© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Contents

Preface xix

CHAPTER1	The	Ancient Origin of Microbes	1
	1.1	IN THE BEGINNING	2
		Origin of Life	3
		The Very First Cell	5
		BOX 1.1 RESEARCH IN ACTION Building Life from Scratch—The Quest for a Protocell	6
		Competition Drives Diversification	7
		Anaerobic versus Aerobic Respiration	7
		Photosynthesis Evolves	8
		Endosymbiosis and the Origin of Eukaryotes	10
	1.2	THE GREAT TREE OF LIFE	12
		A Molecular Tree of Life	13
		The Three Domains of Life	14
		The Tiniest Microbes	16
	1.3	MAKING THE INVISIBLE VISIBLE	17
		The First Sightings of Bacteria	17
		Culturing the Invisible	18
		Extremophiles, Life on the Edge	18
	1.4	THE MICROBES WITHIN US	19
		A Universe of Microbes within Us	19
		How Much of You Is Human?	20
	1.5	OUR MICROBIOMES, OUR HEALTH	21
		Microbiomes and Human Nutrition	22
		Microbial Metabolites, Key to Human Health	22
		Reflections on Your Microbiome	22
CHAPTER 2	ΑB	rief History of Microbiome Research	27
	2.1	OUR FIRST VIEW OF MICROBES	27
		Spontaneous Generation, or Not?	29
		BOX 2.1 Redi's Exemplary Experimental Design	30

x Contents

		Modern Experimental Design	30
		The Germ Theory of Disease	31
		Koch's Postulates	32
		The Discovery of Antibiotics	34
		BOX 2.2 Discovery of Penicillin	34
	2.2	THE GOLDEN AGE OF MICROBIOLOGY	35
		Discovering Colonization Resistance	36
		Not Just Germs	37
		Anaerobic Culturing Methods	37
	2.3	GENOMICS AND BIOINFORMATICS	38
		Environmental Metagenomics	38
		Fecal Microbiota Transplantation	39
		Germ-Free Mice	40
	2.4	BRINGING IT ALL TOGETHER	41
		Fluorescing Microbes	42
		The Father of Microbiome Research	43
		Human Microbiome Project	45
		No One Else Has Your Exact Microbiome	45
		The Normal Human Microbiome	45
CHAPTER 3	The	Human Holobiont	51
	3.1	THE HUMAN HOLOBIONT	51
	3.2	THE MANY HUMAN MICROBIOMES	52
		A Healthy versus Normal Microbiome	52
		Microbiome in Names and Numbers	52
		Microbial Taxonomy	53
		The Core Microbiome	54
		Primary Functions of the Core	55
		Hallmarks of a Healthy Microbiome	56
	3.3	THE MICROBES IN OUR GI TRACT	58
		Crowdsourcing for Carbs	59
		Cooperation and Conflict in the Large Intestine	61
		The Friendly Gut Phageome	63
		BOX 3.1 Communication between the Large Intestine Microbiome and Immune System	(1
		•	64 64
		Dysbiosis of the Large Intestine Microbiome	
		BOX 3.2 Bacteriophages Protect Epithelial Cells in the Large Intestine	65
		Inflammatory Bowel Disease	66
		BOX 3.3 RESEARCH IN ACTION Fecal Amino Acids and Dysbiosis—Unlocking Crohn's Disease Therapies	68
	3.4	THE MICROBES IN OUR MOUTH	69
	J. H	Archaeal Syntrophy	69
		Fungal Diversity of Unknown Function	69
		Creation of Dental Plaque	70
		The Diverse Roles of the Oral Microbiome	70
		THE DIVERSE MUICS OF THE OTAL MICHOROLLIC	7.0

χi

		Our Evolving Oral Microbiota	70
		Oral Microbiome Dysbiosis	71
		BOX 3.4 The Gum Microbiome and Gum Disease	72
	3.5	THE MICROBES ON OUR SKIN	73
		A Nutritional Desert	73
		Primary Functions of the Skin Microbiome	74
		Skin Microbiome Dysbiosis	75
		Acne and Your Skin Microbes	75
	3.6	SAMPLING YOUR OWN MICROBIOME	76
		Identifying a Testable Hypothesis	76
		BOX 3.5 Bacterial Growth Media Protocol	77
		Preparing Nutrient Media	77
		Experimental Controls Are Key	77
		Sampling Your Skin	78
		BOX 3.6 Culturing Your Skin Microbiome	79
CHAPTER 4	Gen	nerating Microbiome Data	85
	4.1	AN OPPORTUNITY AND MANY CHALLENGES	86
	•••	Training to Become a Microbiome Scientist	86
		Designing a Microbiome Study	86
		Using Model Organisms When Practical	87
		A Testable Hypothesis Is Key	87
		Experimental Variables	89
		Exploring the Primary Literature	89
		Performing a Literature Search	90
	4.2	DESIGNING OUR STUDY	90
		Choosing Our Subjects	91
		Statistical Power Is Key	91
		Testing for Statistical Significance	91
		The Power of Our Sample Size	94
		Taking Control of Our Experiment	95
		Cross-Sectional versus Longitudinal Study Design	96
		Experimental Data versus Metadata	96
	4.3	ENTERING THE EXPERIMENTAL PHASE	97
		Obtaining Our Samples	97
		DNA Chemistry	98
		Extracting Metagenomic DNA	99
		Amplifying Metagenomic DNA	101
		Billions of Amplification Products	102
		High-Throughput DNA Sequencing	104
	4.4	THE "OMICS"	106
		Metatranscriptomics	106
		Metaproteomics	107
		Metabolomics	109
		Spatial Omics	109

xiii

	7.2	THE MOTHER'S MICROBIOME DURING PREGNANCY	179
		What We Can Learn from the Mouse about a Mother's Microbiome during Pregnancy	180
		Immune Interactions between the Developing Fetus and the Maternal Microbiome	180
		The Maternal Impact on Development of the Fetal Immune System	182
	7.3	THE BIRTHING PROCESS AND THE NEWBORN MICROBIOME	186
		Vaginal Delivery	186
		Cesarean Section	186
	7.4	THE INFANT'S CORE MICROBIOME	187
		Structuring the Infant's Core Microbiome	187
		Wave after Wave of Microbial Colonization	189
	7.5	BEYOND THE GUT MICROBIOME	190
		The Newborn's Skin Microbiome	190
	7.6	THE WONDER OF MOTHER'S MILK	191
		The Composition of Breast Milk	191
	7.7	TRANSITIONING TO SOLID FOODS	194
	7.8	ENVIRONMENTAL IMPACTS ON THE INFANT'S MICROBIOME	194
	7.9	HEALTH IMPACTS OF A NEWBORN'S DYSBIOTIC MICROBIOME	196
		Antibiotics	196
		BOX 7.1 RESEARCH IN ACTION Antibiotics and the Newborn Gut-Long-Term Impacts	
		on Microbiome Development	197
		Malnutrition	197
		Allergic Diseases	198
		Obesity	199
		Diabetes	200
	7.10	MICROBIOME-BASED THERAPIES	201
		Probiotics	201
		Vaginal Microbiome Transplant	202
		Fecal Microbiota Transplant	202
		Oral Probiotics	203
		Oral Prebiotics	203
CHAPTER 8	The	Microbiome and the Brain	209
	8.1	THE NERVOUS SYSTEM	210
	8.2	THE MATERNAL MICROBIOME AND NEURAL DEVELOPMENT	212
		BOX 8.1 RESEARCH IN ACTION Maternal Microbiota—Shaping the Fetal Brain's Biochemistry	215
		Formation of the Blood-Brain Barrier	216
	8.3	THE MICROBIOTA-GUT-BRAIN AXIS	217
		MGBA Communication via the Endocrine Pathway	218
		MGBA Communication via the Neural Pathway	220
		MGBA Communication via the Immune Pathway	221
		MGBA Communication via Autophagy	222
	8.4	GUT MICROBIOTA AND NEUROPSYCHIATRIC DISORDERS	222
		Depression	223
		Autism Spectrum Disorder	226
		Parkinson's Disease	227

χV

		BOX 10.2 RESEARCH IN ACTION Breaking the Single-Species Myth in Periodontal Disease	264
		Shared Dysbiosis	265
		Is the Term <i>Dysbiosis</i> Still Useful?	266
		Koch's Postulates Applied to Microbiome-Health Associations	267
		BOX 10.3 A Comparison of the Original and Ecological Koch's Postulates	268
CHAPTER 11	The	Microbiome and Obesity	273
	11.1	THE OBESITY EPIDEMIC	274
		Losing Weight Is Hard to Do	275
	11.2	THE MICROBIOME OF OBESITY	276
		Obese versus Lean Gut Microbiomes	277
		Microbial Guilds at Work in Obesity	279
		Not Just Your Gut Microbes	281
	11.3	METABOLIC MARKERS OF WEIGHT LOSS	281
		Rendering Bile Acids Impotent	283
		Triggers of Fat Storage	283
		Mediating Low-Grade Inflammation	284
	11.4	THE GUT MICROBIOME AND WEIGHT LOSS	285
		BOX 11.1 RESEARCH IN ACTION Microbiome Predictors—Biomarkers for Weight Loss Success	286
	11.5	DIET-BASED APPROACHES	287
		Phytochemicals	287
		Fermented Foods	288
		Probiotics	288
		Prebiotics	289
		Fecal Microbiota Transplantation	290
CHAPTER 12	Alle	rgic Diseases and the Microbiome	295
	12.1	THE ALLERGIC RESPONSE	295
		The Allergic Cascade	296
	12.2	A CRITICAL WINDOW OF IMMUNE TRAINING TO PREVENT ALLERGIC DISEASE	297
	12.3	EPIGENETIC CHANGES AND ALLERGIC DISEASE	298
	12.4	IMPACT OF THE MATERNAL MICROBIOME ON ALLERGIC REACTIONS	299
	12.5	THE IMPACT OF THE ENVIRONMENT IN ALLERGIC DISEASE	300
		The Response of Gut Microbes to Environmental Triggers of Allergic Disease	301
		The Farm Effect	302
		The Atopic March	303
	12.6	THE OLD FRIENDS AND BIODIVERSITY HYPOTHESES	303
	12.7	THE ROLE OF ANTIBIOTICS IN ALLERGIC DISEASE	304
	12.8	THE IMPACT OF THE MICROBIOME ON ALLERGIC DISEASE	305
		Asthma	306
		Atopic Dermatitis	309
		Food Allergy	311
	12.9	MICROBIOME-BASED THERAPEUTICS FOR ALLERGIC DISEASES	313
		Oral Immunotherapy	313
		Symbiotics	314

XVI	Content	9

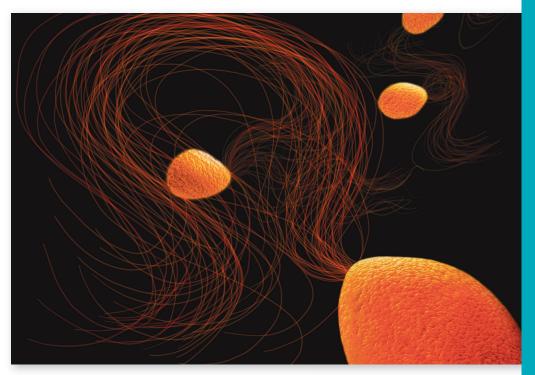
		Fecal Microbiota Transplantation	314
		Faecalibacterium, Lachnospira, Veillonella, and Rothia	314
		Inulin	315
	12.10	A CIRCLE OF CAUSALITY	315
CHAPTER 13	Our	Evolving Microbiome	321
	13.1	WHERE DID OUR MICROBIOME COME FROM?	322
		Our Closest Living Relatives	324
		Looking to Our Evolutionary Siblings	326
		Coprolites	326
		Dental Plaque	327
		Oral Microbiome	328
		BOX 13.1 Expansion of the Human Brain May Have Been Triggered by a Starch-Rich Diet	329
		Microbes from the Middle Ages	330
		Bacteriophages	330
	13 2	THE INDUSTRIALIZATION OF OUR MICROBIOME	331
	10.2	The Hygiene Hypothesis	333
		The Disappearing-Microbiota Hypothesis	334
		Antibiotics	335
		Diet	335
		The Consequences of the Missing Microbiota	336
		Recolonizing a Vacated Niche	337
	13.3	THE MICROBIOME AND THE MISSING-HERITABILITY PROBLEM	339
		REACQUIRING OUR ANCIENT MICROBIOTA	339
	10.1	BOX 13.2 RESEARCH IN ACTION Lactose Digestion and the	340
		Microbiome—An Evolutionary Link	310
CHAPTER 14	The	Microbiome of the Built Environment	345
	14.1	WHAT IS THE BUILT ENVIRONMENT?	346
		The Earliest Human-Built Environments	346
		The Earliest Homes Appear	346
	14.2	WHAT IS THE MICROBIOME OF THE BUILT ENVIRONMENT?	347
		Health Impacts of the MoBE	348
		Controlling the MoBE	348
		Physical Factors Influence the MoBE	349
		Early Studies of the MoBE	349
		Human Microbial Clouds	350
	14.3	MICROBIOLOGY OF THE BUILT ENVIRONMENT	350
		Constituents of the MoBE	351
		The Skin and Oral Microbiomes Contribute Most to the MoBE	351
		The Virome	352
		Plant Microbiomes	352

xvii

	14.4	BE FACTORS THAT INFLUENCE THE MoBE	353
		Humidity and Mold	355
		Ventilation and Microbial Spread	355
		Light Influences Which Microbes Survive	355
		Indoor Plumbing	355
		Cleaning Practices Impact the MoBE	356
	14.5	THE IMPACT OF THE Mobe on Health	356
		Sick Building Syndrome	356
		The Farm Effect	357
		BOX 14.1 RESEARCH IN ACTION The Amish Advantage—How Dust Exposure Reduces Asthma Risk	358
	14.6	TRACKING MICROBES IN THE BUILT ENVIRONMENT	358
		Tracking Hospital Pathogens	359
		The Neonatal Intensive Care Unit	360
		The Hospital MoBE	361
		The Hospital Resistome	362
	14.7	MICROBIAL METABOLOMICS AND THE BE	362
		Metabolites in the BE	363
		Volatile Organic Compounds and the BE	364
	14.8		365
		COVID-19 and the MoBE	365
		Build Back Better	365
		The Rewilding Hypothesis	366
		Nature-Based Solutions	366
OUADTED 15	.		
CHAPTER 15	Іакі	ng Charge of Your Microbiome	373
	15.1	IS YOUR GUT MICROBIOME HEALTHY?	374
	15.2	SEEKING PROFESSIONAL ADVICE	375
		Consulting a Medical Professional	375
		Gut Microbiome Index	376
		BOX 15.1 RESEARCH IN ACTION Gut Microbiome Health Index—A Predictor	
		of Disease Probability	377
		Consulting a Naturopath	377
	15.3	THE DIY APPROACH	378
		Assessing Stool Quality	378
		Assessing Gut Transit Time	379
		Assessing Gut Microbiome Composition	380
	15.4	DEFINING A HEALTHY MICROBIOME	384
		Fiber-Fermenting Bacteria	385
		THE HEALTHY PLATE	387
	15.6	MICROBIOME-BASED THERAPEUTICS	388
		Probiotics	389
		Prebiotics	392
		Synbiotics	393

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

xviii Contents


15.7	MICROBIOME RECOVERY FOLLOWING ANTIBIOTIC USE	394
15.8	LET FOOD BE THY MEDICINE	396

 Glossary
 401

 References
 417

 Index
 435

The Ancient Origin of Microbes

Hi there! My name is *Pyrococcus furiosus*. No fears, I am not a furious microbial monster. I am simply an extremophilic, hyperthermophilic archaeon that thrives in extremely hot environments. Maybe now you would prefer me to simply be furious! It isn't that hard to figure me out. I love hot! I mean I really, really love hot. My optimal growth temperature is a mere 100°C (or 212°F). I am also "allergic to oxygen," meaning I need to live in anaerobic environments, such as near hydrothermal vents. In fact, I was first found in waters near Italy, hanging out in a vent. Why should you care about little 'ole me? Well, I am a chemoorganotroph, meaning I break down sulfur to obtain energy. In the process I produce hydrogenases and amylases that are extremely heat-stable and efficient, which makes them valuable for some of your human industrial applications. So, a little kudos to me, please! (Photo from Power and Syred / Science Source)

Before we begin our exploration of the human microbiome, we must first develop an understanding of microorganisms, also called microbes—those minute creatures, far too small to be seen by the naked eye, that are both the creators and constituents of a breathtaking spectrum of microbiomes found on Earth. As you will learn, microorganisms emerged on our planet shortly after its origin and have spent over 4 billion years adapting to every conceivable environment our planet has to offer, including us! This first chapter provides an overview of the origins and diversification of microbes on Earth, with a special emphasis on what makes microbes so unique among life on our planet.

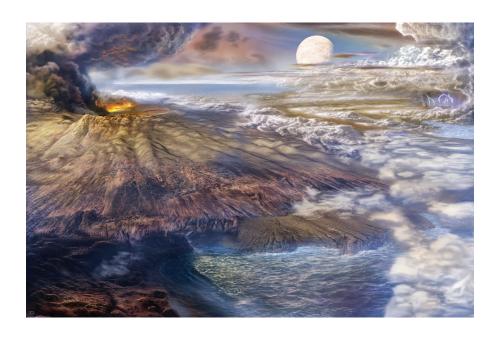
1

CHAPTER CONTENTS

- 1.1 In the Beginning
- 1.2 The Great Tree of Life
- 1.3 Making the Invisible Visible
- 1.4 The Microbes within Us
- 1.5 Our Microbiomes, Our Health

"If you don't like bacteria, you're on the wrong planet."

