
Contents

Preface ix

I Theory of Stochastic Optimization and Learning 1

1 Gradient-Based Methods for Deterministic
Continuous Optimization 3
1.1 Unconstrained Optimization . 3
1.2 Numerical Methods for Unconstrained Optimization 9
1.3 Constrained Optimization . 18
1.4 Numerical Methods for Constrained Optimization 23
1.5 Practical Considerations . 33
1.6 Exercises . 36

2 The Iterative Method Seen as an Ordinary Differential Equation 39
2.1 Motivation . 39
2.2 Stability of ODEs . 42
2.3 Projected ODEs . 48
2.4 On Boundedness of the Trajectories of an ODE 51
2.5 ODE Limit of Recursive Algorithms . 53
2.6 The ODE Method for Optimization and Learning 61
2.7 Specific Algorithms for Constrained Optimization 66
2.8 Practical Considerations . 70
2.9 Exercises . 71

3 Stochastic Approximation: An Introduction 76
3.1 Motivation . 76
3.2 Root Finding, Statistical Fitting, and Target Tracking 79
3.3 A Taxonomy for Stochastic Approximation 83
3.4 Overview on Stochastic Approximation 91
3.5 The Sample Average Approach . 91
3.6 Practical Considerations . 93
3.7 Exercises . 96

4 Stochastic Approximation: The Static Model 99
4.1 Martingale Difference Noise Model . 99
4.2 Analysis of Decreasing Stepsize SA . 101
4.3 Analysis of Constant Stepsize SA . 109
4.4 Practical Considerations . 114
4.5 Exercises . 115

vi CONTENTS

5 Stochastic Approximation: Markovian Dynamics 118
5.1 Long-Term Stationary Dynamics: Markovian Model 118
5.2 Analysis of the Decreasing Stepsize SA 123
5.3 Analysis of the Constant Stepsize SA . 129
5.4 Practical Considerations . 141
5.5 Exercises . 141

6 Asymptotic Efficiency 143
6.1 Motivation . 143
6.2 Functional CLT . 144
6.3 Asymptotic Efficiency . 154
6.4 Practical Considerations . 157
6.5 Exercises . 158

II Gradient Estimation 163

7 A Primer for Gradient Estimation 165
7.1 Motivation . 165
7.2 One-Dimensional Distributions . 166
7.3 A Taxonomy of Gradient Estimation . 186
7.4 Practical Considerations . 194
7.5 Exercises . 195

8 Gradient Estimation, Finite Horizon 197
8.1 Perturbation Analysis: IPA and SPA . 197
8.2 Distributional Approach: Basic Results and Techniques 213
8.3 The Score Function Method . 215
8.4 Measure-Valued Differentiation . 227
8.5 Practical Considerations . 244
8.6 Exercises . 245

9 Gradient Estimation, Markovian Dynamics 252
9.1 The Infinite Horizon Problem . 252
9.2 The Random Horizon Problem . 259
9.3 The Stationary Problem . 266
9.4 Practical Considerations . 272
9.5 Exercises . 272

III Selected Topics in Stochastic Approximation 275

10 Applications of Stochastic Approximation to Inventory Problems 277
10.1 Optimization Using MVD Gradient Estimation 277
10.2 Model Fitting (An IPA Application) . 285
10.3 Variations of the Model . 287

11 Pseudo-Gradient Methods 295
11.1 Simultaneous Perturbation Stochastic Approximation 295
11.2 Gaussian Smoothed Functional Approximation 300
11.3 Feasible Perturbed Parameter Values for SPSA and GSFA 301

CONTENTS vii

12 IPA for Discrete Event Systems 303
12.1 Discrete Event Systems . 303
12.2 The Commuting Condition . 307
12.3 Unbiasedness of IPA . 309
12.4 Sufficient Conditions for the Event Condition 314
12.5 Concluding Remarks . 315

13 A Markov Operator Approach 316
13.1 The Finite Horizon Problem . 321
13.2 The Random Horizon Problem . 326
13.3 The Stationary Problem . 334
13.4 The Infinite Horizon Problem . 336

14 Stochastic Approximation in Statistics 339
14.1 The Score Function in Statistics . 339
14.2 Generalized Method of Moments . 342

15 Stochastic Gradient Techniques in AI and Machine Learning 344
15.1 Gradient-Based Approaches . 344
15.2 Q-Learning and Reinforcement Learning 347

IV Appendixes 353

A Analysis and Linear Algebra 355
A.1 Convexity . 355
A.2 Multidimensional Derivatives . 355
A.3 Geometric Interpretation of the Gradient 357
A.4 Weierstrass Theorem . 359
A.5 Positive and Negative Definite Matrices 360
A.6 Normed Spaces and Equicontinuity . 360
A.7 Lipschitz and Uniform Continuity . 361
A.8 Taylor Series Expansions . 362
A.9 L’Hôpital’s Rule . 363
A.10 Cesàro Limits . 364

B Probability Theory 365
B.1 Information Structure . 365
B.2 (Probability) Measures . 366
B.3 Expectations and Conditioning . 368
B.4 Convergence of Random Sequences . 369
B.5 𝑣-Norm Convergence of Measures . 373
B.6 Martingale Processes . 374
B.7 Regenerative Processes . 377

C Markov Chains 378
C.1 Harris Recurrence . 378
C.2 Normed Ergodicity and Central Limit Theorem 379
C.3 The Poisson Equation for Markov Chains in Discrete Time 381

viii CONTENTS

D Confidence Intervals 384
D.1 Independent and Identically Distributed Random Variables 384
D.2 Stationary Processes . 388
D.3 Markov Chains: Long-Term and Stationary Estimation 390

Bibliography 393

Index 415

Chapter One

Gradient-Based Methods for Deterministic

Continuous Optimization

This chapter presents a summary of salient results in deterministic optimization, particularly
focusing on numerical methods. For basic definitions, and results we refer to standard
textbooks.

1.1 UNCONSTRAINED OPTIMIZATION

Consider a cost function 𝐽 (𝜃), with 𝐽 : Θ ⊆R𝑑 ↦→R, where 𝜃 is a decision vector. Throughout
this monograph, we seek to the find the minimum of 𝐽 (𝜃) for 𝜃 ∈Θ. As is standard in the
literature, we are not only interested in the value of the global minimum (if it exists) but
also its location, i.e., we seek the solution 𝜃∗ to the problem

arg min
𝜃∈R𝑑

𝐽 (𝜃). (1.1)

In the case that the global minimum is attained at several locations, 𝜃∗ is one of these
locations. In the case that 𝐽 (·) is an (affine) linear mapping, the above optimization problem
is called a linear problem and it can be addressed with methods from the theory of linear
optimization. See, for example, [84, 85, 224, 235] for details. In the case that 𝐽 (·) is a
general “smooth” continuous real-valued function, the above problem is called a non-linear
problem and it is referred to as an NLP. The theory presented in this monograph is devoted
to the study of NLPs. It is worth noting that while the results presented here can also
be applied to linear problems, there are often more efficient methods available for linear
problems exploiting the linear nature of the problem.

We assume that R𝑑 is equipped with a norm denoted by | | · | |. Most results presented in
the following are independent of the choice of | | · | |. Occasionally, we will work with the
Euclidean norm on R𝑑 given by

‖𝑥‖ =
√
𝑥2

1 + . . . + 𝑥2
𝑑 ,

and when results only hold for this particular norm it will be stated in the text.

A particular class of applications arises when an input data vector 𝑥 and corresponding
output data vector ℎ(𝑥) is available. Letting 𝑓 (𝜃, 𝑥) denote some parametrized mapping
proposed for replacing the unknown mapping ℎ(𝑥), considering

𝐽 (𝜃, 𝑥) = ‖ 𝑓 (𝜃, 𝑥) − ℎ(𝑥)‖2

4 OPTIMIZATION AND LEARNING

3.0

2.5

2.0

1.5

1.0

0.0
–2.0 –1.5 –1.0 0.0–0.5

0.5

Figure 1.1. Plot showing various level curves for the function 𝑥2 + (𝑥 + 2)𝑦 + 1/(𝑦2 + 0.5).

and solving (1.1) for given 𝑥, yields then the best fit to the output. This is called supervised
learning in the literature. In this monograph, we will discuss classical optimization as well
as learning applications.

Definition 1.1. The level sets of a function 𝐽 : R𝑑 →R are defined for every level 𝛼 ∈R as:

L𝛼 (𝐽) = {𝜃 ∈R𝑑 : 𝐽 (𝜃) ≤ 𝛼}.

When no confusion arises, the notation will be simplified to L𝛼.

Notation. Denote the 𝑛-times continuously differentiable mappings from R𝑑 to R by C𝑛.
For 𝐽 ∈ C1, we denote the gradient of 𝐽 (·) by ∇𝐽 (·), and for 𝐽 ∈ C2, we denote the Hessian
of 𝐽 (·) by 𝐻𝐽 (·) =∇2𝐽 (·). Following standard notation, vectors in R𝑑 are column vectors.
For 𝑥 ∈R𝑑 , we denote the 𝑖-th element of 𝑥 by 𝑥𝑖 . In case of a sequence of vectors {𝑥𝑛}, with
𝑥𝑛 ∈R𝑑 , we denote the 𝑖-th element of 𝑥 by 𝑥𝑛,𝑖 . The gradient is a row vector with components
𝜕/𝜕𝜃𝑘 , 𝑘 = 1, . . . 𝑑. The Hessian is a 𝑑 × 𝑑 matrix with (𝑖, 𝑗)-components 𝜕2/𝜕𝜃𝑖𝜕𝜃 𝑗 . For
a vector 𝑣 ∈R𝑑 we write 𝑣 ≥ 0 if 𝑣𝑖 ≥ 0 for all components 𝑖 = 1, . . . , 𝑑.

A matrix 𝐵 ∈R𝑑×𝑑 is negative (positive) definite if 𝑣�𝐵𝑣 < (>)0 for all 𝑣 ∈R𝑑 with
𝑣 ≠ 0, where 𝑣� denotes the transpose of 𝑣. It is called “semi”-definite if the strict inequality
equality “<” is replaced by inequality “≤.” The notation 𝐵 < (>)0 is often used. A square
matrix 𝐵 is called symmetric if 𝐵 = 𝐵�. For symmetric matrices the following character-
ization of positive definiteness exists: if 𝐵 is symmetric, then 𝐵 > 0 if and only if all its
eigenvalues are strictly positive.

Remark 1.1. The visual interpretation of the gradient of a function will be very useful
in the rest of this book. Refer to Figure 1.1. This is a “topographical” visualization of a
two–dimensional function, where the shades of gray indicate height. Each of the level sets
defines a boundary (in the example, they are ellipses). The gradient of the function (in this
case, 𝑥2 + 2𝑦2) records the rate of growth of the function along each of the axes. Now, take
any point on a level set (refer to Figure 1.2). Because the function does not change along
this curve, then necessarily the gradient ∇𝐽 must point perpendicular to the curve (i.e., the

GRADIENT-BASED METHODS 5

Figure 1.2. Illustration of the gradient of a convex function at two points 𝜃 and 𝜃.

projection of the gradient on the curve is zero). For the example, it points outward in the
direction of growth.

Definition 1.2. A function 𝐽 : R𝑑 →R is called concave (convex) if for all 𝑥, 𝑦 ∈R𝑑 and
𝛼 ∈ (0, 1),

𝐽 (𝛼𝑥 + (1 −𝛼)𝑦) ≥ (≤) 𝛼𝐽 (𝑥) + (1 −𝛼)𝐽 (𝑦). (1.2)

Strict concavity (convexity) is obtained when the above inequalities are strict. For 𝐽 ∈ C2,
an equivalent condition is that the Hessian of the function be negative (positive) semi-
definite: ∇2𝐽 (·) ≤ (≥) 0, and strict concavity (convexity) follow when the Hessian is negative
(positive) definite throughout the domain of 𝐽.

Definition 1.3. A point 𝜃∗ ∈R𝑑 can be characterized as follows:

• If 𝐽 (𝜃∗) ≤ 𝐽 (𝜃), for all 𝜃 ∈R𝑑 , then 𝜃∗ is a called global minimum. It is called a local
minimum if there is a 𝜌 > 0 such that | |𝜃 − 𝜃∗ | | ≤ 𝜌 implies 𝐽 (𝜃) ≥ 𝐽 (𝜃∗).

• If 𝐽 (𝜃∗) ≥ 𝐽 (𝜃), for all 𝜃 ∈R𝑑 , then 𝜃∗ is called a global maximum. It is called a local
maximum if there is a 𝜌 > 0 such that | |𝜃 − 𝜃∗ | | ≤ 𝜌 implies 𝐽 (𝜃) ≤ 𝐽 (𝜃∗).

• If the function may increase or decrease in a small neighborhood of the point, depending
on the direction of motion, then 𝜃∗ ∈R𝑑 is a saddle point.

If, in the definition of a maximum (respectively, minimum), the inequality 𝐽 (𝜃∗) ≤ 𝐽 (𝜃)
(respectively, 𝐽 (𝜃∗) ≥ 𝐽 (𝜃)) can be replaced by a strict inequality, then we say that the
maximum (respectively, minimum) is strict.

Let 𝛼∗ def
= min 𝐽 (𝜃), with 𝛼∗ = 𝐽 (𝜃∗). Then we say that 𝐽 (𝜃) has a proper minimum, and

we call 𝛼∗ the value of the minimum and 𝜃∗ the location of the minimum (the concepts
are defined for maxima analogously). Consider the mapping 𝐽 (𝜃) = 𝑒−𝜃 for 𝜃 ∈R. For this
function we have 0=𝛼∗ = inf 𝜃 𝐽 (𝜃) but there exists no value 𝜃 so that 𝐽 (𝜃) attains 0. In this
case, we will say that 𝐽 (𝜃) has 0 as an improper minimum. Even at this early stage, it is
conceivable that any gradient-based search algorithm will run into (numerical) difficulties in
the presence of improper minima. In the following, we will only consider proper minima, and
we call them minima for short. Whenever appropriate, we will also discuss improper minima,
but this will be on an ad hoc basis. Note that the value of a (proper) minimum is unique
(provided it exists) but there may be more than one location yielding the same minimal
value of 𝐽 (𝜃). In fact the level set of 𝐽 (𝜃) for level 𝛼∗, denoted as L𝛼∗ , yields the set of all
locations of the global minima of 𝐽 (𝜃). Figure 1.3 shows an example with various minima,

6 OPTIMIZATION AND LEARNING

4

2

0

–1.0
–0.5

0.0
0.5

1.0
–1.0

–0.5

0.0

1.0

0.5

Figure 1.3. Example of a function with several maxima, minima, and saddle points.

maxima, and saddle points. The function is (4 − 2.1𝜃2
1 + 𝜃4

1
3)𝜃2

1 + 𝜃1𝜃2 + (−4 + 4𝜃2
2)

2𝜃2
2, the

so-called six-hump camel back function.

Definition 1.4. The points 𝜃 ∈R𝑑 that satisfy ∇𝐽 (𝜃) = 0 are called stationary points of 𝐽.

The following theorem provides conditions for deciding the type of a stationary point.

Theorem 1.1. Let 𝐽 ∈ C2.

• A local minimum (local maximum) 𝜃∗ of 𝐽 is a stationary point, that is, it satisfies the
first-order optimality condition:

∇𝐽 (𝜃∗) = 0. (1.3)

• A decision value 𝜃∗ is a local minimum (local maximum) of 𝐽 if in addition to (1.3), the
following is also satisfied

∇2𝐽 (𝜃∗) > 0
(
∇2𝐽 (𝜃∗) < 0

)
. (1.4)

Equation (1.4) is called second-order optimality condition.
• If 𝐽 is a convex (concave) function, then (1.3) is necessary and sufficient for 𝜃∗ being a

global minimum (maximum).

