CONTENTS

Preface ix
1 Introduction: Structural Econometric Modeling 1
1.1 Model 1
1.1.1 Scientific Model and Economic Model 1
1.1.2 Predictive Model and Causal Model 2
1.2 Econometrics 4
1.3 Structure 5
1.4 Debate around the Structural Econometric Modeling Approach 7
1.5 Outline of This Book 8
2 Static and Dynamic Discrete Choice 11
2.1 Binary Choice 11
2.1.1 Motivation: Linear Probability Model 11
2.1.2 Binary Logit and Binary Probit Model 12
2.1.3 Marginal Effects 15
2.2 Multiple Choice: Random Utility Maximization Framework 15
2.2.1 Preliminary Results: Type I Extreme Value Distribution and Its Properties 16
2.2.2 The Simple Logit Model 19
2.2.3 Independence of Irrelevant Alternatives and the Nested Logit Model 21
2.2.4 Discussion 23
2.3 Single-Agent Dynamic Discrete Choice 24
2.3.1 Full-Solution Method with Fixed-Point Iteration 25
2.3.2 Estimation with Conditional Choice Probability Inversion 31
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
vi CONTENTS
2.3.3 Nested Pseudo-Likelihood Estimation 34
2.3.4 Extension to Incorporate Unobserved State Variables 39
2.3.5 (Non)-identification of the Discount Factor 43
3 Demand Estimation Using Market-Level Data 47
3.1 Product-Space Approach 48
3.1.1 Linear and Log-Linear Demand Model 48
3.1.2 The Almost Ideal Demand System 48
3.1.3 Further Discussion of the Product-Space Approach 51
3.2 Characteristics-Space Approach I: Static Logit Demand Models 52
3.2.1 Microfoundation: Discrete-Choice Random Utility Maximization 52
3.2.2 Logit Demand Models with Aggregate Market Data 54
3.2.3 Further Discussion of the Static Logit Demand Models 59
3.3 Characteristics-Space Approach II: Extensions of the Static Logit Demand Models 70
3.3.1 Accommodating Zero Market Shares 70
3.3.2 Characteristics-Space Approach without Random Utility Shocks 72
4 Estimation of Discrete-Game Models 79
4.1 Estimation of Discrete-Game Models with Cross-Sectional Data 79
4.1.1 Static Discrete Games with Complete Information 80
4.1.2 Static Discrete Games with Incomplete Information 90
4.1.3 Further Discussion of the Estimation of Game Models with Cross-Sectional Data 94
4.2 Estimation of Dynamic Discrete-Game Models 95
4.2.1 Industry Dynamics in an Oligopolistic Market and the Markov Perfect Equilibrium 95
4.2.2 Estimation Frameworks of Dynamic Discrete Games 98
4.2.3 Further Issues and Discussion of Dynamic Game Models Estimation 107
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
5 Empirical Frameworks of Consumer Search 113
5.1 Utility Specification and Some Preliminary Results 113
5.1.1 Utility Specification in Consumer Search Models 113
5.1.2 Some Preliminary Results on Stochastic Dominance 114
5.2 Classical Search-Theoretic Models: Sequential Search and Simultaneous Search 115
5.2.1 Sequential Search 117
5.2.2 Simultaneous Search 124
5.3 Price Dispersion in the Market Equilibrium and Search Cost Identification with Price Data 130
5.3.1 Critiques of Classical Consumer Search Models as Explanations of the Observed Price Dispersion 130
5.3.2 Equilibrium Price-Dispersion Models and Search-Cost Distribution Identification Using Market-Level Price Data 132
5.4 Empirical Frameworks with Search-Set Data or Their Proxy 145
5.4.1 Empirical Frameworks of Sequential Search 145
5.4.2 Empirical Frameworks of Simultaneous Search 153
5.4.3 Testing the Modes of Search and Further Reading 156
6 Auctions: Theory and Empirics 161
6.1 Bidders' Valuations 162
6.1.1 Private Values versus Interdependent Values 162
6.1.2 Symmetry versus Asymmetry of Bidders 163
6.2 Single-Unit Auctions with Independent Private Values: Theory 163
6.2.1 The Four Standard Auctions and Their Equilibrium Strategies 164
6.2.2 Revenue Equivalence and Allocative Efficiency 168
6.2.3 Extensions 170
6.3 Single-Unit Auctions with Independent Private Values: Empirics and Econometrics 175
6.3.1 Empirics and Econometrics for SPAs 175
6.3.2 Empirics and Econometrics for FPAs 180
6.4 Single-Unit Auctions with Interdependent Values 190
6.4.1 Theory 190
6.4.2 Empirics and Econometrics 200
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
viii CONTENTS
6.5 Multiunit and Multi-Good Auctions 207
6.5.1 The Wilson Model and Its Applications 207
6.5.2 Sponsored Search Auctions 221
6.5.3 Package Bidding and Spectrum Auctions 223
Appendix Review of Basic Estimation Methods 231
A. 1 Maximum Likelihood Estimation 231
A.1.1 Definitions and Preliminary Results 231
A.1.2 Consistency and Asymptotic Efficiency 235
A. 2 Generalized Method of Moments 238
A.2.1 Motivation and Setup 238
A.2.2 Efficiency Bound 239
A.2.3 Tests of Overidentifying Restrictions 244
A.2.4 Quadratic-Form Minimization and Implementation 246
A. 3 Simulation-Based Estimation Methods 247
A.3.1 A Starting Point: The Glivenko-Cantelli Theorem 248
A.3.2 Method of Simulated Moments 248
A.3.3 Maximum Simulated Likelihoods 250
A.3.4 Implementation Algorithms 250
Index 253

1

Introduction: Structural Econometric Modeling

Structural econometric modeling is a set of approaches that rely extensively on economic theory to explicitly specify and test the relationships among distinct economic phenomena. The terminology defines three parts: structure, econometrics, and model. In what follows, we first discuss what each part of the terminology entails, in reverse order. Then we touch upon the debate around the structural econometric modeling approach against its reduced-form counterpart.

1.1 Model

This section discusses what an economic model is. Then we articulate when a model should be considered as capturing only correlations and when a model can be considered as capturing causality as well. We begin our discussion in a broader context of how models are built and tested in science.

1.1.1 Scientific Model and Economic Model

A scientific model consists of abstractions and simplifications of the real world, selecting and incorporating only the relevant aspects of the world that a researcher is analyzing. Scientific models are most commonly formulated using mathematical language. One of the major strengths of utilizing a model in science comes from its logic of establishing the relations among distinct variables: build a model and test the predictions from that model using real-world data. The main goal of building a model is to specify hypothetical relationship among distinct phenomena, summarized in the form of variables, in a testable form. Once a model is built, predictions from that model are subject to tests using statistical methods applied to real-world data. A statistical test of a scientific model is expressed in terms of testing the null
and alternative hypotheses. Very roughly, the probability that the null hypothesis is not true given the data boils down to the p-value. That is, the p-value is gives the probability that a test statistic is obtained just by coincidence, given that (1) the null and alternative hypotheses are set up correctly, and (2) an adequate estimation method is used to compute the p-value. If the real-world data do not support the predictions from a model, the model is rejected. Models that are rejected less often are considered more reliable, and more reliable models are considered to provide more reliable predictions.

Economics stands on the same ground. Economists build economic models and test model predictions using data with econometric methods. An immediate question might arise: what defines a model as an economic model? We suggest that there are two key ingredients of an economic model: (1) optimizing behaviors of (2) the rational agent $(s) .{ }^{1}$ Economic theory begins from preferences, technology, information, and various equilibrium concepts. As a result of the optimizing behavior of one or multiple rational agents, observable/testable equilibrium outcomes are derived in the form of mathematical statements. Those outcomes are tested using real-world data with appropriate econometric methods.

1.1.2 Predictive Model and Causal Model

A model generally makes testable predictions about correlations between distinct variables. Such correlations can sometimes imply causal relationships between the variables of interest, generally under much more stringent conditions and assumptions. In this subsection, we discuss when a model can be interpreted as implying a causal relationship between distinct variables. We begin our discussion with the following two simple examples. Both examples involve linear models between explanatory and explained variables.

Example 1.1.1. Suppose that one has collected data on the height and weight of a randomly selected group in the population. Let y_{i} be the weight, and let x_{i} be the height of each individual. The researcher runs the following regression:

$$
\begin{equation*}
y_{i}=\beta_{1}+\beta_{2} x_{i}+\epsilon_{i} . \tag{1.1.1}
\end{equation*}
$$

The OLS estimate $\hat{\beta}_{2}$ turns out to be positive and highly statistically significant. Does this finding imply a causal relationship between height and weight?

[^0]Example 1.1.2. Suppose that one conducted a repeated Hooke's experiment and recorded the results. Let y_{i} be the length of the spring, and let x_{i} be the randomly assigned weight of the pendulum. Again, the researcher runs the following regression:

$$
\begin{equation*}
y_{i}=\gamma_{1}+\gamma_{2} x_{i}+\epsilon_{i} . \tag{1.1.2}
\end{equation*}
$$

The OLS estimate $\hat{\gamma}_{2}$ is positive and highly statistically significant. Does this finding imply a causal relationship between the weight of the pendulum and the length of the spring?

The answer to the first question is definitely no. ${ }^{2}$ But the answer to the second question is possibly yes. A positive and highly statistically significant $\hat{\gamma}_{2}$ estimate may be taken as evidence of a causal relationship-that is, x_{i} causes y_{i}. The structures of the two thought experiments seem to be quite similar at a glance; both equations (1.1.1) and (1.1.2) represent a linear model between x_{i} and $y_{i},{ }^{3}$ a data set is collected, a simple linear regression is run, and the coefficient estimates have the same sign and are statistically significant. But the implications on the causality can be starkly different. Where does this stark difference come from?