-Stewart Brand (Brand, 2014)


1.1 IN THE BEGINNING

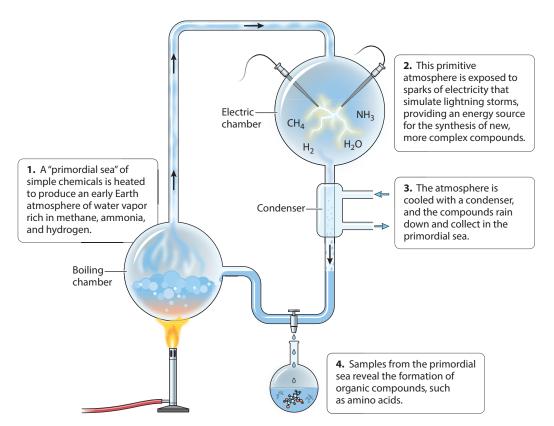
If you could peer back in time to the birth of our planet, some 4.5 billion years ago (bya), what might you find? Certainly nothing even remotely resembling the Earth of today. Our young planet had no oceans, although there were plenty of volcanoes spewing out magma, water vapor, and gasses. It had no free oxygen in its atmosphere and no protective **ozone layer**, which is the thin layer of the Earth's atmosphere that absorbs most of the sun's harmful ultraviolet light. It would have been an exceedingly hot place—imagine a surface temperature upwards of 2,000° Celsius (3,632° Fahrenheit). An artist's rendition of early Earth shows a planet that does not appear even remotely hospitable to life (**Figure 1.1**).

Or was it? In fact, some of the earliest signs of life appear in 3.7 bya rock, formed when our planet was just beginning to cool from its volcanic origin (Dodd et al., 2017). Some of this ancient rock has survived the ages and paints a fascinating picture of early life. The dark gray peaks in the cross section of sedimentary rock shown in **Figure 1.2A** have tentatively been identified as fossilized microbial mats, also known as **stromatolites**, which are mounds of layers of lime-secreting bacteria and trapped sediment. Stromatolites were the only biological structures on Earth until about 540 million years ago (mya), and they can still be found in certain lagoons in Australasia (**Figure 1.2B**). In other words, regardless of how inhospitable early Earth might look to us, by 3.7 bya Earth was already teeming with life!

The word **microbe** literally means "small life," from the Greek words *mikros* and *bios*. Microbes are small life forms that are usually too small to be seen without magnification. As we shall learn, they represent the greatest diversity of life on our planet. Although most of us are aware microbes exist, we may be unaware that they appeared very early in Earth's history and have remained the dominant life forms ever since. Exploring present-day **hydrothermal vents** in the seafloor provides valuable clues about how these earliest life forms flourished in the extreme environments of our young planet. Heated, mineral-rich water flows out of these seafloor vents, and it supports untold numbers of **chemolithotrophs**, which are bacteria that harvest energy from the minerals and chemicals that spew from the vents and release compounds that other microorganisms then use for food. Fossils of hydrothermal vents have been discovered in rock as old as 3.8 bya (Cavalazzi et al., 2021).

Figure 1.1 Early Earth This artist's rendition provides a glimpse of what early Earth may have looked like. Our planet coalesced just over 4.5 billion years ago from cosmic debris. Transient oceans and lakes existed from the start, although they had been repeatedly vaporized by the massive meteorites that showered our planet back then. The environment of the planet had settled down by about 3.8 million years ago, when the earliest rocks appear in the fossil record in what is now southeast Greenland, and the planet might have looked as this artist portrays it. (Photo © Don Dixon)

Each stromatolite is built up from many thin layers of different bacterial species living together.


Figure 1.2 Ancient Microbial Fossils (A) The earliest fossil evidence of microbial communities. The layering in this rock is very likely due to biological activity. Cyanobacteria form mats of cells that secrete sticky substances that trap sediments in the surrounding water. Over time, these sediments form a mat and then new layers of Cyanobacteria attach. Layers of volcanic ash compacted against these structures, preserving them in the Greenland fossil record for the past ~3.7 billion years. Small fossils like these, buried under billions of years of collected rock, allow us to learn more about life in the distant past. (B) A cluster of living stromatolites from Shark Bay, Australia. There are very few such structures remaining on Earth. (A photo from Muséum de Toulouse, CC BY-SA 4.0, via Wikimedia Commons; B photo from Paul Harrison, CC BY-SA 3.0, via Wikimedia Commons)

One microbial species commonly found in vents, *Methanopyrus kandleri*, uses hydrogen gas as a food source and releases methane as a waste product. This process is known as **methanogenesis**, and it is one of the most ancient forms of energy production. The name of this microbe describes its fondness for extreme environments; *methanopyrus* literally means "methane fire," which is highly appropriate as it can grow in temperatures up to 122°C (252°F), the highest temperature known to be compatible with life. Consider that water boils at 100°C; with this in mind, we can begin to imagine how life emerged on what we had previously considered to be an inhospitable early Earth.

Origin of Life

If we can't rewind the tape of time and return to early Earth, can we ever learn about life's origins? In 1953, a young scientist, Stanley Miller, and his mentor, Harold Urey, showed us the way by answering the question: Could the complex organic molecules necessary for life be created under the conditions of our planet billions of years ago? Miller and Urey designed a glass chamber in which they could create conditions that were believed to mimic those on early Earth (Figure 1.3). Starting with simple ingredients, such as heat, which would have been provided by the Earth's molten core; an electrical charge to mimic lightning; water (H2O); and an early atmosphere made of methane (CH₄), hydrogen (H₂), and ammonia (NH₂) gasses, Miller and Urey showed that complex organic molecules could be created from what was a predominately inorganic planet. Organic molecules are primarily made of carbon atoms bonded with hydrogen and other elements and are of biological origin. All living things on Earth are composed of organic molecules. In contrast, inorganic compounds are substances that do not contain both carbon and hydrogen. Hydrogen atoms are contained in many inorganic compounds, such as water (H,O) and the hydrochloric acid (HCl) produced by your stomach. In contrast, only a handful of inorganic compounds contain carbon atoms. Carbon dioxide (CO₂) is one of the few examples. Miller and Urey showed that with heat, electricity, and simple inorganic ingredients, complex organic molecules, such as amino acids, could be produced. Amino acids are

4 Chapter 1 The Ancient Origin of Microbes

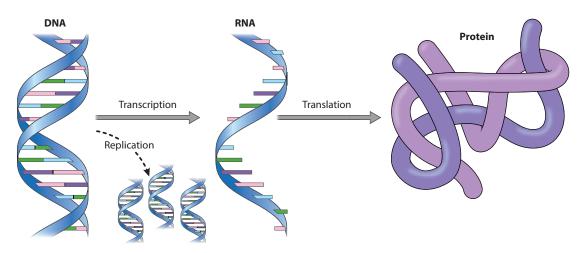


Figure 1.3 The Miller-Urey Origin of Life Experiment This experimental apparatus was designed to simulate the origin of organic compounds on early Earth.

the building blocks of **proteins**, the workhorses of cells that carry out many biological functions.

Miller and Urey's findings were extraordinary for several reasons. First, their data suggested that life could have arisen from the simple ingredients present in the "primordial soup" found on early Earth. We now know that many of the essential building blocks of life, such as amino acids and **nucleotides** (the key ingredients of **deoxy-ribonucleic acid**, or **DNA**), would have rapidly accumulated from simple inorganic constituents. Furthermore, this was the very first experiment in what was to emerge as a rich and exciting field of **abiogenesis**, or the study of the creation of life from nonlife. Their publication helped transform studies of the origin of life into a respectable field of research.

By the 1990s many scientists agreed that at least two functions were required for cellular life to emerge from a nonliving precursor: a means to physically separate the cell's internal functions from the environment (a membrane), and the ability to generate offspring, which involves copying the genetic information and producing daughter cells (replication). Figure 1.4 provides an overview of how a cell's genetic information, DNA, is transcribed into RNA, which is then used to produce proteins. This theory is known as the Central Dogma of Molecular Biology, and there were vigorous debates about which element (DNA, RNA, or protein) came first. One argument emphasized the role of genetics and inheritance (replication argument), that is, DNA or RNA was first on the scene. A competing view proposed that creating the cells' structure came first (membrane argument), that is, proteins creating the structure of a cell came first. It was at this moment that a particularly innovative thinker entered the field. Jack Szostak, who won a Nobel Prize for his work on chromosome structure, which refers to the way DNA is packaged in a cell, decided to retool his lab and to focus on an entirely new research question—the origin of life. Szostak was

Figure 1.4 Central Dogma The Central Dogma of Molecular Biology describes the fundamental biological process by which proteins are built. In most cells, the genetic information is encoded in the DNA, which can be transcribed into a messenger molecule known as RNA. This RNA is then translated into proteins, using complex cellular machinery to "read" the RNA sequence and build the corresponding protein structure. The Central Dogma is essential to our understanding of early Earth because it illustrates the connection between genetic information and cellular processes.

fascinated with the origins debate, and he set off to create a primitive cell, or **protocell**, that would permit him to experimentally explore how the first cell might have evolved (**Box 1.1**).

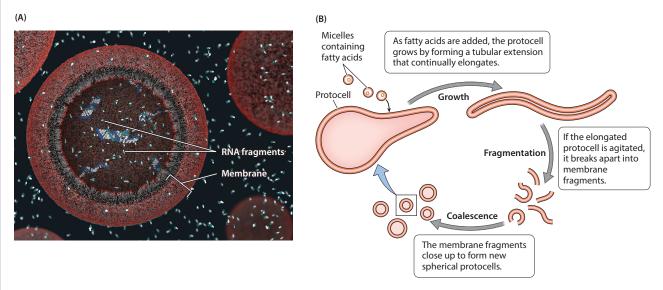
The Very First Cell

Szostak knew that fatty acids could transition from small spheres (or **micelles**) into multilayered membranes as the pH of the local environment goes from a basic to a more neutral state, so he decided to simply add more membrane-forming molecules (**fatty acids**) to the mix and see what happened (see Box 1.1 and Figure 1.5B). The team added fatty acids, some of which inserted themselves into the cell's membrane. This spontaneous growth process transformed the small spheres into long filamentous vesicles, which could be induced to divide when agitated and then to re-form cells when the agitation stopped. This elegantly simple protocell appears to possess one of the key characteristics of life—a cellular structure that could make copies of itself.

Szostak had proven that the earliest cells could have created a protected environment in which metabolism could take place. Next, he tested whether the RNA fragments located in these protocells were able to replicate, or make copies of themselves, which would permit the identical genetic information to be passed on when the protocell divides. Given that RNA is capable of both replicating itself and performing enzymatic activities, it is often considered the likely ancestor to our own DNA-based mode of inheritance. However, RNA requires high concentrations of magnesium, which can destroy the delicate membranes of the cell. Szostak found conditions that protected the membrane but still provided sufficient magnesium to permit RNA replication. These experiments provide us with a membrane-bound genetic system that is capable of self-replication and growth—two of the hallmarks of life. All done in test tubes in a laboratory!

Since this revolutionary experiment, Szostak and many others continue to dive ever deeper into questions about the origin of life (Mann, 2021). One current focus is on planetary habitability, or the potential for planets to develop and sustain life. A second research area examines the environmental conditions required to produce **biomolecules** (such as carbohydrates, lipids, nucleic acids, and proteins) in concentrations that permit metabolism. A third focus is on determining the ways in which the

precursors to DNA and RNA might have assembled and replicated. These studies are just beginning to answer some fundamental questions about the origin of life (Mann, 2021). Szostak himself notes, "Many challenges remain before we will be close to a full understanding of the origin of life, so the future of research in this field is brighter than ever!" (Szostak, 2017).


BOX 1.1. RESEARCH IN ACTION

Building Life from Scratch-The Quest for a Protocell

Researchers in the Szostak lab made their first protocell out of self-replicating genetic material, in this case a fragment of RNA. Figure 1.5A shows the organization of this protocell and reveals the inner compartment created by this structure and the fragments of RNA floating within. This internal environment would have permitted the cell to carry out key functions, such as metabolism, which allows the cell to transform food into energy. However, the first cells would have had none of the machinery needed for their own growth and division. The researchers hypothesized that the coupled growth and division of protocells could be achieved using conditions likely to have been present on Earth over 3 billion years ago.

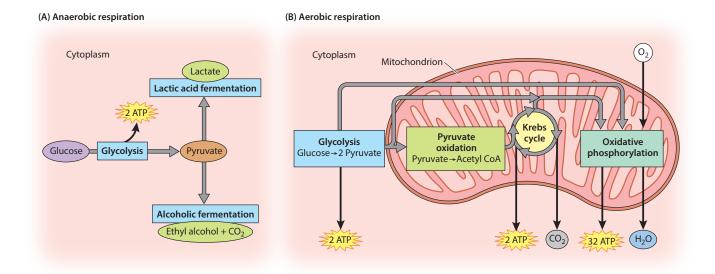
Experiment. A protocell is placed in dilute acid, such that the interior of the protocell is slightly

- more acidic than the solution. Osmosis will cause water to enter the protocell, resulting in large (~4 mm in diameter) vesicles. Fatty acids are then added to the mixture and modest shear forces are provided (Figure 1.5B).
- ❖ **Results.** The growth of small protocells is achieved by placing them in a solution where liquid permeates the membrane, resulting in the transformation of initially spherical vesicles into long threadlike vesicles that can divide into multiple daughter vesicles.
- Conclusion. This experiment shows that protocells can be created, enlarged, and replicated in the laboratory, suggesting that similar processes might have occurred under the prebiotic conditions of early Earth.

Figure 1.5 The Protocell (A) A computer-generated image of the type of protocell created by the Szostak lab. The protocell is spherical but is shown in cross section here so the inside can be seen. The lipid membrane (red outer circle) provides an internal environment for the protocell to store and replicate its genetic material and undergo metabolic processes to generate energy. Noticeably lacking are more-complex cellular structures that you may already be familiar with, such as a nucleus or mitochondrion. The protocell is surrounded by a "primordial soup" consisting of inorganic and organic molecules. Most of these were small, but some were more complex, such as RNA fragments. (B) The proposed cyclical process of protocell membrane growth and division. The cell incorporates micelles that cause its size to increase until it reaches a point where agitation results in its splitting open. The resulting fragments of the original protocell then reconfigure into new cells. This series of events is a precursor to the modern cell cycle. (A photo courtesy Janet Iwasa, Szostak Laboratory, Harvard Medical School and Massachusetts General Hospital; B after Zhu and Szostak, 2009.)

Competition Drives Diversification

Szostak's research shows us how an ancestral life form could have emerged on early Earth. However, these primitive processes were inefficient. Each time a new protocell was formed, a new RNA fragment would have been captured in the cell, which would have encoded completely different functions, or none at all. We envision the cycle shown in Figure 1.5B repeating itself billions, if not trillions, of times. Some cells captured RNA that encoded novel functions, and those cells might have survived longer and had a greater likelihood of "reproducing," which at this point means that the protocell divided into two daughter cells that share the same RNA fragment. Imagine a primitive ocean filled with trillions upon trillions of protocells. Those that had features that resulted in the production of more copies would consume more ingredients, which would then not be available for others.


The process just described is known as **natural selection**, and it is one of the most powerful forces affecting life on Earth, through which populations of living organisms adapt to the ever-changing environment. Organisms more adapted to their environment are more likely to survive and pass on the genes that contributed to their success. This process, natural selection, causes species to change and diverge over time. Individuals in a population are naturally variable, meaning that they all differ in some ways. This variation means that some individuals have traits better suited to the present environment than others. Individuals with **adaptive traits**—traits that give them some advantage—are more likely to survive and reproduce. These individuals then pass the adaptive traits on to their offspring. Over time, these advantageous traits become more common in the population. Through this process of natural selection, favorable traits are transmitted through generations, and organisms adapt to their environment.

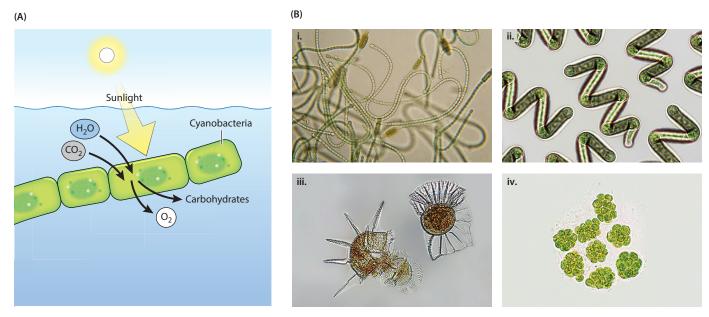
Overwhelming evidence shows us that all **extant** species (meaning that they are alive today) are related, having descended from a common ancestral protocell. We call this extinct organism the **Last Universal Common Ancestor**, or **LUCA**. LUCA was very likely a single-celled **autotroph**, which means it was able to make its own energy and relied on available inorganic compounds as a food source. It is envisioned that LUCA engaged in **chemolithoautotrophy**, meaning it obtained energy by oxidizing inorganic compounds (like hydrogen or sulfur) and fixing carbon dioxide to produce organic molecules. Its genetic material was almost certainly DNA, and it employed RNA molecules, such as tRNA and mRNA, in translating the information encoded in its DNA into proteins.

Heterotrophs would have emerged next, which are organisms that lack the ability to make their own organic compounds. Instead, heterotrophs obtain their energy by breaking down complex organic molecules, such as carbohydrates, fats, and proteins, which they acquire from other organisms—either by eating plants, animals, or decomposing organic matter. As heterotrophs reproduced and became more numerous, they would have rather quickly consumed the organic compounds being produced by autotrophs, resulting in selection for organisms capable of using alternative foods.

