+20) 00,

n>1 n>1

=J'(9n) +ﬁn(9n’ Cn),

so that we need y + 2¢ > 1 for the algorithm to converge. When y = 1, positive c is sufficient.

While gradient-based methods of the type (1.21) ensure convergence for functions with
only one stationary point giving the location of the global minimum (called “unimodal’)
and which are continuously differentiable, the rate of convergence may be much slower than
Newton’s method. In particular, the steepest descent method has linear convergence, i.e.,
there is a constant ¢ € (0, 1) such that ||0,,+1 — 6%|| < c||6,, — 07|, whereas Newton’s method
in general has quadratic convergence, see Theorem 1.2. On the other hand, the gradient
descent algorithm shows remarkable resilience even for distorted gradient measurements as
long as the size of the distortion decreases as n — oo, as shown in Lemma 1.3.

We complete this discussion by providing the equivalent statement to Theorem 1.3 for
constant stepsize. It is worth noting that when the bias does not vanish asymptotically, the
algorithm will find a stationary point of a modified objective function. Moreover, the effect
a bias has on the fixed stepsize algorithm is different from the effect a bias has on the
decreasing stepsize algorithm; compare Example 1.6 with the theorem below.

Theorem 1.4. Let J € C? . Assume that VJ(0) is Lipschitz continuous on R? with Lipschitz
constant L. Consider the constant stepsize algorithm

Ops1 =0, —€VI(O,),
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for € >0. Then any (finite) limit 0* of {0, } is a stationary point of J(0). Moreover, if
(i) €e<2/L and (ii) 0" is not attained in finite time, then {J(0,)} is a strictly monotone
decreasing sequence.

Let B, denote the bias at the n-th iteration, and assume that lim,, 8, = 8 € R. Then,
any (finite) limit 9}“3 of{Of} given by

0F =00 —e (VIO +Bn))
solves VJ (6’;) +5=0, i.e, in the asymptomatically unbiased case (given by p=0), GZ, is
a stationary point of J(0), and in the asymptotically biased case (given by B+#0), 9;; isa
stationary point of the adjusted objective J(0) + BT 6.

Proof. 1If ,, converges to some 8* € R¥, then this is only possible if lim,, €VJ(6,,) =0. Since
€ is constant, this implies VJ(6,) =0, and by continuity of VJ, is holds that VJ(6*) =0 and
0" is thus a stationary point.

For the next part of the proof, we note that we have already shown in the proof of
Theorem 1.3 that for any i > 0,

J(O1) <I(0) € (1 - %Le) w601

Hence, for € <2/L we have that (1 - %L €) >0 so that J(0;41) <J(6;), which shows that
J(0;) is strictly monotone decreasing toward J(6*), with 6" a stationary point.

For the biased case, we argue like before for showing that convergence of 95 toward
9}; € R together with continuity of V.J(#) implies V.J (GZ,) + 5 =0. This shows that 9;; isa
stationary point of J(6) for 8=0. For 8 # 0, note that V(J(68) +576) =VJ(0) + 7, so that
0;; is a stationary point of J(8) + 87 . O

Typically, the Lipschitz constant for the gradient is hard to bound, and one applies the
algorithm for € “small.” If in addition to the assumptions in Theorem 1.4, the function J(-)
is convex, then the unbiased algorithm converges to the location of the minimum of J.

1.3 CONSTRAINED OPTIMIZATION

In this section we turn to optimization problems involving constraints. For ease of reference
we introduce the general setting in the following definition.

Definition 1.8. For J(6) € C!
e the unconstrained optimization problem
min J(6),

or
e for g;(0),i=1,...,p, and h;(9),j=1,...,q, all in C', the constrained optimization
problem

rglelgl(e), (1.23)

0={0eR?: g(6) <0, h(0) =0},
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is called a non-linear problem (NLP). The function J: RY — R is called the objective
function, the set © is called the feasible region (including the case ® =R), and a point
0 € O is called a feasible point.

An NLP is called a (strictly) convex non-linear problem, or (strictly) convex problem
for short, if J(6) and—in case the problem has constraints—each g;(6),i=1,..., p, are
(strictly) convex, and each /;(6), j=1,..., g, is an affine function (linear plus a constant).

An NLP is characterized by functions g: RY - RP”, h: R —RY, that represent p
inequality and g equality constraints that must be satisfied. Note that since the constraints
are convex by assumption, the feasible region ® of an NLP is a convex set.

When we want to stress that a gradient or a Hessian is taken with respect to 6 of a
mapping with more arguments, we write V4 and V2, respectively.

Definition 1.9. For an NLP the associated Lagrangian £ : R? x RP x R? — R is defined as
LO,,1n)=J(0)+1"g(8) +n"h(H). (1.24)
The vectors A and n are called Lagrange multipliers.

Definition 1.10. A constraint g; of an NLP is said to be active at a feasible point 6 € ©
if g;(0) =0. Otherwise it is said to be inactive. The set A(8) of active constraints at 6
contains all indices 7 for which g; (0) =0. The constraint qualification condition at a feasible
point @ requires that the set of vectors {Vgg;(6),i € A(0); Voh;(6),j=1,...,q} belinearly
independent, and that there exist a vector v € R4, v #0, such that:

(@) Vhj(0)v=0, 1<j<gq,
(b) foralli e A(0) it holds that Vg;(0)v <O.

Definition 1.11. A stationary point (6*, 2*, %) of an NLP is a point that satisfies the Karush
Kuhn-Tucker (KKT) conditions if

VoL (0", 1%, n*)=0 (1.252)
VLG, 25, 7") =g(6")T <0,4" >0, and Vi: A7 gi(67)=0 (1.25b)
V, L0, A" )=h(6")" =0; (1.25¢)

where V,.£(0, A,n) denotes the gradient of £L(6, A, 1) with respect to A and V,, £(6, 1,1)
the gradient with respect to 7. A stationary point that satisfies the KKT conditions is called
a KKT point.

Condition (1.25b) is called the complementary slackness property, from this property
it follows that i ¢ A(6) implies A; =0. The following theorem shows that that the KKT
conditions are necessary conditions for a local minimum, i.e., local minima are KKT points.
Moreover, if the problem is strictly convex, then the KKT conditions are also sufficient for
a global minimum. The proof is standard and a proof is omitted.

