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Chapter One

A Comprehensive Introduction

One of the main purposes of this work is to prove comparison principles with
respect to a constant-coefficient nonlinear potential theory, in a very straight-
forward manner, from duality and monotonicity. We will also show how to
deduce comparison principles for nonlinear differential operators, a program
which seems somewhat different from the first. However, we will marry these
two points of view, for a wide variety of equations, under something we call the
correspondence principle. This turns out to be interesting for several reasons.
In potential theory, one is given a constraint set F on the 2-jets of a function,
and the boundary of F gives a differential equation. There are many differen-
tial operators, suitably organized around F , which give the same equation. So
potential theory gives a great strengthening and simplification to the operator
theory. Conversely, the set of operators associated to F can have much to say
about the potential theory.

These comments are exemplified by the following two basic cases. Consider
the constraint set P = {D2u≥ 0}. The potential theory associated to P is the
full theory of convex functions. The equation given by ∂P is the homogeneous
Monge–Ampère equation. However, it is also the equation λ1(D

2u)= 0, where λ1

is the first ordered eigenvalue, and there are many more examples. For the sec-
ond case, consider the constraint set PC = {D2

C
u≥ 0}, where D2

C
is the complex

Hessian. Here, the associated theory is the wide field of pluripotential theory.
The operators include det(D2

C
u), λ1(D

2
C
u), and many others.

One of the main objectives of the treatise is to bring together these two
points of view for a large and important class of equations, where many new
results have been established.

A motivation for this study comes from the following consideration (other
motivations will be given below). For the Dirichlet problem (DP) on a bounded
domain Ω in Euclidean space, it is proved in [49] that existence always holds
in the constant-coefficient case1 (assuming that Ω has a smooth C2-boundary
satisfying the appropriate strict boundary convexity conditions). This leaves
uniqueness, which the comparison principle, that for u a subsolution and v a
supersolution,

u≤ v on ∂Ω ⇒ u≤ v on Ω,

1The conclusion “existence always holds” is precisely defined in Theorem A.2.
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obviously implies. Interestingly, in our constant-coefficient case, using the fact
that existence always holds (see Theorem A.5) one can show that uniqueness
and comparison are actually equivalent.

An object of central interest here is that of monotonicity. It is monotonicity
that explains and unifies much of the theory. For each constraint set F there
exists a maximal set M with the monotonicity property F +M=F . In many
interesting cases, M is itself a constraint set. In simpler cases, such as pure
second-order equations, or gradient-free equations, monotonicity comes down
to the standard degenerate ellipticity and negativity assumptions. To explain
this in more detail we need some notation. (The reader should note the many
examples below, starting with Example 1.7, which may illuminate the following
sections.)

1.1 THE POTENTIAL THEORY SETTING

Set J 2 :=R×Rn ×S(n), the space of 2-jets with standard jet coordinates
(r, p, A), where S(n) is the space of symmetric (n×n)-matrices with real entries,
and consider a set F ⊂J 2. Then F is called a constant-coefficient subequation
constraint set (or simply subequation, or constraint set) if F is not ∅ or S(n),
and

F +P0 ⊂F , F +N0 ⊂F , and F =IntF , (1.1)

where P0 := {0}×{0}×P andN0 :=N ×{0}×{0} in J 2 =R×Rn ×S(n), with

P :=
{
A∈S(n) :A≥ 0

}
and N :=

{
r∈R : r≤ 0

}
. (1.2)

Associated to a constraint set F is its dual constraint set2

F̃ :=∼{− IntF}
=−{∼ IntF}

. (1.3)

Now, each constraint set F determines a potential theory of F-subharmonic
functions . A C2-function u on an open subset X ⊂Rn is F-subharmonic on X if

J2
x0
u := (u(x0), Du(x0), D

2u(x0))∈F for all x0 ∈X. (1.4)

Using viscosity theory, this condition can be transferred pointwise from the
2-jet J2

x0
u to the set of upper test jets (see Definition 1.3) by requiring

J2
x0
ϕ∈F for all upper test functions ϕ for u at x0 ∈X, (1.5)

2Throughout this book, IntF is the interior of F and ∼F =J 2 \F the complement of F
with respect to J 2.
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thereby extending the notion of F-subharmonic from C2-functions to the space
USC(X) of all upper-semicontinuous, [−∞,∞)-valued functions on X.

In addition to the notion of duality (1.3), the other fundamental concept for
this work is monotonicity.

Definition 1.1. A monotonicity cone for a subequation F is a cone M⊂J 2

(with vertex at the origin) such that

F +M⊂F , (1.6)

and in this case we say that F is M-monotone.

Note that since M contains the origin, the inclusion (1.6) is an equality
F +M=F .

Since F is a subequation, one can always enlarge a monotonicity cone to one
where

M⊃N ×{0}×P and M is a closed convex cone. (1.7)

In fact, the closed convex cone hull of a monotonicity cone is also a monotonicity
cone. For each F there is a maximal monotonicity cone. Moreover, in this work
we are interested in subequations F which have monotonicity cones M which
satisfy (1.7) and

IntM�= ∅, (1.8)

so that M is itself a subequation, called a monotonicity cone subequation. To
see this, note that for a closed convex cone M, we have

IntM�= ∅ ⇔ M=IntM.

From this assumption (1.8), which holds for many constraint sets (including all
second-order, in fact, all gradient-free subequations), many important things
follow:

• the correspondence principle;
• comparison theorems;
• the existence of canonical operators;
• the existence of unique solutions to the Dirichlet problem;
• and much more; see below.

1.2 THE DIFFERENTIAL OPERATOR SETTING

We now address the companion setting of differential operators. There are two
cases: the unconstrained case and the constrained case.
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Definition 1.2. A compatible operator–subequation pair (F,F) consists of either

the unconstrained case: F =J 2 and F ∈C(F)

or

the constrained case: F ⊂J 2 is a subequation and F ∈C(F), with the
properties

inf
F

F >−∞ and ∂F =
{
J ∈F :F (J)= c0

}
, (1.9)

where c0 := infF F ∈R.

In both cases, F (F) is called the set of admissible levels of the pair.

Classical examples in the constrained case are the real and complex Monge–
Ampère operators, where one assumes A≥ 0 and (respectively) AC ≥ 0; that is,
one restricts to the subequations P and PC. More generally, the constrained case
is well illustrated by G̊arding–Dirichlet operators, as discussed in Section 1.6.
On the other hand, the unconstrained case is well illustrated by the so-called
canonical operators as discussed in Section 1.4.

Let M⊂J 2 be a convex cone with vertex at the origin. We say that a com-
patible operator–subequation pair (F,F) is M-monotone if F is M-monotone
and

F (J + J ′)≥F (J) ∀ J ∈F , ∀ J ′ ∈M. (1.10)

If M⊃N ×{0}×P, then (F,F) is called proper elliptic.3 These are the only
operators we consider, because of our focus on comparison.

Next, these proper elliptic operators are divided into two classes: those
which are topologically pathological , meaning that, as a function on the 2-jet
space, the operator has a level set with interior, and those which are referred
to as topologically tame. The topologically pathological case is discarded here
because uniqueness of solutions (and hence comparison) is trivially impossible.
Therefore,

all proper elliptic operators in this book will be assumed to be tame.

Various equivalent formulations of topological tameness appear in Theorem
11.10. For this topologically tame case, we will establish a rigorous correspon-
dence principle between potential theory and PDEs.

3Often in the viscosity literature (such as [30]), one uses the simpler term proper for
the N ×{0}×P-monotonicity, but we prefer the phrase proper elliptic to recall both the
P-monotonicity (degenerate ellipticity or positivity) and N -monotonicity (properness or neg-
ativity) for us.
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1.3 THE CORRESPONDENCE PRINCIPLE

This result builds a bridge between nonlinear potential theory (subharmon-
ics for a subequation and its dual) and nonlinear PDEs (admissible viscosity
sub/supersolutions of PDEs); in particular, it represents the part of the theory
using monotonicity and duality for which the two approaches are equivalent.

The main tool will come from viscosity theory, which was developed by Cran-
dall, Ishii, Lions, Jensen, Evans, and others (see [30] and the references therein).
For what we have to say in this work, one should note that it was Jensen [69] who
made the initial breakthrough on comparison principles for viscosity solutions
of fully nonlinear PDEs. Additional remarks on the development of viscosity
solution techniques will be given in Section 1.9.

One of the fundamental definitions from viscosity theory is the following.