Proof. For a twice continuously differentiable function 𝐽 (𝜃), i.e., 𝐽 ∈ C2, the Taylor series
expansion with remainder yields the following expression of the value of 𝐽 at a point 𝜃 + 𝑡𝜂,
for 𝜂 ∈R𝑑 and 𝑡 ∈R+:

𝐽 (𝜃 + 𝑡𝜂) = 𝐽 (𝜃) + 𝑡 ∇𝐽 (𝜃)𝜂 +
𝑡2

2
𝜂�∇2𝐽 (𝜃′) 𝜂, (1.5)

where 𝜃′ = 𝜃 + 𝑡′ 𝜂, for some “intermediate” value 0 ≤ 𝑡′ ≤ 𝑡.
Use the above expression around 𝜃∗ to express 𝐽 (𝜃∗ + 𝑡𝜂) for an arbitrary direction

𝜂. The definition of a positive definite matrix implies that 𝜂�∇2𝐽 (𝜃∗)𝜂 > 0 for all 𝜂 ∈R𝑑 .
In addition, ∇2𝐽 (·) is continuous, so use a sufficiently small value of 𝑡 to complete the
arguments. The details are left as an exercise. �

Example 1.1. A well-known historical problem is that of explaining the phenomenon of
refraction of light when traversing two different media. Since Ptolemy (circa 140 AD),

GRADIENT-BASED METHODS 7

cos(α1(θ)) = √

A = (0, a)

B = (d, – b)

a

a

d

a2 + θ2 c1 =

cos(α2(θ)) = √b b2 + (d – θ)2 c2 =

∠α1(θ)

∠α2(θ)

θ

Figure 1.4. Problem is to find the optimal crossing point 𝜃.

scientists were concerned with finding the relationship between the angles of refraction and
the media’s characteristics. The law of refraction was described by Ibn Sahl of Baghdad
(978 AD), who used it to shape lenses, and in 1621 by the Dutch astronomer Snellius. It
is now called Snell’s Law in English. In 1637 Descartes found the same principle using
conservation of moments, and in French it is called the Law of Snell-Descartes. We are
mostly interested in Fermat, who in 1657 used variational calculus and his principle of
“least time” to derive this law through an optimization problem.

The version of the problem that we give here is the pedagogical version of Richard
Feynman. Imagine that you are walking on the beach when you see a person drowning and
shouting for help. To get from where you are to the drowning person in the fastest way, you
should not move along the straight line, because you run faster on the sand than you can
swim. The distance from your position to the water is 𝑎, the distance from the water to the
person is 𝑏, and the length of shoreline between the two points is 𝑑, as shown in Figure 1.4.

In Cartesian coordinates the drowning person is at 𝐵 = (𝑑,−𝑏) and your position is
𝐴 = (0, 𝑎). Here we assume that the waterfront is a straight line for simplicity. The speed
on sand is 𝑣1 and in the water 𝑣2, with 𝑣2 < 𝑣1. We call 𝜃 the crossing point.

Fermat reasoned that light chooses not the shortest path but the one that saves more
energy, which is the fastest path. It is easy to argue the existence of a solution for this
problem: any value of 𝜃 to the left of the crossing point of the straight line between points
𝐴 and 𝐵 will give a slower path than the straight line because of 𝑣2 < 𝑣1. On the other
hand, any point (0, 𝜃), with 𝜃 > 𝑑, will require unnecessary additional travel time compared
to crossing at (0, 𝑑), therefore there must be a minimum point between these two points.
That the travel times are continuously differentiable follows from the linear relationships
between distance and time.

At speed 𝑣, the distance traveled in time 𝑡 is 𝑣𝑡, so the total travel time can be
expressed as

𝐽 (𝜃) =
1
𝑣1

𝑎

cos(𝛼1 (𝜃))
+

1
𝑣2

𝑏

cos(𝛼2 (𝜃))

=
𝑎

𝑣1
sec(𝛼1(𝜃)) +

𝑏

𝑣2
sec(𝛼2 (𝜃)),

8 OPTIMIZATION AND LEARNING

0 10 20 30 40 50

52

54

56

58

60

62

J ()θ

Figure 1.5. Plot of the function 𝐽 (𝜃).

where the angles 𝛼𝑖 (𝜃) are as labeled in Figure 1.4. Figure 1.5 shows the plot of the time as
a function of the crossing point 𝜃.

According to Theorem 1.1, we now find the stationary points of 𝐽 (𝜃). We use the
following identities:

tan𝛼1 (𝜃) =
𝜃

𝑎
, (1.6a)

tan𝛼2 (𝜃) =
𝑑 − 𝜃
𝑏

, (1.6b)

𝑑

𝑑𝛼
tan(𝛼) = sec2(𝛼) = cos−2 (𝛼), (1.6c)

𝑑

𝑑𝛼
sec(𝛼) = sec(𝛼) tan(𝛼). (1.6d)

To obtain the first-order optimality condition, differentiate 𝐽 (𝜃) and set it equal to zero:

𝐽′ (𝜃) =
𝑎

𝑣1
sec(𝛼1 (𝜃)) tan(𝛼1 (𝜃))

𝑑𝛼1(𝜃)
𝑑𝜃

+
𝑏

𝑣2
sec(𝛼2(𝜃)) tan(𝛼2 (𝜃))

𝑑𝛼2(𝜃)
𝑑𝜃

= 0.

By identity (1.6) it holds tan(𝛼1 (𝜃))/𝜃 = 1/𝑎 = constant. Differentiating both sides of this
equation with respect to 𝜃 yields

1
𝜃

sec2(𝛼1 (𝜃))
(
𝑑𝛼1(𝜃)
𝑑𝜃

)
−

tan𝛼1 (𝜃)
𝜃2 = 0 ⇒

𝑑𝛼1(𝜃)
𝑑𝜃

=
1
𝜃

sin(𝛼1 (𝜃)) cos(𝛼1 (𝜃)).

Similarly,
𝑑𝛼2 (𝜃)
𝑑𝜃

=−
1

𝑑 − 𝜃
sin(𝛼2(𝜃)) cos(𝛼2 (𝜃)).

Replacing these values in 𝐽′ (𝜃) and again using the identities in (1.6), one reaches the
conclusion that 𝐽′ (𝜃∗) = 0 is achieved at the unique point that satisfies

sin(𝛼1 (𝜃∗))
sin(𝛼2 (𝜃∗))

=
𝑣1
𝑣2
, (1.7)

known as Snell’s Law of refraction. Going back to the person at the beach, knowing Snell’s
Law is not very useful because he or she still has to determine the optimal crossing point
(0, 𝜃∗), however, (1.7) gives it as an implicit solution. ÷×÷×÷×

GRADIENT-BASED METHODS 9

–2–4 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

–0.2

Figure 1.6. A function with “vanishing gradient.”

When solving a problem of the form (1.1) analytically, one first looks for all points
that satisfy (1.3). After the set of candidates is determined, one then evaluates the Hessian
∇2𝐽 (𝜃) to verify which are local minima. If several local minima are found and if, in
addition, it can be shown that 𝐽 (𝜃) tends to ∞ as ‖𝜃‖ tends to infinity, then the location
of the global minimum 𝜃∗ can be found by comparing the values of the local minima. It is
worth noting that if there exists a unique stationary point, this analysis can be simplified.
Indeed, if 𝜃∗ is the unique stationary point of 𝐽 (𝜃) and if 𝐽 (𝜃) tends to ∞ as | |𝜃 | | tends to
infinity, then 𝜃∗ is the unique location of the global minimum of 𝐽 (𝜃).

Example 1.2. This example is provided to illustrate the terminology used in the field of
optimization. Consider the function 𝐽 : R→R plotted in Figure 1.6. This function has a
unique global minimum that is attained at 𝜃∗ ≈−3. Now consider the same function but
limit its domain to (0,∞). Because lim𝜃→+∞ 𝐽 (𝜃) = 0 we find that 𝐽 (𝜃) has 0 as an improper
minimum. Indeed, 0 is not attained by any value for 𝜃. In addition note that 𝐽′ (𝜃) approaches
0 as 𝜃 tends to infinity. Loosely speaking we could express this by saying that “𝜃 =+∞ is
a stationary point of 𝐽 (𝜃).” The fact that 𝐽′ (𝜃) tends to zero as 𝜃 tends to infinity is called
the vanishing gradient problem, to which we shall return in later chapters. ÷×÷×÷×

1.2 NUMERICAL METHODS FOR UNCONSTRAINED OPTIMIZATION

In most cases, as in Example 1.1, it is impossible to solve the inversion problem ∇𝐽 = 0
analytically and numerical methods are used for finding a root 𝜃∗ of ∇𝜃 𝐽 = 0. A numerical
iterative algorithm for approximating the solution 𝜃∗ of ∇𝜃 𝐽 = 0 is a recursion of the form

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑛𝑑 (𝜃𝑛), (1.8)

where, for each 𝑛, 𝜖𝑛 is called the stepsize or gain size, 𝑑 (𝜃𝑛) is called the direction of the
algorithm, and {𝜖𝑛} is called the stepsize sequence or gain sequence. Occasionally, 𝜖𝑛 is
also referred to as learning rate.

Methods for approximating 𝜃∗ can be classified according to the choice of the step-
size rule and the directions. Together with an initial value 𝜃0 and a stopping rule, (1.8)
constitutes a numerical algorithm that terminates hopefully close to the true optimum,
where “closeness” has to be defined appropriately. Analysis of such algorithms, however,
are not based on a finite termination time, but are studied as the number of iterations
grows to infinity. Stopping times for the algorithm are usually based on the convergence
analysis.

10 OPTIMIZATION AND LEARNING

Definition 1.5. A descent direction of a differentiable function 𝐽 (𝜃) on Θ, or descent
direction for short, is any vector 𝑑 (𝜃) such that ∇𝐽 (𝜃) 𝑑 (𝜃) < 0 for all nonstationary points
𝜃 ∈Θ ⊆R𝑑 .

A descent direction 𝑑 (𝜃) is pointing
away from the direction ∇𝐽 (𝜃). Indeed
−∇𝐽 (𝜃) 𝑑 (𝜃) > 0 implies that there is an
angle of less than 90 degrees between
𝑑 (𝜃) and −∇𝐽 (𝜃). The figure to the right
depicts the situation. Recall that ∇𝐽 (𝜃)
points toward the direction of growth of
the function, and it can be shown that 𝐽 (𝜃)
locally decreases along any descent direc-
tion 𝑑 (𝜃), see Exercise 1.3. For a detailed
geometric interpretation of the gradient, we
refer to Section A.3 in Appendix A.

Algorithms that update along a decent direction are are called descent algorithms.
Gradient-based methods for optimization, also called gradient descent methods, use 𝑑 (𝜃𝑛) =
−∇𝐽 (𝜃𝑛)� as a direction in the algorithm, and are a subclass of descent algorithms. There
are many methods available for gradient-based optimization. Typically these algorithms are
tailored to specific classes of function such as the conjugate-gradient method and variations
thereof, which are suitable for optimization of quadratic functions.

For later use we state here a result showing that the negative gradient rotated by a
positive definite matrix remains a descent direction.

Lemma 1.1. Let 𝐽 (𝜃) be a differentiable function, and let𝐾 (𝜃) ∈R𝑑×𝑑 be a positive definite
matrix for all 𝜃, then −𝐾 (𝜃)∇𝐽 (𝜃)� is a descent direction on R𝑑 .

Proof. Since 𝐾 (𝜃) is positive definite, it holds that 𝑥�𝐾 (𝜃)𝑥 > 0 for any non-zero vector 𝑥.
Letting 𝑥� =∇𝐽 (𝜃) shows that ∇𝐽 (𝜃)𝐾∇𝐽 (𝜃)� > 0. Premultiplying by −1, then yields the
result. �

Newton-Raphson Method

One of the most efficient methods for unconstrained optimization is the method developed
by Newton (published in 1685) and Raphson (1690). It was originally designed to find the
zeroes of a polynomial. In the context of finding stationary points of 𝐽 (𝜃), 𝜃 ∈R𝑑 , let the
vector 𝐺 (𝜃) represent the gradient ∇𝐽 (𝜃)�. From a point 𝜃𝑛, use a linear approximation of
𝐺 (𝜃), that is, using Taylor’s expansion

𝐺 (𝜃𝑛+1) ≈𝐺 (𝜃𝑛) + ∇𝐺 (𝜃)(𝜃𝑛+1 − 𝜃𝑛),

where now ∇𝐺 (𝜃) =∇2𝐽 (𝜃) is a 𝑑 × 𝑑 matrix for each 𝜃.
To approximate the zero in one step, simply set 𝐺 (𝜃𝑛+1) = 0 in the approximation and

solve the right hand side for 𝜃𝑛+1. Assuming that the inverse matrix of ∇𝐺 (𝜃) exists, this
yields

𝜃𝑛+1 = 𝜃𝑛 − [∇𝐺 (𝜃𝑛)]−1𝐺 (𝜃𝑛). (1.9)

Comparing (1.9) with (1.8), it follows that Newton’s method is a gradient descent method
with adaptive stepsize sequence 𝜖𝑛 := 𝜖 (𝜃𝑛) = [∇𝐺 (𝜃𝑛)]−1.

Theorem 1.2. Let 𝐽 : R𝑑 →R ∈ C2 be a convex function, and assume that the Hessian is
invertible. Choose an initial point 𝜃0 ∈R𝑑 and let {𝜃𝑛} be the sequence defined by (1.9),

GRADIENT-BASED METHODS 11

with 𝐺 =∇𝐽�, that is,
𝜃𝑛+1 = 𝜃𝑛 − [∇2𝐽 (𝜃𝑛)]−1∇𝐽 (𝜃𝑛)�.

Suppose that 𝜃 is an accumulation point of the sequence {𝜃𝑛} such that ∇2𝐽 (𝜃) > 0, then 𝜃
is a local minimum of 𝐽 (𝜃) and the rate of convergence is superlinear, that is, there exists a
sequence {𝑐𝑛} such that 𝑐𝑛 tends to zero as 𝑛 tends to ∞ and for some finite 𝑁 itholds that

‖𝜃𝑛+1 − 𝜃‖ ≤ 𝑐𝑛‖𝜃𝑛 − 𝜃‖, 𝑛 ≥ 𝑁.

Furthermore, if 𝐽 ∈ C3 then the rate of convergence is quadratic, that is, there exists a
constant 𝑐 > 0 such that, for large 𝑛

‖𝜃𝑛+1 − 𝜃‖ ≤ 𝑐‖𝜃𝑛 − 𝜃‖2.

The proof of the result (omitted here) uses Taylor’s approximation. Once the trajectory
𝜃𝑛 reaches a neighborhood of a local minimum 𝜃∗, the Hessian ∇2𝐽 (𝜃𝑛) becomes posi-
tive definite, which implies that it is invertible and that the Newton step moves along a
descent direction, see Lemma 1.1. Although very efficient for convex functions, Newton’s
method has a number of practical problems when applied as a general-purpose optimization
method:

• Newton’s method finds zeros of the gradient, which may be locations of minima or
inflection points for general functions. Consequently, it cannot be guaranteed that the
Hessian is positive definite at every stationary point.

• The Hessian may not be invertible at every point.
• Finally, it needs calculation of gradients, Hessians, and Hessian inversion, all of which

may be lengthy numerical operations, rendering the method slow. In some cases the
Hessian can be approximately computed by repeated numerical function evaluation and
we refer to Section 11.1.2 for details.

For deterministic problems, the efficiency of a method is defined in terms of CPU time to
achieve a given precision 𝛿. A number of algorithms have been proposed under the common
name of “quasi-Newton” methods, which attempt to increase the efficiency of the method,
overcoming the problems pointed out above.

