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1

Introduction: Structural

Econometric Modeling

Structural econometric modeling is a set of approaches that rely extensively on
economic theory to explicitly specify and test the relationships amongdistinct eco-
nomic phenomena. The terminology defines three parts: structure, econometrics,
and model. In what follows, we first discuss what each part of the terminology
entails, in reverse order. Then we touch upon the debate around the structural
econometric modeling approach against its reduced-form counterpart.

1.1 Model

This section discusses what an economic model is. Then we articulate when a
model should be considered as capturing only correlations and when a model can
be considered as capturing causality as well. We begin our discussion in a broader
context of howmodels are built and tested in science.

1.1.1 Scientific Model and Economic Model

A scientific model consists of abstractions and simplifications of the real world,
selecting and incorporating only the relevant aspects of the world that a researcher
is analyzing. Scientificmodels aremost commonly formulated usingmathematical
language.One of themajor strengths of utilizing amodel in science comes from its
logic of establishing the relations among distinct variables: build a model and test
the predictions from thatmodel using real-world data. Themain goal of building a
model is to specify hypothetical relationship among distinct phenomena, summa-
rized in the form of variables, in a testable form. Once amodel is built, predictions
from that model are subject to tests using statistical methods applied to real-world
data. A statistical test of a scientific model is expressed in terms of testing the null
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2 chapter 1

and alternative hypotheses. Very roughly, the probability that the null hypothesis
is not true given the data boils down to the p-value. That is, the p-value is gives the
probability that a test statistic is obtained just by coincidence, given that (1) the
null and alternativehypotheses are set up correctly, and (2) an adequate estimation
method is used to compute the p-value. If the real-world data do not support the
predictions from amodel, themodel is rejected.Models that are rejected less often
are considered more reliable, and more reliable models are considered to provide
more reliable predictions.

Economics standson the sameground.Economists build economicmodels and
testmodel predictions using datawith econometricmethods. An immediate ques-
tion might arise: what defines a model as an economic model? We suggest that
there are two key ingredients of an economic model: (1) optimizing behaviors
of (2) the rational agent(s).1 Economic theory begins from preferences, technol-
ogy, information, and various equilibrium concepts. As a result of the optimizing
behavior of one or multiple rational agents, observable/testable equilibrium out-
comes are derived in the form of mathematical statements. Those outcomes are
tested using real-world data with appropriate econometric methods.

1.1.2 Predictive Model and Causal Model

Amodel generally makes testable predictions about correlations between distinct
variables. Such correlations can sometimes imply causal relationships between the
variables of interest, generally undermuchmore stringent conditions and assump-
tions. In this subsection, we discuss when a model can be interpreted as implying
a causal relationship between distinct variables. We begin our discussion with the
following two simple examples. Both examples involve linear models between
explanatory and explained variables.

Example 1.1.1. Suppose that one has collected data on the height and weight of
a randomly selected group in the population. Let yi be the weight, and let xi be the
height of each individual. The researcher runs the following regression:

yi=β1 +β2xi+ εi. (1.1.1)

The OLS estimate β̂2 turns out to be positive and highly statistically significant.
Does this finding imply a causal relationship between height and weight?

1. Recent advances in several fields such as behavioral economics allow for violations of those two key
ingredients. For instance, rationality might be bounded or optimization might be imperfect. Although we
focus mostly on conventional microeconomic theory here, we do consider advances in behavioral economics
as important progress in the profession.
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Example 1.1.2. Suppose that one conducted a repeatedHooke’s experiment and
recorded the results. Let yi be the length of the spring, and let xi be the ran-
domly assigned weight of the pendulum. Again, the researcher runs the following
regression:

yi= γ1 + γ2xi+ εi. (1.1.2)

The OLS estimate γ̂2 is positive and highly statistically significant. Does this find-
ing imply a causal relationship between theweight of the pendulum and the length
of the spring?

The answer to the first question is definitely no.2 But the answer to the second
question is possibly yes. A positive and highly statistically significant γ̂2 estimate
may be taken as evidence of a causal relationship—that is, xi causes yi. The struc-
tures of the two thought experiments seem to be quite similar at a glance; both
equations (1.1.1) and (1.1.2) represent a linear model between xi and yi,3 a data
set is collected, a simple linear regression is run, and the coefficient estimates have
the same sign and are statistically significant. But the implications on the causality
can be starkly different. Where does this stark difference come from?