Definition 1.3. Let x0 ∈X ⊂Rn (an open subset) and u∈USC(X). An upper
test function for u at x0 is a C2-function ϕ defined near x0 with

u(x)≤ϕ(x) and u(x0)=ϕ(x0).

A lower test function for u at x0 is a C2-function ϕ such that −ϕ is an upper test
function for −u at x0. We will denote by J2,±

x0
u⊂J 2 the spaces of (upper/lower)

test jets for u at x0, that is, the set of all J = J2
x0
ϕ where ϕ is a C2 (upper/lower)

test function for u at x0.

For compatible pairs (F,F) which admit a monotonicity cone subequation,
there is a potential theory at each admissible level c∈F (F).

Definition 1.4. Let (F,F) be a compatible operator–subequation pair, which
admits a monotonicity subequation M, and let c∈F (F) be an admissible level.
Consider the subequation Fc ≡{J ∈F :F (J)≥ c}. Let u∈USC(X), where
X ⊂ Rn is an open subset. Then u is said to be Fc-subharmonic on X if

J2,+
x0

u⊂Fc for all x0 ∈X. (1.11)

Let LSC(X) denote the space of lower-semicontinuous (−∞,+∞]-valued func-
tions on X. A function v ∈LSC(X) is said to be Fc-superharmonic on X if −v

is F̃c-subharmonic on X. By duality, this is equivalent to asking that J2,−
x0

v⊂
∼ IntFc for each x0 ∈X.

We now present an essential notion for the constrained case, that is, of admis-
sible viscosity subsolutions and supersolutions where the subequation F places
a constraint on the upper/lower test jets that compete in the definition. In par-
ticular, part (b) in the definition below makes systematic what is often done in
an ad hoc way in the literature.
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Definition 1.5. Let (F,F) be a compatible operator–subequation pair as above.
Let Ω be a domain in Rn and let c∈F (F) be an admissible level.

(a) A function u∈USC(Ω) is said to be an F-admissible viscosity subsolution
of F (u,Du,D2u)= c in Ω if for every x0 ∈Ω one has

J ∈ J2,+
x0

u ⇒ J ∈F and F (J)≥ c. (1.12)

(b) A function w∈LSC(Ω) is said to be an F-admissible viscosity supersolution
of F (u,Du,D2u)= c in Ω if

J ∈ J2,−
x0

w ⇒ either [J ∈F and F (J)≤ c] or J �∈ F . (1.13)

The following theorem is a main result of this monograph.

Theorem 11.13 (Correspondence principle for compatible pairs). Let (F,F) be a
compatible proper elliptic operator–subequation pair, which is M-monotone for
a convex cone subequation M. Suppose also that F is topologically tame. Let
c∈F (F) be an admissible value, and set Fc ≡{J ∈F :F (J)≥ c} as above. Fix
a domain Ω⊂Rn. Then,

(a) u∈USC(Ω) is an F-admissible viscosity subsolution of F (u,Du,D2u)= c in
Ω if and only if u is Fc-subharmonic on Ω;

(b) u∈LSC(Ω) is an F-admissible viscosity supersolution of F (u,Du,D2u)= c
in Ω if and only if u is Fc-superharmonic on Ω;

(c) comparison for the subequation Fc on a domain Ω is valid if and only if
comparison for the equation F (u,Du,D2u)= c on Ω is valid.

The correspondence principle is a very general and powerful tool, which needs
to be “unpacked” in order to fully appreciate it. First, there is an important
dichotomy between the unconstrained case (F,J 2) in which the operator F is
proper elliptic on all of J 2 and the constrained case (F,F) where F is proper
elliptic only when restricted to some compatible subequation F . Note that in the
constrained case, the constraint set F on the domain of the operator F is used
in Definition 1.5 of F-admissible sub/supersolutions, while in the unconstrained
case, sub/supersolutions are in the standard viscosity sense.

Second, using this principle, one can reduce PDE comparison to potential-
theoretic comparison, in order to free the operator from its particular form,
retaining only the need to analyze its maximal monotonicity cone M. This is
done in Chapter 12 for many classes of operators.

A final (important) remark concerning the correspondence principle is in
order.

Remark 1.6 (Correspondence and the Dirichlet problem). One important (and
immediate) consequence of the correspondence principle is that there are two
equivalent formulations of the Dirichlet problem; namely, given a bounded



A COMPREHENSIVE INTRODUCTION 9

domain Ω in Rn and given ϕ∈C(∂Ω), for each admissible value c∈F (F) find
h∈C(Ω) such that

h is Fc-harmonic on Ω and h=ϕ on ∂Ω (DP)

or

h is an F-admissible solution of F (J2h)= c on Ω and h=ϕ on ∂Ω. (DP′)

The potential-theoretic formulation (DP) is equivalent to the operator-theoretic
formulation (DP′) since the notion of “solution” in both formulations is that the
corresponding (and equivalent) conditions (a) and (b) in Theorem 11.13 hold.
For a more extensive discussion on this equivalence in a more general setting,
see [65, Section 1.3].

In both formulations, when the comparison principle holds, the existence of
a (unique) solution on Ω for each fixed ϕ can be obtained by Perron’s method
(see Theorem A.2). In general, the domain will need to be boundary pseudocon-
vex in a suitable strict sense. A new feature of the potential-theoretic approach
begun in [46] and extended in [49] is that the required boundary geometry is
determined by the subequation F which defines the potential theory. Each sub-

equation F determines an asymptotic interior
−→F , which is a cone. A domain is

said to be F-pseudoconvex if ∂Ω admits a local defining function which is C2-

strictly
−→F -subharmonic. This is a local question. This boundary geometry can

be characterized in terms of the second fundamental form. These local defining
functions serve as the needed barriers in Perron’s method and existence holds
provided that Ω is both F -pseudoconvex and F̃ -pseudoconvex. In many situa-
tions, there is no boundary geometry; that is, there are no geometric restrictions
to impose on the boundary in order to have existence. For example, this happens
in the uniformly elliptic case. On the other hand, when there is boundary geom-
etry, the computations are interesting (see [50, Section 7]). Many subequations
(and hence many operators) have the same boundary geometry.

Finally, when the correspondence principle holds, this boundary geometry
analysis carries over to all operators F which are compatible with F . This has
been successfully exploited for variable coefficient proper elliptic operators in
[23, 24].

1.4 CANONICAL OPERATORS

This collection of operators gives some of the best illustrations of the uncon-
strained case. The construction starts with a subequation F which admits a
monotonicity subequation M. One then chooses an element J0 ∈ IntM. Asso-
ciated to this is a canonical operator F ∈C(J 2), defined on all of J 2, with
very nice properties. It is canonically defined via the structure theorem
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(Theorem 11.14), which says that for each J ∈J 2, the set

IJ :=
{
t∈R : J + tJ0 ∈F}

(1.14)

is a closed interval of the form [tJ ,+∞) with tJ ∈R (finite). Moreover,

(a) J + tJ0 �∈ F ⇔ t< tJ ;
(b) J + tJJ0 ∈ ∂F ;
(c) J + tJ0 ∈ IntF ⇔ t> tJ .

The canonical operator F : J 2 →R is then defined by

F (J)=−tJ (1.15)

and it has the following properties: F decomposes J 2 into three disjoint pieces

∂F =
{
F (J)= 0

}
, IntF =

{
F (J)> 0

}
, and J 2 \F =

{
F (J)< 0

}
, (1.16)

and F is strictly increasing in the direction J0. In fact,

F (J + tJ0)=F (J)+ t ∀ J ∈J 2, ∀ t∈R. (1.17)

Furthermore, F is proper elliptic on J 2 and, in fact, it is M-monotone. It is
also Lipschitz (see Propositions 11.17, 11.19, and 11.25).

Interestingly, there exist important cases where this construction is quite
useful, that is, because there exist cases where there are probably no polynomial
operators. Examples come from the geometrical potential theories for the special
Lagrangian, G(2), and Spin(7). A different general construction of a natural
operator to any subequation, namely the signed distance operator, is examined
in Remark 1.10 below.

Concerning canonical operators, we have the following two results.

Theorem 11.20 (Canonical operators and compatible pairs). Suppose that a sub-
equation F admits a monotonicity cone subequation M. Let F ∈C(J 2) be the
canonical operator for F determined by any fixed J0 ∈ IntM. Then,

(a) (F,J 2) is an unconstrained proper elliptic operator–subequation pair;
(b) F (J 2)=R and the operator F is topologically tame;
(c) for each c∈R, the set Fc := {J ∈J 2 :F (J)≥ c} is a subequation constraint

set with F0 =F and the pair (F,Fc) satisfies the compatibility conditions

inf
Fc

F = c and ∂Fc =
{
J ∈Fc :F (J)= c

}
.
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In addition, the canonical operator (determined by J0 ∈ IntM) for the dual sub-

equation F̃ is given by

F̃ (J) :=−F (−J) for all J ∈J 2.