★Cauchy’s Method

The method known as steepest descent (or Cauchy’s) for minimization of a cost function
𝐽 (𝜃) chooses 𝑑 (𝜃𝑛) =−∇𝜃 𝐽 (𝜃𝑛) at each iteration of (1.8). Originally proposed by Cauchy
in 1847, instead of premultiplying by the matrix [∇2𝐽 (𝜃𝑛)]−1, the method chooses the
stepsize to “move” along the direction 𝑑 (𝜃𝑛) to reach the minimum on that line, that is,

𝜖𝑛 := 𝜖 (𝜃𝑛) = arg min
𝜖 >0

(𝐽 (𝜃𝑛 − 𝜖∇𝐽 (𝜃𝑛)�)).

Gradient-Based Methods: Nonadaptive Stepsizes

As mentioned before, Newton’s method has a good convergence rate, but every iteration
may require too much computational time. Cauchy’s method can have slow convergence
due to possible zigzagging of the iterations, and several modifications have been proposed
for adaptive stepsizes (where 𝜖𝑛 depends on 𝜃𝑛, 𝐽 (𝜃𝑛),∇𝐽 (𝜃𝑛), etc). Common methods use
Wolfe’s conditions [327, 328] and Armijo’s rules [7] (and [29, 169] in combination with
projection), which ensure that all accumulation points are local minima. For deterministic
optimization adaptive stepsizes are undoubtedly superior to nonadaptive stepsizes. However,

12 OPTIMIZATION AND LEARNING

the focus of the present text is to extend the basic methodology for deterministic optimiza-
tion to problems where the observations of the function 𝐽 (𝜃) and its gradients (if available)
are noisy, and the noise models may be very complex. For such scenarios, non adaptive
stepsizes are simpler to analyze. The gradient-based methods use 𝑑 (𝜃) =−∇𝐽 (𝜃) as the
direction of the algorithm, and the stepsizes can be of two kinds: either decreasing: 𝜖𝑛 ↓0,
or constant: 𝜖𝑛 ≡ 𝜖 .

Without any detailed analysis, inspecting the mere structure of (1.8) allows us already
to deduce properties of the stepsize sequence. To see this, insert the expression for 𝜃𝑛 on the
right-hand side of (1.8), which yields 𝜃𝑛+1 = 𝜃𝑛−1 + 𝜖𝑛𝑑 (𝜃𝑛) + 𝜖𝑛−1𝑑 (𝜃𝑛−1) and continuing
the recurrence

𝜃𝑛+1 = 𝜃0 +
𝑛∑

𝑖=0
𝜖𝑖 𝑑 (𝜃𝑖).

Suppose that 𝑑 (·) is bounded. Then, for the algorithm to find 𝜃∗, the stepsizes have to satisfy
∞∑

𝑛=1
𝜖𝑛 =∞, (1.10)

so that the sequence {𝜃𝑛} is not confined to some bounded set (or, equivalently, will cover
any bounded set as it can potentially reach any point in R𝑑). Further conditions are required
in order to ensure convergence of the algorithm to the optimal 𝜃∗, as we will show in the
upcoming theorem. Before we state and prove the main result in this section, we provide a
useful technical result. The result and its proof is an adaptation of Lemma 1 in [34].

Lemma 1.2. Consider the real-valued recursion:

𝑥𝑛+1 = 𝑥𝑛 − 𝑔𝑛 + ℎ𝑛, 𝑥0 ∈R,

where 𝑔𝑛 ≥ 0 for all 𝑛, and the sequence ℎ𝑛 is summable, i.e.,
∑

𝑛 |ℎ𝑛 | <∞. Then either (i)
𝑥𝑛 →−∞ or (ii) 𝑥𝑛 converges to a finite value and

∑
𝑛 𝑔𝑛 converges.

Proof. Note that
𝑥𝑛+2 = 𝑥𝑛+1 − 𝑔𝑛+1 + ℎ𝑛+1

= 𝑥𝑛 − (𝑔𝑛 + 𝑔𝑛+1) + (ℎ𝑛 + ℎ𝑛+1).

Repeating this argument 𝑚 times yields the telescopic sum

𝑥𝑚+𝑛 = 𝑥𝑛 −
𝑚+𝑛−1∑

𝑖=𝑛

𝑔𝑖 +
𝑚+𝑛−1∑

𝑖=𝑛

ℎ𝑖 . (1.11)

By assumption 𝑔𝑛 ≥ 0, which implies

𝑥𝑚+𝑛 ≤ 𝑥𝑛 +
𝑚+𝑛−1∑

𝑖=𝑛

|ℎ𝑖 | <∞. (1.12)

Use now −∞<
∑∞

𝑖=1 |ℎ𝑖 | <∞ to show that for all 𝑛

lim sup
𝑚→∞

𝑚+𝑛−1∑
𝑖=𝑛

|ℎ𝑖 | = lim
𝑚→∞

𝑚+𝑛−1∑
𝑖=𝑛

|ℎ𝑖 | =
∞∑

𝑖=𝑛

|ℎ𝑖 | <∞ (1.13)

GRADIENT-BASED METHODS 13

and

lim inf
𝑛→∞

∞∑
𝑖=𝑛

|ℎ𝑖 | = lim
𝑛→∞

∞∑
𝑖=𝑛

|ℎ𝑖 | = 0. (1.14)

Moreover, we have by (1.12) that

𝑥𝑚+𝑛 ≤ 𝑥𝑛 +
∞∑

𝑖=𝑛

|ℎ𝑖 | <∞. (1.15)

By (1.13), taking the limit superior on both sides of the inequality (1.15) as 𝑚 tends to ∞
yields for all 𝑛

lim sup
𝑚→∞

𝑥𝑚+𝑛 ≤ 𝑥𝑛 +
∞∑

𝑖=𝑛

|ℎ𝑖 |,

and, since lim sup𝑚→∞ 𝑥𝑚 = lim sup𝑚→∞ 𝑥𝑚+𝑛, we arrive at

lim sup
𝑚

𝑥𝑚 ≤ 𝑥𝑛 +
∞∑

𝑖=𝑛

|ℎ𝑖 |.

By (1.14) together with (1.15), taking the limit inferior on both sides of the above inequality
gives

lim sup
𝑚→∞

𝑥𝑚 ≤ lim inf
𝑛→∞

𝑥𝑛 <∞,

and, as lim inf𝑚→∞ 𝑥𝑚 ≤ lim sup𝑚→∞ 𝑥𝑚 by definition, we arrive at

lim sup
𝑚→∞

𝑥𝑚 = lim inf
𝑚→∞

𝑥𝑚,

which implies that either 𝑥𝑛 converges to some finite 𝑥 ∈R, or 𝑥𝑛 →−∞.
In the case that lim𝑛 𝑥𝑛 = 𝑥 ∈R, letting 𝑛 = 0 in (1.11) yields

𝑚−1∑
𝑖=0

𝑔𝑖 =
𝑚−1∑
𝑖=0

ℎ𝑖 − 𝑥𝑚 + 𝑥0,

and as the right-hand side of the above equation converges as 𝑚→∞ to a finite value so
does the left-hand side, which proves the claim. �

Next, we introduce two important concepts.

Definition 1.6. Let Θ ⊂R𝑑 be an open connected set. A mapping 𝑓 :Θ→R is called
Lipschitz continuous if 𝐿 ∈R exists such that for any 𝑥, 𝑥 +Δ ∈Θ is holds that

‖ 𝑓 (𝑥) − 𝑓 (𝑥 +Δ)‖ ≤ 𝐿 ‖Δ‖.

The constant 𝐿 is called Lipschitz constant.

Definition 1.7. We say that a sequence {𝑥𝑛} with limit 𝑥 achieves the limit in finite time if
there exist a finite index 𝑚 <∞ such that 𝑥𝑛 = 𝑥 for 𝑛 ≥𝑚.

We are now ready to state the gradient-descent theorem for decreasing stepsize.

Theorem 1.3. Let 𝐽 ∈ C2 and assume that ∇𝐽 is Lipschitz continuous on R𝑑 . For given
initial value 𝜃0, let {𝜃𝑛} be given through the algorithm

𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛∇𝐽 (𝜃𝑛)�, (1.16)

14 OPTIMIZATION AND LEARNING

where the gain sequence {𝜖𝑛}, with 𝜖𝑛 > 0 for all 𝑛, satisfies
∞∑

𝑛=1
𝜖𝑛 =+∞,

∞∑
𝑛=1

𝜖2
𝑛 <∞. (1.17)

If {‖∇𝐽 (𝜃𝑛)‖ : 𝑛 ≥ 0} is bounded, then any (finite) limit 𝜃∗ of {𝜃𝑛} is a stationary
point of 𝐽 (𝜃). If, in addition, 𝜃∗ is not attained in finite time, then, for 𝑛 sufficiently large,
{𝐽 (𝜃𝑘), 𝑘 ≥ 𝑛} is a strictly monotone decreasing sequence.

Proof. Approximating 𝐽 (𝜃𝑛+1) via a Taylor series expansion developed at 𝜃𝑛 (e.g., let
𝜂 = 𝜃𝑛+1 − 𝜃𝑛 and 𝑡 = 1 in (1.5)), yields

𝐽 (𝜃𝑛+1) = 𝐽 (𝜃𝑛) + ∇𝐽 (𝜃𝑛)(𝜃𝑛+1 − 𝜃𝑛) +
1
2
(𝜃𝑛+1 − 𝜃𝑛)�∇2𝐽 (𝜉)(𝜃𝑛+1 − 𝜃𝑛), (1.18)

where 𝜉 =𝛼 𝜃𝑛 + (1 −𝛼)𝜃𝑛+1 for some 𝛼 ∈ [0, 1]. Inserting (1.16) into the above represen-
tation of 𝐽 (𝜃𝑛+1) yields

𝐽 (𝜃𝑛+1) = 𝐽 (𝜃𝑛) − 𝜖𝑛 | |∇𝐽 (𝜃𝑛) | |2 +
𝜖2
𝑛

2
∇𝐽 (𝜃𝑛)∇2𝐽 (𝜉)∇𝐽 (𝜃𝑛)�. (1.19)

Recall that ‖ · ‖ denotes the Euclidean norm. Call 𝑔𝑛 = 𝜖𝑛‖∇𝐽 (𝜃𝑛)‖2 and ℎ𝑛 =
𝜖2
𝑛∇𝐽 (𝜃𝑛)∇2𝐽 (𝜉)∇𝐽 (𝜃𝑛)�/2, then

𝐽 (𝜃𝑛+1) = 𝐽 (𝜃𝑛) − 𝑔𝑛 + ℎ𝑛.

From Lipschitz continuity of ∇𝐽 (𝜃) it follows (see Exercise 1.7 below) that

|ℎ𝑛 | ≤
𝜖2
𝑛

2
𝐿‖∇𝐽 (𝜃𝑛)‖2,

for some finite constant 𝐿. Boundedness of the gradient along the trajectory together with∑
𝜖2
𝑛 <∞, shows that ℎ𝑛 is absolutely summable, so we can apply Lemma 1.2 to conclude

that 𝐽 (𝜃𝑛) either tends to −∞, or it converges and
∞∑

𝑛=0
𝜖𝑛‖∇𝐽 (𝜃𝑛)‖2 <∞. (1.20)

Suppose that 𝜃 ∈R𝑑 is the limit of 𝜃𝑛 and achieved in finite time. Then 𝜃𝑛 = 𝜃 for all 𝑛
larger than some 𝑘 , which can only happen if the update 𝜖𝑛∇𝐽 (𝜃𝑛 = 𝜃) = 0 for 𝑛 > 𝑘 . This
shows that 𝜃 is a stationary point. In case 𝜃 is not achieved in finite time, we have from (1.20)
together with continuity of ∇𝐽 that ‖∇𝐽 (𝜃)‖ = lim𝑖→∞ ‖∇𝐽 (𝜃𝑚𝑖)‖ = 0. This shows that 𝜃 is
a stationary point.

We turn to the proof of the second part of the statement. As before, we denote the limit
of 𝜃𝑛 by 𝜃. We apply the bound

‖∇𝐽 (𝜃𝑛)∇2𝐽 (𝜉)∇𝐽 (𝜃𝑛)�‖ ≤ 𝐿‖∇𝐽 (𝜃𝑛)‖2

(see Exercise 1.7) to (1.19) and thereby establish that

𝐽 (𝜃𝑖+1) ≤ 𝐽 (𝜃𝑖) −
(
𝜖𝑖 −

1
2
𝐿 𝜖2

𝑖

)
‖∇𝐽 (𝜃𝑖)‖2.

Since 𝜖𝑖 tends to zero as 𝑖 tends to infinity, we have for sufficiently large 𝑖 that 𝐿 𝜖𝑖 < 2,
and thus (𝜖𝑖 − 𝐿 𝜖2

𝑖 /2)‖∇𝐽 (𝜃𝑖)‖2 > 0, for ‖∇𝐽 (𝜃𝑖)‖ ≠ 0. Hence, if 𝜃 is not attained in finite
time, so that ‖∇𝐽 (𝜃𝑖)‖ ≠ 0 for all 𝑖, then there exists 𝑖0, such that {𝐽 (𝜃𝑖) : 𝑖 ≥ 𝑖0} is strictly
monotone decreasing toward 𝐽 (𝜃). �

GRADIENT-BASED METHODS 15

–4 –2 2 4

0.2

0.4

0.6

0.8

Figure 1.7. An example of a function with unique minimum and uniformly bounded gradient.

As the theorem shows, a gradient descent algorithm will find a stationary point of 𝐽 (𝜃),
but the nature of that point cannot be deduced from the algorithm alone and it requires some
knowledge on the curvature of 𝐽 (𝜃) in a neighborhood of 𝜃∗; see Theorem 1.1. A sufficient
condition for the algorithm to converge to a minimum, which then is also the unique global
minimum, is convexity of 𝐽 (𝜃). Exercise 1.12 asks to show this result.1

Theorem 1.3 provides sufficient conditions under which the sequence obtained via a
gradient descent algorithm finds a stationary point of 𝐽 (𝜃). Next to more generic conditions
such as the choice of the stepsize and sufficient smoothness of 𝐽 (𝜃), the key condition
is that of boundedness of the gradient along the trajectory {𝜃𝑛}. A nontrivial example
of a mapping with bounded gradient is 𝐽 (𝜃) = 1 − 2/(2 + 𝜃2), see Figure 1.7. Note that
lim | 𝜃 |→∞ 𝐽

′ (𝜃) = 0, shown in Figure 1.7.
However, typically the assumption of boundedness of the gradient along {𝜃𝑛} is not

straightforward to check except for simple cases as the following example shows.

Example 1.3. When the gradient is not bounded for all 𝜃, it is sometimes useful to apply
the argument that the algorithm will not persistently move “away from the minimizer.”
For illustration, consider 𝐽 (𝜃) = 𝜃2 + 𝑐, for some constant 𝑐. The minimization problem has
unique solution 𝜃∗ = 0 and, by computation,

|𝜃𝑛+1 | = |𝜃𝑛 − 𝜖𝑛𝐽′ (𝜃𝑛) | = |𝜃𝑛 − 2𝜖𝑛𝜃𝑛 | = |𝜃𝑛 (1 − 2𝜖𝑛) | = |𝜃𝑛 | |1 − 2𝜖𝑛 |.

So, as soon as 𝜖𝑛 < 1/2 for some 𝑛, we see that |𝜃𝑚+1 | < |𝜃𝑚 | for all𝑚 ≥ 𝑛, and the trajectory
stays inside a bounded set, which implies finiteness of the gradient along the trajectory.

÷×÷×÷×

Next we discuss a more challenging example.

Example 1.4. Let us consider again the function in Example 1.2 illustrated in Figure 1.6.
Following the same argument as for the function 𝜃2 + 𝑐 in the previous example, one can
show that the gradient of the function in Example 1.2 is bounded along the trajectories
that start at initial values 𝜃0 < 0. Moreover, if 𝜃0 > 0, then the negative gradient will be

1While it cannot be guaranteed that the gradient descent finds a local minimum, it is worth noting that the
algorithm “goes in the right direction” and the likelihood that the algorithm gets trapped at a saddle point is
small in practice. See Exercise 1.15 for an example of a case where the algorithm provably gets trapped in a
saddle point. The problem of convergence to a saddle point can be avoided by using specific adaptive stepsizes.
However, as explained in our discussion at the beginning of this section, non adaptive stepsizes are preferable
when the observations of 𝐽 (𝜃) are noisy, which is the main focus of this monograph; deterministic optimization
is introduced here, but it is not the topic of our work.