Theorem 1.5. Assume that for a given NLP the constraint qualification holds at a local
minimum 0% of J(0) in (1.23). Then there exist A* € RP ,n* e RY, such that (6*,1%,0%) is a
KKT point of the NLP. The vectors 1* and n* are called Lagrange multipliers.

If, in addition, if the problem is a convex NLP, then the KKT conditions hold at 6" if and
only if 6% is the global minimum.

Example 1.7. Many canned products in the supermarket come in cans of similar shape,
where the height is the same as the diameter of the container. What is the reason for this?
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Allegedly, a similar question haunted Galileo about the leather bags used by traders. Here
is the answer: if a fixed volume of a given good has to be canned, the containers should
be produced at minimal cost (in particular using minimal amount of material) in order to
maximize your profit.

This problem can be formulated as a surface minimization problem under the fixed vol-
ume constraint. Call 8 = (r, y) T, where r is the radius and y is the height of the (cylindrical)
can. Then we want to find

min J(6) d§f2(7rr2) +2nry
r.y
subject to: 7T}’2y =V,

where we have expressed the total surface as the rectangular surface for the side of the can,
plus the two covers. The volume V is fixed. Call () =r’y —V.

We will show how to apply Theorem 1.5 in practice. The problem fails to be convex, as
neither is J(#) convex nor is & affine, and the second part of the theorem cannot be used.
Instead, we proceed as follows. First, we find the KKT points that satisfy (1.25), and then
we determine which one (if several) is the global optimizer. The Lagrangian is

LO;n)=L(r,y;n) = 2(7rr2) +2nry +77(7rr2y -V).

Condition (1.25a) for a KKT points reads
;L(r,y;n)=47Tr+27ry+7727rry=0 (1.26)
,
0
a—[(r,y;n)=27rr+nﬂr2=0. (1.27)
y

From the second equality we get n* =—2/r", replacing this value in the first we get: 2r +y —
2y =2r —y=0, so that y* =2r*, which is the actual proportion found in many commercial
cans.

To illustrate the mathematical method, we will finish the example. Using (1.25¢), i.e.,
h(8) =0, we replace y =V /zr? to obtain the actual solution to (1.25), namely (r*)* =V /2x
and y* =2r". The constraint qualification holds at this (unique) KKT point. Indeed there is
only one constraint, and it satisfies

Vh(0)=2nry, 7rr2),

which is non-zero at r*,y*, as required. Observe that taking v’ =(r/2,—y) yields
Vh(6)v=0.

Because this is the only KKT point, it is the only candidate for the solution. To see that
the KKT point is indeed a local minimum, note that r € (0, c0) and as r either tends to O or
to oo, the value of J(r, y) tends to co, so that we can conclude that J has to have a minimum
for some value of r € (0, o). Since the only candidates for the location of a minimum are
the KKT points, it follows from the uniqueness of the solution, that the KKT point is the
location of the global minimum.

It is worth noting that this example is academic and placed here for illustrating the use
of the theory. A more direct solution is readily obtained by direct substitution y=V /xr
into J to obtain a function of only one variable f(r) =2 (r*>+V/xr?). That this is convex
follows from f’(r)=2n(2r —V/ar?), and f”(r) 21(2+2V/ar?) >0 for all > 0. The
unique zero of f/(r),r >0 is exactly at r* K
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The theorem below provides the second-order conditions that help in determining if a
KKT point is indeed a local minimum along the feasible set under no convexity.

Definition 1.12. Let (6*,1%,7%) be a stationary point of an NLP. The critical cone
C(6*,2%) is

94 820 is /m()(d’t\le C(e*,2") =
{v eR?: Vgi(6)v <0, ifi A(6"),

\h(m =0 A;=0,Vgi(6")v=0, if 1] >0,
Vh(e*)v=o}.

92@)50 is ackive ok &% This cone defines the set of directions v

that move along the active and equality
feasible diechion v constraints, as well as those that move
“inside” the feasible set if the active con-
straint has a null multiplier.

Theorem 1.6. Consider an NLP such that J(0), g(0), h(0) € C* and that the constraint
qualifications hold for g(0), h(0) at 6*. If (0%, A%, n%) satisfies the first-order condition of
being a stationary point (i.e., a KKT point), and the following second-order condition holds:

VIVZLO, A5 )v>0, for0#veC(8",27), (1.28)

then 0" is a local minimum of (1.23), where V%L denotes the Hessian of L with respect
t0 6.

Note that if the domain {# € R?: g;(0) <0,1<i < p;h;(0)=0,1< j < g} is compact, then
the use of the second-order condition can be avoided as continuity of J(6) already implies
existence of a global maximum and minimum on a compact set. Evaluating all stationary
points then solves the optimization problem. See, for example, [49]. Lagrange multipliers
frequently have an interpretation in practical contexts. In economics, they can often be
interpreted in terms of prices for constraints, so-called “shadow prices” while in physics,
they can represent concrete physical quantities. Mathematically, Lagrange multipliers can
be viewed as rates of change of the optimal cost as the level of constraint changes. These
types of results are called envelop theorems in the literature. Next, we state, without proof,
the fundamental envelop theorem.

Theorem 1.7. Consider an NLP with no inequality constraints (p =0) and J(0) € C* and
convex. Let (0*,n%) be a local minimum and Lagrange multiplier, respectively, satisfying
the KKT conditions and condition (1.28). Moreoever, consider the family of continuous
non-linear problems

minJ(0), 0 eRY (1.29a)
s.t. h(@)=u (1.29b)

parameterized by u e RY. Then there exists an open sphere S centred at u=0 such that
for every u€s, there exist 0(u) eR? and n(u) €RY such that 6(u) is the location of
a local minimum of the above NLP and n(u) the corresponding Lagrange multiplier.
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Furthermore, 6(u),n(u) are continuously differentiable functions within S and we have
6(0) =6*,n(0) =n*. In addition, for all u € S,

VuF (u) =-n(u),
where F(u)=J(6(u)) is the optimal cost of the problem at value u.

In the case of inequality constraints, evidently {6: g(0) <0} c{6: g(0) <u} foru > 0.
Thus, the optimal cost value of the modified problem must satisfy F(u) < F(0), for F(u)
defined as in Theorem 1.7. For all inactive inequality constraints, 4; =0, and for all active
constraints, A; > 0, indicating a potential marginal decrease in the cost function as a result
of increased resources.