Also note that
F̃c =F−c.

Statements analogous to (a), (b), and (c) hold for (F̃ ,J 2) and (F̃ , F̃c).

Theorem 11.21 (Comparison for canonical operators). Let F ⊂J 2 be a sub-
equation constraint set which admits a monotonicity cone subequation M. Fur-
ther, suppose that M admits a strict approximator ψ on a bounded domain Ω,
that is, ψ ∈C(Ω)∩C2(Ω) such that J2

xψ ∈ IntM for each x∈Ω. Then, for each
J0 ∈ IntM fixed, the canonical operator F for F determined by J0 satisfies the
comparison principle at every level c∈R, that is,

u≤w on ∂Ω ⇒ u≤w on Ω

for u∈USC(Ω) and w∈LSC(Ω), which are respectively viscosity subsolutions
and supersolutions to F (u,Du,D2u)= c on Ω.

This gives rise to many beautiful operator–subequation pairs, starting simply
with just the subequation F itself.

Example 1.7 (Minimal eigenvalue operator). For the simplest example of a
canonical operator, let F =R×Rn ×P (the real convexity subequation), and
take J0 =(0, 0, 1

nI). Then

F (J)=F (r, p, A)=λ1(A) (the smallest eigenvalue of A).

Of course, there are many other operators which are compatible with F and
are zero on ∂F , such as det(A) or det(A)

1
n . However, for any such operator we

know from Theorem 11.21 above that comparison always holds.

It is interesting to note that all linear operators are canonical (see Lemma
12.18). In addition, the concave operator F , which is the infimum over a suit-
ably renormalized pointed family F= {Fσ}σ∈Σ of linear operators, is also the
canonical operator for the convex cone subequation F which is the intersection
of the associated half-space constraint sets {Fσ}σ∈Σ (see Theorem 12.21). Sim-
ilar considerations hold for the canonical supremum operator associated to the
closure of the union of the Fσ (see Remark 12.31). The precise notion of being
pointed is given in Definition 12.20 and is a geometrical hypothesis (see Remark
12.22) on the set of coefficient vectors

S=
{
Jσ =(aσ, bσ, Eσ)

}
σ∈Σ

⊂J 2
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defining the operators in the family by

Fσ(J)=Fσ(r, p, A) := tr(EσA)+ 〈bσ, p〉+ aσr= 〈Jσ, J〉, J ∈J 2. (1.18)

In the proper elliptic case, where each (aσ, Eσ)∈N ×P, one also has the validity
comparison principle (see Theorem 12.26) which depends on the interesting fact
that a necessary and sufficient condition for the canonical operator for F to
be M-monotone is that S is contained in the convex polar cone M◦ of M. To
facilitate the application of Theorem 12.26, the polars of many monotonicity
cones are listed in Proposition 12.27. The following example application comes
from optimal control and is discussed in Example 12.29.

Example 1.8 (Hamilton–Jacobi–Bellman operators with directed drift). In opti-
mal control, one problem concerns an agent who seeks to minimize an infinite-
horizon discounted cost functional by acting on its drift and volatility param-
eters. The relevant operator to consider is the infimum over a family of linear
operators like (1.18), where we will specialize to

Fσ(J)=Fσ(r, p, A)= tr(EσA)+ 〈bσ, p〉+ cr= 〈Jσ, J〉, σ ∈Σ, (1.19)

where δ :=−c> 0 is the discount factor, bσ is the drift term, andEσ is the (squared)
volatility. Under the assumptions that Eσ is allowed to vary in bounded sets
and the set of drifts Sd := {bσ}σ∈Σ share a “preferred” direction b0 (the family
is pointed with axis b0 ∈Rn \ {0}), Theorem 12.26 shows that the comparison
principle holds on arbitrary bounded domains for the equationF (u,Du,D2u) = c
for each c∈R.

We now consider an important example of an unconstrained operator that is
not a canonical operator. This particular equation has received much attention
in recent years from quite varied points of view. There is some history in [62].

Example 1.9 (Special Lagrangian potential operator). This pure second-order
operator was introduced along with special Lagrangian geometry in [44]. It takes
the form

F (A) :=

n∑
k=1

arctan(λk(A))

and is P-monotone on all of J 2. Comparison on arbitrary bounded domains
holds for the equation F (D2u)= c at all admissible levels c∈ (−nπ/2, nπ/2),
as shown in [46], which was a major motivation for that work. The constant
c represents a (constant) phase (as described in [62]) and the problem is also
interesting for nonconstant phases. The comparison principle in the nonconstant
phase case has been completely settled in [13, 24].

We end this section with another class of operators naturally associated to
any subequation.
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Remark 1.10. An additional construction of a natural operator associated to any
subequation constraint set F ⊂J 2 is suggested by Krylov [77, Theorem 3.2] (in
the pure second-order case). We like to call it the (signed) distance operator,
which is defined by

F̂ (J) :=

⎧⎨⎩dist(J, ∂F), J ∈F ,

− dist(J, ∂F), J ∈J 2 \F .
(1.20)

The upper level sets of F̂ play a key role in the method for proving comparison
in [49].

The signed distance operator F̂ is clearly Lipschitz and topologically tame
(as is the canonical operator F ) but is also well defined for any subequation
F (while the canonical operator construction requires the M-monotonicity of
F). On the other hand, when F is M-monotone, the signed distance opera-
tor is (linearly) tame in the sense that it satisfies an inequality similar to (but
weaker than) identity (1.17) satisfied by the canonical operator F . The tame-
ness condition on an operator plays an important role in treating comparison
for inhomogeneous equations, as will be discussed in Section 1.8. Given the
importance of tameness, we record that fact in the following lemma. For clarity
and simplicity, we restrict attention to a constant-coefficient pure second-order
subequation F ⊂S(n).

Lemma 1.11 (Tameness of the signed distance operator). Let F ⊂S(n) be a
constant-coefficient pure second-order subequation. Then the signed distance
operator

F̂ (A) :=

⎧⎨⎩dist(A, ∂F), A∈F ,

− dist(A, ∂F), A∈S(n) \F ,
(1.21)

satisfies

F̂ (A+ tI)− F̂ (A)≥ t ∀A∈S(n), ∀ t∈R, (1.22)

or equivalently,

F̂ (A+P )− F̂ (A)≥ t ∀A∈S(n), ∀ t∈R, ∀P ≥ tI. (1.23)

Proof. Clearly, (1.23) implies (1.22) by using P = tI ≥ tI. The reverse implica-
tion follows by writing P = tI +P ′ with P ′ ≥ 0 and using the degenerate ellip-
ticity of F̂ .

Notice that (1.22) is trivial for t=0 and it suffices to prove (1.22) for A∈F
and t> 0 by exploiting duality where the signed distance operator

̂̃
F of the dual
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subequation F̃ satisfies

̂̃
F (A)=−F̂ (−A) ∀A∈S(n), (1.24)

and both vanish on their common boundary.
Condition (1.22) for A∈F and t> 0 can be restated in terms of metric balls

in S(n) as

for all r > 0, if Br(A)⊂F then Br+t(A+ tI)⊂F . (1.25)

Now Br+t(A+ tI)=Br+t(tI)+A=Br(tI)+A+Bt(tI)=Br(A+ tI)+Bt(tI).
Hence, if Br(A)⊂F then

Br+t(A+ tI)= (Br(A)+ tI)+Bt(tI)∈F +P ⊂F ,

which gives (1.25) by the positivity of F .

Notice that inequality (1.22) for the signed distance operator F̂ is weaker
than identity (1.17), F (A+ tI)=F (A)+ t, satisfied by the canonical operator.

1.5 GRADIENT-FREE OPERATORS

Given a subequation F , our results apply if the maximal monotonicity cone of
F has interior. However, notice that this is true for every pure second-order
subequation F =R×Rn ×F0 since R×Rn ×P is always a monotonicity sub-
equation for F . In fact, this is true for every pure gradient-free subequation F ,
since N ×Rn ×P is always a monotonicity subequation for F by Definition 10.2
of gradient-free. We have the following result.

Theorem 12.2 (Comparison in the gradient-free case). Suppose that (F,F) is
a compatible, gradient-free pair. Then for every bounded domain Ω and every
c∈F (F), one has the comparison principle

u≤w on ∂Ω ⇒ u≤w on Ω

for u∈USC(Ω) and w∈LSC(Ω), where u is Fc-subharmonic and w is Fc-

superharmonic (that is, −w is F̃c-subharmonic).