To answer this question, we first remind ourselves what regression reveals and what it does not. The slope coefficient estimate from a simple regression being positive (negative) is equivalent to the in-sample Pearson correlation coefficient between the explanatory variable and the explained variable being positive (negative). ${ }^{4}$ If the data used in the regression are randomly sampled from the target population, high statistical significance can be interpreted as the positive (negative) sample correlation revealed from regression implying the positive (negative) population correlation.

What regression per se does not reveal is causality between the explanatory variable(s) and the explained variable. The experimental variations during the datagenerating process are what make the correlation evidence of causality. Returning our focus to the two illustrative examples, the data on x_{i} of the second experiment are generated by a randomized experiment, where the researcher took full control over x_{i}. By contrast, the data on weight and height are not generated from a randomized experiment. Another possibly exogenous factor, such as good nutrition, is likely to simultaneously affect both height and weight; those exogenous factors are contained in the error term ϵ_{i} and treated as unobservable to the econometrician in the model considered.

[^1]An experimental variation in the explanatory variable(s) is essential for identifying the corresponding explanatory variable as a cause for change in the explained variable. The intuition behind the importance of experimental variation in establishing causality between two variables can be more easily illustrated in the context of omitted-variable bias in linear regression. Suppose that a causal and linear relationship exists between the vector of explanatory variables (x_{i}, v_{i}) and y_{i}, where v_{i} is unobserved to a researcher. Furthermore, assume that the correlation between x_{i} and v_{i} is nonzero, which is usual. If the sign and magnitude of the causal effect of interest are about variable x_{i}, a researcher may be tempted to run the following OLS regression:

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+\epsilon_{i}
$$

and claim $\hat{\beta}$ represents the causal effect of x_{i} on y_{i}. This claim is unarguably false unless the correlation between x_{i} and v_{i} is zero or the correlation between v_{i} and y_{i} is zero. ${ }^{5}$ The problem with virtually any observational data is that infinitely many v_{i} 's are possible that are not observed, and the best way to avoid this situation is to have x_{i} generated by an experiment, and therefore, it has zero correlation with any possible omitted variables.

The linear model in Example 1.1.2, once estimated using experimental data on length and weight as described previously, can be used to predict a causal effect of the explanatory variable(s) on the explained variable. A model that has causal interpretation is often referred to as a causal model. On the contrary, the linear model in Example 1.1.1, after being estimated using observational data on height and weight, cannot be used to predict a causal relation. However, it does not prevent one from using the model to predict a correlation between the explanatory variable(s) and the explained variable. A model that can only be used to predict the behavior of the explained variable using the explanatory variable is often referred to as a predictive model. The usefulness of a causal model is its capability to answer the questions related to counterfactual experiments; with only a predictive model, it is generally not possible to answer questions regarding counterfactuals. Counterfactuals are the ultimate goal of building and calibrating a structural econometric model. We will discuss more about counterfactuals in section 1.3.

1.2 Econometrics

Economic (theory) models often do not readily incorporate real-world data without an added stochasticity that is necessary to estimate and/or test the model. The key characteristic that discerns an econometric model from an economic model is

[^2]whether the model can directly incorporate relevant data. To incorporate relevant data, additional statistical structure should be added to an economic model. As is often the case, the added statistical structure is imposed in the form of added unobservable (both to the econometrician and/or to economic agents) variable(s) to the economic model of interest. The error terms ϵ_{i} in Examples 1.1.1 and 1.1.2, respectively, are examples of added unobservables; ϵ_{i} captures anything other than the assumed linear relationship between x_{i} and y_{i}, and it is impossible to rationalize data without the error term. We note that an economic model and an econometric model are sometimes indistinguishable because in some stochastic economic models, the unobservables (to the economic agents) are inherent in the economic model.

Conceptually, econometric models have three kinds of error terms. The first is due to researcher uncertainty, which is sometimes referred to as the "structural error" or "unobserved heterogeneity." This kind of error term is observable to the economic agent, but not to the econometrician. The structural errors affect the decision of the economic agents in the same way that the observables do. The second is driven by agent uncertainty. It is observable to neither the economic agent nor the econometrician. However, the variable may affect the economic agent's decision, often in terms of ex ante expectations. The third is the error term that is added merely for the rationalization of the data or the tractability of estimation. This type of error term may include measurement errors. Distinguishing between these concepts during the estimation is sometimes difficult or even impossible. However, being clear about these conceptual distinctions in the modeling stage is very important because the distinctions may affect the counterfactuals critically.

1.3 Structure

Conducting a counterfactual policy ${ }^{6}$ experiment is one of the most important goals of building and calibrating/estimating an econometric model. Through counterfactual policy experiments, a researcher can answer questions related to changes in economic outcomes caused by hypothetical changes in a policy that affects economic agents. The key ingredients of an economic model explained in section 1.2, optimizing behaviors of rational agents involved and possible changes in the equilibrium, need to be accounted for during the counterfactual policy experiments; they need to be explicitly formulated in the econometric model to evaluate and quantify the causal effect of a change in policy.

[^3]For a valid counterfactual policy experiment, certain aspects of the corresponding econometric model should be taken as invariant to possible changes in a policy; such invariant aspects are referred to as the structure of the model. Structure in a model is a set of restrictions how variables behave. For example, in the simple causal linear model discussed in Example 1.1.2, the key structure imposed is that y_{i} responds linearly to a change in $x_{i}{ }^{7}$ The model parameters of the econometric model, $\left(\gamma_{1}, \gamma_{2}\right)$, are set free during the stages of calibration/estimation. Once the model parameters $\left(\gamma_{1}, \gamma_{2}\right)$ are estimated, the parameter estimates are also taken as a part of the structure during predictions and counterfactual experiments.

Economic theory is the main source of the structure in a structural econometric model. The structure of many structural econometric models is nonlinear because most underlying economic models specify nonlinear relationships between the variables of interest up to the set of unknown parameters. By estimating a structural econometric model using real-world data, a researcher can obtain the magnitude of the parameters, in addition to their signs, in the underlying economic model. In turn, the magnitude of the effects resulting from a hypothetical change in a policy can be quantified; in contrast, it is often the case that only signs of the effects from a hypothetical policy change can be identified from the reduced-form counterparts of structural econometric models. However, the ability of quantifying the effects associated with a hypothetical policy change comes with its costs: the nonlinearity from explicitly specifying the possible relationships generally makes the structural econometric approach much more difficult to implement than its reduced-form counterpart.

Formulating and estimating a structural econometric model typically follow the following steps: (1) Formulate a well-defined economic model of the environment under consideration; (2) add a sufficient number of stochastic unobservables to the economic model; (3) identify and estimate the model parameters; and (4) verify the adequacy of the resulting structural economic model as a description of the observed data. In step (2), a researcher should decide whether to fully specify the distribution of the unobservables. Related to steps (2) and (3), estimation of structural econometric models often boils down to obtaining the point-identified, finite-dimensional, and policy-invariant model parameters. ${ }^{8}$ A few possibilities

[^4]exist for step (4). For example, the researcher can split the sample, estimate the model using only a subset of the sample, and examine the accuracy of the out-of-sample prediction. Another way of validating the structural models is to match the predictions of structural models with the data from a randomized experiment. We think an appropriate model validation is crucial to the credibility of the results from estimating a structural econometric model and conducting counterfactual policy experiments using the estimated structural model. A simple sensitivity analysis alone may not be enough to persuade the audience that the model is a credible and realistic approximation of the world.

1.4 Debate around the Structural

Econometric Modeling Approach

Broadly, there are two ends of building an econometric model from an economic model: reduced-form and structural econometric models in a narrow sense. ${ }^{9}$ There has been a debate in the literature between the structural and reduced-form approaches in econometric modeling.

Reduced-form econometric models abstract away from rational agents, optimization, and equilibria. They specify the simple relationships between the variables of interest and use relevant estimation methods to back out the parameters. Their econometric specifications are mostly linear, which has a justification that linear functions are a first-order approximation of any smooth functions. The strengths of reduced-form econometric models are their simplicity and relative robustness to the model misspecifications. On the other hand, a structural econometric model begins by explicitly stating the economic model specifications, such as the objective functions, the optimizing variable, the equilibrium concept, the degree of information of the agents and of the econometrician, and the possible source of endogeneity. Then, the model is solved step by step. As a result, the relations between the variables are specified in terms of the moment (in)equalities, likelihoods, or quantile restrictions. Finally, the relevant estimation methods for such specifications are used to back out the model parameters.

By explicitly specifying the economic models, structural econometric modeling enables one to make in-sample and out-of-sample predictions and policy counterfactuals. Specifically, the ability to make out-of-sample causal predictions is one of the greatest strengths of a structural econometric model. For instance,

[^5]a reduced-form model of merger identified using retrospective analysis may be enough to predict a merger impact if the analyst is interested in predicting the effect of counterfactual merger with similar attributes to retrospective ones. However, if one is interested in simulating mergers under a different market environment, a linear extrapolation is likely to be a poor fit. Furthermore, the linear shape and even the direction of the merger impact suggested by the reduced-form model may not be valid anymore under some counterfactual policy experiments, subject to the "Lucas critique" (see Lucas 1976). By explicitly specifying and estimating the policy-invariant nonlinear economic relationships between the market environment and the equilibrium outcomes of a merger, structural econometric modeling allows one to make predictions out-of-sample.