Example 1.8. A company has a budget of $10,000 for advertising, all of which must
be spent. It costs $3,000 per minute to advertise on television and $1,000 per minute to
advertise on radio. If the company buys x minutes of television advertising and y minutes
of radio advertising, its revenue in thousands of dollars is determined by the company’s
data-mining oracle/statistician to be reasonably approximated by the function

Fx,y)==2x* = y? +xy +8x + 3.
We can find the best solution to maximize profit solving the minimization problem:

min  f(x,y)=2x>+y> —xy - 8x -3y
x,yeR

s.t. h(x,y)=3x+y—-10=0

gi(x,y)=—x<0

&2(x,y)=-y <0,

where f and & are expressed in units of thousands of dollars. The Lagrangian is
L(x,y,4,1) =2x +y —xy = 8x =3y + A1 (—x) + L2(-y) +n(3x +y - 10),

and Vi, ) L(x,y,4,n)=(4x—-y—-8-A41+3n,2y -x-3-Ar+ n)T. By the first KKT con-
dition, a local minimum (x*,y*) satisfies V(. ,)L(x",y",2%,7") =0, which gives the
following simultaneous equations:

4x" —y"=8-27+3n"=0
2y" —x"=3-,+n" =0.

There are four combinations of g;(x) and g, (x) being active/inactive.

Suppose both inequality constraints are inactive, so that complementary slackness
gives A7 =45 =0. Together with the equality constraint, this gives three equations in
three unknowns x*, y*,n*. Their solutions yields the KKT point (x*,y*,4},45,7°)" =
(g—g, g, 0,0, %)T. This point satisfies a constraint qualification since the function %(x, y) is
linear, so it is a KKT point, and is thus a candidate for a local minimum. Furthermore, we

haVe

which is positive definite, and therefore is positive semi-definite (a sufficient condition for
a function to be convex), thus f is convex and the KKT point is the unique global minimum
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of f, and is therefore the unique global maximum of the original maximization problem.
The company can therefore maximize its revenue by purchasing % minutes of television
time and % minutes of radio time. Since we have found the unique global maximum of the
optimization problem, we do not need to search for any other KKT points.

Now suppose you have in front of you this solution and the company boss puts you “on
the spot” during a meeting and asks for an estimate of the extra revenue which would be
generated if she spent an extra $1,000 on advertising, what would be a reasonable answer?

Instead of solving again the problem with the budget changed to $11,000, you can use
Theorem 1.7: —n is the instantaneous rate of change of the minimum cost function value
F(u) as a function of the change in the level of constraint. Here —n* =—-n(0) =-0.25.
In terms of the original maximization problem, this translates to an increase of $250 to
the maximum revenue that can be generated if the the advertising budget is increased by
$1,000. Thus, knowing n* =.25 will be enough for you to answer promptly “Madam, an
extra expense of $1,000 can only provide an extra revenue around $250. Actually, we would
be better off decreasing the advertising budget.” 36K

1.4 NUMERICAL METHODS FOR CONSTRAINED OPTIMIZATION

It should be apparent that even for seemingly small dimensions, finding all KKT points
of an NLP may be an infeasible task. As in the case of unconstrained optimization, one
often uses numerical iterative procedures to approximate the solution. We will now mention
some of the methods that extend the simple recursive procedure (1.21). The main idea of
the methods is to either approximate or reformulate the problem in terms of unconstrained
optimization and then use an appropriate numerical algorithm.

Penalty Methods. These methods modify the original performance function to penalize
the extent to which the constraints are not satisfied. Let || - || denote the Euclidean norm,
then the penalized function is defined:

Ja(6)=J()+ %(||g(9)+||2+ |1R(6)]1), (1.30)

where g(6)+=(g1(0)+,...,8;(0)+)7, and g;(6)+ =max(0, g;(6)).

Theorem 1.8. Consider an NLP and let {a,,} be an increasing sequence such thatlim,, a,, =
0. For ary, given, let 8,, be the location of the minimum of J ,, (), i.e., let 6, = argmin J 5, (6).
If {6, } has an accumulation point 6* and a constraint qualification holds at 0%, then 6 is
(feasible and) stationary for the NLP. Moreover, if A*,n" are the Lagrange multipliers for
6%, then

A =nh_r)§o @y (8(60n))+s Tl*znlgrgoa'n h(6y),

and for eachi=1,...,j, A7 20and A7 =0 if g;(6") <O0.

Figure 1.4 illustrates the idea of penalizing the unsatisfaction of the constraint. Here J () =
62, and the constraint is @ > 3. Naturally for this example direct inspection yields that (a)
the constraint must be active at the optimal value (because the unconstrained optimum is
infeasible), and (b) thus 6* = 3. The function J, (6) looks like J(0), except that the segment
of the curve to the left of 6 =3 (in the infeasible region) is “lifted” more dramatically as «
increases.
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Figure 1.8. Functions J,(60), =0, 1,5, 10.

The actual optimal values for the consecutive penalties are 0.0,1.4,2.5, and 2.8. It
follows from Theorem 1.8 that as @ — oo this sequence converges to the optimal value.
Theorem 1.8 requires solving each unconstrained problem minJ,, (6) exactly. However,
this is often not possible, so one may use a gradient—based iterative method, for example,
in order to approximate the solution 6,,. This is often referred to as “inexact optimization”
for each step.

Numerical methods with inexact optimization typically use 6}, =6} — € VJq, (HZ)T,
withk=1,2,...,T,, for minimizing J,, (0) with respect to 6. The terminal time 7, is either
chosen to satisfy a stopping criterion, or sometimes an increasing sequence 7,, — oo is used.
The idea is to approach the true solutions for the subsidiary problems as n increases, while
using fewer iterations at first. The algorithm is

0 =08 — € Vg, (0D k=0,...T, -1 (1.31a)
o5 =67 (1.31b)
Opel =@y + 05, (1.31¢)

where ), §,, =+co, and

Vo, (0) =VoJ (0n) +@n(8(0n) "VE(O)L(jg(0,) 1150} + 1 (0n) " VA(6,)). (1.32)

Under appropriate conditions, the sequence 0" will converge to the constrained optimum.
Different stopping schemes yield different overall rates of convergence. Notice that setting
the initial value for step n + 1 as the final value for the previous step is more convenient than
re-initializing, provided that the final estimate 67. is indeed close to the exact optimal value
for J,, . Algorithm 1.1 corresponds to the updatlng scheme in (1.31).