Anaerobic versus Aerobic Respiration

These earliest heterotrophs evolved on a planet with an atmosphere composed of methane, ammonia, and hydrogen cyanide, which derived primarily from the gasses emitted from volcanoes. Free oxygen was present at only trace levels. Therefore, the earliest Earth ecosystems existed in an **anoxic** world, devoid of oxygen, and the microbial communities present were supported by anaerobic respiration. Cellular respiration is the process by which cells break down sugar and turn it into energy, which is then used to perform work at the cellular level. The most primitive form happens in the absence of oxygen and is called anaerobic **respiration** (**Figure 1.6A**). Early anaerobic microbes used chemicals to derive energy for respiration by mediating the oxidation and reduction of inorganic compounds in their environments. For example, methanogens obtain their energy from hydrogen (H_2) and carbon dioxide (CO_2) and release methane (CH_4) as a waste product, hence their name. Similarly, sulfate-reducing

Figure 1.6 Cellular Respiration Cellular respiration is the process by which cells release energy by breaking down sugar molecules, such as glucose. (A) Anaerobic respiration, the most primitive form of respiration on Earth, is how cells convert the stored energy of glucose into adenosine triphosphate (ATP) in the absence of free oxygen. It provides energy to the cells very rapidly. (B) Aerobic respiration is the process through which cells break down the glucose molecule to convert its stored biochemical energy into ATP in the presence of oxygen.


microbes feed on sulfate. These **chemoautotrophs**, which use chemicals for energy, would have had an enormous supply of inorganic chemicals to feed on and are still commonly found in environments rich in inorganic compounds, such as near deep-sea hydrothermal vents.

The anaerobic **biosphere** of early Earth, that is, the regions of the planet occupied by living organisms, was less energetically active than our present-day aerobic biosphere—in other words, energy flow from chemicals into and between microbes was slow, roughly 5% of the rate of energy conversion found in our current biosphere. Life forms would have been engaged in intensive competition for the limited energy sources, which would have driven the process of natural selection, resulting in novel approaches to finding and harvesting energy.

Some microbial lineages evolved the ability to use oxygen as an energy source, which we refer to as aerobic respiration (**Figure 1.6B**). This novel form of respiration converts glucose or other organic molecules into energy in the form of **ATP**, or **adenosine triphosphate**, which is essential for various cellular functions. ATP uses the energy stored in its phosphate bonds to power chemical reactions. It is often referred to as the "currency" of the cell. Although anaerobic respiration also produces ATP, aerobic respiration is much more efficient, and it produces ATP much more quickly. This is because oxygen is an excellent electron acceptor for the chemical reactions involved in generating ATP.

Photosynthesis Evolves

One of the truly great metabolic innovations involved the ability to harness the sun's energy, a process called **photosynthesis**. The earliest photosynthetic organisms evolved specialized pigments capable of extracting energy directly from sunlight. These pigments captured the sun's energy and used it to transform carbon dioxide and water into carbohydrates (food) and oxygen (waste product) (**Figure 1.7A**). The first organisms capable of photosynthesis were the ancestors of the modern-day **Cyanobacteria**, a phylum of bacteria also known as blue-green algae. Thanks to photosynthesis, these organisms no longer needed to rely on a limited pool of organic

Figure 1.7 Cyanobacterial Photosynthesis and Diversity (A) Cyanobacteria use the energy of sunlight to drive photosynthesis, a process where the energy of light is used to synthesize organic compounds from carbon dioxide and water, resulting in oxygen as a waste product. (B) Some of the diverse types of cyanobacteria. Left column: Blue green algae (top), Dinophysis algae (bottom). Right column: Spirulin (top), Pandorina (bottom). (B photos from [i] istock.com/Nnehring; [ii, iii, iv] iStock.com/Elif Bayraktar)

molecules or engage in the far slower process of extracting energy from chemicals and could instead get their energy directly from the sun, which offered them a profound selective advantage. Descendants of these very first photosynthetic cells can be found in almost any water source you examine today. **Figure 1.7B** provides a snapshot of some of the stunning and diverse members of this ancient lineage.

Cyanobacteria played a key role in transforming early Earth's biosphere. Every time a cell broke down a molecule of carbon dioxide, it would release a molecule of oxygen as waste. Imagine trillions upon trillions of cells, each puffing out oxygen over the millennia. At first this free oxygen was captured by minerals, which we see as massive iron oxide (or rust) deposits in the geological record about 2.5 bya (**Figure 1.8**). Once these minerals were saturated with oxygen, the excess began to accumulate in the atmosphere. This period in Earth's history is referred to as the **Great Oxidation Event** (**GOE**), in which the atmosphere was transformed into one rich in oxygen, like Earth's atmosphere today, which is 78% nitrogen (N_2), 21% oxygen (N_2), 0.93% argon (Ar), 0.04% carbon dioxide (N_2), and trace levels of other chemicals. Figure 1.8 shows the dramatic impact of the GOE on levels of atmospheric oxygen on Earth.

The rising levels of oxygen resulted in one of the first mass **extinction** events on our planet. A mass extinction event is identified when species go extinct faster than new species evolve, defined as about 75% of the world's species being lost in less than 3 million years. Oxygen is toxic to anaerobic bacteria, which do not possess mechanisms to protect their enzymes from oxidants, and thus, most did not survive this period of atmospheric transformation. A lucky few found ways to avoid the oxygen. For example, it is likely that the ancestors of modern-day methanotrophs, microorganisms that produce methane (CH₄) as a by-product of their metabolism, would have continued to flourish in the so-called dead zones in the ocean (areas where the levels of oxygen remain low) and deep in the ocean floor. Our fossil record of that time is limited, and given the microscopic size of the organisms, we are forced to infer features of these ancient life forms.

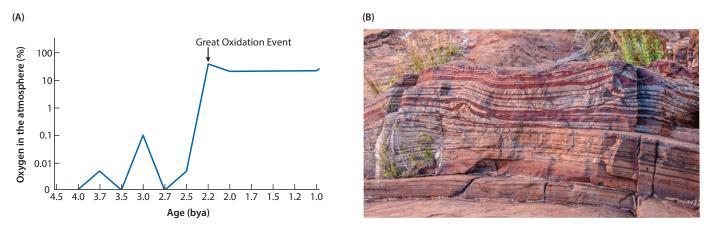
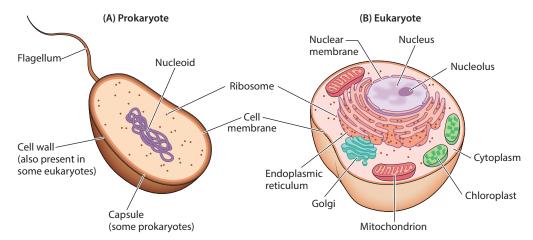



Figure 1.8 The Great Oxidation Event (A) Timeline of atmospheric oxygen levels on early Earth. Note the dramatic increase, labeled Great Oxidation Event, that corresponds with the saturation of minerals with oxygen, resulting in iron oxide sediments. (B) The red inserts of sedimentary rock are rust deposits providing evidence of the Great Oxidation Event. Rust is the common name for the chemicals that result when iron reacts with oxygen and water. Sedimentary rock is built by layering different rocks and soils, where the oldest layers are at the bottom. (A after R.A. White III 2020; oxygen data were provided by Dr. Sean Crowe [University of British Columbia] with permission, D.E. Canfield 2005, C. Dupraz and P. T. Visscher 2005, T. W. Lyons et al. 2014, and S.A. Crowe et al., 2013; B photo from Graeme Churchard from Bristol, UK, CC BY 2.0, via Wikimedia Commons)

Endosymbiosis and the Origin of Eukaryotes

With the rise in atmospheric oxygen and the advent of aerobic respiration, large, complex multicellular organisms first appear in the fossil record. Multicellularity has several obvious advantages over single-celled life forms. One of the earliest selective pressures for it may have been related to the fact that a group of cells presents a great challenge for a predator. As cells group together, their survival rate increases. Further, multicellular organisms can have longer lifespans—the organism survives even when individual cells die. Finally, multicellularity also permits increasing complexity by allowing differentiation of cell types, or tissue specificity (Pentz et al., 2020). These changes paved the way for evolution of circulatory and respiratory systems and intestines that break down food sources and extract nutrients from them.

For the first half of the history of life on Earth, single-celled **prokaryotes**, whose genetic information is found floating in the cell's cytoplasm, were the sole inhabitants. However, sometime around 2 bya, a new type of cellular life form arose: the **eukaryotes**, whose DNA is enclosed in a protective membrane called the **nucleus**. **Figure 1.9** provides a comparison of a simple prokaryote and a more complex eukaryotic cell.

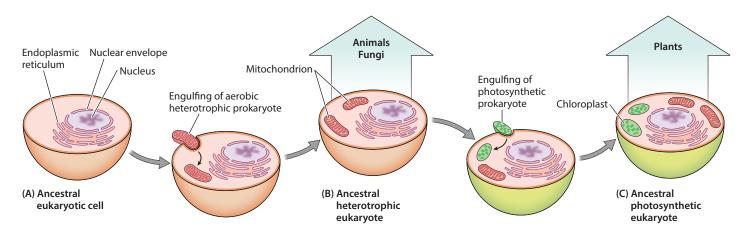


Figure 1.9 Prokaryote versus Eukaryote Cellular Complexity This diagram illustrates the similarities and differences between prokaryotic and eukaryotic cells. Both contain genetic material, a cell membrane, and ribosomes. Eukaryotic cells also contain membrane-bound organelles, such as the nucleus, mitochondria, and Golgi body, whereas prokaryotic cells do not.

In 1967 Lynn Margulis, a microbiologist and evolutionary biologist at the University of Massachusetts, proposed that the eukaryotic cell was the result of a chance fusion between two prokaryotes. An ancestral prokaryotic host cell engulfed, but didn't digest, a second prokaryotic cell, one capable of aerobic metabolism (Figure 1.10A shows this with a eukaryotic cell). The engulfed cell, or endosymbiont, provided its host with the ability to use oxygen to release energy stored in nutrients. In turn, the host cell protected the endosymbiont from predators. Over time, a symbiotic relationship, which refers to a close, long-term interaction between two different species, where at least one of the species benefits from the relationship, developed between the two organisms to the point that neither could survive on its own. This endosymbiotic event is immortalized in eukaryotic cells by the presence of the mitochondrion, which is the descendent of that ancient, engulfed aerobic symbiont and now serves as the energy factory in nearly all eukaryotic cells today.

Margulis's idea was largely ridiculed, and some 15 journals rejected her research findings before they were published (Sagan, 1967). She spent much of her career defending the hypothesis until enough experimental evidence was garnered to support its recognition as a valid theory. In fact, it is now clear that a series of symbiotic events (**serial endosymbiosis**) occurred. One endosymbiosis resulted in eukaryotic cells possessing a mitochondrion, which became the cell's energy factory (**Figure 1.10B**). Plant cells went even further, with chloroplasts resulting from a fusion of a heterotrophic bacterium with a photosynthetic cyanobacterium (**Figure 1.10C**). Chloroplasts are the membrane-bound organelles in plants and algae where photosynthesis takes place. Margulis was an extraordinary scientist, one who remained steadfast in her then-revolutionary belief that eukaryotic origins could be found. When questioned about the controversy surrounding her proposal of endosymbiosis, she replied, "I don't consider my ideas controversial. I consider them right" (Teresi, 2011).

With the advent of the eukaryotic cell, the diversification of life took on a whole new dimension. A tidal wave of biological diversification occurred about 540 mya. This period, known as the **Cambrian Explosion**, was literally that, an explosion of macroscopic life forms that appear all at once in the fossil record during the geological period known as the Cambrian. What was previously a planet dominated by microscopic prokaryotes is now rich with complex macroscopic, multicellular life

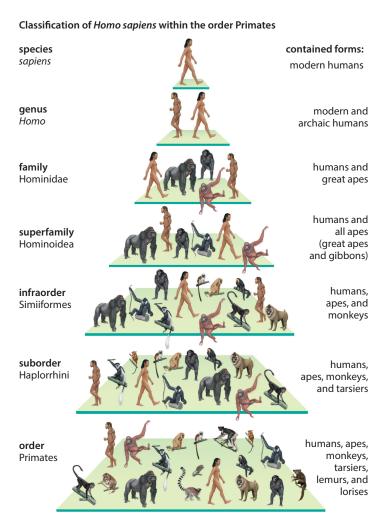


Figure 1.10 The First Endosymbiotic Events Imagine an ancestral eukaryotic cell (A), similar to a present-day amoeba. It engaged in phagocytosis, gaining energy from ingested organic matter, such as prokaryotic cells. The endosymbiotic theory posits that in several instances, the ingested cells survived and developed a symbiotic relationship with the host. Mitochondria (in B) and chloroplasts (in C) were the result of this process and were capable of aerobic respiration or photosynthesis, respectively.

forms that fuel successive waves of ecological and environmental transformations on Earth.

1.2 THE GREAT TREE OF LIFE

Now that our planet is teeming with microscopic and macroscopic life, we need a system to name all this diversity. In 1735, Carolus Linnaeus proposed a hierarchical scheme of classification that started with the most inclusive groupings, **kingdoms**, and descended into smaller and smaller subgroups, ultimately ending with a **species** name. Linnaeus would assign each species a unique two-word Latin name, or **binomial**, such as *Homo sapiens*, the binomial for humans. It consists of the species des-

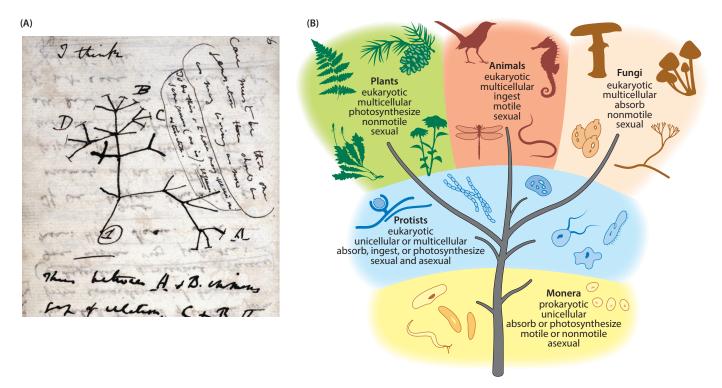
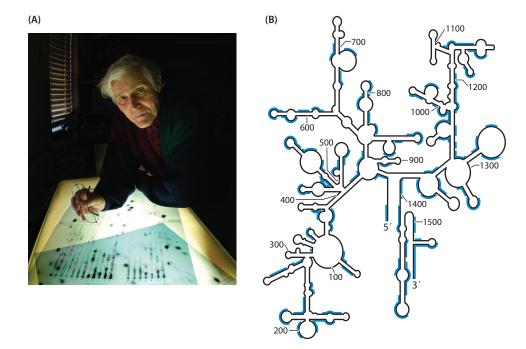


Figure 1.11 Hierarchical Classification This image shows a portion of the Linnaean classification of humans, or *Homo sapiens*. The broadest level of Linnaeus's classification system is kingdom. The kingdom Animalia includes all animals, including humans. The groups become more specific as classification continues. Humans are in the genus *Homo*, which contains modern humans as well as now-extinct humans, such as Neanderthals. A species' name consists of its genus name followed by its species name, which is specific to it, so humans are given the name *Homo sapiens*. (Photo from Universal Images Group North America LLC/Alamy Stock Photo)

ignation (*sapiens* or "wise man") preceded by the **genus** (*Homo*). Genera were grouped into **families**, families into superfamilies, and so on until the level of kingdom was reached. **Figure 1.11** shows a portion of the hierarchical levels of the Linnaean classification system and provides an example of how the human species is classified. Beyond the level of order, humans are members of the class Mammalia, the phylum Chordata, and the kingdom Animalia.

Although Linnaeus sought to classify organisms based upon similarities, his methods often resulted in clusters that reflected evolutionary relationships, which we can represent in a phylogenetic tree. A phylogenetic tree (also phylogeny or evolutionary tree) is a branching diagram showing the evolutionary relationships among organisms based upon similarities and differences in their physical or genetic characteristics. In 1859, when Charles Darwin published his thesis on the origin of species, he introduced the concept of a great tree of life (ToL) connecting all living and extinct life forms to a common ancestor (Darwin, 1859). He envisioned an ever-growing tree whose root is our common ancestor (LUCA), with the branches representing distinct lineages terminating in foliage, which represent the species. Figure 1.12A shows Darwin's illustration of his tree of life. He went so far as to describe the fallen limbs and leaves as those extinct lineages that we know only from the fossil record: "Buds give rise by growth to fresh buds, and these, if vigorous, branch out and overtop on all sides many a feebler branch, so by generation I believe it has been with the great Tree of Life, which fills with its dead and broken branches the crust of the earth, and covers the surface with its ever branching and beautiful ramifications" (Darwin, 1859).

The ToL envisioned by Darwin was transformed over the next hundred years as more and more organisms were discovered, described, and added. Figure 1.12B provides a version of the ToL popular in the mid-20th century, called the five-kingdom ToL, with animals, plants, fungi, protists, and monera identified as the five categories, or kingdoms, of life. Animals and plants are obvious; however, you may be less familiar with the other kingdoms. Fungi refers to spore-


Figure 1.12 Darwin's Tree of Life (A) Darwin's illustration of the tree of life, which was first drawn in one of his notebooks in 1837. The base of the tree, which is labeled by the number 1, represents the cenancestor (or LUCA), and the ends of the branches represent species. A version of this illustration was included in his landmark book on evolution, On the Origin of Species, which was published 12 years after Darwin's original tree drawing. (B) The five-kingdom ToL was widely used until molecular technology became advanced enough to permit us a window into the incredible diversity of Protista and Monera, which we now recognize as the prokaryotes. Monera, which includes bacteria and other prokaryotes in this ToL, is at the base. Monera was seen as a more primitive group, from which more-advanced multicellular life evolved. The uppermost branches of the tree represent plants, animals, and fungi. Scientists could easily observe these large, multicellular life forms, so their diversity was better understood and took up most of the branches of the tree. (A illustration reproduced by kind permission of the Syndics of Cambridge University Library.)

producing organisms that feed on organic matter, including molds, yeast, mushrooms, and toadstools. **Protists** are single-celled eukaryotic organisms, such as protozoa or simple algae. **Monera** is the kingdom into which prokaryotes, such as bacteria, are placed. This view of life's diversity focuses your attention first and foremost on the macroscopic organisms and suggests that protists and monera are somewhat more primitive and less diverse. In truth, scientists at that time couldn't make sense of the evolutionary relationships among monera, simply because they didn't have **phenotypes**, or observable characteristics, to compare.