We have seen that the unconstrained case is best illustrated by canoni-
cal operators. The constrained case is best illustrated by operators involving
G̊arding hyperbolic polynomials, which we examine in the next section.
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1.6 OPERATORS INVOLVING GÅRDING–DIRICHLET

POLYNOMIALS

G̊arding’s theory [40] provides a unified approach to studying many of the most
important subequations. The reader should look at Section 11.6 for more details
and at [48, 51] for a modern self-contained treatment. An important study of
fully nonlinear PDEs exploiting G̊arding’s theory is contained in the paper of
Caffarelli–Nirenberg–Spruck [15]. A G̊arding–Dirichlet polynomial is a homoge-
neous polynomial g of degree m on S(n) with the following properties:

(1) (I-hyperbolicity). For each A∈S(n), the polynomial pA(t)≡ g(tI +A) has
all real roots. The negatives of these real roots are called the G̊arding I-
eigenvalues of A and up to permutation can be written in increasing order
as λg

1(A)≤λg
2(A)≤ · · · ≤λg

m(A).
(2) (Positivity). We assume g(I)> 0 and define the G̊arding cone Γ to be the

connected component of S(n) \ {g=0} which contains the identity I. This
is a convex cone (see Theorem 11.30), given by those A with λg

1(A)> 0. We
assume the positivity property

Γ+P ⊂Γ, (1.26)

which is equivalent to either Γ+P =Γ or P ⊂Γ, since P contains the origin
and Γ is a convex cone.

We normalize so that g(I)= 1. Then we have

g(tI +A)=

m∏
k=1

(t+λg
k(A)), (1.27)

which when evaluated at t=0 shows that each G̊arding–Dirichlet operator is a
generalized Monge–Ampère operator , where the G̊arding I-eigenvalues of A take
the place of the standard eigenvalues of A in the special case g=det.

If g(A) is a G̊arding–Dirichlet polynomial on S(n) with closed G̊arding cone
Γ, then this gives rise to a pure second-order polynomial operator g(D2u) con-
strained to the pure second-order subequation R×Rn ×Γ. Such operators are
the subject of Section 11.6.

Simple examples of G̊arding–Dirichlet polynomials g(A) are given by the
kth elementary symmetric function (with k=1, . . . , n) of the I-eigenvalues of A
(the so-called Hessian equations) as discussed in Examples 11.33(2). The case
k=n corresponds to the Monge–Ampère operator and the case k=1 corre-
sponds to the Laplacian. There are many more interesting examples, including
the Lagrangian Monge–Ampère operator (see Examples 11.33(4)) and the geo-
metric k-convexity operator (see Example 1.13 below). Moreover, each of these
universal examples (defined in terms of the standard eigenvalues λk(A)) gives
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rise to a huge family of examples by simply replacing the standard eigenvalues
λk(A) by the G̊arding I-eigenvalues λg

k(A) of A for any G̊arding I-hyperbolic
polynomial g on S(n). More precisely, we recall the following result. For the
proof, see [51, Proposition 7.7].

Proposition 1.12 (Universally defined G̊arding–Dirichlet operators). Suppose that
p= p(λ1, . . . , λm) is a symmetric homogeneous polynomial of degree N in m vari-
ables with nonnegative coefficients, which is e-hyperbolic for e := (1, . . . , 1)∈Rm

and satisfies p(e)> 0. Denote its G̊arding cone by E⊂Rm and its G̊arding e-
eigenvalues by Λp

1(λ), . . . ,Λ
p
N (λ). Then p induces a G̊arding–Dirichlet operator

F on S(n) of degree N for each G̊arding–Dirichlet operator g on S(n) of degree
m defined by

F (A) := p(λg
1(A), . . . , λg

m(A)), (1.28)

with G̊arding cone ΓF =(λg)−1(E). The eigenvalues of F are

ΛF
k (A)=Λp

k(λ
g
1(A), . . . , λg

m(A))=Λp
k(λ

g(A)), k=1, . . . , N.

The reader is encouraged to consult [51] for more details.
Such polynomials p= p(λ) are referred to as the “universal eigenvalue oper-

ators,” and the cone E is called a “universal eigenvalue subequation.” One can
show that the coefficients of p being nonnegative is equivalent to E being Rm

>0-
monotone.

Iterating the construction in Proposition 1.12, together with taking products
(since products of G̊arding polynomials are again G̊arding), allows one to show
that the family of G̊arding–Dirichlet operators is huge.

There are many interesting equations which involve G̊arding–Dirichlet poly-
nomials g(A). We now look at some of the examples.

Example 1.13 (k-plurisubharmonicity, the truncated Laplacian, and the geomet-
ric k-convexity operator). These examples were introduced in [46, subsection of
Section 10] as part of the geometric p-plurisubharmonic Dirichlet problem. Here
they illustrate the general fact that, given a G̊arding polynomial, there are two
natural operators: the G̊arding operator defined directly by g and the canonical
operator for the G̊arding cone Γ determined by g. We discuss an interpolation
of operators between them. First, we define the potential theory, which is quite
interesting. Fix an integer k, 1≤ k≤n. A k-plurisubharmonic function is defined
by requiring that its restriction to every affine k-plane is classically Laplacian
subharmonic (or ≡−∞). The subequation P(k) is defined by requiring that
A∈S(n) restricts, as a quadratic form, to have a positive trace on all affine
k-planes. The k-plurisubharmonic functions are exactly the P(k)-subharmonics.

The canonical operator is the truncated Laplacian

ΔP(k)(A)≡λ1(A)+ · · ·+λk(A), (1.29)
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where λ1(A)≤ · · · ≤λn(A) are the ordered eigenvalues of A. There is also a
polynomial G̊arding–Dirichlet operator

Tk(A)=
∏

i1<···<ik

(λi1(A)+ · · ·+λik(A)), (1.30)

which we call the geometric k-convexity operator. This yields two compati-
ble operator–subequation pairs using the canonical operator and a G̊arding–
Dirichlet operator, namely

(ΔP(k),P(k)) and (Tk,P(k)),

and yields a new interpolated sequence between the pairs (λ1,P) and (det,P)
at the k=1 end, and the identical pairs (Δ, {tr≥ 0}) and (Δ, {tr≥ 0}) at the
k=n end. The canonical operator has been studied in [7] where the terminology
truncated Laplacian was introduced.

We point out that P(k)-subharmonic functions restrict to be subharmonic
on all k-dimensional minimal submanifolds [53].

Example 1.14. The reader might enjoy the article [58] where one has a full-blown
Lagrangian plurisubharmonic potential theory, complete with an operator of
“Monge–Ampère type” in Lagrangian geometry.

Example 1.15 (Branches of a G̊arding–Dirichlet operator). In Section 11.7 we
discuss the general notion of branches. A branch is a closed subset of J 2 which
is the boundary of a subequation. Given a G̊arding–Dirichlet polynomial g of
degree m, there are m distinct branches

Λg
1 ⊂Λg

2 ⊂ · · · ⊂Λg
m, where Λg

k = {λg
k ≥ 0}.

Our theory applies to all of these branches, because they are pure second order.
(The only natural operator for these branches is the canonical operator λg

k unless
k=1.)

Example 1.16 (Gradient-free operators with a G̊arding–Dirichlet factor). Let
g(A) be a G̊arding–Dirichlet polynomial as above, and let h∈C((−∞, 0]) be
nonnegative, nonincreasing, and with h(r)= 0 ⇔ r=0. Consider the operator

F (r, p, A)=h(r)g(A). (1.31)

Restricting F to the subequation F =N ×Rn ×Γ gives a compatible gradient-
free pair, and hence comparison holds at every admissible level on every bounded
domain.

An interesting special case comes from affine hyperbolic geometry, as pre-
sented in Example 12.6.
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Example 1.17 (The hyperbolic affine sphere equation). The partial differential
equation

det(D2u)=
(L
u

)n+2

, L≤ 0, that is, (−r)n+2 det(A)= (−L)n+2, (1.32)

arises in the study of hyperbolic affine spheres with mean curvature L, where
u< 0 is convex and vanishes on the boundary of Ω⊂Rn convex (see Cheng–Yau
[22]). This equation is covered by the example above if one takes g(A)=det(A),
and h(r)= (−r)n+2 and c=(−L)n+2 ≥ 0 are the admissible levels.

The next example illustrates a new construction in Section 11.6 (see Lemma
11.35) which produces a gradient-free G̊arding–Dirichlet operator from a pure
second-order G̊arding–Dirichlet operator.