16 OPTIMIZATION AND LEARNING

positive and 𝜃𝑛 becomes an increasing sequence. While it is true that the limit here satisfies
lim𝑛→∞ 𝐽

′ (𝜃𝑛) = 0, the corresponding limit point lim𝑛→∞ 𝜃𝑛 =∞ is not finite, and 0 is an
improper minimum on (0,∞). Even worse, for initial value 𝜃0 > 0, the descent direction
moves away from the actual solution, creating a numerical instability, and the algorithm
should be properly modified.

This is an important situation that arises in practical applications, because the algorithm
could diverge if applied directly. Interestingly, the function in Figure 1.7 also has vanishing
gradients as 𝜃→±∞, but in that case this does not pose a problem because the negative
gradient is a descent direction and thus it “pulls” the sequence 𝜃𝑛 toward the unique
minimum. ÷×÷×÷×

On occasion, it is possible to measure the outcome 𝐽 (𝜃) of the performance of a system
but the gradient ∇𝐽 (·) is analytically unavailable. Instead of a gradient, some methods use
a finite difference approximation. More generally, suppose that the algorithm is driven by a
biased approximation of the gradient:

𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛
(
∇𝐽 (𝜃𝑛)� + 𝛽𝑛 (𝜃𝑛)

)
, (1.21)

where the decreasing bias terms satisfy 𝛽𝑛 (𝜃𝑛) → 0. Lemma 1.3 provides an important
extension of Theorem 1.3 to biased algorithms. In the presence of bias, we have to exclude
the case that for some 𝑛, the update ∇𝐽 (𝜃𝑛)� + 𝛽𝑛 (𝜃𝑛) becomes zero for 𝜃𝑛, so that the
algorithm freezes at 𝜃𝑛 due to the bias.

Lemma 1.3. Let 𝐽 ∈ C2 be such that the gradient is a Lipschitz continuous function on R𝑑

and consider the biased algorithm (1.21), where the bias and the stepsize sequence{𝜖𝑛},
with 𝜖𝑛 > 0 for all 𝑛, satisfy

∞∑
𝑛=1

𝜖𝑛 =+∞,
∞∑

𝑛=1
𝜖𝑛 ‖𝛽𝑛 (𝜃𝑛)‖ <∞,

∞∑
𝑛=1

𝜖2
𝑛 <∞. (1.22)

If {‖∇𝐽 (𝜃𝑛)‖ : 𝑛 ≥ 0} is bounded, then any (finite) limit 𝜃∗ of {𝜃𝑛} is a stationary point
of 𝐽 (𝜃). If, in addition, 𝜃∗ is not attained in finite time, then, for 𝑛 sufficiently large,
{𝐽 (𝜃𝑘), 𝑘 ≥ 𝑛} is a strictly monotone decreasing sequence.

Proof. The method of proof for this lemma is the same as for Theorem 1.3. The Taylor
series for 𝐽 (𝜃) now involves the bias terms, and under the assumptions, the corresponding
terms 𝑔𝑛, ℎ𝑛 can be defined to apply Lemma 1.2. The details are left as an exercise, see
Exercise 1.9. �

Lemma 1.3 can be adapted to a setting with non-vanishing bias. This is explained in the
following example.

Example 1.5. Consider the biased algorithm (1.21) and assume that 𝛽𝑛 (𝜃𝑛) = 𝛽𝑛 (𝜃𝑛) + 𝛽,
for lim𝑛 | |𝛽𝑛 (𝜃𝑛) | | = 0 and some non-zero vector 𝛽. Hence, the bias does not asymptotically
vanish. Let 𝐽 (𝜃) = 𝐽 (𝜃) + 𝛽�𝜃. Provided that the conditions in Lemma 1.3 are met for 𝐽 (𝜃)
and 𝛽𝑛 (𝜃𝑛), they straightforwardly extend to 𝐽 (𝜃) and 𝛽𝑛 (𝜃𝑛). The algorithm then finds a
stationary point 𝜃∗ of 𝐽 (𝜃) that satisfies ∇𝐽 (𝜃∗) + 𝛽� = 0. Hence, the algorithm traces the
stationary point of the shifted performance function 𝐽 (𝜃). ÷×÷×÷×

Example 1.6. Suppose that we do not know the function 𝐽 (·) analytically, but for any point
𝜃 it is possible to obtain the numerical value of 𝐽 (𝜃). In this situation, ∇𝐽 (𝜃) is not available
in closed-form either. A commonly used approximation to the derivative is given by finite

GRADIENT-BASED METHODS 17

differences (FD), which require that 𝐽 ∈ C3. In this example we will use a “centered” version
of the approximation as follows. For simplicity, let 𝜃 ∈R and use a Taylor expansion around
𝜃 to obtain

𝐽 (𝜃𝑛 + 𝑐𝑛) − 𝐽 (𝜃𝑛)
2𝑐𝑛

=
𝐽′ (𝜃𝑛)

2
+

1
4
𝐽′′ (𝜃𝑛) 𝑐𝑛 + 𝛽+(𝜃𝑛, 𝑐𝑛)

𝐽 (𝜃𝑛) − 𝐽 (𝜃𝑛 − 𝑐𝑛)
2𝑐𝑛

=
𝐽′ (𝜃𝑛)

2
−

1
4
𝐽′′ (𝜃𝑛) 𝑐𝑛 + 𝛽− (𝜃𝑛, 𝑐𝑛)

so that the centered, or two-sided FD satisfies
𝐽 (𝜃𝑛 + 𝑐𝑛) − 𝐽 (𝜃𝑛 − 𝑐𝑛)

2𝑐𝑛
= 𝐽′ (𝜃𝑛) + 𝛽𝑛 (𝜃𝑛, 𝑐𝑛),

where 𝛽𝑛 (𝜃, 𝑥) = 𝛽+(𝜃, 𝑥) + 𝛽− (𝜃, 𝑥) =O(𝑥2), for fixed 𝜃. Note that the terms containing
𝐽′′ (𝜃𝑛) cancel out.

When implementing FD in the descent algorithm, it is necessary to show that
lim𝑛→∞ 𝛽𝑛 (𝜃𝑛, 𝑐𝑛) = 0 to conclude that the algorithm converges to the optimal value. Note
that the main problem in showing convergence lies in the fact that we do not know before-
hand the sequence {𝜃𝑛} visited by the algorithm. To establish convergence in (1.21), we
need to verify either (a) that the third derivative 𝐽′′′ (·) is uniformly bounded in 𝜃, or (b)
that 𝜃𝑛 remains within a compact set along the sequence, which would imply that 𝐽′′′ (𝜃𝑛) is
uniformly bounded (as 𝑛→∞). When either (a) or (b) hold, we know that 𝛽𝑛 (𝜃𝑛, 𝑥) → 0 for
any sequence {𝜃𝑛} visited by (1.21) as long as 𝑥→ 0. Hence, we can choose 𝑐𝑛 =O(𝑛−𝑐) for
some constant 𝑐 > 0, which implies 𝛽𝑛 (𝜃𝑛, 𝑐𝑛) =O(𝑛−2𝑐). In general the choice of 𝑐𝑛 will
depend on how fast 𝜖𝑛 → 0. Assume that 𝜖𝑛 =O(𝑛−𝛾), so that (1.22) holds for 𝛾 ∈ (0, 1].
From Lemma 1.3 it follows that Theorem 1.3 can be extended to finite difference algorithms
provided that ∑

𝑛≥1
𝜖𝑛𝛽𝑛 <∞ =⇒

∑
𝑛≥1

𝑛−(𝛾+2𝑐) <∞,

so that we need 𝛾 + 2𝑐 > 1 for the algorithm to converge. When 𝛾 = 1, positive 𝑐 is sufficient.
÷×÷×÷×

While gradient-based methods of the type (1.21) ensure convergence for functions with
only one stationary point giving the location of the global minimum (called “unimodal”)
and which are continuously differentiable, the rate of convergence may be much slower than
Newton’s method. In particular, the steepest descent method has linear convergence, i.e.,
there is a constant 𝑐 ∈ (0, 1) such that ‖𝜃𝑛+1 − 𝜃∗‖ ≤ 𝑐‖𝜃𝑛 − 𝜃∗‖, whereas Newton’s method
in general has quadratic convergence, see Theorem 1.2. On the other hand, the gradient
descent algorithm shows remarkable resilience even for distorted gradient measurements as
long as the size of the distortion decreases as 𝑛→∞, as shown in Lemma 1.3.

We complete this discussion by providing the equivalent statement to Theorem 1.3 for
constant stepsize. It is worth noting that when the bias does not vanish asymptotically, the
algorithm will find a stationary point of a modified objective function. Moreover, the effect
a bias has on the fixed stepsize algorithm is different from the effect a bias has on the
decreasing stepsize algorithm; compare Example 1.6 with the theorem below.

Theorem 1.4. Let 𝐽 ∈ C2 . Assume that ∇𝐽 (𝜃) is Lipschitz continuous on R𝑑 with Lipschitz
constant 𝐿. Consider the constant stepsize algorithm

𝜃𝑛+1 = 𝜃𝑛 − 𝜖 ∇𝐽 (𝜃𝑛)�,

18 OPTIMIZATION AND LEARNING

for 𝜖 > 0. Then any (finite) limit 𝜃∗ of {𝜃𝑛} is a stationary point of 𝐽 (𝜃). Moreover, if
(i) 𝜖 < 2/𝐿 and (ii) 𝜃∗ is not attained in finite time, then {𝐽 (𝜃𝑛)} is a strictly monotone
decreasing sequence.

Let 𝛽𝑛 denote the bias at the 𝑛-th iteration, and assume that lim𝑛 𝛽𝑛 = 𝛽 ∈R𝑑 . Then,
any (finite) limit 𝜃∗𝛽 of {𝜃𝛽

𝑛 } given by

𝜃
𝛽
𝑛+1 = 𝜃

𝛽
𝑛 − 𝜖 (∇𝐽 (𝜃 𝛽

𝑛)� + 𝛽𝑛))

solves ∇𝐽 (𝜃∗𝛽) + 𝛽 = 0, i.e., in the asymptomatically unbiased case (given by 𝛽 = 0), 𝜃∗𝛽 is
a stationary point of 𝐽 (𝜃), and in the asymptotically biased case (given by 𝛽≠ 0), 𝜃∗𝛽 is a
stationary point of the adjusted objective 𝐽 (𝜃) + 𝛽�𝜃.

Proof. If 𝜃𝑛 converges to some 𝜃∗ ∈R𝑑 , then this is only possible if lim𝑛 𝜖∇𝐽 (𝜃𝑛) = 0. Since
𝜖 is constant, this implies ∇𝐽 (𝜃𝑛) = 0, and by continuity of ∇𝐽, is holds that ∇𝐽 (𝜃∗) = 0 and
𝜃∗ is thus a stationary point.

For the next part of the proof, we note that we have already shown in the proof of
Theorem 1.3 that for any 𝑖 ≥ 0,

𝐽 (𝜃𝑖+1) ≤ 𝐽 (𝜃𝑖) − 𝜖
(
1 −

1
2
𝐿 𝜖

)
‖∇𝐽 (𝜃𝑖)‖2.

Hence, for 𝜖 < 2/𝐿 we have that (1 − 1
2𝐿 𝜖) > 0 so that 𝐽 (𝜃𝑖+1) < 𝐽 (𝜃𝑖), which shows that

𝐽 (𝜃𝑖) is strictly monotone decreasing toward 𝐽 (𝜃∗), with 𝜃∗ a stationary point.
For the biased case, we argue like before for showing that convergence of 𝜃𝛽

𝑛 toward
𝜃∗𝛽 ∈R𝑑 together with continuity of ∇𝐽 (𝜃) implies ∇𝐽 (𝜃∗𝛽) + 𝛽 = 0. This shows that 𝜃∗𝛽 is a
stationary point of 𝐽 (𝜃) for 𝛽 = 0. For 𝛽≠ 0, note that ∇(𝐽 (𝜃) + 𝛽�𝜃) =∇𝐽 (𝜃) + 𝛽�, so that
𝜃∗𝛽 is a stationary point of 𝐽 (𝜃) + 𝛽�𝜃. �

Typically, the Lipschitz constant for the gradient is hard to bound, and one applies the
algorithm for 𝜖 “small.” If in addition to the assumptions in Theorem 1.4, the function 𝐽 (·)
is convex, then the unbiased algorithm converges to the location of the minimum of 𝐽.

1.3 CONSTRAINED OPTIMIZATION

In this section we turn to optimization problems involving constraints. For ease of reference
we introduce the general setting in the following definition.

Definition 1.8. For 𝐽 (𝜃) ∈ C1

• the unconstrained optimization problem

min 𝐽 (𝜃),

or
• for 𝑔𝑖 (𝜃), 𝑖 = 1, . . . , 𝑝, and ℎ 𝑗 (𝜃), 𝑗 = 1, . . . , 𝑞, all in C1, the constrained optimization

problem
min
𝜃∈Θ

𝐽 (𝜃), (1.23)

Θ= {𝜃 ∈R𝑑 : 𝑔(𝜃) ≤ 0, ℎ(𝜃) = 0},

GRADIENT-BASED METHODS 19

is called a non-linear problem (NLP). The function 𝐽 : R𝑑 →R is called the objective
function, the set Θ is called the feasible region (including the case Θ=R𝑑), and a point
𝜃 ∈Θ is called a feasible point.

An NLP is called a (strictly) convex non-linear problem, or (strictly) convex problem
for short, if 𝐽 (𝜃) and—in case the problem has constraints—each 𝑔𝑖 (𝜃), 𝑖 = 1, . . . , 𝑝, are
(strictly) convex, and each ℎ 𝑗 (𝜃), 𝑗 = 1, . . . , 𝑞, is an affine function (linear plus a constant).

An NLP is characterized by functions 𝑔 : R𝑑 →R𝑝 , ℎ : R𝑑 →R𝑞 , that represent 𝑝
inequality and 𝑞 equality constraints that must be satisfied. Note that since the constraints
are convex by assumption, the feasible region Θ of an NLP is a convex set.

When we want to stress that a gradient or a Hessian is taken with respect to 𝜃 of a
mapping with more arguments, we write ∇𝜃 and ∇2

𝜃 , respectively.

Definition 1.9. For an NLP the associated Lagrangian L : R𝑑 ×R𝑝 ×R𝑞 →R is defined as

L(𝜃, 𝜆, 𝜂) = 𝐽 (𝜃) +𝜆�𝑔(𝜃) + 𝜂�ℎ(𝜃). (1.24)

The vectors 𝜆 and 𝜂 are called Lagrange multipliers.

Definition 1.10. A constraint 𝑔𝑖 of an NLP is said to be active at a feasible point 𝜃 ∈Θ
if 𝑔𝑖 (𝜃) = 0. Otherwise it is said to be inactive. The set 𝐴(𝜃) of active constraints at 𝜃
contains all indices 𝑖 for which 𝑔𝑖 (𝜃) = 0. The constraint qualification condition at a feasible
point 𝜃 requires that the set of vectors {∇𝜃𝑔𝑖 (𝜃), 𝑖 ∈ 𝐴(𝜃); ∇𝜃 ℎ 𝑗 (𝜃), 𝑗 = 1, . . . , 𝑞} be linearly
independent, and that there exist a vector 𝑣 ∈R𝑑 , 𝑣 ≠ 0, such that:

(a) ∇ℎ 𝑗 (𝜃)𝑣 = 0, 1 ≤ 𝑗 ≤ 𝑞,
(b) for all 𝑖 ∈ 𝐴(𝜃) it holds that ∇𝑔𝑖 (𝜃)𝑣 < 0.