A disadvantage of structural econometric modeling is that the predictions or policy counterfactuals can be sensitive to model misspecifications. The possibility of model misspecification is considered one of the greatest weaknesses in the structural econometric modeling approach, especially because structural econometric models generally take sophisticated nonlinear causal relationships between variables, inherited from the underlying economic theory, as given and fixed a priori. Ideally, every ingredient in a structural econometric model could be tested by running carefully designed, randomized experiments, but it is generally very difficult when the subject of study is the economic behavior of individuals or organizations.

Taking either approach does not exclude the other, and much successful research has used one approach to inform work with the other. That said, we view the reduced-form approach and structural approach to econometric modeling as complements with different strengths, not substitutes, as explained previously.

1.5 Outline of This Book

Modern empirical industrial organization and quantitative marketing rely extensively on the structural econometric modeling approach using observational data. The goal of this textbook is to give an overview of how the various streams of literature in empirical industrial organization and quantitative marketing use structural econometric modeling to estimate the model parameters, give economic-modelbased predictions, and conduct policy counterfactuals.

This book consists of six chapters and an appendix. We discuss the basics of single-agent static and dynamic discrete choice in chapter 2, which is now a standard baseline modeling framework in empirical industrial organization, quantitative marketing, and many other adjacent fields. In chapter 3, we move on to study demand estimation with market data, where we introduce demand-estimation methods in the product space and characteristics space, respectively. In chapter 4,
we focus on strategic interactions of firms in the static and dynamic setup. We then move our focus back to consumers to study the empirical frameworks of consumer search in chapter 5. Finally, we study the theory and empirics of auctions in chapter 6. For completeness, we also summarize basic features of the most commonly used baseline estimation frameworks in the appendix.

The book does not cover many interesting relevant topics, such as production function estimation methods and Bayesian learning models. We refer the readers to relevant survey papers and handbook chapters to learn more about these topics. ${ }^{10}$

Bibliography

Ackerberg, D., C. L. Benkard, S. Berry, \& A. Pakes (2007). Chapter 63, "Econometric tools for analyzing market outcomes." In vol. 6A of Handbook of Econometrics, 4171-4276. Amsterdam: Elsevier.
Angrist, J. D., \& J.-S. Pischke (2010). "The credibility revolution in empirical economics: How better research design is taking the con out of econometrics." Journal of Economic Perspectives, 24, 3-30.
Blundell, R. (2010). "Comments on: Michael P. Keane'Structural vs. atheoretic approaches to econometrics'," Journal of Econometrics, 156, 25-26.
Ching, A. T., T. Erdem, \& M. P. Keane (2013). "Learning models: An assessment of progress, challenges, and new developments," Marketing Science, 32, 913-938.
Ching, A. T., T. Erdem, \& M. P. Keane (2017). Chapter 8, "Empirical models of learning dynamics: A survey of recent developments." In Handbook of Marketing Decision Models, 223-257. Springer.
Deaton, A. (2010). "Instruments, randomization, and learning about development." Journal of Economic Literature, 48, 424-455.
de Loecker, J., \& C. Syverson (2021). Chapter 3, "An industrial organization perspective on productivity." In vol. 4 of Handbook of Industrial Organization, 141-223. Amsterdam: Elsevier.
Heckman, J. J., \& E. Vytlacil (2005). "Structural equations, treatment effects, and econometric policy evaluation." Econometrica, 73, 669-738.
Imbens, G. W. (2010). "Better LATE than nothing: Some comments on Deaton (2009) and Heckman and Urzua (2009)." Journal of Economic Literature, 48, 399-423.
Keane, M. P. (2010). "Structural vs. atheoretic approaches to econometrics." Journal of Econometrics, 156, 3-20.
Keane, M. P., P. E. Todd, \& K. I. Wolpin (2011). Chapter 4, "The structural estimation of behavioral models: Discrete choice dynamic programming methods and applications." In vol. 4a of Handbook of Labor Economics, 331-461. Amsterdam: Elsevier.
Laibson, D., \& J. A. List (2015). "Principles of (behavioral) economics." American Economic Review: Papers and Proceedings, 105, 385-390.
Leamer, E. E. (1983). "Let's take the con out of econometrics." American Economic Review, 73, 31-43.
Low, H., \& C. Meghir (2017). "The use of structural models in econometrics." Journal of Economic Perspectives, 31, 33-58.
Lucas, R. E. (1976). "Econometric policy evaluation: A critique." In Carnegie-Rochester Conference Series on Public Policy, vol. 1, 19-46. Amsterdam: Elsevier.
10. For production function estimation methods, see, e.g., de Loecker and Syverson (2021), and for Bayesian learning models, see, e.g., Ching, Erdem, and Keane (2013, 2017).
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

10 CHAPTER 1

Nevo, A., \& M. D. Whinston (2010). "Taking the dogma out of econometrics: Structural modeling and credible inference." Journal of Economic Perspectives, 24, 69-82.
Reiss, P. C., \& F. A. Wolak (2007). Chapter 64, "Structural econometric modeling: Rationales and examples from industrial organization." In vol. 6A of Handbook of Econometrics, 4277-4415. Amsterdam: Elsevier.
Rust, J. (2010). "Comments on: "Structural vs. atheoretic approaches to econometrics" by Michael Keane." Journal of Econometrics, 156, 21-24.
Rust, J. (2014). "The limits of inference with theory: A review of Wolpin (2013)." Journal of Economic Literature, 52, 820-850.
Wolpin, K. I. (2013). The limits of inference without theory. Cambridge, MA: MIT Press.

INDEX

Affiliated values, 190-191, 216
Aguirregabiria, V., 24, 34, 95, 104-106, 109
Ahn, H., 71
Albuquerque, P., 153
allocative efficiency, 168-170, 173, 214
Almost Ideal Demand System (AIDS), 48-51
Amazon, 151, 205-7
Aradillas-Lopez, A., 71, 94
Arcidiacono, P., 25, 39, 42-43, 108
Arnold, B. C., $175 n 16$
ascending auctions, 164-166, 201n37, 224
Asker, J., 109, 182-185, 187
asymmetry: bidder valuations and, $163,167,170$, 172-173, 188, 201, 204-207, 210, 213, 222;
multiunit auctions and, $210,213,222$;
single-unit auctions and, 163, 167, 170,
172-173, 188, 201, 204-207
asymptotic efficiency, 235-237
asymptotic least-squares estimators, 106-107
Athey, S., 175, 188-189, 201, 216
auctions: allocative efficiency and, 168-170, 173, 214; ascending, 164-166, 201n37, 224; asymmetry and, $163,167,170,172-173,188$, 201, 204-207, 210, 213, 222; Bayesian probability and, 210,216 ; bidder's valuations and, 162-163; collusion and, 173-175, 182-188; common values and, 163, 190-191, 196, 200, 203, 206, 216-217; consumer search models and, 207; counterfactuals and, 175, 187-189, 214-216, 222; Czech, 215-216; descending, 164, 168; discounts and, 203; discrete choice and, 225 ; discriminatory, 208-209; Dutch, 164, 168-169, 196-199; economic theory and, 162; elasticity and, 220; English, 164-166, 168-169, 173n13, 175, 188-189, 196-199, 205-206; equilibrium and, 164-168, 170, 189, 192-202, 206, 209-211, 216-217, 220-223; error and, 184; Euler
equations and, 209-211, 216, 219-220; expected value and, 171, 190-197, 203, 206, 217; four standard, 164-168; heterogeneity and, 180n19, 181-189, 203, 207, 211, 218, 223; homogeneity and, 207; industry and, 161, 218, 223; interdependent values and, 162-163; Japanese, 165n5; knockout, 174-175, 182-184; Korean, 214; literature on, 161-162; maximum likelihood estimation and, 180; multiunit, 208-225; Nash equilibrium and, $165,206,210$, 216; observational equivalence and, 200-201, 216; open vs. sealed, 188-189; optimal reserve price and, 170-171, 178-179; package bidding and, 223-225; payoffs and, 164-168, 171, 183, 194, 197, 208-210, 220; prediction and, 161, 175-176, 182, 188, 190, 204-205, 216-17; preference and, 162,224 ; private information and, 206, 219; private values and, 162-176, 181, 190-196, 200-202, 207, 212, 216-218, 221; probability and, 164n1, 167, 169, 173-174, 183, 185n26, 190, 194, 199, 206-213, 219-225; profit and, $168,173,178,188,203-205,211$, 216-219; randomness and, $164 \mathrm{n} 1,175,185$, 190, 198, 202, 212; regression analysis and, 182, 184; revenue equivalence and, 168-173, 198, 215; risk aversion and, 164n2, 171-173; sealed-bid first-price auction (FPA), 164-173, 180-190, 195-201, 206n40, 217; sealed-bid second-price auction (SPA) and, 164-183, 193-201, 206, 215-217; selection bias and, 186-187; Sherman Antitrust Act and, 173; simultaneous ascending (SAA), 224; single-unit, 163-207; spectrum, 223-225; sponsored search, 221-223; stochasticity and, 177, 201-202, 217-218; symmetry and, 153-157, 175, 193, 195n32, 196, 198, 201; uniform price, 209; unobservables and, 206; use of, 161 ; utility and, $162,164 n 2,166,171-172,191,195,206$;
auctions (continued)
Vickrey, 215, 224; Weibull distribution and, 189 ; welfare and, $182,187-188,215 \mathrm{n} 50,222$; Wilson model and, 207-221
Aumann, R. J., 94