Example 1.18. For each G̊arding–Dirichlet polynomial g of degree m on S(n)
with G̊arding I-eigenvalues of A given by λg

k(A), k=1, . . . ,m, the operator

h(r,A)=
m∏

k=1

(λg
k(A)− r)= g(A− rI) (1.33)

is a (− 1
2 ,

1
2I)-hyperbolic G̊arding–Dirichlet polynomial of degree m on R×S(n)

(normalized to have h(− 1
2 ,

1
2I)= 1) with G̊arding eigenvalues λh

k(A)=λg
k(A)− r.

Now we consider an example with gradient dependence which requires an
additional directionality property (D) with respect to a directional cone D (see
Definition 2.2).

Example 1.19 (Example 1.16 with a directional cone). Let g and h be as in
Example 1.16 above, and consider a continuous d : D→R, where D� Rn is a
directional cone, with

d≥ 0 and d(p)= 0 ⇔ p∈ ∂D, (1.34)

d(p+ q)≥ d(p) for each p, q ∈D. (1.35)

Then the operator
F (r, p, A)=h(r)d(p)g(A) (1.36)

with restricted domain
F =N ×D×Γ (1.37)

defines a compatible N ×D×P-monotone operator–subequation pair (F,F).
Hence, comparison holds on arbitrary bounded domains at every admissible
level of F .

Note: Examples of such pairs (d,D) include

d(p)= pn and D=
{
(p′, pn)∈Rn : pn ≥ 0

}
(a half-space), (1.38)
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and, for k∈{1, . . . , n},

d(p)=

k∏
j=1

pj and D=
{
(p1, . . . , pn)∈Rn : pj ≥ 0 for each j=1, . . . , k

}
. (1.39)

An interesting special case of Example 1.19 concerns parabolic operators,
which are discussed in Section 12.6 in both the constrained (Theorem 12.38)
and the unconstrained cases (Theorem 12.37).

Example 1.20 (Parabolic operators). In the case where the gradient pair (d,D)
is defined by (1.38), h≡ 1, and g(A) is replaced by G(A′) which depends only on
A′ ∈S(n− 1) (second-order derivatives only in the spatial variables x′ ∈Rn−1),
one has a fully nonlinear parabolic operator

F (r, p, A) := pnG(r,A′) (1.40)

of the kind considered by Krylov in his extension of Alexandroff’s methods to
parabolic equations in [75]. The compatible subequation is described in formula
(12.144) of this book.

Another interesting special case of Example 1.19 comes from a very particular
form of optimal transport with quadratic cost, as presented in Example 12.34.

Example 1.21 (Potential equation for optimal transport with uniform source
density and directed target density). Equations of the form

d(Du) det(D2u)= c, c≥ 0 (1.41)

arise in the theory of optimal transport, under some restrictive assumptions. In
general, there would be a function f = f(x) in place of the constant c, where
f represents the mass density in the source configuration and d represents the
mass density of the target configuration (with the mass balance ‖f‖L1 = ‖d‖L1).
One seeks to transport the mass with density f onto the mass with density d
at minimal transportation cost (which is quadratic with respect to transport
distance). The solution of this minimization problem is given by the gradient of
a convex function u, which turns out to be a generalized solution of equation
(1.41). In the special case of uniform source density f ≡ c and with target density
d having some directionality, comparison principles can be obtained as a special
case of Example 1.19 with h(r) := 1 and g(A) := detA.

Thus we see that seemingly diverse equations can be established from a sur-
prisingly unified point of view. It frees the theory from any particular form of
the operator. Given a potential theory, that is, given a subequation constraint
set F , there are many natural choices for an associated operator. If F has suf-
ficient monotonicity, that is, if F admits a monotonicity cone subequation M
(that is, the maximal monotonicity cone has interior), there is always one choice
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that is “canonical,” but for proving useful estimates, other choices may be bet-
ter. For instance, a polynomial operator, if there is one, may be preferable.
Restricting attention, as we do here, to the continuous version of the Dirich-
let problem (DP), the correspondence principle enables a single potential the-
ory/subequation result to be applied to all of the many compatible operators F
associated to the subequation F .

1.7 GENERAL POTENTIAL-THEORETIC COMPARISON

THEOREMS

One of the important parts of this monograph is understanding convex cone
subequations M⊂J 2 and the comparison results for subequations F which are
M-monotone.

By comparison results, we mean the validity of the comparison principle on
bounded domains Ω⊂Rn, that is,

u≤w on ∂Ω ⇒ u≤w on Ω (1.42)

for all u∈USC(Ω) and w∈LSC(Ω), which are respectively F-subharmonic and
F-superharmonic on Ω. By duality, this is equivalent to showing

u+ v≤ 0 on ∂Ω ⇒ u+ v≤ 0 on Ω (1.43)

for all u, v ∈USC(Ω), which are respectively F-subharmonic and F̃ -subharmonic
on Ω. Our method of proof for M-monotone subequations F makes use of this
second formulation.

Here is a guide to the method. There are four steps.

Step 1: Jet addition. We have the following elementary but important fact
concerning constraint sets, monotonicity, and duality:

F +M⊂F ⇔ F + F̃ ⊂M̃.

So the monotonicity condition on the left is equivalent to the condition on the
right, which is perfect for comparison, as one sees from (1.43).

Showing that this infinitesimal statement passes to a potential-theoretic
statement is the hard analysis step in the method.

Step 2: Subharmonic addition. We prove the following potential-theoretic result.

Theorem 7.4 (Subharmonic addition, monotonicity, and duality). Suppose that
M⊂J 2 is a monotonicity cone subequation and that F ⊂J 2 is an M-monotone
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subequation constraint set. Then for every open set X ⊂Rn, one has

F(X)+ F̃(X)⊂M̃(X)

(where F(X) is the set of u∈USC(X) which are F-subharmonic on X).

Step 3: Reduce comparison to the zero maximum principle (ZMP) for M̃.
Armed with Theorem 7.4, it is clear from (1.43) that comparison for F on Ω

will hold if we can prove the (ZMP) for M̃ on a bounded domain Ω⊂Rn, that is,

z≤ 0 on ∂Ω ⇒ z≤ 0 on Ω (1.44)

for all z ∈USC(Ω) which are M̃-subharmonic on Ω.

Step 4: Prove the (ZMP) for M̃. A key concept in the proof is the following.

Definition 1.22. Suppose that M is a convex cone subequation. Given a
domain Ω⊂⊂Rn, we say that M admits a strict approximator on Ω if there
exists ψ with

ψ ∈C(Ω)∩C2(Ω) and J2
xψ ∈ IntM for each x∈Ω. (1.45)

This important notion gives a sufficient condition for proving the (ZMP) for

M̃ and hence comparison for F .

Theorem 6.2 (Zero maximum principle). Suppose that M is a convex cone sub-

equation that admits a strict approximator on Ω. Then the (ZMP) holds for M̃
on Ω.

Putting these four steps together gives the following theorem.

Theorem 7.5 (General comparison theorem). Suppose that M⊂J 2 is a mono-
tonicity cone subequation and that F ⊂J 2 is an M-monotone subequation con-
straint set. Suppose that M is a convex cone subequation that admits a strict
approximator on Ω. Then comparison holds for F on Ω. That is, given u, v ∈
USC(Ω), where u is F-subharmonic on Ω and v is F̃-subharmonic on Ω, then

u+ v≤ 0 on ∂Ω ⇒ u+ v≤ 0 on Ω.

The conclusion here can be restated as follows. Given u∈USC(Ω) and w∈
LSC(Ω), where u is F-subharmonic on Ω and w is F-superharmonic on Ω, then

u≤w on ∂Ω ⇒ u≤w on Ω.
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To see this last statement we only need to know that w is F-superharmonic
on Ω if and only if v≡−w is F̃-subharmonic on Ω.

Remark 1.23 (Affine jet equivalence). Theorem 7.5 generalizes from constant-
coefficient subequations F to subequations F which are locally affinely jet equiv-
alent to a constant-coefficient subequation. For any such equation, local and
hence global weak comparison holds. Furthermore, if there exists a strict approx-
imator (a classical strict M-subharmonic) on Ω, then comparison holds on Ω.
The reader should see [49] for all the details.

We point out that this concept is very useful in geometry. Any invariant
polynomial equation, such as the Monge–Ampère equation or the elementary
symmetric function equations, on a Riemannian manifold are always locally
jet equivalent to constant-coefficient equations in local coordinates. A similar
statement holds on almost complex (and therefore complex) manifolds. The
reader should consult [54, Proposition 4.5].