Definition 1.11. A stationary point (𝜃∗, 𝜆∗, 𝜂∗) of an NLP is a point that satisfies the Karush
Kuhn-Tucker (KKT) conditions if

∇𝜃L(𝜃∗, 𝜆∗, 𝜂∗) = 0 (1.25a)
∇𝜆L(𝜃∗, 𝜆∗, 𝜂∗) = 𝑔(𝜃∗)� ≤ 0, 𝜆∗ ≥ 0, and ∀𝑖 :𝜆∗

𝑖 𝑔𝑖 (𝜃∗) = 0 (1.25b)
∇𝜂L(𝜃∗, 𝜆∗, 𝜂∗) = ℎ(𝜃∗)� = 0; (1.25c)

where ∇𝜆L(𝜃, 𝜆, 𝜂) denotes the gradient of L(𝜃, 𝜆, 𝜂) with respect to 𝜆 and ∇𝜂L(𝜃, 𝜆, 𝜂)
the gradient with respect to 𝜂. A stationary point that satisfies the KKT conditions is called
a KKT point.

Condition (1.25b) is called the complementary slackness property, from this property
it follows that 𝑖 ∉ 𝐴(𝜃) implies 𝜆𝑖 = 0. The following theorem shows that that the KKT
conditions are necessary conditions for a local minimum, i.e., local minima are KKT points.
Moreover, if the problem is strictly convex, then the KKT conditions are also sufficient for
a global minimum. The proof is standard and a proof is omitted.

Theorem 1.5. Assume that for a given NLP the constraint qualification holds at a local
minimum 𝜃∗ of 𝐽 (𝜃) in (1.23). Then there exist 𝜆∗ ∈R𝑝 , 𝜂∗ ∈R𝑞 , such that (𝜃∗, 𝜆∗, 𝜂∗) is a
KKT point of the NLP. The vectors 𝜆∗ and 𝜂∗ are called Lagrange multipliers.

If, in addition, if the problem is a convex NLP, then the KKT conditions hold at 𝜃∗ if and
only if 𝜃∗ is the global minimum.

Example 1.7. Many canned products in the supermarket come in cans of similar shape,
where the height is the same as the diameter of the container. What is the reason for this?

20 OPTIMIZATION AND LEARNING

Allegedly, a similar question haunted Galileo about the leather bags used by traders. Here
is the answer: if a fixed volume of a given good has to be canned, the containers should
be produced at minimal cost (in particular using minimal amount of material) in order to
maximize your profit.

This problem can be formulated as a surface minimization problem under the fixed vol-
ume constraint. Call 𝜃 = (𝑟, 𝑦)�, where 𝑟 is the radius and 𝑦 is the height of the (cylindrical)
can. Then we want to find

min
𝑟 ,𝑦

𝐽 (𝜃) def
= 2(𝜋𝑟2) + 2𝜋𝑟 𝑦

subject to: 𝜋𝑟2𝑦 =𝑉,

where we have expressed the total surface as the rectangular surface for the side of the can,
plus the two covers. The volume 𝑉 is fixed. Call ℎ(𝜃) = 𝜋𝑟2𝑦 −𝑉 .

We will show how to apply Theorem 1.5 in practice. The problem fails to be convex, as
neither is 𝐽 (𝜃) convex nor is ℎ affine, and the second part of the theorem cannot be used.
Instead, we proceed as follows. First, we find the KKT points that satisfy (1.25), and then
we determine which one (if several) is the global optimizer. The Lagrangian is

L(𝜃; 𝜂) =L(𝑟, 𝑦; 𝜂) = 2(𝜋𝑟2) + 2𝜋𝑟 𝑦 + 𝜂(𝜋𝑟2𝑦 −𝑉).

Condition (1.25a) for a KKT points reads

𝜕

𝜕𝑟
L(𝑟, 𝑦; 𝜂) = 4𝜋𝑟 + 2𝜋𝑦 + 𝜂 2𝜋𝑟𝑦 = 0 (1.26)

𝜕

𝜕𝑦
L(𝑟, 𝑦; 𝜂) = 2𝜋𝑟 + 𝜂 𝜋𝑟2 = 0. (1.27)

From the second equality we get 𝜂∗ =−2/𝑟∗, replacing this value in the first we get: 2𝑟 + 𝑦 −
2𝑦 = 2𝑟 − 𝑦 = 0, so that 𝑦∗ = 2𝑟∗, which is the actual proportion found in many commercial
cans.

To illustrate the mathematical method, we will finish the example. Using (1.25c), i.e.,
ℎ(𝜃) = 0, we replace 𝑦 =𝑉/𝜋𝑟2 to obtain the actual solution to (1.25), namely (𝑟∗)3 =𝑉/2𝜋
and 𝑦∗ = 2𝑟∗. The constraint qualification holds at this (unique) KKT point. Indeed there is
only one constraint, and it satisfies

∇ℎ (𝜃) = (2𝜋𝑟𝑦, 𝜋𝑟2),

which is non-zero at 𝑟∗, 𝑦∗, as required. Observe that taking 𝑣� = (𝑟/2,−𝑦) yields
∇ℎ (𝜃) 𝑣 = 0.

Because this is the only KKT point, it is the only candidate for the solution. To see that
the KKT point is indeed a local minimum, note that 𝑟 ∈ (0,∞) and as 𝑟 either tends to 0 or
to ∞, the value of 𝐽 (𝑟, 𝑦) tends to ∞, so that we can conclude that 𝐽 has to have a minimum
for some value of 𝑟 ∈ (0,∞). Since the only candidates for the location of a minimum are
the KKT points, it follows from the uniqueness of the solution, that the KKT point is the
location of the global minimum.

It is worth noting that this example is academic and placed here for illustrating the use
of the theory. A more direct solution is readily obtained by direct substitution 𝑦 =𝑉/𝜋𝑟
into 𝐽 to obtain a function of only one variable 𝑓 (𝑟) = 2𝜋(𝑟2 +𝑉/𝜋𝑟2). That this is convex
follows from 𝑓 ′ (𝑟) = 2𝜋(2𝑟 −𝑉/𝜋𝑟2), and 𝑓 ′′ (𝑟) = 2𝜋(2 + 2𝑉/𝜋𝑟3) > 0 for all 𝑟 > 0. The
unique zero of 𝑓 ′ (𝑟), 𝑟 ≥ 0 is exactly at 𝑟∗. ÷×÷×÷×

GRADIENT-BASED METHODS 21

The theorem below provides the second-order conditions that help in determining if a
KKT point is indeed a local minimum along the feasible set under no convexity.

Definition 1.12. Let (𝜃∗, 𝜆∗, 𝜂∗) be a stationary point of an NLP. The critical cone
C(𝜃∗, 𝜆∗) is

C(𝜃∗, 𝜆∗) ={
𝑣 ∈R𝑑 : ∇𝑔𝑖 (𝜃∗)𝑣 ≤ 0, if 𝑖 ∈ 𝐴(𝜃∗),

𝜆∗
𝑖 = 0,∇𝑔𝑖 (𝜃∗)𝑣 = 0, if 𝜆∗

𝑖 > 0,

∇ℎ(𝜃∗)𝑣 = 0
}
.

This cone defines the set of directions 𝑣
that move along the active and equality
constraints, as well as those that move
“inside” the feasible set if the active con-
straint has a null multiplier.

Theorem 1.6. Consider an NLP such that 𝐽 (𝜃), 𝑔(𝜃), ℎ(𝜃) ∈ C2 and that the constraint
qualifications hold for 𝑔(𝜃), ℎ(𝜃) at 𝜃∗. If (𝜃∗, 𝜆∗, 𝜂∗) satisfies the first-order condition of
being a stationary point (i.e., a KKT point), and the following second-order condition holds:

𝑣�∇2
𝜃L(𝜃∗, 𝜆∗, 𝜂∗)𝑣 > 0, for 0≠ 𝑣 ∈ C(𝜃∗, 𝜆∗), (1.28)

then 𝜃∗ is a local minimum of (1.23), where ∇2
𝜃L denotes the Hessian of L with respect

to 𝜃.

Note that if the domain {𝜃 ∈R𝑑 : 𝑔𝑖 (𝜃) ≤ 0, 1 ≤ 𝑖 ≤ 𝑝; ℎ 𝑗 (𝜃) = 0, 1 ≤ 𝑗 ≤ 𝑞} is compact, then
the use of the second-order condition can be avoided as continuity of 𝐽 (𝜃) already implies
existence of a global maximum and minimum on a compact set. Evaluating all stationary
points then solves the optimization problem. See, for example, [49]. Lagrange multipliers
frequently have an interpretation in practical contexts. In economics, they can often be
interpreted in terms of prices for constraints, so-called “shadow prices” while in physics,
they can represent concrete physical quantities. Mathematically, Lagrange multipliers can
be viewed as rates of change of the optimal cost as the level of constraint changes. These
types of results are called envelop theorems in the literature. Next, we state, without proof,
the fundamental envelop theorem.

Theorem 1.7. Consider an NLP with no inequality constraints (𝑝 = 0) and 𝐽 (𝜃) ∈ C2 and
convex. Let (𝜃∗, 𝜂∗) be a local minimum and Lagrange multiplier, respectively, satisfying
the KKT conditions and condition (1.28). Moreoever, consider the family of continuous
non-linear problems

min 𝐽 (𝜃), 𝜃 ∈R𝑑 (1.29a)

s.t. ℎ(𝜃) = 𝑢 (1.29b)

parameterized by 𝑢 ∈R𝑞 . Then there exists an open sphere 𝑆 centred at 𝑢 = 0 such that
for every 𝑢 ∈ 𝑆, there exist 𝜃 (𝑢) ∈R𝑑 and 𝜂(𝑢) ∈R𝑞 such that 𝜃 (𝑢) is the location of
a local minimum of the above NLP and 𝜂(𝑢) the corresponding Lagrange multiplier.

22 OPTIMIZATION AND LEARNING

Furthermore, 𝜃 (𝑢), 𝜂(𝑢) are continuously differentiable functions within 𝑆 and we have
𝜃 (0) = 𝜃∗, 𝜂(0) = 𝜂∗. In addition, for all 𝑢 ∈ 𝑆,

∇𝑢𝐹 (𝑢) =−𝜂(𝑢),

where 𝐹 (𝑢) = 𝐽 (𝜃 (𝑢)) is the optimal cost of the problem at value 𝑢.

In the case of inequality constraints, evidently {𝜃 : 𝑔(𝜃) ≤ 0} ⊂ {𝜃 : 𝑔(𝜃) ≤ 𝑢} for 𝑢 > 0.
Thus, the optimal cost value of the modified problem must satisfy 𝐹 (𝑢) ≤ 𝐹 (0), for 𝐹 (𝑢)
defined as in Theorem 1.7. For all inactive inequality constraints, 𝜆𝑖 = 0, and for all active
constraints, 𝜆𝑖 > 0, indicating a potential marginal decrease in the cost function as a result
of increased resources.

Example 1.8. A company has a budget of $10,000 for advertising, all of which must
be spent. It costs $3,000 per minute to advertise on television and $1,000 per minute to
advertise on radio. If the company buys 𝑥 minutes of television advertising and 𝑦 minutes
of radio advertising, its revenue in thousands of dollars is determined by the company’s
data-mining oracle/statistician to be reasonably approximated by the function

𝑓 (𝑥, 𝑦) =−2𝑥2 − 𝑦2 + 𝑥𝑦 + 8𝑥 + 3𝑦.

We can find the best solution to maximize profit solving the minimization problem:

min
𝑥,𝑦∈R

𝑓 (𝑥, 𝑦) = 2𝑥2 + 𝑦2 − 𝑥𝑦 − 8𝑥 − 3𝑦

s.t. ℎ(𝑥, 𝑦) = 3𝑥 + 𝑦 − 10= 0
𝑔1(𝑥, 𝑦) =−𝑥 ≤ 0
𝑔2(𝑥, 𝑦) =−𝑦 ≤ 0,

where 𝑓 and ℎ are expressed in units of thousands of dollars. The Lagrangian is

L(𝑥, 𝑦, 𝜆, 𝜂) = 2𝑥2 + 𝑦2 − 𝑥𝑦 − 8𝑥 − 3𝑦 +𝜆1 (−𝑥) +𝜆2 (−𝑦) + 𝜂(3𝑥 + 𝑦 − 10),

and ∇(𝑥,𝑦)L(𝑥, 𝑦, 𝜆, 𝜂) = (4𝑥 − 𝑦 − 8 −𝜆1 + 3𝜂, 2𝑦 − 𝑥 − 3 −𝜆2 + 𝜂)𝑇 . By the first KKT con-
dition, a local minimum (𝑥∗, 𝑦∗) satisfies ∇(𝑥,𝑦)L(𝑥∗, 𝑦∗, 𝜆∗, 𝜂∗) = 0, which gives the
following simultaneous equations:

4𝑥∗ − 𝑦∗ − 8 −𝜆∗
1 + 3𝜂∗ = 0

2𝑦∗ − 𝑥∗ − 3 −𝜆∗
2 + 𝜂∗ = 0.

There are four combinations of 𝑔1(𝑥) and 𝑔2(𝑥) being active/inactive.
Suppose both inequality constraints are inactive, so that complementary slackness

gives 𝜆∗
1 =𝜆

∗
2 = 0. Together with the equality constraint, this gives three equations in

three unknowns 𝑥∗, 𝑦∗, 𝜂∗. Their solutions yields the KKT point (𝑥∗, 𝑦∗, 𝜆∗
1, 𝜆

∗
2, 𝜂

∗)� =
(69

28 ,
73
28 , 0, 0,

1
4)

�. This point satisfies a constraint qualification since the function ℎ(𝑥, 𝑦) is
linear, so it is a KKT point, and is thus a candidate for a local minimum. Furthermore, we
have

∇2 𝑓 (𝑥, 𝑦) =

(
4 −1
−1 2

)
,

which is positive definite, and therefore is positive semi-definite (a sufficient condition for
a function to be convex), thus 𝑓 is convex and the KKT point is the unique global minimum

GRADIENT-BASED METHODS 23

of 𝑓 , and is therefore the unique global maximum of the original maximization problem.
The company can therefore maximize its revenue by purchasing 69

28 minutes of television
time and 73

28 minutes of radio time. Since we have found the unique global maximum of the
optimization problem, we do not need to search for any other KKT points.

Now suppose you have in front of you this solution and the company boss puts you “on
the spot” during a meeting and asks for an estimate of the extra revenue which would be
generated if she spent an extra $1,000 on advertising, what would be a reasonable answer?

Instead of solving again the problem with the budget changed to $11,000, you can use
Theorem 1.7: −𝜂 is the instantaneous rate of change of the minimum cost function value
𝐹 (𝑢) as a function of the change in the level of constraint. Here −𝜂∗ =−𝜂(0) =−0.25.
In terms of the original maximization problem, this translates to an increase of $250 to
the maximum revenue that can be generated if the the advertising budget is increased by
$1,000. Thus, knowing 𝜂∗ = .25 will be enough for you to answer promptly “Madam, an
extra expense of $1,000 can only provide an extra revenue around $250. Actually, we would
be better off decreasing the advertising budget.” ÷×÷×÷×

1.4 NUMERICAL METHODS FOR CONSTRAINED OPTIMIZATION

It should be apparent that even for seemingly small dimensions, finding all KKT points
of an NLP may be an infeasible task. As in the case of unconstrained optimization, one
often uses numerical iterative procedures to approximate the solution. We will now mention
some of the methods that extend the simple recursive procedure (1.21). The main idea of
the methods is to either approximate or reformulate the problem in terms of unconstrained
optimization and then use an appropriate numerical algorithm.