Bajari, P., 72, 83, 95, 101, 107-108, 206, 224
Baye, M. R., 157
Bayesian probability: auctions and, 210, 216; discrete-game models and, $90-94,97,100$, 100n16, 110; dynamic discrete choice and, 41, 43; learning models, 9 ; Nash equilibrium and, $90-94,97 \mathrm{n} 13,100 \mathrm{n} 16,110,210,216$
Bayes' rule, 41
Bellman equation, 24-25, 99-100
Benkard, C. L., 72, 95, 98
Berry, S., 52-58, 61, 64-66, 71-72, 74, 85-90, 95, 153, 251
Bhattacharya, D., 69
bidders: collusion and, 173-175, 182-188; discriminatory auctions and, 208-209; empirically studying behavior of, 204-207; Euler equations for, 209-211, 216, 219-220; minimum bid increment and, 177; multiunit auctions and, 207-225; objective of, 180-181; package bidding and, 223-225; risk aversion and, 171-173; selection bias and, 186-187; single-unit auctions and, 163-207; strategy for, 164-165, 170, 175, 193-197, 201, 209-211, 215-216, 219-222; uniform price auctions and, 209; Weibull distribution and, 189; Wilson model and, 207-221; winner's curse and, 191-192
bidder valuations: asymmetry and, 163, 167, 170, 172-173, 188, 201, 204-207, 210, 213, 222; auctions and, 162-163, 166, 168n9, 175-177, 180, 184-192, 210-217, 224; counterfactuals and, 187-188; deriving bounds of, 177; distribution of, 175-180; English auctions and, 164-166, 168-169, 173n13, 175, 188-189, 196-199, 205-206; interdependent values and, 161-163, 166n6, 190-207, 216-217; nonparametric identification and, 180-182; private values and, 162-176, 181, 190-196, 200-202, 207, 212, 216-218, 221; risk aversion and, 164n2, 171-173; sealed-bid first-price auction (FPA) and, 164-173, 180-190, 195-201, 206n40, 217; sealed-bid second-price
auction (SPA) and, 164-183, 193-201, 206,
215-17; symmetry and, 153-157, 163, 173, 175, 192-193, 195n32, 196, 198, 201; Wilson model and, 210-216
binary choice: choice probability and, 12-13; consumers and, 11-12; dynamic discrete choice and, 25 n 10 ; error and, 12,14 ; heterogeneity and, 15 ; industry and, 11 ; likelihood and, 11 , 13-15, 20-24; logit model and, 12-15, 19-21; marginal effects, 15 ; multiple choice and, 19 ; prediction and, 12,14 ; probability and, $11-14$; probit model, 12-15; shocks and, 12; symmetry and, 13; unobservables and, 12; utility and, 12
Birge, J. R., 221
Borenstein, S., 220-221
Börgers, T., 222
Bresnahan, T. F., 80, 82, 86, 90, 94
Brett, C., 51
Bronnenberg, B. J., 153
Brouwer's fixed-point theorem, 104-105
Brusco, S., 224
Bulow, J., 224
Burdett, K., 134-136
Bushnell, J., 220-221

Campo, S., 181n20
Canadian Treasury, 217
Cantillon, E., 225n59
Cardell, N. S., 23
Carlson, J. A., 142, 145
causal model, 1-4
central limit theorem, 237, 239, 241
Chade, H., 127-128, 130n18, 153-154
characteristics-space approach: aggregate market data and, 54-59; consumer welfare analysis and, 67-70; demand estimation and, 47, 52-75; random coefficients logit demand models, 55-59; random utility maximization (RUM) and, 52-54; static logit demand models and, 52-75; welfare and, 47, 52, 66-70, 75; zero market shares and, 70-72
Chaudhuri, S., 51
Chen, Y., 150
Chernozhukov, V., 71, 85
Ching, A., 43-44
Chintagunta, P., 114, 151, 156-157
Chiong, K. X., 37n26
choice probability: binary choice and, 12-13; conditional, 31-33; demand estimation and, 47, 53-55, 62-70; discrete-game models and, 100n16, 103-109; dynamic discrete choice and, 24-26, 28n16, 29, 31-37, 40, 43-44; empirical frameworks and, 150; extreme-value assumption and, $16,19,21-22,26,29,31$; inversion of, 31-33; multiple choice and, 16, 21-22
choice rule, 123, 150, 154-155
Ciliberto, F., 71, 84-85, 101
commodity space, 75
commonality index, 151-152
common values: affiliated values and, 190-191, 216; auctions and, 163, 190-191, 196, 200, 203, 206, 216-217; interdependent values and, 163 , 190-191, 196, 200, 203, 206, 216-217;
single-unit auctions and, 190-191
compensation variation, 67-69
composite outside goods, 53
ComScore, 157
Conlon, C., 57n14, 58
Connault, B., 42
consistency, 235-237
constant elasticity of substitution (CES), 70-75
consumers: choice and, $5 \mathrm{n} 5,11-12,19,24,60,71$; demand estimation and, 47-48, 52-57, 60-61, 67-75; dynamic discrete choice and, 44; empirical frameworks and, 9 (see also empirical frameworks); utility specification and, 113-115; Walrasian theory and, 68 , 75 ; welfare analysis and, 67-70
consumer search models: auctions and, 207; choice rule and, 123, 150, 154-155; classical, 115-132; cost distribution and, 113-117, 120, 126, 130-145, 147, 150-151; cost identification and, 130-145; critiques of, 130-132; downwardsloping individual demand and, 133-134; equilibrium and, 130-145; ex-ante price distribution and, 117-130, 135, 157; fixed-sample, 124; homogeneity and, 114-125, 130-134, 135n26, 138-142, 145, 157; identification with price data, 130-145; market-level price data and, 132-145; maximum likelihood estimation and, 152-153; no recall, 121-123; observed price distribution and, 130-132; ordering rule and, 123-124, 148-149, 155; perfect recall and, 117-121; price dispersion and, 113, 115, 130-145, 157;
search-set data and, 145-158; sequential, 117-124, 129, 132-134, 138-157; simultaneous, 124-130; stochastic dominance and, 114-115, 120-121, 129-130, 154; stopping rule and, 123, 149-151, 155; utility specification and, 113-15; wage-search problem and, $117,121 \mathrm{n} 6$
consumer welfare analysis, 67-70
counterfactuals: auctions and, 175, 187-189, 214-215, 222; causal model and, 4; demand estimation and, $52,61 \mathrm{n} 18,69,75$; discrete-game models and, $79,85,94,100$; model error and, 8 ; policy experiments and, 5-7
counterparts, 1, 6, 137, 151
Cramer-Rao lower bound, 234-235, 237
Czech auctions, 215-16