To answer this question, we first remind ourselves what regression reveals and
what it does not. The slope coefficient estimate from a simple regression being
positive (negative) is equivalent to the in-sample Pearson correlation coefficient
between the explanatory variable and the explained variable being positive (neg-
ative).4 If the data used in the regression are randomly sampled from the target
population, high statistical significance can be interpreted as the positive (nega-
tive) sample correlation revealed from regression implying the positive (negative)
population correlation.

What regression per se does not reveal is causality between the explanatory vari-
able(s) and the explained variable. The experimental variations during the data-
generating process are what make the correlation evidence of causality. Returning
our focus to the two illustrative examples, the data on xi of the second experiment
are generated by a randomized experiment, where the researcher took full control
over xi. By contrast, the data on weight and height are not generated from a ran-
domizedexperiment.Another possibly exogenous factor, such as goodnutrition, is
likely to simultaneously affect both height andweight; those exogenous factors are
contained in the error term εi and treated as unobservable to the econometrician
in the model considered.

2. If you are not convinced, recall Procrustes, the stretcher, in theOdyssey. When Procrustes stretches the
guest to fit him in his bed, will the guest’s weight increase?

3. We relegate the discussion on the role of εi to section 1.2.
4. Recall from elementary econometrics that the ordinary least squares (OLS) slope coefficient estimate

is the sample covariance of xi and yi scaled by the sample variance of xi.
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An experimental variation in the explanatory variable(s) is essential for identi-
fying the corresponding explanatory variable as a cause for change in the explained
variable. The intuition behind the importance of experimental variation in estab-
lishing causality between two variables can bemore easily illustrated in the context
of omitted-variable bias in linear regression. Suppose that a causal and linear rela-
tionship exists between the vector of explanatory variables (xi, vi) and yi, where vi
is unobserved to a researcher. Furthermore, assume that the correlation between
xi and vi is nonzero, which is usual. If the sign and magnitude of the causal effect
of interest are about variable xi, a researcher may be tempted to run the following
OLS regression:

yi=β1 +β2xi+ εi,

and claim β̂ represents the causal effect of xi on yi. This claim is unarguably false
unless the correlation between xi and vi is zero or the correlation between vi and yi
is zero.5 The problem with virtually any observational data is that infinitely many
vi’s are possible that are not observed, and the best way to avoid this situation is to
have xi generated by an experiment, and therefore, it has zero correlation with any
possible omitted variables.

The linear model in Example 1.1.2, once estimated using experimental data on
length and weight as described previously, can be used to predict a causal effect
of the explanatory variable(s) on the explained variable. A model that has causal
interpretation is often referred to as a causal model. On the contrary, the linear
model in Example 1.1.1, after being estimated using observational data on height
and weight, cannot be used to predict a causal relation. However, it does not pre-
vent one from using the model to predict a correlation between the explanatory
variable(s) and the explained variable. Amodel that can only be used to predict the
behavior of the explained variable using the explanatory variable is often referred
to as a predictive model. The usefulness of a causal model is its capability to answer
the questions related to counterfactual experiments; with only a predictive model,
it is generally not possible to answer questions regarding counterfactuals.Counter-
factuals are the ultimate goal of building and calibrating a structural econometric
model. We will discuss more about counterfactuals in section 1.3.

1.2 Econometrics

Economic (theory) models often do not readily incorporate real-world data with-
out an added stochasticity that is necessary to estimate and/or test themodel. The
key characteristic that discerns an econometric model from an economicmodel is

5. See any undergraduate-level econometrics textbook for the reasoning behind this point.
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whether the model can directly incorporate relevant data. To incorporate relevant
data, additional statistical structure should be added to an economic model. As is
often the case, the added statistical structure is imposed in the formof addedunob-
servable (both to the econometrician and/or to economic agents) variable(s) to
the economic model of interest. The error terms εi in Examples 1.1.1 and 1.1.2,
respectively, are examples of added unobservables; εi captures anything other than
the assumed linear relationship between xi and yi, and it is impossible to rationalize
data without the error term. We note that an economic model and an economet-
ric model are sometimes indistinguishable because in some stochastic economic
models, the unobservables (to the economic agents) are inherent in the economic
model.