Penalty Methods. These methods modify the original performance function to penalize
the extent to which the constraints are not satisfied. Let | | · | | denote the Euclidean norm,
then the penalized function is defined:

𝐽𝛼 (𝜃) = 𝐽 (𝜃) +
𝛼

2
(
| |𝑔(𝜃)+ | |2 + ||ℎ(𝜃) | |2

)
, (1.30)

where 𝑔(𝜃)+ = (𝑔1 (𝜃)+, . . . , 𝑔 𝑗 (𝜃)+)�, and 𝑔𝑖 (𝜃)+ =max(0, 𝑔𝑖 (𝜃)).

Theorem 1.8. Consider an NLP and let {𝛼𝑛} be an increasing sequence such that lim𝑛 𝛼𝑛 =
∞. For𝛼𝑛 given, let 𝜃𝑛 be the location of the minimum of 𝐽𝛼𝑛 (𝜃), i.e., let 𝜃𝑛 = arg min 𝐽𝛼𝑛 (𝜃).
If {𝜃𝑛} has an accumulation point 𝜃∗ and a constraint qualification holds at 𝜃∗, then 𝜃∗ is
(feasible and) stationary for the NLP. Moreover, if 𝜆∗, 𝜂∗ are the Lagrange multipliers for
𝜃∗, then

𝜆∗ = lim
𝑛→∞

𝛼𝑛 (𝑔(𝜃𝑛))+, 𝜂∗ = lim
𝑛→∞

𝛼𝑛 ℎ(𝜃𝑛),

and for each 𝑖 = 1, . . . , 𝑗 , 𝜆∗
𝑖 ≥ 0 and 𝜆∗

𝑖 = 0 if 𝑔𝑖 (𝜃∗) < 0.

Figure 1.4 illustrates the idea of penalizing the unsatisfaction of the constraint. Here 𝐽 (𝜃) =
𝜃2, and the constraint is 𝜃 ≥ 3. Naturally for this example direct inspection yields that (a)
the constraint must be active at the optimal value (because the unconstrained optimum is
infeasible), and (b) thus 𝜃∗ = 3. The function 𝐽𝛼 (𝜃) looks like 𝐽 (𝜃), except that the segment
of the curve to the left of 𝜃 = 3 (in the infeasible region) is “lifted” more dramatically as 𝛼
increases.

24 OPTIMIZATION AND LEARNING

–1 1 2 3 4 5

10

20

30

40

50

Figure 1.8. Functions 𝐽𝛼 (𝜃), 𝛼 = 0, 1, 5, 10.

The actual optimal values for the consecutive penalties are 0.0, 1.4, 2.5, and 2.8. It
follows from Theorem 1.8 that as 𝛼→∞ this sequence converges to the optimal value.
Theorem 1.8 requires solving each unconstrained problem min 𝐽𝛼𝑛 (𝜃) exactly. However,
this is often not possible, so one may use a gradient–based iterative method, for example,
in order to approximate the solution 𝜃𝑛. This is often referred to as “inexact optimization”
for each step.

Numerical methods with inexact optimization typically use 𝜃𝑛
𝑘+1 = 𝜃

𝑛
𝑘 − 𝜖𝑘 ∇𝐽𝛼𝑛 (𝜃𝑛

𝑘)
�,

with 𝑘 = 1, 2, . . . , 𝑇𝑛, for minimizing 𝐽𝛼𝑛 (𝜃) with respect to 𝜃. The terminal time𝑇𝑛 is either
chosen to satisfy a stopping criterion, or sometimes an increasing sequence 𝑇𝑛 →∞ is used.
The idea is to approach the true solutions for the subsidiary problems as 𝑛 increases, while
using fewer iterations at first. The algorithm is

𝜃𝑛
𝑘+1 = 𝜃

𝑛
𝑘 − 𝜖𝑘 ∇𝐽𝛼𝑛 (𝜃

𝑛
𝑘)

�, 𝑘 = 0, . . . 𝑇𝑛 − 1 (1.31a)

𝜃𝑛+1
0 = 𝜃𝑛

𝑇𝑛
(1.31b)

𝛼𝑛+1 =𝛼𝑛 + 𝛿𝑛, (1.31c)

where
∑
𝛿𝑛 =+∞, and

∇𝐽𝛼𝑛 (𝜃𝑛) =∇𝜃 𝐽 (𝜃𝑛) +𝛼𝑛
(
𝑔(𝜃𝑛)�∇𝑔(𝜃𝑛)1{ ‖𝑔 (𝜃𝑛) ‖>0} + ℎ(𝜃𝑛)� ∇ℎ(𝜃𝑛)

)
. (1.32)

Under appropriate conditions, the sequence 𝜃𝑛
𝑇𝑛

will converge to the constrained optimum.
Different stopping schemes yield different overall rates of convergence. Notice that setting
the initial value for step 𝑛 + 1 as the final value for the previous step is more convenient than
re-initializing, provided that the final estimate 𝜃𝑛

𝑇𝑛
is indeed close to the exact optimal value

for 𝐽𝛼𝑛 . Algorithm 1.1 corresponds to the updating scheme in (1.31).
When𝑇𝑛 is increasing, convergence of the auxiliary optimization problem for𝛼𝑛 ensures

that the end point 𝜃𝑛
𝑇𝑛

gets closer to the minimum of 𝐽𝛼𝑛 ; however, it also implies longer
running times for Algorithm 1.1 than using a constant value. Indeed, the running time for
this algorithm is proportional to

∑𝜏
𝑛=1 𝑇𝑛, considering that each iteration inside the for

loop has constant running time. Here, 𝜏 represents the stopping time, which is usually
dependent on the current values of the gradients and consecutive end points 𝜃𝑛

𝑇𝑛
. Amortized

analysis yields that the running time per (outer) iteration is the average of the consecu-
tive lengths 𝑇𝑛, which grows as 𝑛→∞ unless 𝑇𝑛 are constant. This may produce slow
algorithms.

GRADIENT-BASED METHODS 25

Figure 1.9. Visualization of the projection algorithm.

Algorithm 1.1 Penalty method

Read cost and constraint functions 𝐽, 𝑔, ℎ.
Pre-define the increasing function Alpha(𝑛).
Pre-define the non-decreasing sequence 𝑇𝑛.
Pre-define the function Grad(𝛼, 𝜃) that returns ∇𝐽�

𝛼 (𝜃) in (1.32)
Initialize 𝜃 [0, 0], 𝛼0 =Alpha(0), 𝑛 = 0
while (not stopping-condition) do

for (𝑘 = 0, . . . , 𝑇𝑛 − 1) do
𝜃 [𝑛, 𝑘 + 1] = 𝜃 [𝑛, 𝑘] − 𝜖𝑘 Grad(𝛼𝑛, 𝜃 [𝑛, 𝑘])

𝜃 [𝑛 + 1, 0] = 𝜃 [𝑛, 𝑇𝑛]
𝛼𝑛+1 = Alpha(𝑛 + 1)
𝑛← 𝑛 + 1

Alternatively, one can introduce a two-timescale method. Let 𝑇𝑛 = 1 and suppose that
𝛼𝑛 grows ever so slowly that it “looks” constant for the iteration in 𝜃𝑛 when using Taylor
expansions. The corresponding algorithm is of the form

𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛∇𝐽𝛼𝑛 (𝜃𝑛)� (1.33a)
𝛼𝑛+1 =𝛼𝑛 + 𝛿𝑛, (1.33b)

with 𝛿𝑛𝜖𝑛 → 0,
∑
𝛿𝑛 =+∞, and ∇𝐽𝛼𝑛 (𝜃𝑛) as in (1.32). A convergence proof for this scheme

with fixed 𝜖𝑛, 𝛿𝑛 is provided in Theorem 2.12. For a treatment of general convergence results
for two-timescale algorithms we refer to [222]. Algorithm 1.2 shows the pseudocode for the
two-timescale implementation of the penalty method. In terms of the running time, it is now
linear in the number of iterations performed in the while loop. However convergence of the
two-timescale in terms of the stopping time 𝜏 may be slower than Algorithm 1.1 because 𝛼𝑛

grows now very slowly. Inspecting Figure 1.4 it becomes apparent why the growth-rate of
𝛼𝑛 has to be chosen with care: if 𝛼𝑛 is too large, the penalty may push the algorithm far to
the right (and away from the solution) and thus renders the method numerically inefficient.

Projection Methods. Gradient projection methods iterate successive solutions in the direc-
tion of improvement of the cost function (descent directions) where the value at each iter-
ation remains always feasible. The projection method was introduced in [130, 131] and
independently thereof in [202]. In the literature, the projection method also goes under
the name Goldstein-Levitin-Polyak projection method, see [29, 141]. The algorithm is in

26 OPTIMIZATION AND LEARNING

Algorithm 1.2 Penalty method: Two-timescale

Read cost and constraint functions 𝐽, 𝑔, ℎ.
Pre-define the decreasing function Delta(𝑛).
Pre-define the non-decreasing sequence 𝑇𝑛.
Pre-define the function Grad(𝛼, 𝜃) that returns ∇𝐽�

𝛼 (𝜃) in (1.32)
Initialize 𝜃0, 𝛼0 =Alpha(0), 𝑛 = 0
while (not stopping-condition) do

𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛 Grad(𝛼𝑛, 𝜃 [𝑛, 𝑘])
𝛼𝑛 =𝛼𝑛+Delta(𝑛)
𝑛← 𝑛 + 1

general form:
𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛∇𝐽 (𝜃𝑛)� (1.34a)

𝜃𝑛+1 =ΠΘ

(
𝜃𝑛+1

)
, (1.34b)

where ΠΘ(𝑣) is the projection of the vector 𝑣 ∈R𝑑 onto the set Θ; and for Θ ⊂R𝑑 a closed
convex set, the projection ΠΘ on Θ is defined as

ΠΘ(𝑥) = arg min
𝑧∈Θ

| |𝑥 − 𝑧 | |. (1.35)

In words, ΠΘ(𝑣) is the point closest to 𝑣 in Θ in Euclidean distance. Figure 1.9 (left) shows
the geometric interpretation of the algorithm.

For mathematical analysis of the projection algorithm the following representation of
the projection version of the gradient descent algorithm will be used in later chapters

𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛
(
∇𝐽 (𝜃𝑛) + 𝑍 (𝜖𝑛, 𝜃𝑛,−∇𝐽 (𝜃𝑛))

)
, (1.36)

where where 𝑍 (𝜖𝑛, 𝜃𝑛,−∇𝐽 (𝜃𝑛)) is the “projection force” that keeps the algorithm on Θ.
Specifically, if 𝜃𝑛+1 ∈Θ, then

𝑍 (𝜖𝑛, 𝜃𝑛,−∇𝐽 (𝜃𝑛)) = 0,

and otherwise

𝑍 (𝜖𝑛, 𝜃𝑛,−∇𝐽 (𝜃𝑛)) =
1
𝜖𝑛

(
𝜃𝑛 − 𝜖𝑛∇𝐽 (𝜃𝑛) −ΠΘ

(
𝜃𝑛 − 𝜖𝑛∇𝐽 (𝜃𝑛)

))
. (1.37)

Note that by (1.35) the projection force on a convex set at some point 𝜃 ∈Θ is by construction
no larger than the unconstrained increment given by the gradient at 𝜃 times the gain size,
that is,

‖𝑍 (𝜂, 𝜃,−∇𝐽 (𝜃))‖ ≤ 𝜂 | |∇𝐽 (𝜃) | |, (1.38)

for 𝜂 > 0, and that the projection force is monotone decreasing in the gain size

‖𝑍 (𝜂, 𝜃,−∇𝐽 (𝜃))‖ ≤ ‖𝑍 (𝜂, 𝜃,−∇𝐽 (𝜃))‖, (1.39)

for 𝜂 ≤ 𝜂, which stems from the fact that the force pushing the update outside of Θ is the
negative gradient scaled by the gain size, and is therefore monotone decreasing in the gain
size.

The actual evaluation of the projection operation is usually the main computational
burden for each step in the algorithm. See, for example, [77], where the projection onto a

GRADIENT-BASED METHODS 27

simplex is provided. The simplest case is that of projection on a hypercube or a hyperball,
which are detailed in the following examples.

Example 1.9. In case Θ is a 𝑑-dimensional hypercube, i.e., Θ= [−𝑀, 𝑀]𝑑 for some finite
𝑀 , the projection is easily obtained through

Π𝑀 (𝜃) :=Π[−𝑀,𝑀]𝑑 (𝜃) =
(
max(𝜃𝑖 ,−𝑀)1{ 𝜃𝑖≤0} + min(𝜃𝑖 , 𝑀)1{ 𝜃𝑖≥0} : 1 ≤ 𝑖 ≤ 𝑑

)�
.

In the special case of the projection on a hypercube we call the projection a truncation
(on each coordinate). We call the constraint set Θ box constraints. Note that Θ can be
encoded in the KKT setting, see (1.23), through 𝑔𝑖 (𝜃) = 𝜃𝑖 −𝑀 and 𝑔𝑖+𝑑 (𝜃) =−𝜃𝑖 −𝑀 , for
1 ≤ 𝑖 ≤ 𝑑. ÷×÷×÷×

Example 1.10. In case Θ is a 𝑑-dimensional ball around the origin of radius 𝑟 > 0, i.e.,

Θ= 𝐵𝑟 := {𝜃 ∈R𝑑 : | |𝜃 | | ≤ 𝑟}, (1.40)

the projection is obtained by rescaling vectors ourside of 𝐵𝑟 :

Π𝑟 (𝜃) :=Π𝐵𝑟 (𝜃) =
{
𝑟𝜃/||𝜃 | | if 𝜃 ∉ 𝐵𝑟 ,
𝜃 if 𝜃 ∈ 𝐵𝑟 .

(1.41)

Note that 𝐵𝑟 can be encoded in KKT setting, see (1.23), through 𝑔(𝜃) = | |𝜃 | | − 𝑟. ÷×÷×÷×

In the following we consider NLP’s without equality constraints, in which case the NLP
becomes

min
𝜃∈Θ

𝐽 (𝜃), Θ= {𝜃 ∈R𝑑 : 𝑔(𝜃) ≤ 0} (1.42)

and solutions are characterized by the KKT conditions.

Before stating (a version) of the convergence result, we will motivate the result by the
following consideration. Suppose that {𝜃𝑛} is obtained via (1.34), then the following cases
can occur: (i) the minimizer 𝜃∗ is an inner point of Θ and the algorithm will (after possibly
finitely many projections) stay inside Θ, and will behave just like the unconstrained version;
(ii) the unconstrained minimizer 𝜃∗ lies outside of Θ (or on the boundary of Θ) and the
algorithm will eventually converge to a point 𝜃∗ on the boundary of Θ; and finally (iii) the
problem may be ill-posed so that 𝜃𝑛 has no accumulation points at all (e.g., minimizing
𝐽 (𝜃) =−𝜃2). Note that case (iii) is ruled out if we assume Θ to be compact which is a
consequence of the Weierstrass theorem, see Theorem A.2 in Appendix A. Before turning
to the study of the behavior of the algorithm, we provide some details on case (ii). For ease
of argument we consider the fixed 𝜖 version of the algorithm. Suppose that 𝜃∗ lies outside
Θ, and suppose that the algorithm converges to a point 𝜃′, then ∇𝐽 (𝜃𝑛) + 𝑍 (𝜖, 𝜃𝑛,−∇𝐽 (𝜃𝑛))
tends to zero as 𝑛 tends to infinity. Assume, for simplicity, that only one constraint 𝑔𝑖 is
active at 𝜃′, i.e., 𝑔(𝜃′) := 𝑔𝑖 (𝜃′) = 0. Then, the descent direction in 𝜃′ is −∇𝐽 (𝜃′)�. This
implies that −∇𝐽 (𝜃′)� is pointing outward of Θ. For the algorithm to have 𝜃′ as fixed
point, it must hold that the projection of 𝜃′ = 𝜃′ − 𝜖∇𝐽 (𝜃′)� on Θ is 𝜃′ itself. This means
that 𝜃′ − 𝜃′ is perpendicular to the tangent plane (an object in R𝑑+1) to Θ at 𝜃′. Since Θ is
given as {𝜃 ∈R𝑑 : 𝑔(𝜃) ≤ 0}, we know that ∇𝑔(𝜃) is a the projection of the normal vector
to the tangent plane onto the parameter space R𝑑 , and due to the inequality we have that
∇𝑔(𝜃) is pointing outward of Θ. This shows that −∇𝐽 (𝜃′)� and ∇𝑔(𝜃′) are co-linear and
pointing in the same direction. Hence, −∇𝐽 (𝜃′)� =𝜆∇𝑔(𝜃′), for some 𝜆 > 0, as illustrated in
Figure 1.9. We conclude that 𝜃′ is a KKT point. Note that it thus holds that 𝑍 (𝜖, 𝜃′,−∇𝐽 (𝜃′))

28 OPTIMIZATION AND LEARNING

and ∇𝑔(𝜃′) are co-linear for all 𝜖 ; however, they point in opposite directions. To summarize,
for ∇𝐽 (𝜃′) ≠ 0 and 𝑔(𝜃′) = 0, we have 𝜆∇𝑔(𝜃′) =−∇𝐽 (𝜃′), which shows that 𝜃′ is a KKT
point for (1.42) and under appropriate smoothness conditions a local minimizer for (1.42).