Dagsvik, J. K., 69
Daljord, Oystein, 44
Dalton, C. M., 44
Daly, A., 69
Deaton, A., 48, 52
De los Santos, B., 156-157
demand estimation: aggregate market data and, 54-59; Almost Ideal Demand System (AIDS) and, 48-51; CES models and, 70-75; characteristics-space approach and, 47, 52-75; choice probability and, 47, 53-55, 62-70; consumers and, 47-48, 52-57, 60-61, 67-75; counterfactuals and, $52,6 \ln 18,69,75$; discrete choice and, $31,33,47,52-54,57,60 \mathrm{n} 16,65-70$, $74 \mathrm{n} 29,75$; elasticity and, 47-48, 51, 61-62, 66, $67 \mathrm{n} 25,70-75$; empirical frameworks and, 153; error and, 48, 52-54, 57, 62, 64, 70; extreme value distribution and, 53; fixed-point and, 58-59; generalized method of moments and, $55,58,63,71-72$; heterogeneity and, 47, 49, 54; homogeneity and, 49, 54-62, 65-74; identification of random coefficients and, 62-65; industry and, 47, 60, 70; likelihood and, 54 n 8 ; linear demand model and, 48; logit model and, 54-64, 67nn24-25, 68, 71; log-linear demand model and, 48; market-level data and, 47-75; Marshallian, 47, 51-52, 65-67, 72-75; maximum likelihood estimation and, 54 n 8 ; numeraire and, 53, 65-67, 73, 75; observational equivalence and, 67 n 24 ; optimization and, 47 , 58-59; prediction and, 48, 54-55, 61, 69n28,
demand estimation (continued)
72-74; preference and, 47, 52, 65, 69, 72; price endogeneity and, 59-63; probability and, 47, 53-57, 62-72; product-space approach and, 48-55; randomness and, 55-65, 70-72; shocks and, 53-54, 56, 60, 65, 71-74; static logit demand models and, 52-75; symmetry and, 51 ; unobservables and, $54,58,71,73$; utility and, 48, 50, 52-56, 59-60, 61n19, 62n21, 63-75; utility and, 72-75, 98-99, 103, 108, 113-15; Walrasian, 48, 68, 75,115 ; welfare and, 47, 52, 66-70, 75; zero market shares and, 70-72
de Palma, A., 24, 69, 75n30
descending auctions, 164, 168
Diamond, P. A., 131
discounts: auctions and, 203; discrete-game models and, 99, 109; dynamic discrete choice and, 25, 33, 43-44; empirical frameworks and, 124n8; (non)-identification of, 43-44
discrete choice: auctions and, 225; binary, 11-15; consumer welfare analysis and, 67-70; demand estimation and, $31,33,47,52-54,57,60 \mathrm{n} 16$, 65-70, 74n29, 75; dynamic, 24-44 (see also dynamic discrete choice); early literature on, 65; multiple, 15-24; random utility maximization (RUM) and, 52-55
discrete-game models: asymptotic least-squares estimators and, 106-7; Bayesian probability and, $90-94,97,100 \mathrm{n} 16,110$; Bellman equation and, 99-100; choice probability and, 100n16, 103-109; complete information and, 80-90; counterfactuals and, $79,85,94,100$; crosssectional data and, 79-95; discounts and, 99, 109; economic models and, 94; empirical frameworks of, 98-107; equilibrium and, 79-106, 109-110; error and, 86-93; estimation of, $79-110$; expected value and, $98 \mathrm{n} 15,100$; extreme value distribution and, $91,98,102 \mathrm{n} 19$; first-stage value function estimation and, 102-103; fixed-point and, 89-93, 103-7; flexible information and, 93-94; generalized method of moments and, 88, 93, 107; heterogeneity and, 87, 95, 107-109; homogeneity and, 86,95 ; incomplete information and, $90-94$; industry and, 79 , 95-98; likelihood and, 82-88, 92-93, 105-106; logistic distribution and, 91; Markov methods
and, 95-100, 103-105, 109; maximum likelihood estimation and, 87, 92-93, 105-106; moment inequalities and, 83, 85-86, 90; Nash equilibrium and, 79-81, 86, 90-94, 97-100, 103-105, 109-110; nested pseudo-likelihood estimation and, 105-106; observational equivalence and, 98 n 15 ; oligopolistic market and, 95-98; optimization and, $86,92,106$; payoffs and, 79-80, 83, 91, 93-94; prediction and, $79-82,85,90,94$; preference and, 98 ; private information and, $90-95,97,107$; probability and, 82-86, 90-109; profit and, $80-81,85-90,96,108$; randomness and, 82 , 102; second-stage parameter estimation and, 101-102; shocks and, 93-94, 97, 107; simultaneous entry and, 80-86, 89-92; state variables and, 99,108 ; static, $80-90$; stochasticity and, 96; two-stage forwardsimulation estimation and, 101-103; underidentification and, 108-109; unobservables and, 97, 99, 100n16, 107
discriminatory auctions, 208-209
Doraszelski, U., 97, 100, 109, 225
Dubé, J.-P., 44, 52, 59, 71-72
Dubin, J. A., 65
duopolies, 80, 220
Dutch auctions: nonequivalence and, 196; private values and, 164, 168-169, 196-200; sealedbid first-price auction (FPA) and, 199-200; sealed-bid second-price auction (SPA) and, 199-200
dynamic discrete choice: aggregation of, 75; Bayesian probability and, 41, 43; Bellman equation and, 24-25, 27-31; binary choice and, 25 n 10 ; choice probability and, $24-26,28 \mathrm{n} 16$, 29, 31-37, 40, 43-44; consumers and, 44; demand estimation and, 31,33 ; discounts and, $25,33,43-44$; duality of, 34-39; economic models and, 43; equilibrium and, 29-31, 38, $52,59,67,72$; error and, $25 \mathrm{n} 11,31,33-34$; estimation of, 29-31, 95-110; expected value and, $26,27 \mathrm{n} 13,29,32,34$; extreme value distribution and, 26-35; fixed-point, 24-31, 34-35, 39; full-solution method, 25-31, 34, 38-39; heterogeneity and, 39, 42-43; industry dynamics and, 95-98; integrability of, 75; likelihood and, 24-26, 29-41; Markov methods and, 27, 39, 42-43; maximum likelihood
estimation and, 25, 29-33; Nadaraya-Watson-type kernel-smoothing estimator and, 32n22; nested pseudo-likelihood estimation and, 24, 34-39; observational equivalence and, 44; oligopolistic market and, 95-98; optimization and, 30-31, 43; payoffs and, 24; preference and, 26; probability and, 24-44; sequential entry and, 86-89, 110; shocks and, 25-26; single-agent, 24-44; state variables and, 24-27, 39-43; stochasticity and, 25, 27; unobservables and, 39,42 ; utility and, 25-26, 27n13, 39-40, 43-44, 93-94, 97, 107
eBay, 206-7
economic models: auctions and, 162; debate around, 7-8; discrete-game models and, 94; dynamic discrete choice and, 43; econometrics and, 4-5; optimization and, $2,5,7$; preference and, 2; scientific model and, 1-2; structure and, 1-8
Edelman, B., 221
Egesdal, M., 106
elasticity: auctions and, 220; CES models and, 70-75; cross-price, 47-48, 51, 61-62, 66, $67 \mathrm{n} 25,74$; demand estimation and, 47-48, 51, 61-62, 66, 67n25, 70-75; empirical frameworks and, 133, 153; generalized method of moments and, 238; Hicksian, 47, 51, 69, 74-75; income, 51, 74-75; Marshallian, 51, 74; own-price, 47-48, 61-62, 66, 74, 133; product-space approach and, 51-52
Ellickson, P. B., 89, 95
empirical frameworks: choice probability and, 150; consumer search models and, 114-134, 135n26, 138-142, 145, 157; demand estimation and, 153; discounts and, 124n8; discrete-game models and, 98-107; elasticity and, 133, 153; equilibrium and, 130-145, 157; ex-ante price distributions and, 117-124, 135, 157; expected value and, 122; extreme value distribution and, 155; generalized method of moments and, 138; heterogeneity and, 121-124, 127-148, 154n44, 157; homogeneity and, 114-125, 130-134, $135 n 26,138-142,145,157$; identification with price data, $130-145$; industry and, $8,11,47,79$, 161; likelihood and, 138-142, 145, 148-155; market-level price data and, 132-145; maximum likelihood estimation and, 142, 151; Nash
equilibrium and, 138; optimization and, 114; prediction and, 113, 115, 120, 157; preference and, 151 ; price dispersion and, 113,115 , 130-145, 157; probability and, 129, 142-144, 148-151, 155; profit and, 131-134, 138-139; randomness and, $117,147 \mathrm{n} 40$; search-set data and, 145-158; sequential search and, 117-124, 129, 132-134, 138-157; shocks and, 114; simultaneous search, 124-130, 153-156; stochastic dominance and, 114-115, 120-121, 129-130, 148, 154; unobservables and, 156; utility and, 113-115, 126, 127n13, 142, 145-153
Engelbrecht-Wiggans, R., 224
English auctions: bidder valuations and, 164-169, 173n13, 175, 188-189, 196-199, 205-206; sealed-bid second-price auction (SPA) and, 175, 188-189, 198-199
equilibrium: asymptotic least-squares estimators and, 106-107; auctions and, 164-168, 170, 189, 192-202, 206, 209-211, 216-217, 220-223; consumer search models and, 130-145; discrete-game models and, 79-106, 109-110; dynamic discrete choice and, 29-31, 38,52, $59,67,72$; economic theory and, $2,5,7-8$; empirical frameworks and, 130-145, 157; experience-based, 109-110; fixed-point, 91 , 103-107; Lucas critique and, 8 ; market-level price data and, 132-145; Markov, 95-100, 103-105, 109; mathematical programming with equilibrium constraints (MPEC), 29-31, 38, 59, 72, 92; monotone pure-strategy equilibrium (MPSE), 209-210; Nash, 79-81, 86, 90-94, 97-100, 103-105, 109-110, 138, 165, 206, 210, 216; price-dispersion, 130-145; private information and, 90-95, 97, 107; pure-strategy, 83, 87, 209-210, 221-222; rational agents and, 5, 7; refinement of, 79, 86, 90, 92, 94; sealed-bid first-price auction (FPA) and, 195-198; sealed-bid second-price auction (SPA) and, 193-198; selection rules and, $79,83,85,90$, $92,94,98,132,222$; simultaneous entry and, 80-86, 89-90; sponsored search auctions and, 221-223; supply-demand, 52; supply function (SFE), 220; supply side, 145; testable outcomes and, 2
equivalent variation, 67-69
Ericson, R., 95, 97-98
error: auctions and, 184; binary choice and, 12, 14; counterfactuals and, 8; demand estimation and, 48, 52-54, 57, 62, 64, 70; discrete-game models and, 86-93; dynamic discrete choice and, 25n11, 31, 33-34; Gaussian, 23; generalized method of moments and, 238; logit assumption and, 91 ; multiple choice and, 16,23 ; regression analysis and, 3 ; simulation-based estimation and, 247; structural econometric modeling and, 3-5
Euler equations, 209-211, 216, 219-220
Euler-Lagrange condition, 219
Euler-Mascheroni constant, 16-17, 69n27
ex-ante price distributions: consumer search models and, 117-124, 135, 157; sequential search and, 117-124
expected value: auctions and, 171, 190-197, 203, 206, 217; discrete-game models and, 98 n 15 , 100; dynamic discrete choice and, $26,27 \mathrm{n} 13$, $29,32,34$; empirical frameworks and, 122
experience-based equilibrium, 109-110
extreme value distribution: demand estimation and, 53; discrete-game models and, 91, 98, 102 n 19 ; dynamic discrete choice and, 26-35; empirical frameworks and, 155 ; multiple choice and, 16-23; random utility maximization (RUM) framework and, 16-19

Fershtman, C., 109
fixed-point: demand estimation and, 58-59; discrete-game models and, 89-93, 103-7; dynamic discrete choice and, 24-31, 34-39;
full-solution method and, 25-31; nested, 29-31, 58, 72
fixed-sample search, 124
Fox, J. T., 224
frequency estimators, $32 \mathrm{n} 22,85,93,101 \mathrm{n} 17$
Freyberger, J., 57
Friedman, M., 215
full-solution method, 25-31, 34, 38-39