A Molecular Tree of Life

In 1977, Carl Woese tackled this formerly intractable problem, inferring the evolutionary relationships among the monera, or prokaryotes (Woese & Fox, 1977). Lacking visible physical traits with which to classify microorganisms, Woese turned to molecules. He chose the ribosome, which is a complex of RNA and associated proteins that functions to synthesize proteins, and which is one of the most ancient and well-conserved biochemical structures shared by all life. This means that any two species' ribosomes are similar, even if the species are not otherwise closely related. The ribosome is essentially a mini factory that translates genetic information into proteins

Figure 1.13 Carl Woese and a Molecular-Based Tree of Life (A) Photograph of Carl Woese peering at a radiograph that shows the ribosomal fragments of a microorganism's 16S rRNA separated based upon electrical charge. (B) Two-dimensional structure of the 16S rRNA molecule with regions indicated in blue that are cleaved during the RNA digestion procedure employed by Woese. (A photo courtesy of Jason Lindsey, University of Illinois Urbana-Champaign)

(**Figure 1.13**). All life forms use this same fundamental process for making proteins, so they all share at least some portions of the ribosomal RNA–protein complex.

Woese proposed that by comparing portions of the ribosomal complex among all life forms, it would be possible to group organisms in the same manner that they had been grouped previously using physical traits, or phenotypes. Within the ribosomal complex are subunits made of RNA and protein. The RNA molecules within those subunits are named based upon their weight in Svedberg units, such as 16S and 18S. All organisms, even those from across the three domains of life, have ribosomal subunits. Woese used information obtained by cleaving the RNA sequences of these ribosomal subunits and comparing the resulting fragments to estimate how closely related two organisms are. Pairs of taxa that are more similar in their ribosomal fragments are inferred to be more closely related. The number of differences between the ribosomal RNA fragments then serves as a measure of the amount of evolutionary time that separates a pair of taxa. These evolutionary distances can be used to create a phylogeny.

The Three Domains of Life

Woese first focused on a subunit of the ribosome (the 16S subunit) that is present in all bacteria. He produced fragments of the 16S ribosomal RNA (rRNA) for a diverse sample of what he thought of as bacteria and immediately noticed something striking. There was one cluster of fragments that was quite different from all the others. The organisms represented by that cluster were methanogens, prokaryotic cells that produce methane as a waste product. Woese quickly realized the significance of this finding: methanogens were not bacteria, but something completely different. He then employed an additional subunit of the ribosome (the 18S subunit), which is related to the 16S subunit but is found in eukaryotes, so that he could include eukaryotes in his clustering process. Although methanogens looked superficially like bacteria, their ribosomes reveal a very different ancestry. To his surprise the ribosomal fragments of methanogens were more like those found in eukaryotes than in bacteria. Woese named this new lineage **Archaea**, which is a Latin term meaning "primitive."

Based upon these results, Woese created a new ToL, which required a higher level of organization than the five kingdoms. He identified and named three groups within a higher level of biological relationships: Eukarya (animals, plants, fungi, and

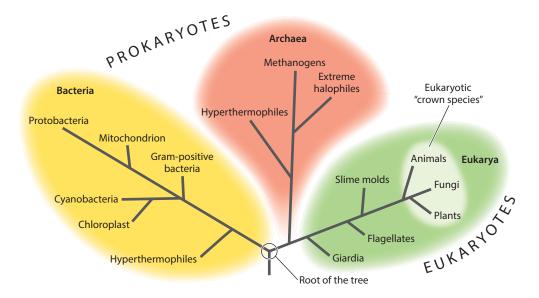
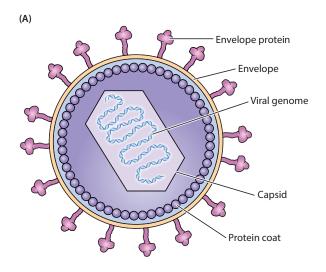


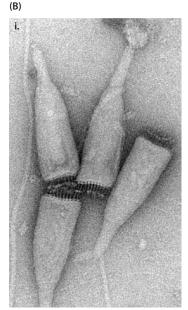
Figure 1.14 The Ribosomal RNA-Based Tree of Life This phylogenetic tree was developed using data from rRNA sequences. While eukaryotes made up most of the five-kingdom-view-based tree, they are only a small portion of the modern tree of life. Monera was found to include two distinct domains: Bacteria and Archaea. Although archaeans are microorganisms like bacteria, they are actually more closely related to eukaryotes, like us, than they are to bacteria! (After M. T. Madigan and M. Martinko, 2006.)

protists), Bacteria, and Archaea (**Figure 1.14**). The discovery of Archaea stimulated both enormous interest and intense skepticism at first. However, as more lineages of Archaea were identified, it became clear that it did, indeed, represent a novel and ancient branch on the ToL. **Table 1.1** summarizes some of the similarities and differences observed between members of the three domains. The prokaryotes, which encompass members of the domains Archaea and Bacteria, share certain characteristics, such as size and a lack of intracellular organelles, while the eukaryotes appear to be chimeras, sharing key characteristics with both archaeans and bacteria. If we think back to the endosymbiotic theory, these patterns of similarities and differences begin to make sense. Eukaryotes, which were created through a series of endosymbiotic events, may very well have been derived from an ancestral archaean host that harbored a bacterial endosymbiont.

Woese's breakthrough was momentous for several reasons. First, by focusing on the ribosome, he had identified a way to compare all cellular life. Second, Woese revealed our ignorance of one of the three main branches of life, the Archaea. Further, he showed us that microbes occupy a dominant place in Earth's biodiversity. If we compare the five-kingdom and three-domain views of biodiversity, we see a fundamental shift from a view of life in which the eukaryotic **crown species** (plants, animals, and fungi) dominate, to one in which these eukaryotes are in the minority (see Figures 1.12B and 1.14). Woese himself described how unsettling this new view of life's diversity truly was: "Imagine walking out in the countryside and not being able to tell a snake from a cow from a mouse from a blade of grass, that's been the level of our ignorance" (Blakeslee, 1996).

Table 1.1 Comparison of Domains


	EUKARYA	BACTERIA	ARCHAEA
Cell type	Eukaryotic	Prokaryotic	Prokaryotic
Chromosomes	Linear	Circular	Circular
Membrane-bound organelles	Yes	No	No
Nuclear envelope	Yes	No	No
RNA polymerase	Many	One	Many
Cell wall composition	Not always present Plants—cellulose Fungi—chitin	Peptidoglycan	Lacks peptidoglycan
Cell membrane composition	Ester linked lipid with proteins (straight chain)	Ester linked lipids with D-glycerol (straight chain)	Ester linked lipids with L-glycerol (branched chain)


The Tiniest Microbes

There is one group of microbes that were not included in Woese's molecular tree of life, the viruses. Viruses are microscopic organisms that require a living cell, or host, to multiply. They are ubiquitous and may even be the most abundant biological entities on our planet. Viruses are simple in structure, with a genetic material (DNA or RNA) and a protein coat (**Figure 1.15A**). Some sport an additional outer layer, the envelope, which may have spikes that help the virus latch onto and enter a host cell. If the cellular conditions are right, the viruses then multiply within their host, often killing the host cell in the process.

Each type of virus has its own **host range**, which refers to the breadth of hosts it can infect. Some have a narrow host range; for example, *Variola virus*, which causes smallpox, can only infect humans. Other viruses have broad host ranges; for example, SARS-CoV-2, the causative agent of COVID-19, may infect hundreds of different hosts, including humans and other primates, bats, pangolins, ferrets, and camels.

Viruses are generally not given species names, so they don't fit neatly into the Linnaean classification system. In fact, many scientists don't consider them to be alive! They lack some of the basic features we think of when we attempt to define life, such as being cellular, maintaining homeostasis (or a stable internal state), growing, and making or acquiring energy. They do, however, replicate—using the host's replication machinery—and they adapt to their environment. Whether they are alive or not, viruses are one of the most abundant and diverse forms of microorganisms on Earth. They are categorized according to various characteristics they possess, includ-

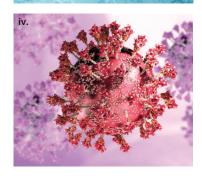
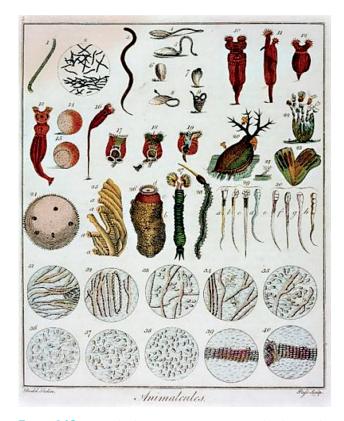


Figure 1.15 Viral Structure and Diversity (A) Most viruses are enclosed by an envelope embedded with proteins, which help the virus enter a host cell. A virus may have a DNA or RNA genome, which may be protected by a capsid. (B) A variety of different viral structures: [i] Acidianus bottle-shaped virus (colorized electron micrograph image), [ii] Bacteriophage on a bacterial cell (computer generated image), [iii] Ebola virus (microscopic view), and [iv] SARS-CoV-2 (computer generated image). (B photos from [i] ICTV International Committee on Taxonomy of Viruses, David Prangishvili, Mart Krupovic, Andrew M. Kropinski, Stuart G. Siddell, CC BY-SA 4.0, via Wikimedia Commons; [ii] extender_01/Shutterstock; [iii] iStock.com/Nixx photography; [iv] iStock.com/Naeblys)

ing their shape and size, the type of genetic material they possess (DNA or RNA), and whether they have an envelope layer. **Figure 1.15B** illustrates the major types of viruses

It is challenging to identify the origin of viruses, as they don't leave fossils. In addition, some viruses can insert their genetic material into their hosts' genomes, which makes it difficult to untangle viral from host evolutionary histories. Since viruses do not share homologous genes or proteins with members of the three domains (Bacteria, Archaea, and Eukarya), we are not able to place them onto one or more branches of the ToL, leaving their relationships with other life forms in question.

1.3 MAKING THE INVISIBLE VISIBLE


With Woese's transformation of the ToL, microbes took center stage in our understanding of the diversity of life for the first time. In fact, according to Woese, microbes are the core of life on Earth: "If you wiped all multicellular life-forms off the face of the earth, microbial life might shift a tiny bit, if microbial life were to disappear, that would be it—instant death for the planet" (Blakeslee, 1996).

Before the 16S rRNA ToL revolution, we hadn't appreciated the immense diversity of microbes on our planet. In large part this was due to their seemingly simple morphology, which resulted in our tendency to group these simple life forms together. In the five-kingdom view of life, we see the microbial lineages clustered in two pools at the base of the tree (see Figure 1.12B). These pools represent the protists and monera (Bacteria and Archaea) with virtually no branches to represent what we now know is an incredible diversity of microscopic life.

We have known that microbes exist for over 400 years, ever since Robert Hooke invented the first microscope and explored the detailed structure of all sorts of biological entities, such as sponges, seaweed, and wood. Of particular interest here are his observations of mold. He describes its appearance on numerous decaying substances and notes that these creatures "will not be unworthy of our more serious speculation and examination" (Hooke, 1665). In short, Hooke was describing a microorganism's appearance for the first time.

The First Sightings of Bacteria

Inspired by Hooke, Antonie van Leeuwenhoek developed an even more powerful microscope and explored numerous samples from his own body, such as stool. In 1677, he reported to the British Royal Society that he had discovered over 1,000 "animalcules," or little animals, that differed from one location in the body to another (Figure 1.16) (van Leeuwenhoek, 1677). When he examined scrapings from his teeth, van Leuwenhoek noted, "I then most always saw, with great wonder, that in the said matter there were many very little living animalcules, very prettily a-moving. The biggest sort . . . had a very strong and swift motion and shot through the water (or spittle) like a pike does through the water. The second sort . . . oft-times spun round like a top . . . and these were far more in number" (van Leeuwenhoek, 1677). These were the very first observations of living bacteria ever recorded, and they inspired the development of an entirely new field of study, **microbiology**, or the branch of science that deals with microorganisms. Van Leuwenhoek is considered the father of microbiology, and from the

Figure 1.16 Animalcules Antonie van Leeuwenhoek was the first person to record observations of the microbiome. He obtained microbiome samples from various body parts and viewed them under a microscope. The "animalcules," or microorganisms, he saw are illustrated in this figure. (Photo from The Picture Art Collection/Alamy Stock Photo)

late 1600s to present day, scientists have been exploring the rich diversity of microbes on Earth.

Culturing the Invisible

Ever since the invention of the microscope, microbiologists have developed a rich toolbox with which to further explore microscopic life forms. The most common approach is to **culture** the cells, which allows them to grow and divide until there are enough for us to see. The basic procedure is straightforward. Say you want to see some of the microorganisms present in a nearby pond. You start with a sample of pond water and spread a drop of it on a rich growth medium. Each cell lands on a unique spot on the growth medium. If its requirements for growth are present, it grows and divides in this spot, and its daughter cells then replicate and eventually form a visible "colony" of hundreds of thousands of identical cells (**Figure 1.17**). In our pond water sample, we might find 50 or more different types of microbes growing on the food source we provide.

By altering the nutrients offered in growth medium to meet different species' growth requirements, scientists have identified several thousand prokaryotic and protist species. However, that seemingly impressive number pales in comparison with the number that actually inhabit the pond water. If we were to apply Woese's molecular methods of comparing all the 16S rDNA present in our pond water sample, we might find several thousand microbial species. This discrepancy between what we can grow in artificial media and what microscopic life is present in a sample is known as the **great plate count anomaly**, and it hindered progress in microbiology for decades. We simply didn't know what (or how much) we didn't know! For example, it is common knowledge that urine is sterile, unless you have a urinary tract infection. And yet, if you take a sample of supposedly sterile urine from a bladder and sequence the 16S rDNA present, you will find a wealth of different microbes have made urine, or the bladder, their home. For every novel environment we sample, we identify an evergreater breadth and depth of microbial diversity.

Extremophiles, Life on the Edge

With the advent of molecular tools for identifying microbes, microbiologists engaged in an expansive hunt for novel microorganisms. We now know that microbes exist in

Figure 1.17 Bacterial Culture To isolate a genetically identical group of bacteria, a sample can be spread across a nutrient-filled petri dish to isolate individual cells, which can grow and divide to form visible colonies (A). Every member of a colony is a descendant of the first individual cell that landed on that spot on the petri dish. To obtain a pure culture of each individual cell from the original sample, cells from a colony are transferred to a fresh petri dish and grown in isolation (B). (Photos from [left] iStock.com/aorphoto; [right] iStock.com/Sinhyu)

some of Earth's most extreme environments. Some thrive in ice or salt, in the most acidic or basic conditions, living in organic solvents, consuming heavy metals and even toxic waste. Such **extremophiles** have been found in every imaginable, and even the most unimaginable, conditions on Earth. In every extreme environment investigated, a variety of organisms have been shown to not only tolerate the conditions there, but often require them to survive. **Table 1.2** shows just a sliver of the extreme environments where extremophiles have been identified so far.

The term *extremophile* means "lover of the extreme," and the Archaea domain is where most extremophiles are found. In fact, when archaeans were unveiled to the world, they were thought of as extremophile weirdos. We now know that archaeans can readily adapt to extreme conditions, which may be due, in part, to the composition of their cell membrane. All cells have a plasma membrane made of a phospholipid bilayer, which evolved from the lipid-based protocell

membrane we discussed earlier. The archaeans employ ether bonds in that bilayer, while bacteria and eukaryotes use ester bonds. This distinction is important because ether bonds are more resistant to chemical activity, which permits archaeal cells to survive in more extreme environments.

Some archaeans are among the most extremely thermophilic (heat tolerant), acidophilic (acid tolerant), alkaliphilic (base tolerant), and halophilic (salt tolerant) microorganisms known. Figure 1.18 shows the location where extremophiles were first discovered, in the hot springs of Yellowstone National Park. The genus *Picrophilus*, a member of Archaea, includes the most acidophilic organisms known, which can grow at a pH of 0.06, which is more acidic than hydrochloric acid. Despite their heatloving reputation, archaeans are also found in very cold places, like Arctic seawater. Aside from our fascination with how extremophiles adapt to their extreme environments, this relatively unknown domain of life is particularly important to humans, due to its position on the ToL. Eukaryotes share a more recent common ancestor with

Archaea than they do with Bacteria. Archaeans are our sister lineage, and there is so much more we must learn from them about them, and thus our own place in the biosphere.

1.4 THE MICROBES WITHIN US

We now understand that microbes have a long and rich evolutionary history on Earth, one that is essentially as old as the planet itself. They continuously adapt to novel environments, invent new methods of energy capture, and in the process, have transformed our planet. Given this central role of microbes in the biosphere, it may be less surprising to learn that microbes have also adapted to living in and on us. We refer to these invisible residents as members of our **microbiome** (from the Greek terms *micro* meaning "small" and *bios* meaning "life"). The formal definition of a microbiome refers to a characteristic microbial community occupying a defined habitat that has certain properties. We can find microbiomes essentially everywhere we look—in our gut, in the soil surrounding the roots of a plant, in clouds, and even in the plume from a hydrothermal vent.