In the presence of bias, it may happen that the biased version is co-linear with the
projection force at some point 𝜃𝑛 so that the algorithm does not advance any more (i.e.,
𝜃𝑛+𝑚 = 𝜃𝑛 for 𝑚 ≥ 1) while the gradient is not co-linear with the projection force and 𝜃𝑛 is
thus not a KKT point. As illustrating example for this phenomena consider the coordinate
descent gradient

𝐺 (𝜃) = e 𝑗 (𝜕𝐽 (𝜃)/𝜕𝜃 𝑗),

where e 𝑗 is the 𝑗 th unit vector and

𝑗 = arg max
𝑖

|𝜕𝐽 (𝜃)/𝜕𝜃𝑖 |.

It is easily seen that −𝐺 (𝜃) is a descent direction and, in general, a biased version of
−∇𝐽 (𝜃). Let Θ be a hypercube. Suppose that 𝜃𝑛 is the first time that the algorithm steps
outside hyercube Θ, so that 𝜃𝑛 is on the surface of the hypercube. Since 𝐺 (𝜃) is by
construction perpendicular to the surface of the hypercube, this implies that algorithm gets
stuck at 𝜃𝑛, i.e., 𝜃𝑛 = 𝜃𝑛+𝑘 for 𝑘 ≥ 0. Letting 𝑘 now tend to ∞, neither the value of 𝜃𝑛+𝑘 nor
that of the bias will change. Hence, the bias cannot tend to zero and we can rule this out
by imposing the condition that 𝛽𝑛 tends to zero as 𝑛 tends to ∞. If, on the other hand, the
algorithm comes to a halt at 𝜃𝑛 with 𝛽𝑛 = 0, we have found a KKT point.

We now present the theorem.

Theorem 1.9. Consider the NLP

min
𝜃∈Θ

𝐽 (𝜃), Θ= {𝜃 ∈R𝑑 : 𝑔(𝜃) ≤ 0} (1.43)

with Θ being a compact and convex set, and let 𝐽 (𝜃) ∈ C2 with 𝐿 denoting the uniform
Lipschtiz constant of ∇𝐽 on Θ. Consider the algorithm

𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛 (∇𝐽 (𝜃𝑛)� + 𝛽𝑛)

𝜃𝑛+1 =ΠΘ

(
𝜃𝑛+1

)
,

with either ∑
𝑛

𝜖𝑛 =∞,
∞∑

𝑛=1
𝜖𝑛 ‖𝛽𝑛 (𝜃𝑛)‖ <∞ and

∑
𝑛

𝜖2
𝑛 <∞,

where 𝜖𝑛 > 0 for all 𝑛, or

0< 𝜖𝑛 = 𝜖 < 2/𝐿, for 𝑛 ≥ 0, and lim
𝑛→∞

||𝛽𝑛 | | = 0.

Then every accumulation point of {𝜃𝑛} of this algorithm is a KKT-point of the NLP in
(1.43).

Proof. We proof the theorem in case of no bias. The extension to the biased case follows
the line of argument provided in the discussion prior to the theorem.

As Θ is compact, then by the Bolzano-Weierstrass theorem, {𝜃𝑛} has accumulation
points. Let 𝜃∗ be an accumulation point of {𝜃𝑛} and assume that 𝜃∗ is an inner point of Θ.
Let 𝜃𝑚 := 𝜃𝑛𝑚 denote the subsequence converging toward 𝜃∗. Then, for 𝑁 sufficiently large,
𝜃𝑚 ∈ Θ̂, for 𝑚 ≥ 𝑁 , for some compact proper subset Θ̂ of Θ (i.e., Θ̂ contains no boundary

GRADIENT-BASED METHODS 29

points of Θ). Continuity of the gradient and the Hessian implies that the gradient as well
as the Hessian are bounded on Θ̂. We now apply the arguments put forward in the proof of
Theorem 1.3 for the decreasing 𝜖 case and Theorem 1.4 for the fixed 𝜖 case, to show that

lim
𝑚→∞

∇𝐽 (𝜃𝑚) = 0=∇𝐽 (𝜃∗),

which shows that 𝜃∗ is a stationary point of 𝐽 (𝜃). We have assumed that 𝜃∗ is an inner point
of Θ, so that 𝑔𝑖 (𝜃∗) < 0 for all 𝑖, and it follows that 𝜃∗ is a KKT point for (1.42).

Now consider the case that 𝜃∗ lies on the boundary of Θ. Convergence of 𝜃𝑚 implies that
‖∇𝐽 (𝜃𝑚) + 𝑍 (𝜖, 𝜃𝑚,−∇𝐽 (𝜃𝑚))‖ converges toward zero. Note that projection on a convex
set is continuous; see Exercise 1.5. By continuity of both gradient and projection it holds
that

lim
𝑚→∞

‖∇𝐽 (𝜃𝑚) + 𝑍 (𝜖, 𝜃𝑚,−∇𝐽 (𝜃𝑚))‖ = ‖∇𝐽 (𝜃∗) + 𝑍 (𝜖, 𝜃∗,−∇𝐽 (𝜃∗))‖ = 0. (1.44)

For 𝜖 sufficiently small, we apply Theorem 1.4 to conclude from the above that either
∇𝐽 (𝜃∗) = 0 (and therefore 𝑍 (𝜖, 𝜃∗,−∇𝐽 (𝜃∗)) = 0) and 𝑔𝑖 (𝜃∗) = 0, or ∇𝐽 (𝜃∗) ≠ 0 in which case
the negative gradient points outward from Θ. For the projection force to counter balance
−∇𝐽 (𝜃∗), the negative gradient has to be perpendicular to the projection of hyperplane
spanned by any 𝑔𝑖 at 𝜃∗ onto R𝑑 . As, moreover the ∇𝑔𝑖 (𝜃∗)’s are pointing outward of Θ,
we have that −∇𝐽 (𝜃∗) =

∑
𝜆𝑖∇𝑔𝑖 (𝜃∗) for some constants 𝜆𝑖 > 0 where the sum runs through

the indices of the active constraints. This shows that 𝜃∗ is a KKT point for (1.42).
For the decreasing 𝜖 we take 𝑁 such that 𝜖𝑛 ≤ 2/𝐿 for 𝑛 ≥ 𝑁 , and we use

‖𝑍 (𝜖𝑛, 𝜃𝑛,−∇𝐽 (𝜃𝑛))‖ ≤ ‖𝑍 (𝜖, 𝜃𝑛,−∇𝐽 (𝜃𝑛))‖ for 𝑛 ≥ 𝑁 , which stems from the fact that
the projection force is monotone in the gain size; see (1.39). The proof then follows from
(1.44).

To conclude the proof, we evoke Theorem 1.5, to show that any KKT point for (1.42) is
the location of a local minimum for the NLP in (1.42). �

Remark 1.2. In case that Θ represents hard constraints so that 𝐽 (𝜃) is not defined outside
of Θ, the gradient of 𝐽 (𝜃) is only defined on interior points of Θ. As on the boundary of Θ
only the directional derivatives along directions pointing inward of Θ are defined (and not
the gradient as such), the projection method as presented here cannot be straightforwardly
applied.

Remark 1.3. Unless the constraint setΘ is of a particular nice and simple form (e.g., a “box”
or a “ball”), the projection step may require numerical approximation methods (see Exam-
ple 1.11 below). In general, the projection method provides an analytically attractive tool that
we will use extensively in the rest of this book. Indeed, many technical assumptions become
less restrictive if the algorithm is projected onto a bounded set. For example, the condition
that the gradient is bounded along trajectories in Theorem 1.3 rules out even a quadratic form
of 𝐽 (𝜃), but there is nothing wrong with a quadratic function as long as the trajectories remain
inside a bounded set. In many cases, we study the projected version of the algorithm restrict-
ing the solutions {𝜃𝑛} to a hypothetical large hyperball; see Example 1.10. If the projected
algorithm has accumulation points that are independent of the hyperball, then theoretical
arguments can be used to establish that the original (unprojected) version has the same limit-
ing behavior. It is worth mentioning that the projection method is well-studied in the area of
deterministic optimization. A method for finding a projection on a general convex set through
iterative projection on simpler convex sets is Dykstra’s method [43], and for an exhaustive
overview of these kind of methods we refer to [67]. It is worth noting that projection can

30 OPTIMIZATION AND LEARNING

be avoided by moving only along an update direction that stays inside the feasible set. An
example of an algorithm that elaborates on this idea and that is popular in machine learning
is the Frank-Wolfe algorithm, which uses a linear approximation of the objective for finding
a descent direction that stays inside the feasible set; see [99].

We conclude this section on the projection method with a discussion on finding (approx-
imate) projections when the feasible set is not of a simple form and the projection operation
cannot be expressed analytically in closed form.

Example 1.11. In the case that the constraint function 𝑔 is affine, Example 4.3 in Chapter 3
of [31] shows that the dual of this problem leads to a much simpler optimization problem with
only positivity constraints. We now refer to [190] where a method is proposed for general
𝑔 ∈ C2 using the fact that 𝜃𝑛 ∈Θ, and 𝜃𝑛+1 − 𝜃𝑛 is of order 𝜖𝑛 so a Taylor approximation can
be used to linearize the constraints around 𝜃𝑛:

𝑔(𝑥) ≈ 𝑔(𝜃𝑛) + ∇𝑔(𝜃𝑛)(𝑥 − 𝜃𝑛).

Let 𝑣 = 𝜃𝑛+1. The constraint 𝑥 ∈Θ is approximated by the constraint

𝑔(𝜃𝑛) + ∇𝑔(𝜃𝑛)𝑥 ≤ ∇𝑔(𝜃𝑛)𝜃𝑛.

CallA=∇𝑔(𝜃𝑛)�, and 𝑏 =A𝜃𝑛 − 𝑔(𝜃𝑛). The approximated, or “surrogate” subsidiary prob-
lem becomes

min
𝑥

(
1
2
𝑥�𝑥 − 𝑣�𝑥

)
(1.45)

s.t. A𝑥 ≤ 𝑏, (1.46)

The Lagrangian for this subsidiary problem is

L(𝑥, 𝜇) =
1
2
𝑥�𝑥 − 𝑣�𝑥 + 𝜇�

A𝑥 − 𝜇�𝑏.

Using Lagrange duality (Theorem 1.11), we seek max𝜇≥0 (min𝑥∈R𝑑 L(𝑥, 𝜇)). Because of
the quadratic form, we can solve the minimization step analytically by setting the gradient
to zero, which readily yields 𝑥∗(𝜇) = 𝑣 −A�𝜇. Then the subsidiary problem is

max
𝜇≥0

(
1
2
(𝑣 −A�𝜇)�(𝑣 −A�𝜇) − 𝑏�𝜇

)
,

which, after replacing the appropriate values, gives another quadratic maximization problem
with a projection to the positive real numbers. Finding the zero of the derivative of this
function, however, now requires an inversion of matrices depending on 𝑔(𝜃𝑛) and ∇𝑔(𝜃𝑛),
which is generally computationally expensive. Instead, [190] propose a recursive gradient
method to solve for 𝜇. With this, one sets 𝜃𝑛+1 = 𝑣 −A�𝜇∗ = 𝜃𝑛+1 −∇𝑔(𝜃𝑛)�𝜇∗.

The above analysis requires exact optimization for the subsidiary problem (i.e., solving
𝜇∗), but this is often not possible, so inexact optimization can be used. Let 𝑇𝑛 be the number
of iterations used to approximate 𝜇∗ at step 𝑛 of the procedure. Then the algorithm is

𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛∇𝐽 (𝜃𝑛)� (1.47a)
𝜇𝑛

𝑘+1 =max
(
0, 𝜇𝑛

𝑘 + 𝛿𝑘
(
∇𝑔(𝜃𝑛)∇𝑔(𝜃𝑛)� 𝜇𝑛

𝑘 +∇𝑔(𝜃𝑛)(𝜃𝑛+1 − 𝜃𝑛) − 𝑔(𝜃𝑛)
))

;
𝑘 = 0, . . . , 𝑇𝑛 − 1 (1.47b)

𝜃𝑛+1 = 𝜃𝑛+1 −∇𝑔(𝜃𝑛)�𝜇𝑛
𝑇𝑛
. (1.47c)

GRADIENT-BASED METHODS 31

Indeed, recalling our definitions A=∇𝑔(𝜃𝑛)�, 𝑣 = 𝜃𝑛+1, and 𝑏 =A𝜃𝑛 − 𝑔(𝜃𝑛) one notes that
the second iteration above refers to the approximate solution of the subsidiary problem.

Because of the approximation of the non-linear constraint, this new point may be
infeasible, but under appropriate conditions on 𝑇𝑛, 𝜖𝑛, 𝛿𝑛, this algorithm will converge. It is
also possible to adapt this algorithm to a two-timescale version. ÷×÷×÷×

Multiplier Methods. These methods are based on the following result for equality con-
straint problems; for a proof, we refer to [31].

Theorem 1.10. Consider an equality constrained problem. Let

𝜃∗𝑛 = arg min
𝜃

L(𝜃, 𝜂𝑛)

𝜂𝑛+1 = 𝜂𝑛 + 𝜌𝑛ℎ(𝜃∗𝑛),

for a sequence 𝜌𝑛 →∞, then (𝜃∗𝑛, 𝜂𝑛) → (𝜃∗, 𝜂∗) a local minimum and a KKT point of
(1.23).

The inexact multipliers methods use an approximation to 𝜃∗𝑛 via Theorem 1.3. Let 𝑇𝑛

be a stopping time for the approximation at step 𝑛. Then the algorithm is

𝜃𝑛
𝑘+1 = 𝜃

𝑛
𝑘 − 𝜖𝑘∇𝜃L(𝜃𝑛

𝑘 , 𝜂𝑛)� = 𝜃𝑛
𝑘 − 𝜖𝑘

(
∇𝜃 𝐽 (𝜃𝑛

𝑘)
� + ∇𝜃 ℎ(𝜃𝑛

𝑘)𝜂𝑛
)
;

𝑘 = 0, . . . , 𝑇𝑛 (1.48a)
𝜂𝑛+1 = 𝜂𝑛 + 𝜌𝑛ℎ(𝜃𝑛

𝑇𝑛
). (1.48b)

This method can be applied to inequality constraints as well via a transformation; see [31].
The choice of 𝑇𝑛 will determine the convergence properties. It is common to either use a
stopping criterion in terms of ∇L ≈ 0, or to use an increasing sequence 𝑇𝑛. Compared with
the analysis of the penalty method, one can also deduce that the amortized running time
will be an average of the batch lengths 𝑇𝑛, which is an increasing function of 𝑛.