Gale, D., 224
Galichon, A., 37 n 26
Gandhi, A., 52, 57, 64, 70
Gaussians, 13, 23, 153
Gauss-Markov theorem, 244
generalized method of moments: asymptotic variance and, 242-243; central limit theorem and, 239,241 ; consistency of derivative matrix
and, 240; demand estimation and, 55, 58, 63, 71-72; discrete-game models and, $88,93,107$; efficiency bound, 239-244; elasticity and, 238; empirical frameworks and, 138; error and, 238; Gauss-Markov theorem and, 244; identification of random coefficients and, 63; Markov methods and, 244; maximum likelihood estimation and, 233; mean value approximation and, 240; method of simulated, 248-249; moment condition and, 238; optimization and, 238; overidentifying restrictions and, 244-246; quadratic form minimization and, 246-247; randomness and, 239n6; setup of, 238-239; simulation-based estimation and, 247-249; stochasticity and, 238; two-stage, 93; utility and, 250
generalized second-price auction (GSPA), 221-22
Glivenko-Cantelli theorem, 248
Goldberg, P. K., 51, 62
Goolsbee, A., 65
Gortmaker, J., 57n14, 58
Gowrisankaran, G., 44
Green, R. J., 220
Grieco, P. L. E., 93-94
Guerre, E., 180-184, 187-188, 202

Haile, P. A., 57n13, 65, 74, 175-179, 201-203, 216
Halton sequences, 57 n 14
Hausman, J. G., 51, 60-61, 69
Heckman, J. J., 7n9
Hendricks, K., 161, 203-204
Herriges, J. A., 69
heterogeneity: auctions and, $180 \mathrm{n} 19,181-189$, 203, 207, 211, 218, 223; binary choice and, 15 ; demand estimation and, 47, 49, 54; discrete-game models and, 87, 95, 107-109; dynamic discrete choice and, 39, 42-43; empirical frameworks and, 121-124, 127-148, $154 n 44,157$; ex-ante price distribution and, 123-130; marginal cost of firms and, 134-148; maximum likelihood estimation and, 238; multi-good auctions and, 207, 210; sealed-bid first-price auction (FPA) and, 182-188; sealed-bid second-price auction (SPA) and, 182-183; sequential search and, 142-145; simultaneous search and, 127-130; unobserved, 5, 39, 42-43, 107-108, 182-189, 203, 211
Hickman, B. R., $181 \ln 20$

Hicksian demand system, 47, 51, 69, 74, 75 homogeneity: auctions and, 207; consumer search models and, 114-125, 130-134, 135n26, 138-142, 145, 157; demand estimation and, 49, 54-62, 65-74; discrete-game models and, 86, 95; ex-ante price distribution and, 117-123; sequential search and, 117-124; simultaneous search and, 124-127, 138-142
Hong, H., 71, 83, 85, 134-139, 142, 161, 176, 182, 207
Honka, E., 114, 151, 153-158
Hooke's experiment, 3
Hortaçsu, A., 71, 142, 143n7, 145, 157-158, 161, 206, 210, 214-220
Hotz, V. J., 11, 24, 31-33, 38-39, 101-102
Hotz-Miller inversion, 102
Houde, J.-F., 64
Hsieh, Y.-W., 222
Hu, A., 172
$\mathrm{Hu}, \mathrm{Y} ., 42$
Hubbard, T. P., 181n20
Hurwicz, L., 75

Igami, M., 107-108, 110
Imai, S., 43
Imbens, G. W., 71
incompleteness, 82-86, 94
independence of irrelevant alternatives (IIA), 21-23, 61-62, 65, 74
individual choice probability: demand estimation and, $53-55,64,66$; multiple choice and, 19-22
industry: auctions and, 161, 218, 223; binary choice and, 11 ; demand estimation and, 47,60 , 70; discrete-game models and, 79, 95-98; empirical frameworks and, $8,11,47,79,161$; entrant firms' value function and, 96-97; Markov perfect equilibrium and, $79,95-98$; oligopolistic market and, 79, 95-98
interdependent values: affiliated, 190-191, 216; affiliated values and, 190-191, 216; bidder valuations and, 161-163, 166n6, 190-207, 216-217; challenges in empirically testing for, 200; common values and, 163, 190-191, 196, 200, 203, 206, 216-217; counterfactuals and, 214-216; discriminatory auctions and, 208-209; Euler equations and, 209-211, 216, 219-220; observational equivalence and,

200-201; package bidding and, 223-225;
single-unit auctions and, 190-207; spectrum auctions and, 223-225; symmetry and, 192-193; theory and, 190-200; uniform price auctions and, 209; Wilson model and, 207-221; winner's curse and, 191-192
Iskhakov, F., 31
Ito, K., 221

Jain, N., 43
Japanese auctions, 165n5
Jha, A., 221
Jia, P., 51, 89-90
Joo, J., 52, 71
Judd, K. L., 31, 134-136

Kahn, C. M., 224
Kang, B.-S., 214
Karlström, A., 69
Kasahara, H., 42, 106, 108
Kastl, J., 214-215, 217
kernels, 32n22, 72-73, 181, 213
Kim, J. B., 145-146, 151, 153
Kim, S. W., 225 n59
Kling, C. L., 69
Kmart, 89-90
knockout auctions, 174-175, 182-184
Kong, X., 44
Kooreman, P., 83
Korean auctions, 214
Kotlarski's theorem, 185-186
Krasnokutskaya, E., 184, 186, 189
Krishna, V., 161, 164n3, 172, 173n13, 174n14, 198n35, 207
Kullback-Leibler information criterion, 238

Laffont, J.-J., 201
Lahaie, S., 221
Lai, Z., 106
Laplace correction factor, 70
latent utility model, 12, 19, 250
Lehmann, E. L., 213n46
Leonard, G., 51, 60-61
Levin, J., 188, 224
Levinsohn, J., 52, 56, 88, 251
Lewis, G., 109
Li, Q., 85, 181n20
LiCalzi, M., 210
likelihood: auctions and, 180, 189; binary choice and, $11,13-15,20-24$; constrained full, 106; demand estimation and, 54n8; discrete-game models and, 82-88, 92-93, 105-106; dynamic discrete choice and, 24-26, 29-41; empirical frameworks and, 138-142, 145, 148-155; formulating, 40-41; ideal-case, 148-151; incompleteness and, 82-86; log, 14, 21, 29, 189, 232-233; logit, 20-21, 24; maximum likelihood estimation and, 231-237 (see also maximum likelihood estimation); maximum simulated, 250; pseudo, 24-29, 105-106; quantile restrictions and, 7; simulation-based estimation and, 247-50
linear demand model, 48
linear probability model, 11-12, 15
Linton, O. B., 57
Liu, N., 94
logistic distribution: binary choice and, 13-14; discrete-game models and, 91 ; multiple choice and, 16-22
logit model: aggregate market data and, 54-59; binary choice and, 13-14; demand estimation and, 54-62, $67 \mathrm{n} 25,68,71$; error assumption and, 91; homogeneous, 54-55; multiple choice and, 15, 19-21, 23-24; randomness and, 55-65, 70-72; simple, 19-21; static, 52-75
log-linear demand model, 48
Lopomo, G., 224
Lu, Z., 52, 57, 70
Lucas, R. E., 8, 27n15
Luce, R. D., 22
Luo, Y., 109

Magesan, A., 109
Magnac, T., 43-44
Magnolfi, L., 94
Manski, C. F., 70-71
Mansur, E. T., 221
market share equation, $55-58,63,72,74$
Markov methods: chains, 39, 42-43; discrete-game models and, 95-100, 103-105, 109; dynamic discrete choice and, 27, 39, 42-43; equilibrium, 95-100, 103-105, 109; Gauss-Markov theorem, 244; generalized method of moments and, 244; Nash equilibrium and, 95-98, 100, 103-105, 109; perfect industry dynamics, 95 ; probability and, 27, 42n29, 95-100, 103, 109;
state-transition and, 27, 95, 99; transition matrix, 42n29
Marmer, V., 181n20
Marshallian demand system: CES models and, 72-75; demand estimation and, 47, 51-52, 65-67, 72-75; Hicksian price and, 74-75
Maskin, E., 172
mathematical programming with equilibrium constraints (MPEC), 29-31, 38, 59, 72, 92
Matthews, S. A., 172
maximum likelihood estimation: asymptotic efficiency and, 235-238; auctions and, 180; binary choice and, 14-15; consistency and, 235-38; constrained full, 106; consumer search models and, 152-153; Cramer-Rao lower bound and, 234-235, 237; definitions for, 231-234; demand estimation and, 54 ; derivation of, 11 ; discrete-game models and, 87, 92-93, 105-106; dynamic discrete choice and, 25, 29-33; empirical frameworks and, 142, 151; generalized method of moments and, 233; heterogeneity and, 238; Kullback-Leibler information criterion, 238; logit model and, 59-61; log likelihood and, 232-234; multiple choice and, 21, 23; probability and, 235; sealed-bid firstprice auction (FPA) and, 180; simulationbased estimation and, 247, 250
maximum simulated likelihoods, 250
McAdams, D., 209-210, 214-216
McAfee, R. P., 142, 145
McCall, J. J., 117, 121n6
McFadden, D., 15, 23, 37n26, 65, 67, 69, 93n12, 248
Mercadal, I., 221
method of simulated moments, 248-249
Milgrom, P., 224-25
Miller, R. A., 11, 24-25, 31-33, 38-39, 43, 102, 108
minimum bid increment, 177
Mira, P., 24, 34, 95, 104-106
Misra, S., 89, 95
modules, 22-23
moment inequalities, 83, 85-86, 90
moment matching, 33, 151-153
monopolies, 80
monotone pure-strategy equilibrium (MPSE), 209-210