A Universe of Microbes within Us

The term *microbiome* refers to both the microorganisms present and the functions they provide, while the term **microbiota** refers simply to which species are present. For example, our

Table 1.2 Types of Extreme Environments

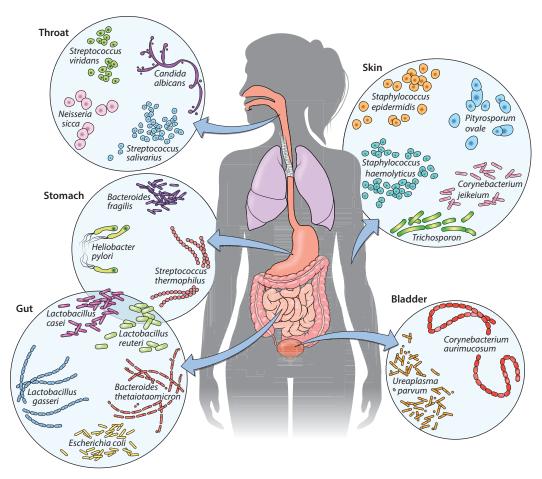
Hot springs
Deep sea hydrothermal vents
Salt lakes
Polar regions
Volcanic areas
Acidic mine drainage
Deserts
Environments with high radiation levels

Figure 1.18 Extremophiles at Yellowstone National Park Extremophiles were first discovered in Yellowstone National Park's hot springs, where the water regularly reaches 189°F. The thermophiles that live in the hot springs give the pool its ring of colors. To survive at such high temperatures, these bacteria have evolved very stable membranes and proteins. One of these proteins, Taq polymerase, is now used in an important technique for creating copies of DNA, known as the polymerase chain reaction, or PCR. Taq is able to maintain its structure and function even at the high temperatures required for PCR. We can thank extremophiles for our ability to perform PCR for COVID-19 testing, gene sequencing, forensic testing, and more! (Photo from Framalicious/Shutterstock)

gut microbiome is home to approximately 300 to 500 species of microbes, collectively called the gut microbiota. These members together with the functions they provide, such as digesting some of the food we ingest, are called our gut microbiome. Each microbiome is integrated into its host or ecosystem and is crucial for the proper functioning and health of the organism(s) in that niche.

Our goal in this textbook is to explore what microbes are present in humans, what functions they encode in their genomes, and how those functions impact us, their human hosts, in both healthy and diseased states. This knowledge may force us to redefine what it means to be human. Rather than consider ourselves as distinct biological entities, separate from all other life forms, we must now acknowledge that humans, indeed all multicellular organisms, are composed of numerous complex ecosystems each consisting of a mixture of their own and microbial cells. This new entity, the human with all its microbiomes, is referred to as the holobiont, a term derived from the Greek hólos or "whole" and biont for "unit of life." The term was coined by Lynn Margulis in the 1990s as she was exploring the endosymbiotic origin of eukaryotes. Her intent was to provide a term that would acknowledge the key role of symbiotic relationships in the evolution and diversification of multicellular eukaryotic organisms, such as when an ancestral prokaryotic cell gave rise to mitochondria or chloroplasts. However, the term is equally appropriate to refer to a human body with its invisible microbial symbionts that, as you will learn, provide the key to our health while at the same time serving as the harbingers of certain diseases.

Each of us consists of about 30 trillion human cells, which carry our genetic blueprint and the machinery required to translate that information into what becomes the visible "us." These cells form collections of tissues and organs, which play critical roles in keeping our bodies functioning. For example, skin serves as our front-line defense against invading pathogens, while the heart provides the force required to ensure all of our cells receive the oxygen-rich blood they require. For several thousand years physicians and scientists have explored our cells, tissues, and organs in their quest to understand what makes us uniquely human, what keeps us healthy, and what can go wrong in our bodies to cause disease and death.


We have long known that bacteria and viruses could invade our bodies and cause illness; however, they were considered temporary intruders that our bodies, or the medications we took, would fight to eliminate. In just the past 20 years we have gained an entirely new perspective on the important role microorganisms play in keeping our bodies healthy, leading some to argue that the microbiome should be considered the 11th critical organ, equal in importance to our brain! Let's explore this new organ and learn a bit about its role in keeping us healthy.

How Much of You Is Human?

It's estimated that we have about 35 trillion microbes in and on our bodies—about 5 trillion more than the number of human cells! This count excludes viruses, whose numbers may dwarf the human and microbial cell counts combined. Those numbers translate into a weight of just over 1 kg (2.5 pounds), with a volume of about 1.5 liters (6 cups) of cells. That's nearly half a gallon of microbes per human!

Our body hosts numerous, distinct microbiomes (**Figure 1.19**). We have an oral microbiome in our mouth, one that covers our skin, another in our urinary tract, one in our gut, and even one deep in our lungs. There are far more fine-tuned distinctions we could make. For example, the microbes that inhabit the surface of our tongue are distinct from those that live under our gums, which are different from those that live attached to our teeth, and so on.

These distinct microbial communities also vary greatly in their cell densities. Blood is a virtual microbial desert, while the large intestine contains one of the densest microbial communities on Earth (Bojanova & Bordenstein, 2016)! While the precise number of microbes may differ, each microbiome is highly diverse, with over

Figure 1.19 So Many Human Microbiomes The human microbiome includes many different microbial communities, each with its own unique composition of species and role in maintaining our health. (After V. D. Appanna, 2018.)

300 distinct bacterial species identified in the human gut microbiome alone (Almeida et al., 2021).

Even more compelling than their sheer numbers is the fact that the genetic information our microbiomes encode far exceeds our own. The human genome encodes 20,000 genes, while our microbiomes provide an additional 45 million, each encoding functions with the potential to impact us, their host. For example, if not for genes carried by certain species of bacteria, we would not be able to digest most of the fiber we consume.

1.5 OUR MICROBIOMES, OUR HEALTH

The rapidly growing field of microbiome science is revealing the complex roles these fellow travelers serve in human health. There is now overwhelming evidence that most functions of our body, such as growth, development, and metabolism, depend on our microbiome. Our immune system is trained first by our mother's microbiome during pregnancy and then by our own microbiome, particularly during the first few years of life. Dysfunctions in the gut microbiome are associated with several autoimmune diseases such as arthritis, fibromyalgia, and multiple sclerosis. Our gut microbiome also plays a role in several intestinal conditions, such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), while obesity is often associated with an imbalance in the members of our gut microbiome.

Microbiomes and Human Nutrition

Another example of the key role our microbiome serves is in nutrition. Sugars and starches are two classes of carbohydrates synthesized by all organisms. The plants we eat contain thousands of different carbohydrates, which are broken down to their simplest components to provide us with energy. The human genome has fewer than 20 **enzymes** involved in digesting carbohydrates. Enzymes are proteins that act as biological catalysts by accelerating chemical reactions. Those carbohydrates we can't digest end up in the large intestine, where our microbiome takes over. The microbes in our gut encode thousands of carbohydrate-digesting enzymes in their genomes, which they employ to break down, or ferment, carbohydrates that are not digestible by humans, for energy.

Microbial Metabolites, Key to Human Health

One outcome of the microbiome's digestive efforts is their waste, some of which is essential for human health. These waste molecules, also known as **by-products**, serve key roles in our nutrition and metabolism. For example, our bodies require vitamins, which are organic compounds that are essential for maintaining various body systems, including the immune and nervous systems. You might have learned that the vitamins our bodies need can only be obtained from the food we eat. In fact, our microbes can produce several key vitamins for us. Many vitamins are **metabolites**, or intermediaries, produced during the fermentation of fibrous foods by the microbes living in our gut. Bacteria in the microbiome also produce **short-chain fatty acids** (**SCFAs**), which are fatty acids with fewer than six carbon atoms. They are primarily produced through the fermentation of dietary fibers by gut bacteria in the colon. SCFAs are an essential energy source for our intestinal cells. It is an elegant symbiosis: our gut provides an energy-rich environment that supports an incredible diversity of microbial life, while that life, in turn, provides us with some of the key ingredients required to ensure our health.

Reflections on Your Microbiome

Let's think about our microbiomes from a slightly different perspective. As you walk from one lecture hall to another, passing people who may look very different from you—in height, weight, skin, or eye color—consider this fact: your genome differs by about 0.1% from any other human genome. Regardless of how different you look, you are nearly identical in terms of your DNA content. Now, look again at those passing by, and imagine that you can see the members of their microbiomes as easily as you see their facial features. Each person's microbiome differs by as much as 90% in terms of the species present, not to mention the genetic repertoires those species possess.

All these facts are causing us to reconsider how we think of ourselves as uniquely "us." Traditional explanations for what makes an individual unique focus on our brain or the contents of our genome. However, as you will learn, our microbial residents communicate directly with our brain, and they provide far more gene functions than does our own genome. We are realizing that humans are not discrete entities of human cells and genes; rather, each of us is a consortium of thousands of organisms that result in a functioning, hopefully healthy, human. Indeed, it takes a microbial village to be a human!

Take a moment to reflect on what this new understanding of our microbial partnerships means to you. Does it scare you (or gross you out) to imagine the astronomical numbers of microbes in and on your body? Do you get excited about the genetic potential we carry inside us? Or do your thoughts turn to the role these microbes have played in our evolutionary history? Perhaps you wonder if you can take advantage of them to improve your health. Simply said, we are not alone, and it can feel empowering to understand that you have a fair bit of help in keeping your body healthy.

CHECK YOUR UNDERSTANDING

- 1. Approximately when do we think life emerged on this planet?
 - a. 4 billion years ago
 - b. 1 million years ago
 - c. 0.5 million years ago
 - d. 1,000 years ago
- 2. The Miller-Urey experiment was designed to test whether
 - a. early Earth's conditions could be mimicked.
 - b. organic molecules could be created under early Earth conditions.
 - c. inorganic molecules could create life.
 - d. life could be created in a glass chamber.
- 3. Which represents the Central Dogma of Molecular Biology?
 - a. $RNA \rightarrow DNA \rightarrow protein$
 - b. Membrane \rightarrow DNA \rightarrow protein
 - c. DNA \rightarrow RNA \rightarrow protein
 - d. $DNA \rightarrow membrane \rightarrow protein$
- 4. The advanced protocell created by Szostak's lab was essentially a
 - a. membrane-bound cell containing DNA.
 - b. fragment of RNA that could replicate itself.
 - c. cellular structure that could make copies of itself.
 - d. cellular structure that was unable to replicate itself.
- 5. Natural selection occurs when
 - a. an individual organism gains new, advantageous traits during its lifespan.
 - b. individuals with advantageous traits are better able to survive and reproduce, and those traits become more common in the population over time.
 - c. random events result in organisms better able to survive and reproduce.
 - d. a population of organisms survives to reproduce.
- 6. Hydrothermal vents provide a rich nutrient source that some of the earliest life forms likely took advantage of.
 - a. True
 - b. False
- 7. What are deep-sea hydrothermal vents?
 - a. Magma transmitted from the Earth's core
 - b. The ocean's equivalent of geysers
 - c. Very hot plumes of air at the bottom of the ocean
 - d. Underwater volcanoes

- 8. The two competing arguments about the origin of life are the replication argument and the cell division argument.
 - a. True
 - b. False
- 9. The protocell membrane was created with
 - a. DNA.
 - b. RNA.
 - c. fatty acids.
 - d. proteins.
- 10. What's the difference between autotrophs and heterotrophs?
 - a. An autotroph makes its own food.
 - b. A heterotroph makes its own food.
 - c. A heterotroph uses the sun's energy to fuel itself.
 - d. An autotroph uses the sun's energy to fuel itself.
- 11. How did the Great Oxidation Event affect life?
 - a. Anaerobic life largely went extinct.
 - b. Aerobic life largely went extinct.
 - c. It created the rust deposits found in some sedimentary rocks.
 - d. It enabled anaerobic life to flourish.
- 12. Identify 2 characteristics of eukaryotes not found in prokaryotes.
 - a. Cell membranes, flagella
 - b. Nuclei, mitochondria
 - c. Nuclei, flagella
 - d. Golgi bodies, cell membranes
- 13. Lynn Margulis proposed that eukaryotic cells came from a chance fusion of 2 protists.
 - a. True
 - b. False
- 14. How did cyanobacteria transform Earth's atmosphere?
 - a. By producing methane
 - b. By consuming all the existing oxygen
 - c. By producing oxygen
 - d. By consuming all the existing carbon dioxide
- 15. LUCA was the very first organism.
 - a. True
 - b. False
- 16. What technology allowed the microbiome to be viewed for the first time?
 - a. Telescope
 - b. Microscope
 - c. Electron microscope
 - d. 16S ribosomal sequence

- 17. What genus are humans members of?
 - a. Eukarya
 - b. Sapiens
 - c. Mammalia
 - d. Homo
- 18. Which kingdom were prokaryotes a part of in the 5-kingdom view of life?
 - a. Monera
 - b. Fungi
 - c. Protists
 - d. Bacteria
- 19. What did Carl Woese use to infer relationships between prokaryotes?
 - a. Whole genome sequencing
 - b. Phenotypic observations
 - c. Metabolic pathways
 - d. 16S rRNA
- 20. What are the 3 domains of life?
 - a. Eukarya, Prokarya, and Monera
 - b. Eukarya, Bacteria, and Archaea
 - c. Fungi, Protista, and Bacteria
 - d. Eukarya, Bacteria, and Protista
- 21. What is the cause of the great plate anomaly?
 - a. Some bacteria have RNA genomes.
 - b. Many bacteria cannot be cultured using available techniques.
 - c. It is difficult to find bacteria in the environment.
 - d. It is impossible to isolate a single species from a sample.

- 22. Extremophiles are microbes that survive in intense conditions, such as very high or low temperatures.
 - a. True
 - b. False
- 23. Which human microbiome is less dense than the others?
 - a. Gut microbiome
 - b. Oral microbiome
 - c. Blood microbiome
 - d. Skin microbiome
- 24. A human and their microbiome have about the same number of enzymes involved in digesting carbohydrates.
 - a. True
 - b. False
- 25. Vitamins, short-chain fatty acids, and other metabolites are produced when certain microbes digest which compounds in food?
 - a. Simple sugars
 - b. Fatty acids
 - c. Lipids
 - d. Fibers

Answers: 1A, 2B, 3C, 4C, 5B, 6A, 7B, 8B, 9C, 10A, 11A, 12B 13B, 14C, 15B, 16B, 17D, 18A, 19D, 20B, 21B, 22A, 23C, 24B, 25D

DIVING DEEPER

- 1. Why were deep-sea hydrothermal vents advantageous locations for early life?
- 2. How did Miller and Urey show that the organic molecules necessary for life could form from inorganic material?
- 3. What were the two competing views about the origin of life, and what did Jack Szostak's protocell reveal?
- 4. What's the difference between autotrophs and heterotrophs?
- 5. How did the Great Oxidation Event affect life?
- 6. Can you explain three differences and three similarities between prokaryotes and eukaryotes?
- 7. According to Lynn Margulis's endosymbiotic theory, how did eukaryotic cells acquire mitochondria and chloroplasts?
- 8. Identify three differences between the five-kingdoms and three-domains views of life's diversity.

- 9. Why is the ribosome a good tool to use for inferring the tree of life?
- 10. Why was Woese's use of 16S rDNA sequencing revolutionary?
- 11. What technology allowed the microbiome to be viewed for the first time?
- 12. Why are bacterial culture techniques limited, and what technology solves this problem?
- 13. Can you give examples of the environments that extremophiles are able to live in?
- 14. What is a virus's host range?
- 15. Why can't viruses be placed on the tree of life, and how are they different from Bacteria, Archaea, and Eukarya?
- 16. What's the difference between the microbiome and microbiota?

- 17. Lynn Margulis introduced the term holobiont to explain what?
- 18. Can you list five microbiomes found in/on humans?
- 19. How does the human microbiome vary by body part?
- 20. Why is the microbiome necessary for carbohydrate digestion?
- 21. What are the two main metabolites bacteria produce as waste, and why are they important for human health?

DISCUSSING AND REFLECTING

- 1. Lynn Margulis's serial endosymbiosis theory was a harbinger of the discovery of the microbiome. Explain what is meant by that statement.
- 2. Woese's impact on our understanding of biodiversity has been enormous. Describe the key features of biodiversity that we were ignorant about before Woese's research revealed the three-domain tree of life.
- 3. What can extremophiles tell us about the origin of life on Earth and the possibility of life existing on other planets?
- 4. Reflection. Carl Woese said, "If you wiped all multicellular life-forms off the face of the earth, microbial life might shift a tiny bit, if microbial life were to disappear, that would be it—instant death for the planet" (Blakeslee, 1996). How do you feel now that you know the importance of microbes, and how does this affect your view of life on this planet?

RECOMMENDED READINGS

Popular Science Reviews

- O'Donnell, E. (2019, June 7). How Life Began: Jack Szostak's Pursuit of the Biggest Questions on Earth. *Harvard Magazine*, 40–79.
- Quammen, D. (2018, August 13). The Scientist Who Scrambled Darwin's Tree of Life. *New York Times*, 34.

Popular Science Book

Sagan, D. (2012). Lynn Margulis: The Life and Legacy of a Scientific Rebel. Chelsea Green.