Algorithm 1.3 Multiplier method

Read cost and constraint functions 𝐽, ℎ.
Pre-define the increasing function Rho(𝑛).
Pre-define the non-decreasing sequence 𝑇𝑛.
Initialize 𝜃 [0, 0], 𝜂𝑛, 𝜌0 =Rho(0), 𝑛 = 0
while (not stopping-condition) do

for (𝑘 = 0, . . . , 𝑇𝑛 − 1) do
𝜃 [𝑛, 𝑘 + 1] = 𝜃 [𝑛, 𝑘] − 𝜖𝑘

(
∇𝐽 (𝜃)�(𝜃 [𝑛, 𝑘] + ∇ℎ(𝜃 [𝑛, 𝑘]) 𝜂𝑛

)
𝜃 [𝑛 + 1, 0] = 𝜃 [𝑛, 𝑇𝑛]
𝜂𝑛+1 = 𝜂𝑛+ Rho(𝑛) ℎ(𝜃 [𝑛 + 1, 0])
𝑛← 𝑛 + 1

A two-timescale algorithm can be implemented here, like for the penalty method, using
𝑇𝑛 = 1 but making 𝜌𝑛 grow “slower” than 𝜖𝑛 decreases so that the primal variable behaves
locally in bounded intervals as if it was driven with a constant dual variable. This algorithm
will have a constant amortized running time.

Lagrange Duality Methods. In both penalty and multiplier methods, the theory establishes
convergence only when an exact minimization takes place for given multiplier values. The

32 OPTIMIZATION AND LEARNING

Figure 1.10. Saddle point illustration for 𝜃, 𝜆 on the axes, no equality constraints.

numerical approximations often use inexact minimization by updating the decision variable
𝜃𝑛 for 𝑇𝑛 iterations and then updating the multipliers. However, there is no guarantee that
the algorithm will converge, and it is not clear how to tune the parameter 𝑇𝑛 for better
convergence.

An important class of methods is based on Lagrange Duality Theory. It is straightforward
to note that the solution to (1.23) is the same as the solution of the minmax problem:

min
𝜃∈R𝑑

max
𝜆≥0,𝜂

L(𝜃;𝜆, 𝜂) = min
𝜃∈R𝑑

{
𝐽 (𝜃) if 𝑔(𝜃) ≤ 0, ℎ(𝜃) = 0,
+∞ otherwise.

However, the above minmax problem is clearly not useful for an iterative algorithm. Instead,
we use the following strong result.

Theorem 1.11 (Saddle Point Theorem). For a given convex NLP, the triplet (𝜃∗, 𝜆∗, 𝜂∗)
is a KKT point if and only if it is a saddle point of the Lagrangian, that is,

L(𝜃∗, 𝜆, 𝜂) ≤ L(𝜃∗, 𝜆∗, 𝜂∗) ≤ L(𝜃, 𝜆∗, 𝜂∗)

for every 𝜃 ∈R𝑑 , 𝜆(≥ 0) ∈R𝑝 , 𝜂 ∈R𝑞 . Furthermore,

min
𝜃∈R𝑑

max
𝜆≥0,𝜂

L(𝜃;𝜆, 𝜂) = max
𝜆≥0,𝜂

min
𝜃∈R𝑑

L(𝜃;𝜆, 𝜂).

The saddle point theorem can be used to maximize first over the multipliers, and then
perform a minimization over the decision variables. This is the motivation for the Uzawa
algorithm [304]:

𝜃𝑛+1 = arg min
𝜃

L(𝜃, 𝜆𝑛, 𝜂𝑛) (1.49a)

𝜆𝑛+1 =𝜆𝑛 + max(0, 𝜆𝑛 + 𝜖𝑛∇𝜆L(𝜃𝑛+1, 𝜆𝑛, 𝜂𝑛)�) (1.49b)
𝜂𝑛+1 = 𝜂𝑛 + 𝜖𝑛∇𝜂L(𝜃𝑛+1, 𝜆𝑛, 𝜂𝑛)�, (1.49c)

where ∇𝜆L(𝜃, 𝜆, 𝜂)� = 𝑔(𝜃) and ∇𝜆L(𝜃, 𝜆, 𝜂)� = ℎ(𝜃). The max(0, ·) is a component-wise
max operation on the vector.

(continued...)

Index

absolutely continuous, 367
absolute measure, 367
accelerated gradient, 346
algorithm

Adam, 345
approximate Hessian, 94
Arrow-Hurwicz, 33, 66
block-coordinate descent, 347
Cauchy, 11
descent, 10
Frank-Wolfe, 30
hyperparameter, 34
Kesten’s rule, 94
momentum method, 346
Nesterov’s accelerated gradient method,

346
Newton-Raphson method, 10
penalty, 68
semi-stochastic gradient, 346
steepest descent method, 11
Uzawa, 32

aperiodic chain, 378
Armijo’s rules, 11
artillery, French, 83
art of modelling, 34
Arzela-Ascoli theorem, 55, 362
asymptotically stable point, 44
asymptotic convergence rate, 155
asymptotic efficiency, 155
atom, 379

ball constraints, 27
Banach space, 241, 374
batching, 157

consecutive, 85, 107, 125
independent, 86, 107
parallel, 86
streaming, 85, 125

bifurcation, 44
diagram, 44

block-coordinate descent, 347
blocked after service, 308
Borel field, 365
box constraints, 27
Brownian motion, 144
budget allocation, 157

cadlag, 373
Cauchy’s method, 11
Cauchy term, 363
center of mass, 51
Cesàro sum, 364
change of measure, 260
clipping, 64, 106, 107
C𝑛, xii, 4
coercivity

for an NLP, 62
NLP, 70
vector field, 62

commuting condition (CC), 307
complementary slackness, 19
computational budget, 154
concave function, 5, 6
constrained optimization, 18
constraint

active, 19
hard, 35, 194
inactive, 19
qualification, 19
soft, 35

continuous mapping theorem, 371
contraction mapping, 108
control variates, 178
convergence

almost surely, 370
in distribution, 370
𝜈-norm, 374
in probability, 370
total variation, 371
weak, 370

416 INDEX

convex, 5
function, 6
non-linear problem (NLP), 19
problem, 19
statistical test, 36

coordinate descent, 28, 347
correlated noise model, 122
coupling, 379
cumulative distribution function (cdf), xii,

368
cycles

of a regenerative process, 377

density
probability, 368
Riemann densities, 213–215

derivative-free algorithm, 301
descent direction, 10
deviation matrix, 334
directional monotone, 80
discrete event dynamic system (DEDS),

209
discrete event system (DES), 209
distribution

Bernoulli, 173
Beta, 226
exponential, 168
Gamma, 181
Lomax, 171
Maxwell, 181
normal, 170, 174, 182, 216
Pareto type I, 171, 182, 240–241, 328
Pareto type II, 171, 195, 199, 200
Poisson, 173
Weibull, 170, 173

distribution function, 368
dominated convergence theorem, 371
dynamical system, 42

endogenuous noise model, 122
equicontinuity, 55
equilibrium point, 43
ergodic projector, 381
Euclidean norm, 3
Euler method, 40
Euler scheme, 48
exogenous noise model, 100

feasible
active constraint, 19

point, 19
region, 19

fictitious game, 98
finite difference (FD), 17

convergence, 17
stochastic, 105

finite horizon problem, 186
first-order optimality condition, 6, 19
Fisher information matrix, 340
fixed-point mapping, 108
Fubini’s theorem, 367
functional central limit theorem, 144

gain sequence, 9
Armijo’s rules, 11
generic decreasing, 94
non-standard examples, 94
optimal, 94, 152
variations, 94
Wolfe’s conditions, 11

gain size, 9
Gamma function, 226
Gaussian smoothed functional

approximation (GSFA), 300
generalized methods of moments (GMoM),

342
iterated GMoM, 343

generalized Semi-Markov process (GSMP),
305

global
maximum, 5
minimum, 5

globally asymptotically stable point, 44
global optimization, 96, 299
golden rule of optimization, 34
gradient, xii, 4

descent method, 11
vanishing, 9

Hadarmard Matrix, 298
Hahn-Jordan decomposition, 180, 240,

242, 367
hard constraint, 35
Harris

ergodic, 379
recurrent, 378

hazard rate function, 306
Hessian, xii, 4

approximate, 94, 298
Hurwitz

INDEX 417

condition, 52
matrix, 45

hyperball, 27
hypercube, 27
hyperparameter, 34

importance sampling, 177, 259
induced measure, 367
infinite horizon problem, 188
infinitesimal perturbation analysis (IPA),

167, 303
interpolation process, 53

shifted, 53
inward normals, 48, 49, 50, 51

Karush-Kuhn-Tucker (KKT), 19
point, 19
second-order conditions, 21

Kesten’s rule, 94
Kiefer-Wolfowitz procedure, 105

Lagrange
Duality Method, 31
multipliers, 19
term, 363

Landau symbol, xii
lattice distribution, 377
learning

algorithm, 80
Q-learning, 347–348
reinforced, 82

learning rate, 9
least mean square (LMS) algorithm, 82
Lebesgue measure, 366
level set, 4
L’Hôpital’s rule, 290, 363
limit process, 41
Lindley recursion, 86, 136, 187
linear regression, 81
Lipschitz

almost surely continuous, 198
constant, 13, 361
continuity, 13, 361
continuity of Markov kernel, 316
continuity of transition kernel, 316
modulus, 198

local
maximum, 5
minimum, 5

location of maximum, 5

location of minimum, 5
logisitic regression, 344
Lyapunov function, 52

MacLaurin series, 363
Markov chain, 378

aperiodicity, 379, 381
atom, 379
d-cycle, 378
ergodic, 381
ergodic projector, 381
Harris ergodic, 378
irreducible, 381
kernel, 316
period, 378
𝜙-irreducible, 378
Poisson equation, 381
positive recurrent, 381
transition kernel, 378
unichain, 382
uniformly 𝜙-recurrent, 378

martingale difference noise model, 100
matrix

Hurwitz, 45
positive (negative) definite, 4
semi-definite, 4

maximum
global, 5
local, 5
location, 5
proper, 5
strict, 5
value, 5

maximum likelihood estimation (MLE), 339
mean value theorem, 362
measurable

mapping, 365
space, 365

measure, 366
absolute, 367
absolutely continuous, 367
finite, 366
induced, 367
integral, 225
measurable space, 366
𝜇-integral, 366
non-negative, 366
probability, 367
Radon-Nikodym, 367
Radon-Nykodym derivative, 225

418 INDEX

measure (cont.)
regular, 368
𝜎-finite, 366
signed, 240, 366

measurable space, 366
measure-valued differentiation (MVD),

179
randomized, 232

methods of moments (MoM), 342
metric, 360

complete, 361
complete metric space, 361
pseudo, 360
space, 360

mini-batching, 157
minimum

global, 5
local, 5
location, 5
proper, 5
strict, 5
value, 5

momentum method, 346
𝜇-integral, 366
multiplier method, 31

Nesterov’s accelerated gradient, 346
neural network, 86
Newton-Raphson method, 10
Newton’s method, 10
NLP, 3, 18

convex, 18
noise

correlated, 104
independent, 104
martingale difference noise model, 100
unpredictable, 104

non-interruption condition, 304
non-lattice distribution, 377
non-linear problem (NLP), 3, 18, 19

convex, 18
norm, 360
𝜈-norm, 373
total variation, 370

normal vector, 357
𝜈-norm, 214, 242, 373

convergence, 374

observed feedback, 77
optimality condition

first-order, 6
second-order, 6

ordinary differential equations (ODEs)
asymptotically stable point, 44
autonomous, 42
bifurcation, 44
blows up in finite time, 43
bounded trajectories, 51
domain of attraction, 44
equilibrium point, 43
globally asymptotically stable point, 44
initial condition, 42
projected, 50
projection, 48
stable point, 44
stationary point, 43
surrogate, 74
target, 41
trajectory, 42
unstable point, 44

Ornstein-Uhlenbeck process, 147

parameter
location, 200–201
scale, 200–201

penalty method, 23
piecewise differentiable mapping, 201
Poisson equation, 382
Polish space, 361
Polyak-Rupert averaging, 95, 282
probability

measure, 367
space, 367

probability density function (pdf), xii, 368
problem

convex, 18
linear, 3
NLP, 3, 18
non-linear, 3

projected gradient, 38
projection, 26, 158

approximate, 29
directional derivative, 49
Dykstra’s method, 29
Goldstein-Levitin-Polyak, 26
increasing sequence, 95
issues with bias, 28
method, 26
ODE, 50

proper maximum, 5

INDEX 419

proper minimum, 5
pseudo metric, 360

Q-learning, 347–348
quantiles, 113, 127, 200
quantile sensitivity, 200
quantile updating, 113
queuing

queue length
network, DES, 308
single server, 327, 331
single server, IPA stationary, 270
single server, SF random horizon, 262
stationary, 89
tandem line, DES, 307
transient, 86

waiting times
finite horizon, 86, 187
infinite horizon, 188
IPA, finite horizon, 206
MVD, 318, 325
MVD, finite horizon, 233
random horizon, 190
SF, finite horizon, 223
stationary, 89, 136, 193

Radon-Nikodym derivative, 225, 367
random horizon problem, 190
randomization, 230
randomized MVD, 232
random variable, 365
regenerative, 377

classical, 377
process, 377
set, 379

regular measure, 368
reinforcement learning, 82, 347, 350
renewal times, 377
Riemann densities, 213–215
risk function, 154
Robbins-Monro theorem, 82
root finding, 79

(𝑠, 𝑆) policy, 277
saddle point, 5
saddle point theorem, 32
sample average approach (SAA), 92, 177
score function (SF), 172

control variates, 178
product technique for, 223

second-order condition, 6

selection rule, 304
set

closed, 360
open, 360

shifted interpolation process, 53
𝜎-field, 365
simultaneous perturbation stochastic

approximation (SPSA), 295
Newton-Raphson, 298

single server queue, 193, 206, 305, 307
Skorohod representation, 372
smoothed perturbation analysis (SPA), 210,

287
Snell’s law, 6
soft constraint, 35
space

Banach, 374
measurable, 365, 366
metric, 360
Polish, 361
probability, 367
topological, 360

stable point, 44
static problem, 84
stationary point, 6

ODE, 43
stationary problem, 121, 192
statistical fitting, 79
statistical learning, 86
steepest descent method, 11
Stein’s equation, 300
stepsize, 9
stepsize sequence, 9
stochastic approximation (SA), 76

accelerated, 95
global optimization, 96, 299
robust, 95

stochastic counterpart, 91, 177
strictly convex non-linear problem, 19
strong coupling, 379
supervised learning, 4, 79
surrogate ODE, 74

taboo probability, 378
tangent hyperplane, 358
target ODE, 41
target tracking, 79
Taylor series, 363

Cauchy term, 363
Lagrange term, 363

420 INDEX

Taylor series (cont.)
MacLaurin series, 363
Taylor polynomial, 363

tightness
of measures, 372
of random variables, 372

topological space, 360
total variation norm, 370
transition kernel, 316
truncation, 27

avoiding projection in SA, 66
principle, 65, 106

two-armed bandit, 96
two-timescale, 25, 31

underlying process, 77, 120
uniformly

bounded, 362
continuous families of mappings, 362
continuous mappings, 362
𝜙-recurrent Markov chain, 378

unstable point, 44

value
of maximum, 5
of minimum, 5

value function, 382
vanishing

gradient, 9
update, 34, 70

variance control scheme, 107
vector field, 42

coercive, 62
target, 89, 120

Wald’s equality, 369
weak continuity, 238
weak convergence, 238
Weierstrass theorem, 359
weighted supremum norm, 214, 242
well-posed optimization ODE, 62
well-posed optimization problem, 61
well-posed problem, 33, 70
Wiener process, 144
Wolfe’s conditions, 11