Conceptually, econometric models have three kinds of error terms. The first
is due to researcher uncertainty, which is sometimes referred to as the “structural
error” or “unobserved heterogeneity.” This kind of error term is observable to the
economic agent, but not to the econometrician. The structural errors affect the
decision of the economic agents in the same way that the observables do. The sec-
ond is driven by agent uncertainty. It is observable to neither the economic agent
nor the econometrician. However, the variable may affect the economic agent’s
decision, often in terms of ex ante expectations. The third is the error term that is
added merely for the rationalization of the data or the tractability of estimation.
This type of error termmay include measurement errors. Distinguishing between
these concepts during the estimation is sometimes difficult or even impossible.
However, being clear about these conceptual distinctions in the modeling stage is
very important because the distinctions may affect the counterfactuals critically.

1.3 Structure

Conducting a counterfactual policy6 experiment is one of the most important
goals of building and calibrating/estimating an econometric model. Through
counterfactual policy experiments, a researcher can answer questions related to
changes in economic outcomes caused by hypothetical changes in a policy that
affects economic agents. The key ingredients of an economic model explained in
section 1.2, optimizing behaviors of rational agents involved and possible changes
in the equilibrium, need to be accounted for during the counterfactual policy
experiments; they need to be explicitly formulated in the econometric model to
evaluate and quantify the causal effect of a change in policy.

6. The term “policy” is used in a broad sense here. It can be a firm’s conduct, government regulation,
consumers’ choice environment, and so on; it does not necessarily mean public policy.
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For a valid counterfactual policy experiment, certain aspects of the correspond-
ing econometricmodel shouldbe taken as invariant to possible changes in a policy;
such invariant aspects are referred to as the structure of the model. Structure in
a model is a set of restrictions how variables behave. For example, in the simple
causal linear model discussed in Example 1.1.2, the key structure imposed is that
yi responds linearly to a change in xi.7 The model parameters of the econometric
model, (γ1, γ2), are set free during the stages of calibration/estimation. Once the
model parameters (γ1, γ2) are estimated, the parameter estimates are also taken as
a part of the structure during predictions and counterfactual experiments.

Economic theory is themain source of the structure in a structural econometric
model. The structure ofmany structural econometricmodels is nonlinear because
most underlying economic models specify nonlinear relationships between the
variables of interest up to the set of unknownparameters. By estimating a structural
econometric model using real-world data, a researcher can obtain the magnitude
of the parameters, in addition to their signs, in the underlying economicmodel. In
turn, the magnitude of the effects resulting from a hypothetical change in a policy
can be quantified; in contrast, it is often the case that only signs of the effects froma
hypothetical policy change can be identified from the reduced-form counterparts
of structural econometric models. However, the ability of quantifying the effects
associatedwith a hypothetical policy change comeswith its costs: the nonlinearity
from explicitly specifying the possible relationships generallymakes the structural
econometric approach much more difficult to implement than its reduced-form
counterpart.

Formulating and estimating a structural econometricmodel typically follow the
following steps: (1)Formulate awell-defined economicmodel of the environment
under consideration; (2) add a sufficient number of stochastic unobservables to
the economic model; (3) identify and estimate the model parameters; and (4)
verify the adequacy of the resulting structural economic model as a description of
the observed data. In step (2), a researcher should decide whether to fully specify
the distribution of the unobservables. Related to steps (2) and (3), estimation of
structural econometricmodels often boils down to obtaining the point-identified,
finite-dimensional, and policy-invariant model parameters.8 A few possibilities

7. The econometric model in equation (1.1.2) is a structural model to the extent that the linearity is taken
as coming from a valid theory that specifies the causal linear relationship between xi and yi. Note that it is also
possible to interpret the econometric model in equation (1.1.2) as an approximation of a possibly nonlinear
causal relationship between xi and yi. More discussions of the interpretation of the linear models follow in
section 1.4.

8. The literature on the partially identified or nonparametric structural econometric models is growing.
We study some examples of them in subsequent chapters.
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exist for step (4). For example, the researcher can split the sample, estimate the
model using only a subset of the sample, and examine the accuracy of the out-
of-sample prediction. Another way of validating the structural models is to match
the predictions of structural models with the data from a randomized experiment.
We think an appropriate model validation is crucial to the credibility of the results
from estimating a structural econometric model and conducting counterfactual
policy experiments using the estimated structuralmodel. A simple sensitivity anal-
ysis alonemay not be enough to persuade the audience that themodel is a credible
and realistic approximation of the world.