Scientific Reviews

- Gray, M. W. (2017). Lynn Margulis and the Endosymbiont Hypothesis: 50 Years Later. *Molecular Biology of the Cell*, 28(10), 1285–1287. https://doi.org/10.1091/mbc.e16-07-0509
- Nasir, A., Romero-Severson, E., & Claverie, J.-M. (2020). Investigating the Concept and Origin of Viruses. *Trends in Microbiology*, 28(12), 959–967. https://doi.org/10.1016/j.tim.2020.08.003

Index

A	agar, 37–38, 77	amino acids
abiogenesis, 4	Aggregatibacter, 70	in bile salts, 283
abiotic components, 374	Aggregatibacter actinomycetemcomitans,	in Crohn's disease, 66-69
ABO gene, 340	281	in depression, 224–26
abstract (article), 147, 149-51	agriculture. See farming	origin of, 3–4
abundance. See species abundance	Ahmadi, S., 290	triplets encoding, 119–20
acetate	air-borne microbes experiment, 30–31	Amish farmers (USA), 302–3, 357–58
in gut microbiome, 60–62, 273, 278,	air-handling systems, 349, 353–55, 359,	amniotic sac, 179–80, 243
281–82, 285, 386	365	amplification, DNA, 101–6, 117–18
health linked to, 386	Akkermansia, 307–8	AMPs (antimicrobial proteins), 240, 241,
immune function, 184, 301	Akkermansia muciniphila	258
Acetobacter, 247	gut microbiome, 273, 278, 281	amylases, salivary, 60, 330
Acidianus virus, 16	gut transit times linked to, 380	amylose, 279
acidic environment	infant microbiome, 194	anaerobic bacteria, 37–39, 65, 71, 190,
oral microbiome, 71	weight loss linked to, 285, 288, 289	257–60, 395
skin microbiome, 74–75	Aktipis, Athena, 62	anaerobic respiration, 7–8
acidophilic archaeans, 19	Alexander, Albert, 34	Anaerostipes caccae, 314
Acinetobacter, 247, 362	algorithms, similarity-searching, 120, 123	anaphylaxis, 297
Acinetobacter lwoffii, 300, 302, 309	aliquot, 97	animalcules, 17, 28
acne, 75–76	alkaliphilic archaeans, 19	animals. See also specific animal
acquired (adaptive) immune system, 180-82,	allergens, 296	in built environment, 350, 353-54, 369
237–38, 296–97	allergic cascade, 296–97	infant microbiome affected by, 192-93,
ACTH (adrenocorticotropin), 212	allergic diseases, 295–319. See also specific	297, 300, 302–3, 308–9, 357–58
Actinobacteria	disorder	in research (see model organisms)
colonization resistance, 62	antibiotics in, 304–5	in tree of life, 12–13, 19
female reproductive tract microbiome, 176	atopic march, 303	annealing, 101–2, 117
gut microbiome, 330–31	circle of causality, 315–16	anoxic environment, 7–8, 37–38
infant microbiome, 188–90	environmental impact, 300–303	Antharam, V. C., 266
in leanness, 277	epigenetic changes, 298–99	anthrax, 33
oral microbiome, 69, 70	farm effect, 297, 300, 302–3, 308–9,	antibacterial mouthwash, 70
primate microbiome, 325	357–58	antibiotics
•		
respiratory microbiome, 306–7	hygiene hypothesis, 245, 302–4, 333–34,	agricultural use of, 335
skin microbiome, 73–74	350, 366–69	in allergic diseases, 304–5, 310, 312
stomach microbiome, 336	infant microbiome linked to, 198–99	bactericidal, 35
Actinomyces, 70	maternal microbiome linked to,	bacteriostatic, 35
active state, 362–63	299–300	in children, 196–97, 300, 304–5, 335,
adaptations	microbiome in, 305–13	337, 360
niche, 45	prevention of, 297–98, 304	definition of, 34
processes specific to, 55	treatment of, 313–15	discovery of, 34–35
adapter regions, 101–2, 105, 117	allergic response, 295-97, 334	dysbiosis caused by, 39, 57, 76,
adaptive (acquired) immune system, 180-82,	Alm, E. J., 254–55	196–97, 214, 241, 244, 260, 335,
237–38, 296–97	alpha-aminoadipic acid, 246	337
adaptive traits, 7	alpha diversity, 126-29, 141, 255	increased use of, 201, 245, 335, 365
adenine, 99	indices, 129-32, 166-69, 382	microbiome recovery from, 394-95
adenocarcinoma, 337	infant microbiome, 196-97	naturally produced, 331
adenosine triphosphate (ATP), 8, 60	in obesity, 280	new perspectives on, 339–40
adherens, 73	α-amylase, 330	preventative use of, 261
adiposity, 276, 277, 279, 283-84. See also	α-synuclein, 227–28	resistance to, 35, 85, 186–87, 310,
obesity	α-toxin (α-hemolysin), 310	330–31, 335, 337, 360, 362
adrenal glands, 212	altered microbiome, 88. See also dysbiosis	antibodies, 182, 184, 237–38, 242–45, 296
adrenocorticotropin (ACTH), 212	Alzheimer's disease, 221, 228	antidepressants, 220–21, 229
aerobic bacteria, 37, 69, 71, 188, 190, 395	Amazon River basin study, 349–50	antigen-presenting cells (APCs), 241–42,
aerobic respiration, 7–8	Ambystoma mexicanum (axolotl), 87	296–97
Africa	American Academy of Allergy, Asthma &	antigens, 237, 310
ape diversification, 323–24	Immunology, 303	antimicrobial proteins (AMPs), 240, 241,
Malawi study, 324	American Gut Project, 383	258

antimicrobials	aerobic, 37, 69, 71, 188, 190, 395	bases, 99
female reproductive tract, 177-79	anaerobic, 37-39, 65, 71, 190, 257-60,	Basic Local Alignment Search Tool (BLAST),
intestinal, 239	395	120
skin, 309	antibiotics produced by, 331	basophils, 181, 238, 296-97
antiseptics, 35	appendages, 69-70	Bassi, Agostino, 32
anxiety, 220	in built environment, 355, 363	bathrooms, 351, 353, 355-56, 363, 364
APCs (antigen-presenting cells), 241–42,	cellulose-degrading, 37	BBB (blood-brain barrier), 212-13, 216-17
296–97	in core microbiome, 54–55	BC (Bray-Curtis dissimilarity) metric,
apple-shaped body, 279	culturing methods, 18, 37-39, 42	135–36, 333
Appleton, Joseph, 37	evolutionary divergence, 103	B cells, 182, 238
Archaea	filamentous, 43, 226–27	in allergic cascade, 296-97
evolutionary divergence, 103	first observations of, 17-18, 28	development of, 236-37, 243-44
extremophiles, 1, 3, 18–19	immune responses to, 237 (see also	in stomach, 337
gut microbiome, 58, 59	immune system)	BDNF (brain-derived neurotrophic factor),
oral microbiome, 69	recovery-associated, 394-95	221
skin microbiome, 73–75	saccharolytic, 392	BE. See built environment
in tree of life, 14-15, 17, 19	tree of life, 15, 17, 19	beds, microbes in, 346
arginine, 73, 394	virulence factors, 264-65, 310	behavioral abnormalities, 185, 223
arthritis, rheumatoid, 246–47	bacterial infections. See specific infection	Belgium, 330–31
artifact, 160-62	antibiotics for (see antibiotics)	beta-alanine, 246
artifact situation, 266	bacterial vaginosis (BV), 179, 202, 255	beta diversity, 135-39
aryl hydrocarbon receptor agonists, 214	bactericidal antibiotics, 35	definition of, 126
ASD (autism spectrum disorder), 226–27	bacteriocins, 177, 178	dysbiosis defined by, 255
asparagine, 246	bacteriophages (phages)	female reproductive tract, 176–77
Aspergillus, 69, 78	in built environment, 352	gut microbiome, 333
asthma, 198, 306–9	characteristics of, 16	visualisations, 140–41, 155–56
birth mode linked to, 86, 300, 304	gut microbiome, 63-65, 330-31	β-oxidation, 258–59
farm effect, 302-3, 308-9, 357-58	infant microbiome, 189	bias
gut dysbiosis, 245	skin microbiome, 73	codon, 120
gut-lung axis, 307–8	therapeutic use of, 341	research, 45, 376
maternal microbiome linked to, 299–300	bacteriostatic antibiotics, 35	Bifidobacterium
physiological responses in, 306-7	Bacteroides	in birth mode study, 129
tolerance approach, 304	in birth mode study, 128-29, 187	cholesterol-lowering effect, 279
treatment of, 314–15	in colorectal cancer, 67	farm effect, 300
astrocytes, 214, 221	in coronary heart disease, 247	in fossils, 327
atherosclerosis, 247	in depression, 225–26	gut microbiome, 62, 64, 188, 198–99,
atmosphere	dietary impact on, 332	307–8, 388
anoxic, 7–8, 37–38	in food allergy, 67	infant microbiome, 188, 190-201,
early Earth, 2, 3	infant microbiome, 189, 193, 194, 196,	203–4, 256–57, 279, 304
atopic dermatitis (eczema), 75, 198–99, 240,	198	in lactose digestion, 340
300, 309–11	lung microbiome, 241	in microbiota-gut-brain axis, 219–21,
atopic march, 303	in obesity, 278–80, 288	225
atopy, 198	primate microbiome, 323–24	in obesity, 288–90
ATP (adenosine triphosphate), 8, 60	stomach microbiome, 336	probiotic strains, 390, 393
authorship (article), 148-49	vaginal microbiome, 186	Bifidobacterium adolescentis, 60, 323
autism spectrum disorder (ASD), 226–27	Bacteroides fragilis, 51, 189, 199, 268, 301	Bifidobacterium animalis, 289, 314
autoantigens, 237	Bacteroides thetaiotaomicron, 60, 69	Bifidobacterium bifidum, 192, 289
autoclave, 37	Bacteroidetes	Bifidobacterium breve, 192, 229, 314
autoimmune diseases. See also specific	in colorectal cancer, 62-64	Bifidobacterium infantis, 175, 192, 203, 229
disorder	core microbiome, 54	Bifidobacterium lactis, 314
CNS, 241–42	in diabetes, 200	Bifidobacterium longum, 203, 229, 256-57,
hygiene hypothesis, 245, 302–4, 333–34,	female reproductive tract microbiome,	278, 289, 314
350, 366–69	176, 183–84	bifidus factor, 191
systemic, 246	gut microbiome, 53, 59, 60, 67,	bile acids (BAs), 283
autoimmunity, 182–84, 237	199–200, 302, 325	bile ducts, 241
autonomic nervous system, 210, 217	infant microbiome, 189, 194, 195, 199	bile salt hydrolases (BSHs), 283
autophagy, 222	in obesity, 199, 277, 281, 285	bimodal distribution, 93–94
autotrophs, 7	oral microbiome, 69, 70, 281	binominal (Latin) names, 12, 53–54
Axial Therapeutics, 226	primate microbiome, 325	biodiversity, 126. See also diversity
axolotl (Ambystoma mexicanum), 87	respiratory microbiome, 306–7	biodiversity hypothesis, 304, 366–67
axon (nerve fiber), 185, 217	skin microbiome, 73–74	biofilms, 67, 70, 71, 265, 327, 351
axon (herve hoer), 103, 217	stomach microbiome, 336	bioinformatics, 38–41, 121
В	barcodes, 101–2, 117	biomarkers
babies. <i>See</i> infant microbiome; newborns	bar plot, 164–66	disease, 281
Bacillus, 78	± .	weight loss, 286
	Barrett's esophagus, 337	
Bacillus lactis aërogenes, 389	Bartonella, 330–31	biomolecules, 5
Bacillus licheniformis, 309	BAs (bile acids), 283	biosphere, early Earth, 8–10

birth, preterm, 46, 202-4, 243, 300, 360	microbiology of, 350-52 (see also	allergic disease linked to, 300, 304, 312
birth mode	microbiomes of the built	avoidance of, 340
colonization process during, 41, 186-87	environment)	dysbiosis linked to, 200–201
C-section (see Cesarean section)	butterfly gut amoeba, 29	NICU use after, 360
vaginal delivery, 186–87, 191	butyrate	studies of (see birth mode study)
birth mode study	gut microbiome, 60, 61, 193, 258, 267	vaginal microbiome transplant after, 202,
data analysis, 116–17, 122–25, 128–32	health linked to, 386	340
design of, 86–90, 95	immune function, 305, 308, 312, 338	c-FOS enzyme, 224–25
discussion, 157–58	in obesity, 279, 281–82, 286–87	Chain, Ernst, 34
literature review, 148–58	in type 1 diabetes, 200	Chaos (formless) genus, 28
microbiome analysis program, 158–70	BV (bacterial vaginosis), 179, 202, 255	CHD (coronary heart disease), 247–48
research questions, 86, 121	by-products, 22. See also metabolites;	Checherta (Peru), 349–50
results, 154–57	specific substance	chemical communication, gut-immune
sample size, 125, 141, 150	6	system, 63–64, 180, 239
sampling methods, 97–98	C	chemical lysis, 101
bisphenol A (BPA), 364 black mold, 345, 355, 359	Caenorhabditis elegans (nematode), 87 Callaway, Ewen, 186	chemoautotrophs, 8 chemolithoautotrophy, 7
bladder cancer, 248	Canaway, Ewen, 100 Camarillo-Guerrero, L. F., 103	chemolithotrophs, 2
bladder microbiome, 21	Cambrian Explosion, 11–12	chemoorganotrophs, 1
Blaser, Martin, 334–37	Campylobacter, 268	childbirth. See birth mode
BLAST (Basic Local Alignment Search Tool),	cancer, 248–50	chimpanzees, 322–30, 346
120	adenocarcinoma, 337	chlamydia, 33
Blastocystis, 59	bladder, 248	Chlamydiae, 330–31
Blastocystis hominis, 115	colorectal, 67, 249, 261, 265, 340	chloroplasts, 11
Blautia, 225–26, 327	liver, 265–66	Chng, K. R., 394–95
blood-brain barrier (BBB), 212–13, 216–17	microbiome-based therapies, 250	cholesterol, 275, 279, 282, 283, 285,
blood pressure, 275	skin, 73–74	376
blood stem cells, 243	stomach, 248–49, 337	Christensenella minuta, 285–86
blood sugar, 212, 275	Candida	chromatin, 298
blue-green algae (Cyanobacteria), 8-9	gut microbiome, 220	chromosome structure, 4–5
B lymphocytes. See B cells	oral microbiome, 69	chronic heart disease, 247
body mass index (BMI), 199, 274-75, 281	skin microbiome, 73, 78	chronic periodontitis (CP), 281
body odor, 73	Candida albicans, 373	Church, George, 109
body weight, 274-79. See also obesity	gut microbiome, 57, 59	circle of causality, 315-16
Bogaert, Debby, 196–97	vaginal microbiome, 179	citations (article), 152
bone marrow, 236	candidiasis, 179	cities. See urban lifestyle
bonobos, 322–30, 346	Cani, Patrice, 289	Citrobacter rodentium, 224–25
Booth, A., 224	capsaicin, 364	classification system, Linnaean, 12–17, 28,
Bordetella, 330–31	carbohydrates	53–54
bowel movements, 375. See also feces	in cavity formation, 71	cleaning practices, 333–35, 356, 359–62
box and whiskers plot, 134–35	dietary, 59–60, 285, 288, 332	Clostridiales, 78
box plot, 247–48	digestion of, 22, 188, 194, 281–82,	Clostridioides difficile, 253, 369, 384
BPA (bisphenol A), 364	329–30, 392	Clostridioides difficile infection
brain, 209–33	types of, 22, 59-60 (see also fiber;	disorders caused by, 57, 261
development of, 185, 212–17	starches; sugars)	FMT for, 39–40, 260, 290, 314, 341,
expansion in humans, 328–29	carbon dioxide, 3, 258, 355	377
gut interactions, 211, 213–22 (see also	cardiometabolic diseases (CMDs), 247–48.	Clostridium
microbiota-gut-brain axis) brain-derived neurotrophic factor (BDNF),	See also specific disease carpets, 353–54	in depression, 226 immune function, 308, 312
221	Cason, Carolina, 360–61	infant microbiome, 194, 198–99,
Bray-Curtis dissimilarity (BC) metric,	cavities (dental caries), 71, 394	214–15
135–36, 333	CD-HIT, 154, 158	in liver cancer, 265
Brazil, 349–50	celiac disease, 245	Clostridium leptum, 386
breastfeeding. See human milk	cell density, 20–21	Clostridium neonatale, 307
Bristol stool chart, 378	cell-mediated immunity, 237	clumping factors A and B, 310
Brudziński, Józef, 389	cells	cluster, 154
Bry, Lynn, 43–44	culturing methods, 18, 37–39, 42	CMDs (cardiometabolic diseases), 247–48.
BSHs (bile salt hydrolases), 283	eukaryotic (see eukaryotes)	See also specific disease
bubonic plague, 348	origin of, 4–6, 20	CNS (central nervous system), 185, 210,
build back better mantra, 365-66	plasma membranes, 18	241–42. <i>See also</i> brain
built environment (BE), 345–72	prokaryotic (see prokaryotes)	codon bias, 120
definition of, 345–46	cellular respiration, 7–8	codons, 119–20
features of, 349, 353–56, 359–60, 369	cellulose, 37, 59–60, 315, 345, 355	coevolution, 219, 229-30, 322-23
future improvements, 365–69	Center for Microbiome Innovation, 170	coin toss example, 92
history of, 346–48	Central Dogma of Molecular Biology, 4-7	colic, 200, 203
lifestyle based on (see Western lifestyle)	central nervous system (CNS), 185, 210,	colitis, 40, 65
metabolomics, 362-65	241-42. See also brain	enterocolitis, 39-40, 200, 203
microbe tracking in, 358-62	Cesarean section (C-section), 186–87	ulcerative, 66-67, 248, 258-59