Now, the utility of the general comparison theorem (Theorem 7.5) is greatly
enhanced by a detailed study of monotonicity cone subequations, which we
present in Chapter 5. There is a three-parameter fundamental family of mono-
tonicity cone subequations M(γ,D, R), where D⊂Rn is a directional cone,
γ ∈ [0,∞), and R∈ (0,∞]. In the fundamental family theorem (Theorem 5.10),
it is shown that

every monotonicity cone subequation M contains one of these subequa-
tions M(γ,D, R).

We note that

M(γ) :=
{
(r, p, A)∈J 2 : r≤−γ|p|}, M(R) :=

{
(r, p, A)∈J 2 :A≥ |p|

R I
}
,

and
M(γ,D, R) :=M(γ)∩M(D)∩M(R),

where M(D) :=R×D×S(n).
The fundamental nature of this family of monotonicity cones, together with

the general comparison principle of Theorem 7.5, leads to a main compari-
son result Theorem 7.6 (the fundamental family comparison theorem), which
depends on the cone M(γ,D, R). For some of these cones, comparison holds
on all bounded domains. For the others, comparison holds only on domains
Ω⊂Rn which are subsets of a translation of the truncated cone D∩BR(0).
This is a semilocal comparison with explicit parameters. Note that by the fun-
damental families theorem (Theorem 5.10), local comparison always holds (see
Theorem 7.8).

Concerning the applicability of the fundamental comparison result of The-
orem 7.6, it is worth mentioning that larger monotonicity cones M for a given
subequation F give a better chance of proving comparison (one more likely to be
able to construct a strict approximator) but smaller monotonicity cones M will
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apply to larger families of subequations. In particular, if one would like to know
whether comparison holds on arbitrary bounded domains, one should search for
the largest possible M, which is perhaps not in the list of the fundamental fam-
ily. For example, in Theorems 8.3 and 8.5 we present enlargements of the cones
with R finite for which comparison holds on all bounded domains.

On the other hand, the search for sufficient monotonicity to have comparison
on arbitrary bounded domains may be futile. In particular, for F :=M(R),
which is its own maximal monotonicity cone, it is shown in Proposition 6.5 that
the (ZMP) fails for M̃(R) on large balls, and hence comparison also fails for
F =M(R) on large balls. This failure of comparison on large balls is extended
to interesting subequations F with maximal monotonicity cone equal to M(R)
in Proposition 9.2. The situation can be even worse.

Remark 1.24 (Failure of local comparison with insufficient monotonicity). In
Theorem 9.8 we show that comparison can fail on arbitrarily small balls (even
if both (P) and (N) hold) if there is insufficient monotonicity. In the examples
the maximal monotonicity cone MF has empty interior, hence no strict approx-
imators on any ball, no matter how small. Moreover, if MF has empty interior,
then its dual is not a subequation.

Concerning step 3 of our method (in which comparison reduces to the validity

of the (ZMP) for the dual M̃ of the monotonicity cone), the following observation
is of interest.

Remark 1.25 (Strong comparison from the strong (ZMP)). The monotonicity
and duality method can be used to prove a strong comparison principle which,
by the subharmonic addition theorem, reduces to proving a strong (ZMP) for

M̃ on Ω; that is,
z≤ 0 on ∂Ω ⇒ z≡ 0 or z < 0 on Ω (1.46)

for all z ∈USC(Ω) which are M̃-subharmonic on Ω. This method was used in
[55] to prove strong comparison for pure second-order subequations. We will not
attempt to extend this to the general constant-coefficient case in this book. There
is, of course, a rich literature on the strong maximum principle for nonlinear
operators, including the important work of Bardi–Da Lio initiated in [4], along
with the recent papers by Birindelli–Galise–Ishii [7], Vitolo [90], and Goffi–
Pediconi [42].

A few additional potential-theoretic ingredients are worth mentioning. First,
an elaboration on the potential theory underlying Example 1.8.

Remark 1.26 (Canonical operators, duality, intersections, and unions). For fam-
ilies {Fσ}σ∈Σ of subequations with a common monotonicity cone subequation
M, by using unions, intersections, and duality, four interesting M-monotone
subequations are constructed, together with their canonical operators (see The-
orem 11.23).
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Next, an elaboration on the gradient-free case.

Remark 1.27 (Subaffine-plus functions). Subaffine-plus theory concerns the poten-
tial theory of the gradient-free subequation

Q̃ :=
{
(r,A)∈R×S(n) : r≤ 0 or A∈P}

, (1.47)

where P̃ is the pure second-order subaffine subequation. This Q̃ is the dual of the
fundamental gradient-free monotonicity cone M=Q :=N ×P and this poten-
tial theory is developed in detail (see Theorems 10.7 and 10.8). In particular, we

extend the elegant method of using subaffine functions (the P̃-subharmonics)
to prove that “comparison always holds” for pure second-order subequations.
Subaffine-plus functions (the Q̃-subharmonics) are used to prove that “compa-
rison always holds” for the larger family of gradient-free subequations.

1.8 LIMITATIONS OF THE METHOD AND COMPARISON

WITH THE LITERATURE

The monotonicity and duality method presented here applies to a vast array of
constant-coefficient potential theories and operators, but not all of them. There
are many interesting and important examples with insufficient monotonicity
to be treated by our method. For example, quasi-linear operators such as the
minimal surface operator

F (p,A) := tr(A)− 〈Ap, p〉
1+ |p|2 ,

the q-Laplacian (with 1<q< 2 or 2<q<∞)

F (p,A) := |p|q−2 tr(A)+ (q− 2)|p|q−4〈Ap, p〉,

and the infinite Laplacian

F (p,A) := 〈Ap, p〉,

do not have monotonicity cones M with interior, which we require. Such exam-
ples (and others) have been treated by Barles–Busca [6] by using an ingenious
transformation of the dependent variable, which still cries out for a potential-
theoretic analogue. On the other hand, for these reduced operators F (no explicit
dependence on the jet variable r∈R), Barles and Busca require structural
assumptions on F such as their condition (F2): F is strictly elliptic in the gra-
dient direction. This condition is not satisfied by an operator such as

F (p,A) := d(p) detA,
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which is Example 1.16 with h(r)≡ 1 and g(A)=detA. Such examples can be
treated by our method.

Next we discuss a prototype operator which, surprisingly, creates difficulty
for any method. The operator looks particularly attractive for comparison since
it is strictly decreasing in the solution variable r∈R and is increasing in the
Hessian variable A when restricted to P ⊂S(n). Namely, consider the seemingly
innocuous operator

F (r,A)=detA− r (1.48)

(which is further discussed in Remark 12.7). The operator F is gradient-free
and proper elliptic on R×P; that is, it is Q=N ×P-monotone on F :=R×P.
However, the potential theory equation ∂F is not contained in the zero locus
{(r,A)∈F :F (r,A)= 0}, that is, F and F are not compatible. This cannot
be remedied by another choice of F , creating a major obstacle to the study
of this operator. This incompatibility means that F -superharmonics will not
correspond to F -admissible supersolutions to the equation F (u,Du,D2u)= 0.
In order to formulate a notion of admissible supersolution, one could make
use of the generalized equation approach initiated in [61] for pure second-order
equations in which one looks for a second constraint set G (different from F)
such that

F ∩ (−G̃)={
(r,A)∈F :F (r,A)= 0

}
.

The admissible supersolutions are those w∈LSC(Ω) which are −G̃-subharmonic.
We will not pursue this program here.

In addition to the paper [6] discussed above, earlier pioneering work in the
constant-coefficient case was done by Jensen [69]. The equations treated by
him are all unconstrained in our language, where the monotonicity properties
(P) and (N) do not require restricting the domain F to a constraint set F . In
Sections 12.2 and 12.3, we recover Jensen’s results in this unconstrained setting
(see Remark 12.10). Of course, we also treat many constrained cases in this
monograph, which is an important motivation for us.

Concerning the constrained case and our notion of compatible pairs (F,F),
we should mention that the special case of Monge–Ampère-type equations with
the convexity constraint P is given in Ishii–Lions [68], together with a notion
of admissible supersolutions in our language. A similar admissibility notion was
also given by Trudinger [87] for prescribed curvature equations, and later by
Trudinger–Wang for the so-called Hessian equations in a series of papers begin-
ning with [88]. As noted previously, another motivation of ours is to treat con-
strained cases in a robust and general way. The potential-theoretic approach
initiated in [46] was influenced by the important paper of Krylov [77] on the
general notion of ellipticity, who championed the idea of freeing a given differ-
ential operator F from its particular form by looking instead at the constraint
that is imposed on the 2-jets of subsolutions to the equation.