When T, is increasing, convergence of the auxiliary optimization problem for @, ensures
that the end point 9" gets closer to the minimum of J,, ; however, it also implies longer
running times for Algorlthm 1.1 than using a constant value. Indeed, the running time for
this algorithm is proportional to 3., T,,, considering that each iteration inside the for
loop has constant running time. Here, T represents the stopping time, which is usually
dependent on the current values of the gradients and consecutive end points 9%!. Amortized
analysis yields that the running time per (outer) iteration is the average of the consecu-
tive lengths 7,,, which grows as n — oo unless 7,, are constant. This may produce slow
algorithms.
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Figure 1.9. Visualization of the projection algorithm.

Algorithm 1.1 Penalty method

Read cost and constraint functions J, g, h.
Pre-define the increasing function ALPHA (7).
Pre-define the non-decreasing sequence 7,.
Pre-define the function GRAD(«, 0) that returns V.J, (6) in (1.32)
Initialize 6[0, 0], @y =ALPHA(0),n=0
while (not stopping-condition) do

for (k=0,...,7,-1)do

O[n, k+1]=0[n, k] — €, GraD(a,,, 0[n, k])

0[n+1,0]=0[n,T,]

@p+1 = ALPHA(R + 1)

ne—n+l1

Alternatively, one can introduce a two-timescale method. Let T, = 1 and suppose that
ay, grows ever so slowly that it “looks” constant for the iteration in 6, when using Taylor
expansions. The corresponding algorithm is of the form

On+1 =0, _gnVJarn (en)T (1.33a)
Uil =y + 0y, (1.33b)

with 6,6, = 0, )} 6, =+00, and VJ,, (6,,) as in (1.32). A convergence proof for this scheme
with fixed €, 6, is provided in Theorem 2.12. For a treatment of general convergence results
for two-timescale algorithms we refer to [222]. Algorithm 1.2 shows the pseudocode for the
two-timescale implementation of the penalty method. In terms of the running time, it is now
linear in the number of iterations performed in the while loop. However convergence of the
two-timescale in terms of the stopping time 7 may be slower than Algorithm 1.1 because a,
grows now very slowly. Inspecting Figure 1.4 it becomes apparent why the growth-rate of
ay, has to be chosen with care: if «,, is too large, the penalty may push the algorithm far to
the right (and away from the solution) and thus renders the method numerically inefficient.

Projection Methods. Gradient projection methods iterate successive solutions in the direc-
tion of improvement of the cost function (descent directions) where the value at each iter-
ation remains always feasible. The projection method was introduced in [130, 131] and
independently thereof in [202]. In the literature, the projection method also goes under
the name Goldstein-Levitin-Polyak projection method, see [29, 141]. The algorithm is in
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Algorithm 1.2 Penalty method: Two-timescale

Read cost and constraint functions J, g, h.
Pre-define the decreasing function DeLTA (7).
Pre-define the non-decreasing sequence 7,.
Pre-define the function Grap(a, 6) that returns VJ . (0) in (1.32)
Initialize 0y, a9 =ALPHA(0),n=0
while (not stopping-condition) do
0n+1 =0, — €, GRAD(ay, 01, k])
ay =ap+DELTA(N)
ne—n+l1

general form:
Opi1 =60, —€,VJ(0,)" (1.34a)

Ons1 =Tlg (én+1), (1.34b)

where ITg(v) is the projection of the vector v € R? onto the set ®; and for ® c R a closed
convex set, the projection I1g on © is defined as

e (x) = arg min ||x — z||. (1.35)
z€®

In words, I1g(v) is the point closest to v in ® in Euclidean distance. Figure 1.9 (left) shows
the geometric interpretation of the algorithm.

For mathematical analysis of the projection algorithm the following representation of
the projection version of the gradient descent algorithm will be used in later chapters

Ops1=0n — €,(VJI(0,) + Z(€n, 0, =V I (01))), (1.36)
where where Z(€,,6,,—VJ(6,)) is the “projection force” that keeps the algorithm on ©.
Specifically, if 8,,+1 € ©, then

Z(€&n, 0n, —VJ(0,)) =0,

and otherwise

1
Z(€n 00~V (0)) = — (60 = VI (0) ~Tlo (64 = VI (0))).  (137)
€n
Note that by (1.35) the projection force on a convex set at some point 6 € © is by construction
no larger than the unconstrained increment given by the gradient at 6 times the gain size,
that is,

1Z(n,0,=VJ (O <n|IVI(O)II, (1.38)

for 7 > 0, and that the projection force is monotone decreasing in the gain size
1Z(n,0,-VI(ONI <11Z(#,0,-VI(O))I, (1.39)

for n <17, which stems from the fact that the force pushing the update outside of © is the
negative gradient scaled by the gain size, and is therefore monotone decreasing in the gain
size.

The actual evaluation of the projection operation is usually the main computational
burden for each step in the algorithm. See, for example, [77], where the projection onto a
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simplex is provided. The simplest case is that of projection on a hypercube or a hyperball,
which are detailed in the following examples.

Example 1.9. In case © is a d-dimensional hypercube, i.e., ® = [-M, M]? for some finite
M, the projection is easily obtained through

T
HM(Q) = H[—M,M]d (0) = (max(@i, _M)I{H,-SO} +min(6i, M)l{()iz()} 1<i< d) .

In the special case of the projection on a hypercube we call the projection a truncation
(on each coordinate). We call the constraint set ® box constraints. Note that ® can be
encoded in the KKT setting, see (1.23), through g;(0) =6; — M and g;+4(0) =-0; — M, for
1<i<d. 36K

Example 1.10. In case © is a d-dimensional ball around the origin of radius » > 0, i.e.,
®=B, :={0eR:||0]| <r}, (1.40)
the projection is obtained by rescaling vectors ourside of B,:

0/10| if0¢B,,
1T, (9) ;:nB,(e)z{ g /0“ I focr. (1.41)

Note that B, can be encoded in KKT setting, see (1.23), through g(0) =||0|| —r. HK

In the following we consider NLP’s without equality constraints, in which case the NLP
becomes
min J (6), O={0eR?: g(h) <0} (1.42)
€

and solutions are characterized by the KKT conditions.