1.4 Debate around the Structural

Econometric Modeling Approach

Broadly, there are two ends of building an econometric model from an economic
model: reduced-form and structural econometric models in a narrow sense.9

There has been a debate in the literature between the structural and reduced-form
approaches in econometric modeling.

Reduced-form econometric models abstract away from rational agents, opti-
mization, and equilibria. They specify the simple relationships between the vari-
ables of interest and use relevant estimation methods to back out the parameters.
Their econometric specifications are mostly linear, which has a justification that
linear functions are a first-order approximation of any smooth functions. The
strengths of reduced-form econometric models are their simplicity and relative
robustness to the model misspecifications. On the other hand, a structural econo-
metric model begins by explicitly stating the economic model specifications, such
as the objective functions, the optimizing variable, the equilibrium concept, the
degree of information of the agents and of the econometrician, and the possible
source of endogeneity. Then, the model is solved step by step. As a result, the rela-
tions between the variables are specified in terms of the moment (in)equalities,
likelihoods, or quantile restrictions. Finally, the relevant estimation methods for
such specifications are used to back out the model parameters.

By explicitly specifying the economic models, structural econometric mod-
eling enables one to make in-sample and out-of-sample predictions and policy
counterfactuals. Specifically, the ability to make out-of-sample causal predictions
is one of the greatest strengths of a structural econometric model. For instance,

9. In awide sense, even the linear instrumental-variablemodel is a structural econometricmodel, implicitly
imposing a very specific structure on how the instrumental variables affect the outcome variables. This point
has been thoroughly investigated by Heckman and Vytlacil (2005).
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a reduced-form model of merger identified using retrospective analysis may be
enough topredict amerger impact if the analyst is interested inpredicting the effect
of counterfactual merger with similar attributes to retrospective ones. However,
if one is interested in simulating mergers under a different market environment,
a linear extrapolation is likely to be a poor fit. Furthermore, the linear shape and
even the direction of themerger impact suggested by the reduced-formmodelmay
not be valid anymore under some counterfactual policy experiments, subject to
the “Lucas critique” (see Lucas 1976). By explicitly specifying and estimating the
policy-invariant nonlinear economic relationships between the market environ-
ment and the equilibriumoutcomes of amerger, structural econometricmodeling
allows one to make predictions out-of-sample.

A disadvantage of structural econometric modeling is that the predictions or
policy counterfactuals can be sensitive tomodelmisspecifications. The possibility
ofmodelmisspecification is consideredoneof the greatestweaknesses in the struc-
tural econometric modeling approach, especially because structural econometric
models generally take sophisticated nonlinear causal relationships between vari-
ables, inherited from the underlying economic theory, as given and fixed a priori.
Ideally, every ingredient in a structural econometricmodel could be tested by run-
ning carefully designed, randomized experiments, but it is generally very difficult
when the subject of study is the economic behavior of individuals or organizations.

Taking either approach does not exclude the other, and much successful
research has used one approach to inform work with the other. That said, we view
the reduced-form approach and structural approach to econometric modeling as
complements with different strengths, not substitutes, as explained previously.

1.5 Outline of This Book

Modern empirical industrial organization and quantitative marketing rely exten-
sively on the structural econometric modeling approach using observational data.
The goal of this textbook is to give an overviewof how the various streams of litera-
ture in empirical industrial organization and quantitative marketing use structural
econometric modeling to estimate the model parameters, give economic-model-
based predictions, and conduct policy counterfactuals.

This book consists of six chapters and an appendix. We discuss the basics of
single-agent static and dynamic discrete choice in chapter 2, which is now a stan-
dard baseline modeling framework in empirical industrial organization, quantita-
tive marketing, and many other adjacent fields. In chapter 3, we move on to study
demand estimation with market data, where we introduce demand-estimation
methods in the product space and characteristics space, respectively. In chapter 4,
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we focus on strategic interactions of firms in the static and dynamic setup.We then
move our focus back to consumers to study the empirical frameworks of consumer
search in chapter 5. Finally, we study the theory and empirics of auctions in chap-
ter 6. For completeness, we also summarize basic features of the most commonly
used baseline estimation frameworks in the appendix.

The book does not cover many interesting relevant topics, such as production
function estimation methods and Bayesian learning models. We refer the read-
ers to relevant survey papers and handbook chapters to learn more about these
topics.10
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