Collinsella, 246–47	samples for (see sampling methods)	De Vlaminck, Iwijn, 110
colonization process	skin microbiome, 78–80	diabetes
during birth, 41, 186–87	Curatola, Gerry, 72	type 1, 200, 245
during infancy, 189-90, 196	Cutibacterium, 73–75	type 2, 46, 247, 280
recolonization, 337-38	Cutibacterium acnes, 73, 75–76	diarrheal diseases, 33, 197-98, 253, 261.
colonization resistance, 259	Cyanobacteria (blue-green algae), 8-9	See also specific disorder
gut microbiome, 36-37, 62-63, 196-97,	cyclic causality, 315–16	diet
204, 259	cytokines, 217	antibiotics in, 335
infant microbiome, 196–97	activation of, 237	body weight management, 287–91
lung microbiome, 240–41	in allergic response, 297	carbohydrates (see carbohydrates)
oral microbiome, 70	in autism spectrum disorder, 226-27	evolved dependence, 229-30, 328-29
skin microbiome, 74–75, 240–41, 309	in human milk, 244	fermented food, 288, 388–89
colonocytes, 65	in MGBA pathway, 221	fiber (see fiber)
color coding, 123	in obesity, 283–84	food additives, 258
colorectal cancer (CRC), 67, 249, 261, 265,	in rheumatoid arthritis, 247	food allergies (see food allergies)
340	cytosine, 99	food as medicine, 396
colostrum, 245	cytotoxins, 182	gut transit time, 379–80
commensal interaction, 230, 259	D	healthy, 387–88
community state types (CSTs), 177–78	D	human milk, 191–94
competition, diversification driven by, 7	Darwin, Charles, 12–13	in obesity, 199, 275, 278, 285–91
competitive exclusion, 179	data analysis, 88, 115–44	oral microbiome impact, 70–71
complementary supplements, 394	microbiome, 121–25	plants in, 323, 328, 332, 340, 352, 388
confidence intervals, 140	overview, 115–18	394
confounding variables, 95	quality control, 118	prebiotic foods (see prebiotics)
consortia, 388	reconstruction of genes and genomes, 118–20	during pregnancy, 182–84, 244, 299–300
constant regions, 103		
continuous sequence) 119	reporting on, 153–57 (see also literature) software, 121, 140, 145, 154, 158–70	probiotic foods (<i>see</i> probiotics) professional advice on, 377–78
contig (contiguous sequence), 119 control	(see also specific program)	solid food transition, 194, 257, 303
experimental, 77–79, 95–96, 125, 223,	species diversity measures, 126–39	Western, 287, 303, 332–33, 335–36,
247, 254, 277	species diversity measures, 120–37 species diversity visualisations, 139–41,	340, 365, 388, 392
quality, 118	155–56, 163–64	dietary emulsifiers, 258
sterility, 37–38, 77–78	data distribution, 93–94	dietary supplements
cooling systems, 349, 353–55, 359, 365	data organization, 88	prebiotics, 392–93
coprolites, 326–27	datasets. See also specific study	probiotics, 389–92
coprophagy, 95, 226–27	genome reference, 119, 121–23, 154,	synbiotics, 393–94
coprostanol, 376	163, 376	digital object identifier (DOI), 148
core microbiome, 54–57, 187–90, 254	KOALA Birth Cohort Study, 195	Dinan, T. G., 228–29
coronary heart disease (CHD), 247-48	public (Qiita), 159–60	Dinophysis algae, 9
correlation, 86	data transformation, 163–64	disappearing-microbiota hypothesis,
corticotrophin-releasing hormone (CRH),	DCs (dendritic cells), 181, 239, 296	334–37, 341
212	dead zones (ocean), 9	discovery metabolomics, 214
cortisol, 212	deceased state, 362-63	discussion section (article), 148, 149, 153,
Corynebacterium, 70, 73-75	defensins, 256, 257	157–58
Corynebacterium accolens, 74-75	degranulation, 296	disease. See also specific disease
COVID-19 virus, 16, 356, 365-66	deidentification, 151	versus dysbiosis, 260, 266-69
cow milk allergy, 312, 314	Deinococcus, 353	ecological perspective on, 258-59, 268,
CP (chronic periodontitis), 281	delta toxin, 75	374, 395
CRC (colorectal cancer), 67, 249, 261, 265,	dementia, 222	environmental impact (see built
340	demineralization, 71	environment)
CRH (corticotrophin-releasing hormone),	demultiplexing, 118	germ theory of, 31–32, 333
212	denaturing, 101–2	humoral theory of, 254–55
Crick, 38	dendritic cells (DCs), 181, 239, 296	Koch's postulates about, 32–33
critical window, 196, 201, 235, 245,	de novo reconstruction, 119	microbiome associations, 260–69
297–98, 334–35, 357	dental caries, 71, 394	microbiome-based therapies, 39–41,
Crittenden, Alyssa, 332	dental plaque. See also oral microbiome	201-4, 228-29, 250 (see also specifi
Crohn's disease, 66–69, 257–58	creation of, 70	therapy)
cross-feeding interactions, 188, 192, 338	early studies of, 17, 28, 37, 41–42	most common and deadly, 33
cross-sectional study, 96	fossilized, 327–28	spontaneous generation theory of, 29–3
crown species, 15	deoxyribonucleic acid. See DNA	susceptibility to, 196, 201, 235, 376–77
Cryan, John, 227	deoxyribose, 99	(see also immune system)
crypts, 257	dependent variables, 89	disease markers, 281
C-section. See Cesarean section	depression, 220, 223–26, 229 dermatitis, atopic (eczema), 75, 198–99,	disinfectants, 35, 356
CSTs (community state types), 177–78 culturing	240, 300, 309–11	dissimilarity, measurement of, 135–39 distance matrix, 156
fecal samples, 97	desensitization, 313	distribution of data, 93–94
methods, 18, 37–39, 76–78	Desnues, Christelle, 331	diversity, 126
oral microbiome, 42	deterministic (selection) process, 266–67	biodiversity hypothesis, 304, 366–67
· ··, ·-	Process, 200 07	

Cambrian Explosion, 11-12	lung microbiome, 241, 307, 308	enzymes. See also specific enzyme
cataloguing methods, 43	maternal microbiome, 213, 226	carbohydrate-digesting, 22, 60
competition driving, 7	oral microbiome, 71–72, 262–65	definition of, 22
in core microbiome, 56–57, 189, 254	self-management of (see personal	eosinophils, 181, 237–38, 296, 306, 315
Cyanobacteria, 9	microbiome)	epigenetic changes, 298–99
versus function, 266–67	shared, 265–66	epithelial cells, in allergic response, 296–97
as health indicator, 384–85	skin microbiome, 75–76, 240, 309–11	EPS (extracellular polymeric substances),
		* ·
meadow metaphor, 374, 383–84	smoking-related, 46	263
measurement of, 126–39, 141, 166–69,	vaginal microbiome, 179	error bars, 92–93
255, 382	dysentery, 36, 39	errors, process, 118, 121
viruses, 16	Dysosmobacter welbionis, 279	Escherich, Theodor, 36
visualisations, 139–41, 155–56, 163–64	-	Escherichia coli, 209
diversity index, 129	E	classification of, 53–54
DNA	Earth	digestive function of, 60
amplification, 101–6, 117–18	microbes as core of life on, 17	discovery of, 36
chemistry of, 98–99	origin of life on, 2–12	disease caused by, 57
epigenetic changes, 298–99	tree of life on, 12–17, 19, 132	gut microbiome, 220, 258, 268
extraction, 38-39, 99-101, 117	Earth Microbiome Project (EMP), 106	infant microbiome, 204
methylation, 298–99	Easy Microbiome Analysis Platform	in microbiota-gut-brain axis, 220,
noncoding, 119	(EzMAP), 170	224–25
origin of, 4	Ebola virus, 16	Nissle 1917 strain, 36-37, 39
replication, 4-7, 99-100	ecological core, 55–56	in obesity, 278–79
ribosomal (see ribosomal DNA)	ecological Koch's postulates, 267–69	O157:H7 strain, 53, 57
versus RNA, 107	ecological perspective, 255–60, 374, 395	esophageal reflux, 337
shearing, 104	ecosystem, 374, 386–87, 395	esophagus, 21, 58. See also gut microbiome
structure of, 38, 98–99	eczema (atopic dermatitis), 75, 198–99, 240,	ester bonds, 18
DNA isolation kits, 101	300, 309–11	estrogen, 176–77, 256
DNA methyltransferase (DNMT), 298	education, scientific, 86	ether bonds, 18
DNA sequence read, 117	EECs (enteroendocrine cells), 219	ethics, research, 150–51
DNA sequence read, 117 DNA sequencing, 96, 98. See also specific	effectors, 211	Eubacterium, 67, 225–26
method or study	Eggerthella, 246	Eubacterium, 67, 223–26 Eubacterium coprostanoligenes, 376
· · · · · · · · · · · · · · · · · · ·		
contig (contiguous sequence), 119	Eiseman, Ben, 39–40	Eubacterium cylindroides, 287
cost of, 150	Elinay, Eran, 46	Eubacterium nodatum, 265, 281
data analysis, 116–18	EMP (Earth Microbiome Project), 106	Eubacterium rectale, 60, 380, 386
of fossils, 327	emulsifiers, 258	eubiosis, 254, 260, 267
function prediction, 120	endocrine pathway (MGBA), 218–19	Eukarya, 14–15
high-throughput, 104–6, 117	endocrine system, 211–12, 217	eukaryotes
metagenomic library, 104	endosymbiont, 11	classification of, 15
of primate microbiome, 322–24	endosymbiosis, 10–12, 15, 20, 52, 223	definition of, 10
purpose of, 38–39	endotoxins, 357–58	gut microbiome, 59
ribosomal, 41–42	ENS (enteric nervous system), 211, 217,	oral microbiome, 69–70
shotgun, 106	219, 220	origin of, 10–12, 20
by synthesis (next-generation), 117–18	Entamoeba, 69	Euler's number, 130
target gene amplicon, 101-2, 381 (see	enteric bacteria. See Enterobacteriaceae	evenness (species), 126. See also alpha
also specific target)	enteric nervous system (ENS), 211, 217,	diversity
DNMT (DNA methyltransferase), 298	219, 220	evolutionary distance, 132
DOI (digital object identifier), 148	Enterobacter, 225, 261	evolutionary divergence, 103
domains of life, 14–15	Enterobacteriaceae	evolutionary tree (phylogeny), 12, 132, 138,
Dominguez-Bello, M. G., 148–70, 186, 202	gut microbiome, 388	154, 322–23
Doolittle, W. F., 224	infant microbiome, 193, 194, 304	evolved dependence, 229-30, 328-29
Dorea, 327	in obesity, 280-82, 284-85	evolving microbiome, 321–44
dormant state, 362–63	in ulcerative colitis, 259	ancestral origins, 322–31
double helix, 99	Enterococcus, 220, 304	healthful microbiota development,
Drosophila melanogaster (fruit fly), 87, 225	Enterococcus faecalis, 145, 340	339–41
Dukes, C. D., 202	enteroendocrine cells (EECs), 219	industrialization, 331–38, 348, 376 (see
dust	enterotypes, 325–26	also built environment; Western
farm, 308–9, 357–58 (see also farm effect)	envelope, viral, 16–17	lifestyle)
house, 353–55, 357–58, 363	environment	missing-heritability problem, 339
Duvallet, Claire, 261–62	in allergic disease, 300–303, 312	• • •
		experiment
dysbiosis, 253–71	anoxic, 7–8, 37–38	design, 30–31, 88–89 (see also research)
circle of causality, 315–16	built (see built environment)	methods, 97–106 (see also culturing;
definition of, 58–59, 254–55, 266	early Earth, 2, 3	sampling methods)
versus disease, 260, 266–69	gene expression affected by, 298–300,	experimental controls, 77–79, 95–96, 125,
gut microbiome (see gut microbiome	322, 357–58	223, 247, 254, 277
dysbiosis)	health care, 186–87, 356, 359–62	experimental data, versus metadata, 96–97
indices of, 267–69	infant microbiome impacted by, 194–95,	experimental treatment, 30
infant microbiome, 175, 196–201 (see	300–303	experimental variables, 89, 95
also birth mode)	environmental metagenomics, 38–39, 41–43	extant species, 7

extension phase of PCR, 102	FFAs (free fatty acids), 200	Foster, K. R., 230
extinction	fiber (dietary), 59–60	Foster, Kevin, 256
loss of microbiota, 334-38, 341	body weight link, 44, 277-80, 288, 321	free fatty acids (FFAs), 200
mass events, 9	in gut health assessment, 379–80,	freezing of samples, 98
extracellular polymeric substances (EPS), 263	385–88	French Academy of Sciences, 30-31
extremophiles, 1, 3, 18–19	immune function, 311–12	Friedland, Robert, 228
EzMAP (Easy Microbiome Analysis	maternal microbiome, 182-84, 244,	fructooligosaccharides, 289, 392-94
Platform), 170	299–301	fruit fly (Drosophila melanogaster), 87, 225
	prebiotic (see prebiotics)	functional core, 55-56, 329-30
F	in Western diet, 332-33, 340, 392	functional redundancy, 262-65
facultative anaerobic bacteria, 65, 258-60,	Fibrobacter, 323–24	function versus diversity, 266-67
395	fight-or-flight response, 217	funding, research, 94, 150
Faecalibacterium, 247, 307, 314-15, 327	filamentous bacteria, 43, 226-27	fungi. See also specific microbe
Faecalibacterium prausnitzii, 194-95,	filtration systems, 355–56	antibiotics produced by, 331
198–200, 267, 386	financial incentives, for research partici-	in built environment, 351, 355, 363
Faecalicatena lactaris, 340	pants, 94	gut microbiome, 59, 381
FAIR principles, 90	findings section (article), 148, 149, 151	immune responses to, 237 (see also
Faith's phylogenetic diversity metric, 132–35	Finland, 304	immune system)
families, 12	Firmicutes	oral microbiome, 69–70
farm effect, 297, 300, 302-3, 308-9,	in colorectal cancer, 62-64	silkworm studies, 32
357–58	in core microbiome, 54	skin microbiome, 73–74
farming	in diabetes, 200	in tree of life, 12–13
antibiotics used in, 335	female reproductive tract microbiome, 176	furnishings, 353–54
introduction of, 328	gut microbiome, 53, 59, 60, 62, 67, 188,	Fusarium, 69
FASTA file, 122–23	198–200, 302, 325, 330–31	Fusobacteria
fasting-induced adipose factor, 277	gut transit time, 380	infant microbiome, 189
FastTree, 154	infant microbiome, 188-91, 194, 195,	in obesity, 280
fat	198–99	respiratory microbiome, 207
absorption of, 283	in obesity, 199, 277, 281, 285	stomach microbiome, 336
adiposity, 276, 277, 279, 283-84 (see	oral microbiome, 69, 70	Fusobacterium, 70, 261
also obesity)	primate microbiome, 325	Fusobacterium nucleatum, 249, 265, 281
dietary, 285	respiratory microbiome, 306-7	
measurement of, 274-75	skin microbiome, 73–74	G
production of, 60-61, 282	stomach microbiome, 336	GABA (gamma-aminobutyric acid), 220,
storage of, 283–84	Fischbach, Michael, 70	224–26
subcutaneous layer, 73, 275	five-kingdom tree of life, 12-13, 17, 19	galactooligosaccharides, 289, 392-93
fat-loving (lipophilic) yeast, 73	5' (five prime), 99	gamma-aminobutyric acid (GABA), 220,
fatty acids, 5	Fleming, Alexander, 34, 335	224–26
free, 200	A Flora and Fauna within Living Animals	ganglia, 210
short-chain (see short-chain fatty acids)	(Leidy), 29	garbage in, garbage out expression, 118
F/B ratio, 277, 281, 285	Florey, Howard, 34	Gardner, H. L., 202
FDA (Food and Drug Administration), 290,	fluorescent labels, 42-43, 104, 110, 117	Gardnerella, 179
377, 391	FLVR, 314–15	Gardnerella vaginalis, 202
fecal microbiota transplantation (FMT),	fly larvae experiment, 29-30	GasPak™, 38
39–41, 253, 260, 261, 290–91, 305,	FMT (fecal microbiota transplantation),	gastric acid, 257
314, 341, 377, 388	39–41, 253, 260, 261, 290–91, 305,	gastric cancer, 248–49, 337
feces	314, 341, 377, 388	gastroenteritis, 259
amino acids in, 68–69	FMT (fetal microbiota transplant), 202	gastrointestinal (GI) tract, 58. See also
consumption of, 95, 226–27	folic acid, 216	specific organ
fossilized, 326–27, 330–31	food. See diet	bowel movements, 375 (see also feces)
obesity transmission through, 44	food additives, 258	digestion in, 60–61
quality assessment, 375, 378–79	food allergies, 311–13	enteric nervous system, 211, 217, 219,
sampling methods, 97–98	antibiotics in, 304	220
female reproductive tract microbiome,	infant microbiome, 193, 198, 303	immune function, 63–64, 180, 239, 245
176–79. See also vaginal microbiome	physiological response to, 297	leash effect, 257–58
during pregnancy (see birth mode;	treatment of, 313–15	microbes in (see gut microbiome)
pregnancy)	food allergy oral immunotherapy (OIT), 313	mucin (see mucin layer)
fermented food, 288, 388–89	Food and Drug Administration (FDA), 290,	transit time, 379–80
fermenters, 60–61, 65, 385–87, 392	377, 391	Gaussian (normal) distribution, 93
fetal microbiota transplant (FMT), 202	food desert, 275	GBA (gut-brain axis), 211
fetal programming hypothesis, 196	forensics, microbiome used in, 352	GenBank, 120
fetal stem cells, 217	formless (Chaos) genus, 28	Generally Regarded As Safe (GRAS) status,
fetus	forward primers, 101–2	391
brain development, 185, 212–17	fossils	general practitioner (GP), advice from,
delivery of (see birth mode; newborns)	dental plaque, 327–28	375–78
immune system development, 180–87,	feces, 326–27, 330–31	genes
195, 217, 242–44, 297–300	microbial, 2–3	expression of, 298–99, 322, 357–58
mother's microbiome (see pregnancy)	Foster, Jane, 223	reconstruction of, 118–20