Before stating (a version) of the convergence result, we will motivate the result by the
following consideration. Suppose that {6, } is obtained via (1.34), then the following cases
can occur: (i) the minimizer 6* is an inner point of ® and the algorithm will (after possibly
finitely many projections) stay inside ®, and will behave just like the unconstrained version;
(i) the unconstrained minimizer 6* lies outside of ® (or on the boundary of ®) and the
algorithm will eventually converge to a point 8* on the boundary of ®; and finally (iii) the
problem may be ill-posed so that 8,, has no accumulation points at all (e.g., minimizing
J(0)= —62). Note that case (iii) is ruled out if we assume © to be compact which is a
consequence of the Weierstrass theorem, see Theorem A.2 in Appendix A. Before turning
to the study of the behavior of the algorithm, we provide some details on case (ii). For ease
of argument we consider the fixed e version of the algorithm. Suppose that 8* lies outside
0, and suppose that the algorithm converges to a point 6’, then VJ(0,,) + Z(€, 6, -VJ(6,))
tends to zero as n tends to infinity. Assume, for simplicity, that only one constraint g; is
active at ¢, i.e., g(0’) :=g;(6’) =0. Then, the descent direction in 8’ is —VJ(6’)7. This
implies that —VJ(8’)T is pointing outward of ©. For the algorithm to have 6’ as fixed
point, it must hold that the projection of 6’ =6’ —eVJ(6’)T on @ is ¢’ itself. This means
that §” — 0’ is perpendicular to the tangent plane (an object in R%*!) to ® at #’. Since O is
given as {# € R?: g(6) <0}, we know that Vg(6) is a the projection of the normal vector
to the tangent plane onto the parameter space R, and due to the inequality we have that
Vg(60) is pointing outward of ©. This shows that —VJ(6’)T and Vg(@’) are co-linear and
pointing in the same direction. Hence, —VJ(6')T =AVg(6’), for some A > 0, as illustrated in
Figure 1.9. We conclude that 8" is a KK T point. Note that it thus holds that Z (e, 8", —VJ(6"))

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

28 OPTIMIZATION AND LEARNING

and Vg(0’) are co-linear for all €; however, they point in opposite directions. To summarize,
for VJ(0") #0 and g(6’) =0, we have AVg(6') =-VJ(0"), which shows that 8" is a KKT
point for (1.42) and under appropriate smoothness conditions a local minimizer for (1.42).

In the presence of bias, it may happen that the biased version is co-linear with the
projection force at some point 6, so that the algorithm does not advance any more (i.e.,
0p+m =0, for m > 1) while the gradient is not co-linear with the projection force and 6,, is
thus not a KKT point. As illustrating example for this phenomena consider the coordinate
descent gradient

G(0)=e;(0J(0)/06;),

where e; is the jth unit vector and

Jj=argmax |dJ(6)/96;|.
L

It is easily seen that —G(0) is a descent direction and, in general, a biased version of
—VJ(60). Let ® be a hypercube. Suppose that 6,, is the first time that the algorithm steps
outside hyercube ©, so that §, is on the surface of the hypercube. Since G(6) is by
construction perpendicular to the surface of the hypercube, this implies that algorithm gets
stuck at @,,, i.e., 6,, = 0,1 for k > 0. Letting k now tend to oo, neither the value of 0,,4% NOT
that of the bias will change. Hence, the bias cannot tend to zero and we can rule this out
by imposing the condition that 3, tends to zero as n tends to co. If, on the other hand, the
algorithm comes to a halt at §,, with 8,, =0, we have found a KKT point.
We now present the theorem.

Theorem 1.9. Consider the NLP

gl'gJ(e), O={0eR?: g(h) <0} (1.43)

with © being a compact and convex set, and let J(0) € C* with L denoting the uniform
Lipschtiz constant of VJ on ©. Consider the algorithm

6)~n+1 =0, — En(Vj(en)T +ﬂn)

On1 =Ilg (§n+1),

with either

Zenzoo,Zen||,8n(9n)||<oo and Zeﬁ<00,
n=1 n

n

where €, > 0 for all n, or
0<e,=€<2/L, forn>0, and lim ||B8,||=0.
n—oo

Then every accumulation point of {0, } of this algorithm is a KKT-point of the NLP in
(1.43).

Proof. We proof the theorem in case of no bias. The extension to the biased case follows
the line of argument provided in the discussion prior to the theorem.

As © is compact, then by the Bolzano-Weierstrass theorem, {6, } has accumulation
points. Let 8* be an accumulation point of {6,,} and assume that 6* is an inner point of ©.
Let 6,, :=0,,, denote the subsequence converging toward 6*. Then, for N sufficiently large,
0,, €O, for m > N, for some compact proper subset ® of @ (i.e., © contains no boundary
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points of ®). Continuity of the gradient and the Hessian implies that the gradient as well
as the Hessian are bounded on ®. We now apply the arguments put forward in the proof of
Theorem 1.3 for the decreasing € case and Theorem 1.4 for the fixed € case, to show that

nll_r)r‘l)o VJ(0,,)=0=VJ(6"),
which shows that 6" is a stationary point of J(6). We have assumed that 6* is an inner point
of ©, so that g;(6*) <0 for all 7, and it follows that 6* is a KKT point for (1.42).

Now consider the case that 8* lies on the boundary of ®. Convergence of 6,, implies that
IVJ(0:) +Z(€, 00, —VJI(0,,))]| converges toward zero. Note that projection on a convex
set is continuous; see Exercise 1.5. By continuity of both gradient and projection it holds
that

lim ||VJ(0,,) + Z(€, 0, =VI(0,)|| = IVI(07) + Z(€,6%,-VI(67))|| =0. (1.44)

For € sufficiently small, we apply Theorem 1.4 to conclude from the above that either
VJ(6*) =0 (and therefore Z (€, 8, —VJ(6*)) =0) and g; (6*) =0, or VJ(6*) # 0 in which case
the negative gradient points outward from ®. For the projection force to counter balance
-VJ(6%), the negative gradient has to be perpendicular to the projection of hyperplane
spanned by any g; at 6* onto R?. As, moreover the Vg;(6*)’s are pointing outward of ©,
we have that —VJ(6%) = 1;Vg;(0") for some constants A; > 0 where the sum runs through
the indices of the active constraints. This shows that 8" is a KKT point for (1.42).

For the decreasing € we take N such that ¢, <2/L for n>N, and we use
1Z(en, 0, —VIONI <1 Z(€, 0, -VI(0,))]| for n> N, which stems from the fact that
the projection force is monotone in the gain size; see (1.39). The proof then follows from
(1.44).