Moraga-González, J. L., 153
Morgan, J., 157
Muellbauer, J., 48, 49n3, 52
multi-good auctions, 207, 210
multinomial logit model, 24
multiple choice: binary choice and, 19 ; choice probability and, 16, 21-22; consumers and, 19, 24 ; error and, 16,23 ; extreme value distribution and, 16-23; logistic distribution and, 16-22; logit model and, 15, 19-24; maximum likelihood estimation and, 21, 23; nested model and, 21-24; preference and, 21-23; probability and, $15-24$; random utility maximization
(RUM) and, 15-24; shocks and, 16, 19, 21-23; stochasticity and, 24; unobservables and, 21; utility and, 16, 19, 21-23
multiunit auctions: bidders and, 207-25; counterfactuals and, 214-216; discriminatory auctions and, 208-209; Euler equations and, 209-211, 216, 219-220; homogeneity and, 207; package bidding and, 223-225; sellers and, 207-225; spectrum auctions and, 223-225; sponsored search, 221-223; uniform price auctions and, 209; Wilson model and, 207-221
Myerson, R. B., $88 \mathrm{n} 8,170$

Nadaraya-Watson-type kernel-smoothing estimator, 32 n 22
Nash equilibrium: auctions and, $165,206,210$,
216; Bayesian, $90-94,97 \mathrm{n} 13,100 \mathrm{n} 16,110,210$,
216; discrete-game models and, 79-81, 86, 90-94, 97-100, 103-105, 109-110; empirical frameworks and, 138; Markov, 95-98, 100, 103-105, 109; pure-strategy, 79-80, 94;
Stackelberg, 138; symmetric, 206
nested fixed point (NFP), 29-31, 58, 72
nested logit model, 15, 21-24, 29, 62
nested pseudo-likelihood estimation:
discrete-game models and, 105-106; dynamic discrete choice and, 24, 34-39
Nevo, A., 56
Newbery, D. M., 220
Newey, W. K., 69, 93n12
Newtonian methods, 59
Newton-Kantorovich iterations, 31
Nocke, V., 75
null hypothesis, 1-2, 217
numeraire, 53, 65-67, 73, 75
observational equivalence: auctions and, 200-101, 216; demand estimation and, 67n24; discrete-game models and, 98 n 15 ; dynamic discrete choice and, 44
Ockenfels, A., 205-6
Olivares, M., 225 n 59
optimization: auctions and, 161; demand estimation and, 47, 58-59; discrete-game models and, $86,92,106$; dynamic discrete choice and, $30-31,43$; economic theory and, 2 , 5,7 ; empirical frameworks and, 114; generalized method of moments and, 238
ordering rule, 123-124, 148-149, 155
ordinary least squares (OLS), 2-4, 12
Osborne, M., 44
Ostrovsky, M., 221
Paarsch, H. J., 161, 176, 182, 207, 216
Pakes, A., 52, 56-57, 84, 88, 95-98, 107, 109, 248-249, 251
Pavan, A., 210
payoffs: auctions and, 164-168, 171, 183, 194, 197, 208-110, 220; discrete-game models and, 79-80, 83, 91, 93-94; dynamic discrete choice and, 24
Perrigne, I., 161, 180
Pesendorfer, M., 93, 95, 100, 104, 106, 108, 225n59
Petrin, A., 56, 65
Pinkse, J., 51, 203
Pollard, D., 248-249
Porter, R. H., 161, 182n22, 203-204
Powell, J. L., 12n2, 71
preauction knockout (PAKT), 174-175
prediction: auctions and, 161, 175-176, 182, 188, 190, 204-205, 216-217; binary choice and, 12, 14; demand estimation and, 48, 54-55, 61, 69n28, 72-74; discrete-game models and, 79-82, 85, 90, 94; empirical frameworks and, $113,115,120,157$; randomness and, $2-3$; structural econometric modeling and, 4-8; Wilson model and, 216-21
preference: additive separability of, 26,98 ; auctions and, 162, 224; demand estimation and, $47,52,65,69,72$; discrete-game models and, 98 ; dynamic discrete choice and, 26 ; economic theory and, 2; empirical frameworks and, 151; multiple choice and, 21-23
price dispersion: consumer search models and, 113, 115, 130-145, 157; downward-sloping individual demand and, 133-134; equilibrium and, 130-145; market-level price data and, 132-145; observed, 113, 115, 130-139; reservation, 118-124, 129, 132-140, 143, $165 \mathrm{n} 5,172$; sequential search and, 132-134, 138-157; simultaneous search and, 124-131, 134-138, 153-157
price endogeneity, 59-63
price-independent generalized linear (PIGL) form, 49
price-independent generalized log-linear (PIGLOG) form, 49-51
private information: auctions and, 206, 219; discrete-game models and, $90-95$, 97, 107
private values: bidder valuations and, 162-176, 181, 190-196, 200-202, 207, 212, 216-218, 221; independent, 163-190; sealed-bid first-price auction (FPA) and, 217; sealed-bid second-price auction (SPA) and, 217; single-unit auctions and, 163-190; testing assumption of, 216-218; Wilson model and, 207, 212, 216-218, 221
probability: auctions and, 164n1, 167, 169, 173-174, 183, 185n26, 190, 194, 199, 206-213, 219-225; Bayesian, 9 (see also Bayesian probability); binary choice and, 11-14; choice inversion, 31-33 (see also choice probability); demand estimation and, 47, 53-57, 62-72; discrete-game models and, 82-86, 90-109; dynamic discrete choice and, 24-44; empirical frameworks and, 129, 142-144, 148-151, 155; extreme-value assumption and, $16,19,21-22$, 26, 29, 31; individual choice, 19-22, 53-55, 64, 66; linear, 11-12, 15; Markov, 27, 42n29, 95-100, 103, 109; maximum likelihood estimation and, 235 ; multiple choice and, 15-24; null hypothesis and, 2; state-transition, $25-29,35-37,40,43,95-101,104,107,109$; structural econometric modeling and, 2
probability density function: auctions and, 167, 190, 194; binary choice and, 13, 14n4; multiple choice and, 16-19
Procrustes, 3n2
product-space approach: Almost Ideal Demand System (AIDS) and, 48-51; demand estimation
and, 48-55; discussion of, 51-52; elasticity and, 51-52; linear demand model and, 48; log-linear demand model and, 48; Marshallian, 51, 74; Walrasian demand systems and, 48
profit: auctions and, $168,173,178,188,203-205$, 211, 216-219; discrete-game models and, 80-81, 85-90, 96, 108; empirical frameworks and, 131-134, 138-139
Puller, S. L., 214, 216, 218, 220
pure-strategy equilibrium: auctions and, 209-210, 221-222; discrete-game models and, 83,87 ; Nash, 79-80, 94

Racine, J. S., 85, 181n20
random coefficients logit demand models, 55-59
randomness: auctions and, $164 \mathrm{n} 1,175,185,190$, 198, 202, 212; demand estimation and, 72-75; discrete-game models and, 82 , 102; empirical frameworks and, 117, 147n40; generalized method of moments and, 239n6; logit model of demand and, 55-65, 70-72; multiple choice and, 15-24; prediction and, 2-3; simulationbased estimation and, 248-251; structural econometric modeling and, 2-3, 7-8; utility shocks and, 72-75
random utility maximization (RUM): characteristics-space approach and, 52-54; discrete choice and, 52-55; extreme value distribution and, 16-19; multiple choice and, 15-24; static logit demand models and, 52-54
Ratchford, B. T., 157
regression analysis: auctions and, 182, 184; causality and, 2-4; error and, 3; Hooke's experiment and, 3 ; ordinary least squares (OLS), 2-4, 12; prediction and, 2-4
Reguant, M., 221
Reinganum, J. F., 133-34
Reiss, P. C., 72, 80, 82, 86, 90, 94-96
Reny, P. J., 209
revenue equivalence, 168-173, 198, 215
Riley, J., 172
risk aversion, 164n2, 171-173
Rob, R., 138-139, 142
Roncoroni, C., 94
Rosen, H. S., 65, 67
Roth, A. E., 205-206
Rothschild, M., 131

Roy's identity, 65
Rust, J., 11, 24-25, 26n13, 28n16, 30, 34, 38-39
Ryan, N., 221