Finally, we wish to comment on our choice to focus on the constant-coefficient
case. The most basic reason is that in this situation, monotonicity and duality
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alone suffice to produce comparison for compatible pairs (F,F). Much more
can be said when dependence on spatial coordinates is added into the pair, or
one works on manifolds, but additional conditions must be imposed in order to
prove the comparison principle. We briefly review three situations in which the
monotonicity–duality method has been extended past the constant-coefficient
setting.

On open sets X in Rn, one can add x-dependence in two ways. The first
is by considering inhomogeneous equations associated to a constant-coefficient
compatible pair (F,F), that is, equations of the form

F (J2u)=ψ(x), x∈X. (1.49)

Here, one should consider ψ ∈C(X) taking values in the range F (F) of the
operator F ∈C(F).

As shown in [60], if (F,F) is a compatible M-monotone pair for some mono-
tonicity cone subequation M which admits a classical strict subharmonic func-
tion, then the tameness condition of F on F ,

for each s, λ> 0 there exists c(s, λ)> 0 such that

F (J +(−r, 0, P ))−F (J)≥ c(s, λ) ∀ J ∈F , ∀ r≥ s, ∀P ≥λI, (1.50)

ensures that the comparison principle holds for F-admissible subsolutions and
supersolutions of (1.49). The tameness property is crucial to maintain the
F-subharmonicity of sup-convolutions of F-subharmonic functions.

This comparison result is part of the content of [60, Theorem 2.7], which also
treats the existence of a unique solution to the Dirichlet problem on bounded
domains Ω which are boundary pseudoconvex in a suitable strict sense. See also
[60, Theorem 2.7′] for the extension to operators F which are tamable. Moreover,
[60, Theorem 2.7] extends to manifolds X for pairs (F,F) which are locally jet-
equivalent to a constant-coefficient pair as above (see [60, Theorem 2.11]).

On open sets X in Rn, a more general way to add in x-dependence is to
consider general operators F ∈C(G) where either G= J2(X) or G �J2(X) is a
subequation constraint set. The candidate for a compatible subequation F ⊂
J2(X) for F is defined fiberwise by the correspondence relation

Fx :=
{
J ∈Gx :F (x, J)≥ 0

}
, x∈X. (1.51)

In this setting, fiberegularity is crucial. This condition means that the fiber
map Θ, with values Θ(x) :=Fx as defined in (1.51), is continuous from
X ⊂Rn into the closed subsets of J 2 (equipped with the Hausdorff distance).
For M-monotone subequations, fiberegularity has a more useful equivalent
formulation:
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there exists J0 ∈ IntM such that, for each fixed Ω⊂⊂X and η > 0, there
exists δ= δ(η,Ω) such that

x, y ∈Ω, |x− y|<δ ⇒ Θ(x)+ ηJ0 ⊂Θ(y). (1.52)

One can show that if there exists such a jet J0, then any element of IntM will
do, where one can simply take J0 =(−1, I)∈R×S(n) or J0 = I ∈S(n) in the
gradient-free and pure second-order cases, respectively.

Fiberegularity ensures that if u is F-subharmonic on a bounded domain, then
there are small C2-strictly F -subharmonic perturbations of all small translates
of u which belong to F(Ωδ), where Ωδ := {x∈Ω : d(x, ∂Ω)>δ}. This property
is crucial to maintain F-subharmonicity of sup-convolution approximations of
F-subharmonics. Hence, in the general setting, fiberegularity plays the same
role as tameness does for inhomogeneous equations (as noted after (1.50)).

Fiberegularity, together with monotonicity and duality, has been shown to
be sufficient for comparison in the pure second-order, gradient-free, and
M-monotone cases in [23–25]. See also the recent paper of Brustad [12]. In
particular, this leads to the proof of the comparison principle [24] for the spe-
cial Lagrangian potential equation with nonconstant phases (as introduced in
Example 1.9) provided that the phase function does not take on a special phase
value. This result is sharp, as shown in Brustad [13]. As noted in the pref-
ace, this potential-theoretic approach has been used to prove the comparison
principle for PDEs that do not satisfy a standard structural condition from con-
ventional viscosity theory. The following is a simple pure second-order example
from [23]. Replacing det with a different G̊arding–Dirichlet polynomial g (as
defined in Section 1.4) yields a huge family of such pure second-order examples
that can be further generalized by taking F (r, p, A)=h(r, p)g(A) for suitable
h∈C(R×Rn).

Example 1.28 (Perturbed Monge–Ampère). With fixed M ∈C(Ω,S(n)) and f ∈
C(Ω) nonnegative, consider

det(D2u+M(x))= f(x), x∈Ω⊂⊂Rn. (1.53)

This is an important test example of Krylov [76, Example 8.2.4] for probabilis-
tic and analytic methods. It fails to satisfy the standard viscosity structural
conditions for comparison as given in Crandall–Ishii–Lions [30, condition (3.14)]
unless M is the square of a Lipschitz continuous matrix-valued function. In [23],
comparison is proved for general continuous M (along with the existence of a
unique continuous solution of the Dirichlet problem on strictly convex domains).
The potential-theoretic proof makes use of the compatible subequation whose
fibers are defined by

Fx :=
{
A∈S(n) :A+M(x)≥ 0 and F (x,A) := det(A+M(x))− f(x)≥ 0

}
,
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and give a fiberegular F . The strict convexity is the boundary geometry required
by F as described after Remark 1.6.

Finally, constant-coefficient subequations on Euclidean space generate a rich
and interesting class of subequations on manifolds X, as developed in [49].
These subequations on X are those which are locally jet-equivalent to a constant-
coefficient subequation. Any Riemannian G-subequation on a Riemannian mani-
fold X with topological G-structure is such a subequation. For simple examples,
let p : S(n)→R be a continuous function which is invariant under the action
of O(n) (such as the determinant or the trace). Applying p to the Rieman-
nian Hessian gives an operator (real Monge–Ampère or Laplace–Beltrami) on
X, which has the jet-equivalence property above. These notions are discussed
in [49, pp. 398–402], along with much more.

1.9 REFLECTIONS ON “POTENTIAL THEORY VERSUS

OPERATOR THEORY”

The work of Harvey–Lawson on generalized potential theories began with the
realization that every calibrated manifold had an underlying potential theory,
which generalized much of the basic pluripotential theory associated to the spe-
cial case of Kähler manifolds. It soon became clear (but surprising) that the set
of p-planes distinguished by the calibration, which gives rise to the pluripotential
theory, could be replaced by any closed subset of the p-Grassmannian, yielding
an interesting geometric potential theory. Over time it was found that these
potential theories have far-reaching generalizations, which give new dimensions
to interesting areas of geometry. The third and final step was to bypass the
subset of the Grassmannian and go directly to a constraint set on the 2-jets of
a function. This investigation has led to a constellation of potential theories as
discussed in the survey paper [65, Section 1.1].

Each such potential theory has a basic geometry which gives rise to a large
number of differential operators that can be used in the analysis. In fact, in
important situations (for example, in G(2) and Spin(7) geometries) there are
no historical “polynomial” operators, but one does have the canonical operators
and the signed distance operators, which are determined by the geometry of
the constraint set. A good example of this is the introduction [46] of the trun-
cated Laplacian for the geometric p-convexity constraint set. This lack of known
polynomial operators was discussed in Section 1.4.

On the other hand, if one starts with a nonlinear proper elliptic operator F ,
one has an associated potential theory coming from the set F where F ≥ 0. This
potential theory is useful because it gives a different way of thinking; many of
the results and techniques of classical potential theory carry over to these cases,
and have led to new results.

One example is the analogue of the Levi problem in several complex variables,
established in the new p-geometry, where all p-planes are considered distinguished
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[52]. Namely, local p-convexity implies global p-convexity. See the review in
[65, Section 1.2] for additional potential-theoretic results suggestedby several com-
plex variable theory.

A really important example is given by the sharp L∞-estimates for the com-
plex Monge–Ampère equation, for which deep results in pluripotential theory
were used. The first major advance after Yau’s fundamental paper [91] was given
by Kolodziej [73]. His work had profound significance and was used for many
future developments, and it relied heavily on pluripotential theory! So also did
future generalizations of Kolodziej’s work by Demailly–Pali [33] and Eyssidieux–
Guedj–Zeriahi [38]. This work was crucial in completing the existence of Calabi–
Yau metrics in the positive case, a long research program recently finished in
[19–21].4 So in this area, at the center stage of modern research, pluripotential
theory was crucial in solving an important differential equation.