To conclude the proof, we evoke Theorem 1.5, to show that any KKT point for (1.42) is
the location of a local minimum for the NLP in (1.42). |

Remark 1.2. In case that ® represents hard constraints so that J(6) is not defined outside
of ®, the gradient of J(60) is only defined on interior points of ®. As on the boundary of ®
only the directional derivatives along directions pointing inward of ® are defined (and not
the gradient as such), the projection method as presented here cannot be straightforwardly
applied.

Remark 1.3. Unless the constraint set ® is of a particular nice and simple form (e.g., a “box”
or a “ball”), the projection step may require numerical approximation methods (see Exam-
ple 1.11 below). In general, the projection method provides an analytically attractive tool that
we will use extensively in the rest of this book. Indeed, many technical assumptions become
less restrictive if the algorithm is projected onto a bounded set. For example, the condition
that the gradient is bounded along trajectories in Theorem 1.3 rules out even a quadratic form
of J(0), but there is nothing wrong with a quadratic function as long as the trajectories remain
inside a bounded set. In many cases, we study the projected version of the algorithm restrict-
ing the solutions {6, } to a hypothetical large hyperball; see Example 1.10. If the projected
algorithm has accumulation points that are independent of the hyperball, then theoretical
arguments can be used to establish that the original (unprojected) version has the same limit-
ing behavior. It is worth mentioning that the projection method is well-studied in the area of
deterministic optimization. A method for finding a projection on a general convex set through
iterative projection on simpler convex sets is Dykstra’s method [43], and for an exhaustive
overview of these kind of methods we refer to [67]. It is worth noting that projection can
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be avoided by moving only along an update direction that stays inside the feasible set. An
example of an algorithm that elaborates on this idea and that is popular in machine learning
is the Frank-Wolfe algorithm, which uses a linear approximation of the objective for finding
a descent direction that stays inside the feasible set; see [99].

We conclude this section on the projection method with a discussion on finding (approx-
imate) projections when the feasible set is not of a simple form and the projection operation
cannot be expressed analytically in closed form.

Example 1.11. In the case that the constraint function g is affine, Example 4.3 in Chapter 3
of [31] shows that the dual of this problem leads to a much simpler optimization problem with
only positivity constraints. We now refer to [190] where a method is proposed for general
g€ C? using the fact that 8,, € ®, and 0,41 — 0, is of order €, so a Taylor approximation can
be used to linearize the constraints around 6,,:

g(x) ~g(0,) +Vg(0n)(x —6p).
Let v =0,.. The constraint x € ® is approximated by the constraint
8(0n) +Vg(0,)x <Vg(6,)0,.

CallA=Vg(6,)",and b = Af, — g(6,). The approximated, or “surrogate” subsidiary prob-
lem becomes

X

min (%xTx - vTx) (1.45)
st. Ax<b, (1.46)
The Lagrangian for this subsidiary problem is
L(x, 1) = %xTx —vix+u Ax—u'h.

Using Lagrange duality (Theorem 1.11), we seek max, o (min,cga L(x, 11)). Because of
the quadratic form, we can solve the minimization step analytically by setting the gradient
to zero, which readily yields x*(u) =v — AT u. Then the subsidiary problem is

1
max |=(v=AT)T(v=ATu)-b"ul,
pu=0 2

which, after replacing the appropriate values, gives another quadratic maximization problem
with a projection to the positive real numbers. Finding the zero of the derivative of this
function, however, now requires an inversion of matrices depending on g(6,) and Vg(6,,),
which is generally computationally expensive. Instead, [190] propose a recursive gradient
method to solve for u. With this, one sets 0,1 =v — AT u* =0,,1 — Vg(8,) 1"

The above analysis requires exact optimization for the subsidiary problem (i.e., solving
1), but this is often not possible, so inexact optimization can be used. Let 7, be the number
of iterations used to approximate u* at step n of the procedure. Then the algorithm is

One1=0n—€,VJI(0,)7 (1.47a)

My =max (0, 1} +6x (VE(0,)VE(0)" 1 +Vg(0) (pe1 — 0,) — 8(01))):
k=0,...,T,—1 (1.47b)

On1 = én+1 - Vg(en)TH% . (1.47¢)
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Indeed, recalling our definitions A =Vg(6,)T,v=0,,, and b = Af, — g(6,,) one notes that
the second iteration above refers to the approximate solution of the subsidiary problem.
Because of the approximation of the non-linear constraint, this new point may be
infeasible, but under appropriate conditions on 7},, €, d,, this algorithm will converge. It is
also possible to adapt this algorithm to a two-timescale version. 36K

Multiplier Methods. These methods are based on the following result for equality con-
straint problems; for a proof, we refer to [31].

Theorem 1.10. Consider an equality constrained problem. Let
0, =arg mgin L(0,1,)
Mn+1 =T1n +pnh(9:),

for a sequence p, — oo, then (6},n,) — (0*,1n") a local minimum and a KKT point of
(1.23).

The inexact multipliers methods use an approximation to 6}, via Theorem 1.3. Let 7},
be a stopping time for the approximation at step n. Then the algorithm is

Op =07 — Vo L0}, 1n)" =07 —€x (Vo (07) " +Voh(6])1n);

k=0,...,T, (1.48a)
M+l =M+ prh(07, ). (1.48b)

This method can be applied to inequality constraints as well via a transformation; see [31].
The choice of 7,, will determine the convergence properties. It is common to either use a
stopping criterion in terms of V.£ ~ 0, or to use an increasing sequence 7,,. Compared with
the analysis of the penalty method, one can also deduce that the amortized running time
will be an average of the batch lengths 7;,, which is an increasing function of n.

Algorithm 1.3 Multiplier method

Read cost and constraint functions J, 4.
Pre-define the increasing function Ruo(n).
Pre-define the non-decreasing sequence 7;,.
Initialize 6[0, 0], ., po =RHO(0),n=0
while (not stopping-condition) do
for (k=0,...,7,—-1)do
O[n, k+1]=6[n, k] - e (w(e)T(e[n, k] +Vh(6[n, k]) n,,)
0[n+1,0]=0[n,T,]

Must = T+ Ruto(n) h(0[n+1,0])
ne—n+1

A two-timescale algorithm can be implemented here, like for the penalty method, using
T, =1 but making p,, grow “slower” than €, decreases so that the primal variable behaves
locally in bounded intervals as if it was driven with a constant dual variable. This algorithm
will have a constant amortized running time.