Sándor, Z., 153
Saravia, C., 221
Satterthwaite, M., 97, 100
Schmidt-Dengler, P., 93, 95, 100, 104-106, 108
Scholten, P., 157
Schutz, N., 75
Schwarz, M., 221
scientific model, 1-2
sealed-bid first-price auction (FPA): bidder valuation and, 164-173, 180-190, 195-201, 206n40, 217; collusion and, 182-188; Dutch auctions and, 199-200; econometrics of, 180-190; equilibrium and, 195-198; heterogeneity and, 182-188; Kotlarski's theorem and, 185-186; nonequivalence and, 196; nonparametric identification and, 180-182; observational equivalence and, 200-201; private values and, 217; single-unit auctions and, 180-190; Wilson model and, 217
sealed-bid second-price auction (SPA): bidder valuations and, 164-183, 193-201, 206, 215-217; collusion and, 173-175; Dutch auctions and, 199-200; econometrics for, 175-180; English auctions and, 175-180, 198-199; equilibrium and, 193-198; estimation of model primitives and, 179-180; heterogeneity and, 182-183; nonequivalence and, 196; observational equivalence and, 200-201; private values and, 217; single-unit auctions and, 175-180; Vickrey auctions and, 215; weaker behavioral assumptions and, 176-180; Wilson model and, 217
Segal, I., 225
Seim, K., 91
Seira, E., 188
selection bias, 186-187
sellers: expected revenue and, 168-171, 174; multiunit auctions and, 207-225; optimal reserve price and, 170-171, 178-179; profit bounds for, 178-179; revenue maximization for, 161, 168, 171; single-unit auctions and, 163-207; valuation of, 164-165, 170-171, 174, 208; Wilson model and, 207-221
sequential entry, 86-89, 110
sequential search: classic, 115-124; consumer search models and, 129, 132-134, 138-157; heterogeneity and, 142-145; homogeneity and, 117-124; price dispersion and, 132-134, 138-157; vs. simultaneous search, 156-157; Weitzman on, 129
Shapley, L. S., 224
Sherman Antitrust Act, 173
Shi, X., 52, 57, 70
Shimotsu, K., 42, 106, 108
Shneyerov, A., 181n20
shocks: binary choice and, 12; demand estimation and, 53-54, 56, 60, 65, 71-74; discrete-game models and, 93-94, 97, 107; dynamic discrete choice and, 25-26; empirical frameworks and, 114; multiple choice and, $16,19,21-23$; static logit demand models and, 53-54, 56, 60, 65, 71-74; utility, 16, 19, 25-26, 53-54, 72-75, 114
Shum, M., 37n26, 42, 134-139, 142, 222
simple logit model: demand estimation and, 64, 67n24; multiple choice and, 19-24
simulation-based estimation: empirical distribution function and, 248; error and, 247; generalized method of moments and, 247-249;
Glivenko-Cantelli theorem and, 248;
implementation algorithms and, 250-251;
likelihood and, 247-250; maximum simulated
likelihoods and, 250; method of simulated moments and, 248-249; randomness and, 248-251
simultaneous ascending bid auction (SAA), 224
simultaneous entry, 80-86, 89-92
simultaneous search: classical, 115-116, 124-130; empirical frameworks and, 153-156;
heterogeneity and, 127-130; homogeneity and, 124-127, 138-142; price dispersion and, 124-131, 134-138, 153-157; vs. sequential search, 156-157
single-unit auctions: bidders and, 163-207; ex post outcome variation and, 203-204; interdependent values and, 190-207; observational equivalence and, 200-201; private values and, 163-190; sealed-bid first-price auction (FPA) and, 180-190; sealed-bid second-price auction (SPA) and, 175-180; sellers and, 163-207; theory and, 163-175; winner's curse and, 191-192
Slade, M. E., 51

Slutsky equation, 75
Slutsky symmetry, 51
Small, K. A., 65, 67
Smith, L., 127-128, 130n18, 153-154
spectrum auctions, 223-225
sponsored search auctions, 221-223
state variables: discrete-game models and, 99, 108;
dynamic discrete choice and, 24-27, 39-43; unobserved, 39-43
static logit demand models: alternative-specific utility and, 65-67; characteristics-space approach and, 52-75; consumer welfare analysis and, 67-70; demand estimation and, 52-70; discussion of, 59-70; extensions of, 70-75; identification of random coefficients and, 62-65; price endogeneity and, 59-63; random coefficients logit demand models, 55-59; random utility maximization (RUM) and, 52-54; shocks and, 53-54, 56, 60, 65, 71-74; zero market shares and, 70-72
Stigler, G. J., 115, 124, 127, 130
stochastic dominance: auctions and, 177, 201-202; consumer search models and, 114-115, 120-121, 129-130, 154; empirical frameworks and, 114-115, 120-121, 129-130, 154; first-order, 114-115, 129; second-order, 115, 129
stochasticity: auctions and, 177, 201-102, 217-118; discrete-game models and, 96; dominance, 114-115, 120-121, 129-130, 154, 177, 202; dynamic discrete choice and, 25 , 27; economic theory and, 4-6; empirical frameworks and, 114-115, 120-121, 129-130, 148, 154; generalized method of moments and, 238; multiple choice and, 24; sources of, 238
stopping rule, 123, 149-151, 155
structural econometric modeling: causal model, 2-4; debate around, 7-8; economic theory and, $1-8$; error and, $3-5$; prediction and, 4-8; randomness and, 2-3, 7-8; reduced-form counterpart, 1,6 ; regression analysis and, 2-4; scientific model and, 1-2; steps in, 6-7; structure and, 5-7; unobservables and, 3, 5-6
Su, C.-L., 31, 92, 106
supply function equilibria (SFE), 220
Sweeting, A., 106n22
symmetry: bidder valuations and, 153-157, 175, 193, 195n32, 196, 198, 201; binary choice and,

13; demand estimation and, 51 ; interdependent values and, 192-193
Syverson, C., 142, 143n7, 145

Tamer, E., 70-71, 84-85, 95, 101, 176, 178-179
Thesmar, D., 43-44
Thisse, J. F., 24, 69, 75n30
Town, R. J., 44
Train, K., 15, 24
Trajtenberg, M., 60n16
underidentification, 108-19
uniform price auctions, 209
unobservables: auctions and, 206; binary choice and, 12; demand estimation and, $54,58,71,73$; discrete-game models and, $97,99,100 \mathrm{n} 16,107$; dynamic discrete choice and, 39, 42; empirical frameworks and, 156; multiple choice and, 21; structural econometric modeling and, 3, 5-6
Ursu, R. M., 147n40, 151
US Federal Communications Commission (FCC), 223-225
US Treasury, 215
utility: alternative-specific, 65-67; auctions and, 162, 164n2, 166, 171-172, 191, 195, 206; binary choice and, 12 ; consumer search models and, 113-115; demand estimation and, 48, 50, $52-56,59-60,61 \mathrm{n} 19,62 \mathrm{n} 21,63-75,71-72$; discrete-game models and, 93-94, 97-99, 103, 107-108, 113-115; dynamic discrete choice and, 25-26, 27n13, 39-40, 43-44; dynamic maximization, 25 ; empirical frameworks and, 113-115, 126, 127n13, 142, 145-153; generalized method of moments and, 250; idiosyncratic, $12,16,19,22-23,53-56,65,72$, 107, 114; index, 12; multiple choice and, 16, 19, 21-23; RUM, 15 (see also random utility maximization (RUM)); shocks and, 16, 19, 25-26, 53-54, 72-75, 114; specification of, 113-115
Uzawa, H., 75
van Roy, B., 98
Varian, H. R., 221
Verboven, F., 62, 75n30
Vickrey, W., 170
Vickrey auctions, 215, 224
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

INDEX 265

Vishwanath, T., 127
V-statistic, 213n46
Vuong, Q. 94, 180, 184, 201, 216
Vytlacil, E., 7n9
wage-search problem, 117, 121n6
Walmart, 89-90
Walrasian demand systems, 48, 68, 75, 115
Wan, Y., 94
Weibull bid distribution, 189
Weintraub, G. Y., 98, 225n59
Weitzman, M. L., 123-124, 129, 130n18, 145-146, 148, 151
welfare: auctions and, 182, 187-188, 215n50, 222; characteristics-space approach and, 47, 52, $66-70,75$; consumer welfare analysis and, $67-70$; demand estimation and, 47,52 , 66-70, 75
Wildenbeest, M. R., 153, 158
Williams-Daly-Zachary theorem, 69
Wilson model: bidders and, 207-221; counterfactuals and, 214-216; discriminatory auctions and, 208-209; estimating bidder valuations and, 210-216; Euler equations and,

209-211, 216, 219-20; marginal values and,
211-213; multiunit auctions and, 207-221;
optimal bidding schedule and, 207-210;
predictions of, 216-221; private values and, 207, 212, 216-218, 221; sealed-bid first-price auction
(FPA) and, 217; sealed-bid second-price auction
(SPA) and, 217; testing, 216-221; uniform price
auctions and, 209
winner's curse, 191-192
Wolak, F. A., 220-221
Wolfram, C., 220

Xiao, M., 224-225
$\mathrm{Xu}, \mathrm{H} ., 94$

Yahoo!, 222
Yang, N., 107-108, 110
Yang, S., 222
Yao, S., 150
Yuan, Z., 224-225

Zachary, S., 69
zero market shares, 70-72
Zona, J. D., 51, 60-61, 182n22

[^0]: 1. Recent advances in several fields such as behavioral economics allow for violations of those two key ingredients. For instance, rationality might be bounded or optimization might be imperfect. Although we focus mostly on conventional microeconomic theory here, we do consider advances in behavioral economics as important progress in the profession.
[^1]: 2. If you are not convinced, recall Procrustes, the stretcher, in the Odyssey. When Procrustes stretches the guest to fit him in his bed, will the guest's weight increase?
 3. We relegate the discussion on the role of ϵ_{i} to section 1.2.
 4. Recall from elementary econometrics that the ordinary least squares (OLS) slope coefficient estimate is the sample covariance of x_{i} and y_{i} scaled by the sample variance of x_{i}.
[^2]: 5. See any undergraduate-level econometrics textbook for the reasoning behind this point.
[^3]: 6. The term "policy" is used in a broad sense here. It can be a firm's conduct, government regulation, consumers' choice environment, and so on; it does not necessarily mean public policy.
[^4]: 7. The econometric model in equation (1.1.2) is a structural model to the extent that the linearity is taken as coming from a valid theory that specifies the causal linear relationship between x_{i} and y_{i}. Note that it is also possible to interpret the econometric model in equation (1.1.2) as an approximation of a possibly nonlinear causal relationship between x_{i} and y_{i}. More discussions of the interpretation of the linear models follow in section 1.4.
 8. The literature on the partially identified or nonparametric structural econometric models is growing. We study some examples of them in subsequent chapters.
[^5]: 9. In a wide sense, even the linear instrumental-variable model is a structural econometric model, implicitly imposing a very specific structure on how the instrumental variables affect the outcome variables. This point has been thoroughly investigated by Heckman and Vytlacil (2005).