Two important advantages of a potential-theoretic approach to nonlinear
PDEs are worth repeating. First, as mentioned at the beginning of the intro-
duction, many operators F correspond to the same subequation F and passing
directly to the potential theory “frees” one from any particular form of the dif-
ferential operator. In the viscosity literature, there is often the need to find an
ad hoc reformulation of the operator as a first step, which becomes unnecessary
if one passes to the potential theory. This is a major point in the work of Krylov
[77]. Second, as mentioned after Remark 1.6, the potential theory approach cor-
rectly identifies the needed boundary geometry for existence by Perron’s method
for any operator F that corresponds to a subequation F defining the potential
theory [46, 49].

The potential theory viewpoint makes PDE concepts purely geometric. It
is important in relating different subequations (by containment, intersection,
etc.), which leads to understanding things in a new way. It is also important for
generalizations of the notion of equation; for example, see [61].

Another accomplishment of the potential theory viewpoint is the transfer
of results for important equations to manifolds with Riemannian, symplectic,
complex, or almost complex structure. If F is a subequation, which is invariant
under the natural action of O(n), then F naturally determines a subequation
on every Riemannian manifold. Similarly, if F is U(n)-invariant, one gets a
subequation on every complex (or, even, almost complex) hermitian manifold. If
F is G(2)-invariant, it defines a subequation on any (almost) G(2) manifold, and
so on. This, together with a notion of affine jet equivalence, gives wide-ranging
results for the Dirichlet problem on domains in such manifolds [49, 50, 60],
and more.

There are many recent papers which have picked up the major theme of this
book. We mention now several illustrations.

4In fact, just recently, in an important paper [43] by Guo–Phong–Tong, these estimates
were established by pure PDE methods. The breakthrough enabling [43] was a fundamental
new idea of Chen–Cheng [18].
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First, the interplay between potential theory and geometry via interesting
differential operators on Riemannian manifolds has taken inspiration from [49].
In Mari–Pessoa [81] and Araújo–Mari–Pessoa [2], the potential theory of the
infinite Laplacian and the Eikonel operator are used for characterizing vari-
ous maximum principles at infinity and detecting the forward completeness of
Finsler manifolds, respectively. There is also Goffi–Pediconi [42] on strong max-
imum principles for operators modeled on Pucci extremal operators, infinite
Laplacians, and mean curvature operators.

Second, on hermitian manifolds which are not Kähler, potential-theoretic
techniques have been used to construct Gauduchon metrics with prescribed
volume form in Székelyhidi–Tosatti–Weinkove [86].

Third, on manifolds with an almost complex structure, there are many results
that have taken inspiration from [49, 50]. For example, in [54] the Dirichlet prob-
lem was solved as well as the closely related Pali conjecture stating that distribu-
tional plurisubharmonics and classical plurisubharmonics are equivalent. Con-
sequently, the solution to the obstacle problem in [49] applies to almost complex
manifolds and yields smooth approximations from above of plurisubharmonic
functions in [63]. See also [64].

Fourth, following the work of [46] on Euclidean spaces, the interplay between
potential theory and (viscosity) operator theory is the major theme of the
papers [23–25] treating in wide generality the comparison principle and Per-
ron’s method in the variable coefficient fiberegular setting. In addition, this
interplay is seen in the solution of the plateau problem for convex hypersurfaces
of constant Gaussian curvature in Clark–Smith [26] and in many works dedi-
cated to various forms of the maximum principle as in Amendola–Galise–Vitolo
[1] and Birindelli–Galise–Ishii [7, 9], as well as the study of entire subsolutions
in Capuzzo Dolcetta–Leoni–Vitolo [16].

Fifth, the many geometric operators with an interesting potential theory
developed in [46, 49] (and in subsequent papers) has provided a notable stim-
ulus to many recent investigations. The special Lagrangian potential operator
was introduced in calibrated geometry [44], as discussed above in Example 1.9.
Providing the proof of comparison for the special Lagrangian potential equation
(with constant admissible phases) was one of the major motivations for [46]. This
operator is the subject of a long list of papers beginning with Chen–Warren–
Yuan [17] and continuing with Nadirashvili–Vlǎduţ [82], Rubinstein–Solomon
[84], the work of the authors [24, 62], and many others including the very recent
paper by Brustad [13]. Also recently, in this direction, has been the funda-
mental work of Collins–Yau in a series of three papers starting with [27]. The
truncated Laplacian operators were introduced in the context of the geometri-
cally p-plurisubharmonic Dirichlet problem [46], as discussed in Example 1.13.
These operators have been the object of much recent work including Vitolo [90]
and Birindelli–Galise–Ishii [7–9].

Of course, techniques from viscosity theory, in particular the theorem on
sums, play a big role in the analysis in [49] and elsewhere. A brief review of
some milestones in the history of viscosity methods follows.
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The notion of viscosity solutions originates for first-order equations in
Crandall–Lions [31], and has its roots in Kruzkov’s theory of entropy solutions
for conservation laws [74]. The basic idea to put derivatives on test functions by
way of the maximum principle originated in the work of Evans [34, 35] on the
weak limits in fully nonlinear PDEs by means of Minty’s method. One of the
major achievements of the viscosity theory has proven to be the treatment of
difficult problems by appropriate limiting procedures. There are many illustra-
tions of this achievement when making use of homogenization and/or vanishing
viscosity parameters; for example, see Evans [36, 37]. The notion of viscosity
solutions was extended to second-order equations by Lions [79, 80], who first
gave a proof of uniqueness using stochastic control arguments when the opera-
tor F is convex or concave in (Du,D2u).

A major breakthrough was the work of Jensen [69, 70] which frees the theory
from its dependence on the convexity (or concavity) and makes use of regulariza-
tions by way of the sup and inf convolutions. This was refined in Jensen–Lions–
Souganidis [71]. See also Remark 12.10, which discusses the relation between
two of Jensen’s comparison principles and what we obtain by our method.

The analytical underpinnings of the comparison principle were further refor-
mulated making use of the technique of doubling variables and penalization and
culminates in the theorem on sums of Crandall–Ishii [29], which in turn had its
origins in Ishii [67], Ishii–Lions [68], and Crandall [28]. The theorem on sums
was used in the treatment of comparison principles on manifolds in [49].

Another important breakthrough in viscosity theory was the introduction of
the comparison principle as a tool for proving existence for the Dirichlet prob-
lem via Perron’s method. This was first accomplished by Ishii in two landmark
papers: first-order equations in [66] and second-order equations in [67]. What
is often known as Ishii’s theorem states that one has the existence of a unique
solution provided that the comparison principle holds and provided that there
is a good subsolution/supersolution pair. In practice, these two hypotheses may
seem unrelated, but the potential theory approach connects the two.

There are at least two major achievements of the conventional viscosity the-
ory which, at least for now, have not been replicated by the potential theory
approach. The first is the ability to prove the comparison principle for important
operators, such as the minimal surface operator, which lack sufficient mono-
tonicity to use our method (see the discussion in Section 1.8). The second is
that the use of limiting procedures via artificial viscosity and/or homogeniza-
tion parameters has yet to be attempted in the potential-theoretic setting. These
two questions provide impetus for further interplay.

We have mentioned the seminal contribution of Jensen [69] to comparison
theory. A main result in this work has become known as Jensen’s lemma (for
example, see [30, Lemma A.3]). It is a measure-theoretic result for quasi-convex5

5Such functions are often referred to as semiconvex functions, although the term is a
bit misleading. Our use of quasi-convex is consistent with the use of quasi-plurisubharmonic
functions w in several complex variables.
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functions which ensures a wealth of linear perturbations having local maxima
in the neighborhood of a strict local maximum of w. It is interesting to note
that this lemma is equivalent to a result of Slodkowski [85] (two years earlier)
developed in the context of pluripotential theory and can be stated in terms
of the measure of the set of upper contact points near a strict upper contact
point. The equivalence of the Jensen and Slodkowski lemmas is given in [57,
Theorem 3.6], which also provides another proof of the Slodkowski lemma using
contact paraboloids in place of contact spheres. See also [83], which borrows
heavily from [56], for additional reflections on this equivalence and the role of
Alexandroff’s maximum principle and the area formula of Federer, from which
one can prove both lemmas. This equivalence should be more well known than
it is and signals an important moment when possible synergy between potential
theory and operator theory was missed. It is a major theme of this book to
examine the possibly fruitful interplay between potential theory and operator
theory.
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