Lagrange Duality Methods. In both penalty and multiplier methods, the theory establishes
convergence only when an exact minimization takes place for given multiplier values. The
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Figure 1.10. Saddle point illustration for 6, A on the axes, no equality constraints.

numerical approximations often use inexact minimization by updating the decision variable
0, for T,, iterations and then updating the multipliers. However, there is no guarantee that
the algorithm will converge, and it is not clear how to tune the parameter 7, for better
convergence.

An important class of methods is based on Lagrange Duality Theory. It is straightforward
to note that the solution to (1.23) is the same as the solution of the minmax problem:

J(O) ifg(0) <0,h(6)=0,

+00 otherwise.

min max £(6;4,n)= min
9eRd 120,17 geRd

However, the above minmax problem is clearly not useful for an iterative algorithm. Instead,
we use the following strong result.

Theorem 1.11 (Saddle Point Theorem). For a given convex NLP, the triplet (0%, 1", n%)
is a KKT point if and only if it is a saddle point of the Lagrangian, that is,

L0, 4,m) < L(07,27,07) < L(6,27,1")
for every @ e R4, A(>0) e RP, 5 e RY. Furthermore,

min max £(0;4,n)= max min £(60;4,7).
6eRd 120,17 20,7 geR4
The saddle point theorem can be used to maximize first over the multipliers, and then

perform a minimization over the decision variables. This is the motivation for the Uzawa
algorithm [304]:

Ony1 =arg mein£(0, Ans 1) (1.49a)
Ant1 =4, +max (0, 4, + GnV/IL(enH , An, Un)T) (1.49b)
Mn+1 =77n+€nvn-£(0n+la/1m 77n)T, (1.49c¢)

where V, £(0,4,7)T =g(0) and V, L£(0,4,17)T = h(6). The max(0, -) is a component-wise
max operation on the vector.

(continued...)
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semi-stochastic gradient, 346
steepest descent method, 11
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art of modelling, 34
Arzela-Ascoli theorem, 55, 362
asymptotically stable point, 44
asymptotic convergence rate, 155
asymptotic efficiency, 155
atom, 379

ball constraints, 27
Banach space, 241, 374
batching, 157
consecutive, 85, 107, 125
independent, 86, 107
parallel, 86
streaming, 85, 125
bifurcation, 44
diagram, 44

block-coordinate descent, 347
blocked after service, 308
Borel field, 365

box constraints, 27

Brownian motion, 144
budget allocation, 157

cadlag, 373
Cauchy’s method, 11
Cauchy term, 363
center of mass, 51
Cesaro sum, 364
change of measure, 260
clipping, 64, 106, 107
C", xii, 4
coercivity

for an NLP, 62

NLP, 70

vector field, 62
commuting condition (CC), 307
complementary slackness, 19
computational budget, 154
concave function, 5, 6
constrained optimization, 18
constraint

active, 19

hard, 35, 194

inactive, 19

qualification, 19

soft, 35
continuous mapping theorem, 371
contraction mapping, 108
control variates, 178
convergence

almost surely, 370

in distribution, 370

y-norm, 374

in probability, 370

total variation, 371

weak, 370
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function, 6
non-linear problem (NLP), 19
problem, 19
statistical test, 36
coordinate descent, 28, 347
correlated noise model, 122
coupling, 379
cumulative distribution function (cdf), xii,
368
cycles
of a regenerative process, 377

density
probability, 368
Riemann densities, 213-215
derivative-free algorithm, 301
descent direction, 10
deviation matrix, 334
directional monotone, 80
discrete event dynamic system (DEDS),
209
discrete event system (DES), 209
distribution
Bernoulli, 173
Beta, 226
exponential, 168
Gamma, 181
Lomax, 171
Maxwell, 181
normal, 170, 174, 182, 216
Pareto type I, 171, 182, 240-241, 328
Pareto type II, 171, 195, 199, 200
Poisson, 173
Weibull, 170, 173
distribution function, 368
dominated convergence theorem, 371
dynamical system, 42

endogenuous noise model, 122
equicontinuity, 55

equilibrium point, 43

ergodic projector, 381
Euclidean norm, 3

Euler method, 40

Euler scheme, 48

exogenous noise model, 100

feasible
active constraint, 19
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point, 19
region, 19
fictitious game, 98
finite difference (FD), 17
convergence, 17
stochastic, 105
finite horizon problem, 186
first-order optimality condition, 6, 19
Fisher information matrix, 340
fixed-point mapping, 108
Fubini’s theorem, 367
functional central limit theorem, 144

gain sequence, 9
Armijo’s rules, 11
generic decreasing, 94
non-standard examples, 94
optimal, 94, 152
variations, 94
Wolfe’s conditions, 11
gain size, 9
Gamma function, 226
Gaussian smoothed functional
approximation (GSFA), 300
generalized methods of moments (GMoM),
342
iterated GMoM, 343
generalized Semi-Markov process (GSMP),
305
global
maximum, 5
minimum, 5
globally asymptotically stable point, 44
global optimization, 96, 299
golden rule of optimization, 34
gradient, xii, 4
descent method, 11
vanishing, 9

Hadarmard Matrix, 298
Hahn-Jordan decomposition, 180, 240,
242,367
hard constraint, 35
Harris
ergodic, 379
recurrent, 378
hazard rate function, 306
Hessian, xii, 4
approximate, 94, 298
Hurwitz
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condition, 52 location of minimum, 5
matrix, 45 logisitic regression, 344

hyperball, 27 Lyapunov function, 52

hypercube, 27

hyperparameter, 34 MacLaurin series, 363

Markov chain, 378

importance sampling, 177, 259 aperiodicity, 379, 381

induced measure, 367 atom, 379

infinite horizon problem, 188 d-cycle, 378

infinitesimal perturbation analysis (IPA), ergodic, 381

167, 303 ergodic projector, 381

interpolation process, 53 Harris ergodic, 378
shifted, 53 irreducible, 381

inward normals, 48, 49, 50, 51 kernel, 316

period, 378

Karush-Kuhn-Tucker (KKT), 19 ¢-irreducible, 378
point, 19 Poisson equation, 381
second-order conditions, 21 positive recurrent, 381

Kesten’s rule, 94 transition kernel, 378

Kiefer-Wolfowitz procedure, 105 unichain, 382

uniformly ¢-recurrent, 378

Lagrange martingale difference noise model, 100
Duality Method, 31 matrix
multipliers, 19 Hurwitz, 45
term, 363 positive (negative) definite, 4

Landau symbol, xii semi-definite, 4

lattice distribution, 377 maximum

learning global, 5
algorithm, 80 local, 5
Q-learning, 347-348 location, 5
reinforced, 82 proper, 5

learning rate, 9 strict, 5

least mean square (LMS) algorithm, 82 value, 5

Lebesgue measure, 366 maximum likelihood estimation (MLE), 339

level set, 4 mean value theorem, 362

L’Hopital’s rule, 290, 363 measurable

limit process, 41 mapping, 365

Lindley recursion, 86, 136, 187 space, 365

linear regression, 81 measure, 366

Lipschitz absolute, 367
almost surely continuous, 198 absolutely continuous, 367
constant, 13, 361 finite, 366
continuity, 13, 361 induced, 367
continuity of Markov kernel, 316 integral, 225
continuity of transition kernel, 316 measurable space, 366
modulus, 198 u-integral, 366

local non-negative, 366
maximum, 5 probability, 367
minimum, 5 Radon-Nikodym, 367

location of maximum, 5 Radon-Nykodym derivative, 225
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regular, 368

o -finite, 366

signed, 240, 366
measurable space, 366
measure-valued differentiation (MVD),

179

randomized, 232
methods of moments (MoM), 342
metric, 360

complete, 361

complete metric space, 361

pseudo, 360

space, 360
mini-batching, 157
minimum

global, 5

local, 5

location, 5

proper, 5

strict, 5

value, 5
momentum method, 346
p-integral, 366
multiplier method, 31

Nesterov’s accelerated gradient, 346
neural network, 86
Newton-Raphson method, 10
Newton’s method, 10
NLP, 3, 18
convex, 18
noise
correlated, 104
independent, 104
martingale difference noise model, 100
unpredictable, 104
non-interruption condition, 304
non-lattice distribution, 377
non-linear problem (NLP), 3, 18, 19
convex, 18
norm, 360
y-norm, 373
total variation, 370
normal vector, 357
y-norm, 214, 242, 373
convergence, 374

observed feedback, 77
optimality condition
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first-order, 6
second-order, 6
ordinary differential equations (ODEjs)
asymptotically stable point, 44
autonomous, 42
bifurcation, 44
blows up in finite time, 43
bounded trajectories, 51
domain of attraction, 44
equilibrium point, 43
globally asymptotically stable point, 44
initial condition, 42
projected, 50
projection, 48
stable point, 44
stationary point, 43
surrogate, 74
target, 41
trajectory, 42
unstable point, 44
Ornstein-Uhlenbeck process, 147

parameter
location, 200-201
scale, 200-201
penalty method, 23
piecewise differentiable mapping, 201
Poisson equation, 382
Polish space, 361
Polyak-Rupert averaging, 95, 282
probability
measure, 367
space, 367
probability density function (pdf), xii, 368
problem
convex, 18
linear, 3
NLP, 3, 18
non-linear, 3
projected gradient, 38
projection, 26, 158
approximate, 29
directional derivative, 49
Dykstra’s method, 29
Goldstein-Levitin-Polyak, 26
increasing sequence, 95
issues with bias, 28
method, 26
ODE, 50
proper maximum, 5
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Q-learning, 347-348
quantiles, 113, 127, 200
quantile sensitivity, 200
quantile updating, 113
queuing
queue length
network, DES, 308
single server, 327, 331
single server, IPA stationary, 270
single server, SF random horizon, 262
stationary, 89
tandem line, DES, 307
transient, 86
waiting times
finite horizon, 86, 187
infinite horizon, 188
IPA, finite horizon, 206
MVD, 318, 325
MVD, finite horizon, 233
random horizon, 190
SF, finite horizon, 223
stationary, 89, 136, 193

Radon-Nikodym derivative, 225, 367
random horizon problem, 190
randomization, 230
randomized MVD, 232
random variable, 365
regenerative, 377
classical, 377
process, 377
set, 379
regular measure, 368
reinforcement learning, 82, 347, 350
renewal times, 377
Riemann densities, 213-215
risk function, 154
Robbins-Monro theorem, 82
root finding, 79

(s, S) policy, 277
saddle point, 5
saddle point theorem, 32
sample average approach (SAA), 92, 177
score function (SF), 172

control variates, 178

product technique for, 223
second-order condition, 6
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selection rule, 304
set
closed, 360
open, 360
shifted interpolation process, 53
o-field, 365
simultaneous perturbation stochastic
approximation (SPSA), 295
Newton-Raphson, 298
single server queue, 193, 206, 305, 307
Skorohod representation, 372
smoothed perturbation analysis (SPA), 210,
287
Snell’s law, 6
soft constraint, 35
space
Banach, 374
measurable, 365, 366
metric, 360
Polish, 361
probability, 367
topological, 360
stable point, 44
static problem, 84
stationary point, 6
ODE, 43
stationary problem, 121, 192
statistical fitting, 79
statistical learning, 86
steepest descent method, 11
Stein’s equation, 300
stepsize, 9
stepsize sequence, 9
stochastic approximation (SA), 76
accelerated, 95
global optimization, 96, 299
robust, 95
stochastic counterpart, 91, 177
strictly convex non-linear problem, 19
strong coupling, 379
supervised learning, 4, 79
surrogate ODE, 74

taboo probability, 378

tangent hyperplane, 358

target ODE, 41

target tracking, 79

Taylor series, 363
Cauchy term, 363
Lagrange term, 363
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Taylor series (cont.)
MacLaurin series, 363
Taylor polynomial, 363

tightness
of measures, 372
of random variables, 372

topological space, 360

total variation norm, 370

transition kernel, 316

truncation, 27
avoiding projection in SA, 66
principle, 65, 106

two-armed bandit, 96

two-timescale, 25, 31

underlying process, 77, 120
uniformly
bounded, 362
continuous families of mappings, 362
continuous mappings, 362
¢-recurrent Markov chain, 378
unstable point, 44

value
of maximum, 5
of minimum, 5
value function, 382
vanishing
gradient, 9
update, 34, 70
variance control scheme, 107
vector field, 42
coercive, 62
target, 89, 120

Wald’s equality, 369

weak continuity, 238

weak convergence, 238

Weierstrass theorem, 359

weighted supremum norm, 214, 242
well-posed optimization ODE, 62
well-posed optimization problem, 61
well-posed problem, 33, 70

Wiener process, 144

Wolfe’s conditions, 11
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