genetic code, 120	growing state, 362–63	Н
genetic databases, 120, 154	growth medium	Haahtela, T., 315
genetic dictionary, 119-20	preparation of, 77	Hadza people (Tanzania), 331–32
genetics	species requirements, 18	Haemophilus, 265, 307–8
allergic disease linked to, 299	sterile, 37–38, 77–78	HAIs (healthcare-associated infections),
versus environment, 322	guanine, 99	186–87, 356, 359–62
infant microbiome impacted by, 188	gum disease (periodontitis), 69–72, 261–65,	halophilic archaeans, 19
missing-heritability problem, 339	281	halotolerance, 73
in obesity, 43–44, 275	gut-brain axis (GBA), 211	Handelsman, Jo, 38–39
primate evolution, 322–25	gut-liver axis, 241–42	handwashing, 358–59
genetic variant (strain), 53, 278, 390–94	gut-lung axis, 307–8	Harvard Healthy Eating Plate, 387–88
genome, reconstruction of, 118–20	gut microbiome, 21, 58–69. See also specific	HAT (histone acetyltransferase), 298
genome reference sequences, 119, 121–23,	microbe	hay fever, 297, 300, 334
154, 163, 376 genome scaffold, 119	in allergic disease, 300–301, 305–6, 311–12	HDL (high-density lipoprotein cholesterol),
genome-wide association studies (GWASs),	birth mode impact (see birth mode)	275, 285 health, microbiome linked to, 21–22, 37,
339	brain interactions, 211, 213–22 (see also	56–57, 72, 254, 374–75, 396. See
genomics, 38–41	microbiota-gut-brain axis)	also normal microbiome
genus, 12, 53	colonization resistance, 36–37, 62–63,	healthcare
identification of, 121–24	196–97, 204, 259	professional advice, 375–78
germ-free mice, 40–41, 43–44, 87	common species in, 52–54	self-management (<i>see</i> personal
allergic disease studies, 300, 305, 308–9,	definition of, 20	microbiome)
312–14	dysbiosis (<i>see</i> gut microbiome dysbiosis)	healthcare-associated infections (HAIs),
host regulatory mechanisms, 338	early observations of, 29	186–87, 356, 359–62
nervous system studies, 214–15, 223	ecological perspective on, 255–56,	health inequities, 365–66
obesity studies, 43–44, 199, 268,	259–60, 268, 374, 395	healthy gut criteria, 375, 385–86
276–77, 283	example organisms, 27, 51, 85, 115,	healthy gut phageome, 64–65
germs, 34	145, 175, 209, 235, 273, 321, 373	heating systems, 349, 353–55, 359, 365
germ theory of disease, 31–32, 333	functions of, 43–44, 58	hedgehog structure, 42–43
Gerrard, J. W., 333-34	genetic composition of, 58, 60	Helicobacter pylori, 235, 248-49, 334,
ghrelin, 337	health linked to, 37, 254, 374-75, 396	336–38
Giardia intestinalis, 27, 268	immune system interactions, 63-64, 180,	helper T cells, 182, 226-27, 296-97, 308
Gilbert, Jack, 46-47, 260-61, 352	239, 242, 244–50, 300–301, 305–6,	hematopoietic stem cells, 243
GI tract. See gastrointestinal tract	311–12	heritability rate, 275. See also genetics
microbes in (see gut microbiome)	infant, 187-94, 196-97, 300, 304-5	herpes, 352
Global Microbiome Conservancy, 341	lifestyle impacts, 331–38 (see also	Heterocephalus glaber (naked mole rat), 87
glucose intolerance, 275	Western lifestyle)	heterotrophs, 7
glucose production, 212	in neuropsychiatric disorders, 222–28	high-density lipoprotein cholesterol (HDL),
glutamate, 220	in obesity (see obesity)	275, 285
glycans. See polysaccharides	oral microbiome connection, 266, 281	high microbiome diversity, 56
glycan degradation strategy, 60–61	phageome, 63–65	high-pressure liquid chromatography
glycine, 283	during pregnancy, 179–80, 186, 299	(HPLC), 108
glycolysis, 258	in primates, 322–26	high-throughput DNA sequencing, 104–6,
glycoprotein, 70, 255–56	resilience of, 57	117
glycosidic linkages, 59	self-management of (see personal	Hippocrates, 396
GMHI (Gut Microbiome Health Index),	microbiome)	histamine, 296
376–77, 384 gnotobiotic (germ-free) animals, 40–41, 87.	spatial omics, 110 species count, 58–59	histogram, 93–94 histone acetyltransferase (HAT), 298
See also germ-free mice	therapies based on, 39–41, 228–29	histone deacetylases, 312
goblet cells, 257	transplantation of, 268, 277	history
GOE (Great Oxidation Event), 9–10	gut microbiome dysbiosis	of human microbiome, 322–31
gonorrhea, 85	allergic diseases linked to, 198–99,	of microbiology, 17–18, 27–38
Google Scholar, 90, 152	305–6	of microbiome research, 41–47
Gordon, Jeffrey, 43–44, 46, 268, 276–77	antibiotic-associated (see antibiotics)	Hitchcock, Thomas, 76
Gorenflo, Neal, 366	intestinal disease linked to, 21, 64–69,	HIV/AIDS, 33
gorillas, 322–30	258–59, 267	HMOs (human milk oligosaccharides),
GP (general practitioner), advice from,	malnutrition linked to, 197–98	191–92
375–78	obesity linked to, 21, 267, 278	HMP (Human Microbiome Project), 45-47,
graphs, 141, 155	self-management of (see personal	54, 254
GRAS (Generally Regarded As Safe) status,	microbiome)	holobiont, 51–83
391	Gut Microbiome Health Index (GMHI),	definition of, 20, 51-52, 254
great apes, 322-27. See also specific species	376–77, 384	ecological perspective on, 255-60, 268,
Great Oxidation Event (GOE), 9-10	Gut Phage Database, 103	374, 395
great plate count anomaly, 18	gut transit time, 379–80	genetic composition, 53
green cities, 365–69	GWASs (genome-wide association studies),	host-microbiota interactions, 338
Greengenes, 121, 154, 158, 163	339	species count, 53
gross change of microbiota diversity	György, Paul, 191	Home Microbiome Project, 351–52. See also
category, 261	gyrB, 322–24	built environment

homeostasis, 58, 64–66, 259	human subjects, 91	mucosal firewall, 239-40
disruption of (see dysbiosis)	deidentification of, 151	oral microbiome, 71–72
hominids. See also specific species	financial incentives for, 94	during pregnancy, 180-82, 195, 217,
microbiome in, 322–27	metadata collected from, 97	242–44, 299–300
homogenization, 97, 99	humidity, 353–55, 362, 363	skin microbiome, 73–76, 240–41
homologs, 103	humoral immune responses, 237	stomach microbiome, 337
Homo neanderthalensis (Neanderthals), 71,	humoral theory of disease, 254–55	immune tolerance, 304, 312, 313
322, 326–30	Hungate, Robert, 37–38	immunoglobulin A (IgA), 64, 241, 244–45,
Homo sapiens. See human	Hungate technique, 38	256
Hooke, Robert, 17	hunter-gatherer lifestyle, 331–33	immunoglobulin E (IgE), 192–93, 238,
hormones, 211–12. See also specific hormone	Hutterite farmers (USA), 302–3, 357–58	296–97
female, 176–77	Hyalosphenia papilio, 29	immunoglobulin G (IgG), 243, 245
hospital environment, 186–87, 356, 359–62	hydrogen, in early Earth atmosphere, 3	immunotherapy, 313
Hospital Microbiome Project, 361–62	hydrogen peroxide, 178, 359	independent variables, 89
host-adapted core, 55–56	hydrothermal vents, 1, 2, 348	indole, 284
host-microbiota interactions. See also	hygiene hypothesis, 245, 302–4, 333–34,	industrialization, 331–38, 348, 376. See also
holobiont	350, 366–69	built environment; Western lifestyle
types of, 338	hygiene practices, 333–35, 348	infant formula, 192–93, 200, 201, 203–4
host range, 16–17	hypertension, 275	infant microbiome, 187–91
hot springs, archaeans in, 19	hyperthermophiles, 1, 19	antibiotics in, 196–97, 300, 304–5, 335,
housekeeping tasks, of core microbiome, 55	hypothalamic-pituitary-adrenal (HPA) axis,	337, 360
House Observations of Microbial and	212, 217	dysbiosis, 175, 196–201 (<i>see also</i> birth
Environmental Chemistry Project,	hypothalamus, 212	mode)
364–65	* *	
howler monkeys, 327–30	hypothesis, 30 biodiversity, 304, 366–67	environmental impacts on, 194–95, 300–303
	• • • •	immune function, 244–45, 297–303,
HPA (hypothalamic-pituitary-adrenal) axis,	disappearing-microbiota, 334–37, 341	
212, 217 HPLC (high-pressure liquid chromatogra-	fetal programming, 196	313, 334–35, 338, 357 milk-oriented, 191–94, 256–57
	hygiene, 245, 302–4, 333–34, 350, 366–69	
phy), 108		newborn (see birth mode; newborns)
human (Homo sapiens)	microbiome rewilding, 366–69	solid food transition, 194, 257, 303
classification of, 12, 322–24	null, 88–89, 91, 135, 139	inflammatory bowel disease (IBD), 46,
evolution of, 322–30	old friends, 245, 303–4, 366–67	66–69, 246, 248, 261, 265. See also
microbial clouds, 350 microbiomes associated with (see	testable, 76, 87–88	specific disorder
	hypoxia, 258	inflammatory cascade, in obesity, 282–85, 288, 338
microbiomes of the built	ī	
environment)	I	inflammatory skin disorders, 240. See also
relationship with microbiome (see	IBD (inflammatory bowel disease), 46,	specific disorder
holobiont)	66–69, 246, 248, 261, 265. See also	influenza, 33, 352, 355
human genome-wide association studies (GWASs), 339	specific disorder	inheritance. See genetics
	IBS (irritable bowel syndrome), 220–21,	innate immune system, 180–82, 237–38,
human microbiome. See also specific site	229, 260	296–97, 301
altered, 88 (see also dysbiosis)	if/then format, 88	innate lymphoid cells (ILCs), 237
core, 54–57, 187–90, 254	IgA (immunoglobulin A), 64, 241, 244–45,	inorganic compounds, 3
definition of, 19	256	insect gut microbiome, 29
evolution of (see evolving microbiome)	IgE (immunoglobulin E), 192–93, 238, 296–97	insulin, 212
functional role of, 45, 54–55, 329		insulin resistance, 275–76
health linked to, 21–22, 37, 56–57, 72,	IgG (immunoglobulin G), 243, 245	integrated HMP (iHMP), 45–46
254, 374–75, 396 (see also normal	ILCs (innate lymphoid cells), 237	integration, 211
microbiome)	IL-6 (interleukin-6), 283–84, 288	interleukins, in allergic response, 297
host relationship with (see holobiont)	IL-17 (interleukin-17), 226–27, 247	interleukin-6 (IL-6), 283–84, 288
research on (see research; specific study)	Illumina adapters, 101–2, 105	interleukin-17 (IL-17), 226–27, 247
self-management of (see personal	immune disorders, 187, 245–50. See also	internal capsule, 214
microbiome)	specific disease	interquartile range, 135
size of, 20–21	immune pathway (MGBA), 219, 221	intestines. See large intestine; small intestine
therapeutic use of, 39–41, 201–4,	immune system, 235–52	microbes in (see gut microbiome)
228–29, 250, 291, 313–15, 341,	activation of, 237–38	intriguing association, 260
388–94 (see also specific therapy)	allergic response, 295–97 (see also	introduction (article), 147, 149, 152
uniqueness of, 22, 54–55, 156, 376, 384	allergic diseases; specific disorder)	inulin, 315
Human Microbiome Project (HMP), 45–47,	autophagy, 222–23	investigational new drug application, 290
54, 254	components of, 180–82, 236–38	ions, 108
human milk, 191–94	development of, 21, 180–87, 194–96,	Iquitos (Peru), 349–50
antibiotics in, 196–97	200, 201, 217, 242–45, 297–300,	irreproducibility, 93
composition of, 191–94, 244–45, 256,	312–13, 334–35, 357	irritable bowel syndrome (IBS), 220–21,
289	epigenetic changes, 298–99	229, 260
immune function, 244–45, 338, 340	gut microbiome, 63–64, 180, 239, 242,	Ī
microbiome, 189–90, 256–57, 338	244–50, 300–301, 305–6, 311–12	Jahnson V.V.A. 220, 20
human milk oligosaccharides (HMOs),	host-microbiota interactions, 338	Johnson, K VA., 229–30
191–92	lung microbiome, 240–41, 306–9	Jorth, Peter, 262–65

journals, 146–4/, 132. See also literature	bacteriophages in, 64–63	Lloyds Bank coprolite, 326–2/
Justinianic Plague of 541, 348	digestion in, 60–61	longitudinal study, 96
	dysbiosis in, 64-69, 259, 276 (see also	loss of health-associated bacteria category,
K	gut microbiome dysbiosis)	261
keratinocytes, 74–75	immune function, 63–64, 180, 239, 245	loss of microbiota, 334–38, 341
keystone species. See also specific microbe	leash effect, 257–58	low-density lipoprotein cholesterol (LDL-C),
female reproductive tract microbiome,	microbes in, 59, 61-63, 273 (see also gut	275
176	microbiome)	low microbiome diversity, 56
gut microbiome, 273, 278, 281, 286,	mucin (see mucin layer)	Lozupone, C., 137
384, 394–95	Last Universal Common Ancestor (LUCA),	LPS. See lipopolysaccharides
loss of, 336	7	LRRs (leucine-rich repeats), 301
oral microbiome, 71	Latin (binomial) names, 12, 53–54	LUCA (Last Universal Common Ancestor), 7
recovery-associated, 394–95	latrine deposits, 326–27, 330–31	lumen, intestinal, 63–64
		lung microbiome, 240–41, 306–9
kidney failure, 247	Lawley, Trevor, 186–87	, ,
killer T cells (KTCs), 182	LDL-C (low-density lipoprotein cholesterol),	lymphatic cells, 236, 243
kingdoms, 12	275	lymph nodes, 236, 243
kitchens, 355–56, 363–64	leaf-associated microbes, 346	lymphocytes. See B cells; T cells
Klebsiella, 225	leanness, 44, 277–79, 281, 289	lymphoid progenitor cells, 238
Klebsiella pneumoniae, 221	learned immune response, 237–38	Lynch, Susan, 314–15
Knight, Rob, 46, 137, 150	leash effect, 256–57	lysis, 100–101
		· ·
KOALA Birth Cohort Study, 195	Leeuwenhoek, Antonie van, 17, 27–28, 37,	lysosomes, 222–23
Koch, Robert, 32–33, 224, 267, 333	41	
Koch's postulates, 32–33, 255, 268	Legionella, 355–56	M
depression study using, 224	Legionella pneumophila, 359	macrophages, 181, 241, 243-45, 283-84
ecological, 267–69	Legionnaires' disease, 359	maggot experiment, 29-30
KTCs (killer T cells), 182	Leidy, Joseph, 29	magnesium, 5
KTC5 (KIIICI T CCII5), 102	*	9 .
T	leptin, 277, 337	magnetic beads, 101
L	leucine-rich repeats (LRRs), 301	magnification, 28, 42
Lachnospira, 307, 314–15	Lewy bodies, 227–28	major depressive disorder (MDD), 220,
Lachnospiraceae, 194, 261	Ley, Ruth, 277	223–26, 229
lactase, 340	Li, D., 224	major histocompatibility complex (MHC),
lactate, 179	Li, Huiying, 76	238
lactic acid, 176–78, 390	life	Malassezia, 73–75
Lacticaseibacillus rhamnosus, 394	microbes as core of, 17	Malawi, 324
	· · · · · · · · · · · · · · · · · · ·	
Lactobacillus	origins of, 2–12	malnutrition, 197–98, 244, 268
in birth mode study, 128–29	tree of, 12–17, 19, 132	maltooligosaccharides, 392
in built environment, 353	lifestyle	MAMPs (microbe-associated molecular
in colorectal cancer, 67	hunter-gatherer, 331-33	patterns), 301–2
farm effect, 300	industrialization, 331-33, 348, 376 (see	Manaus (Brazil), 349–50
gut microbiome, 62-64, 307-8, 388	also built environment; Western	manuscripts, 146. See also literature
infant microbiome, 192, 194	lifestyle)	Margulis, Lynn, 11, 20, 52, 223
	· ·	
in microbiota-gut-brain axis, 219, 220,	light, 355–56, 359	marker food, 379
225	limited pathogens category, 261	Marshall, Barry, 336
in obesity, 278, 283, 288–90	Limi Valley (Nepal), 341	mass extinction events, 9
oral microbiome, 70	Linnaean classification system, 12-17, 28,	mass spectrometry, 107–8
probiotic strains, 390, 393	53–54	mast cells, 238, 296-97, 299
vaginal microbiome, 176–79, 186, 201,	Linnaeus, Carolus, 12, 28	maternal microbiome. See birth mode;
256	lipid imbalance, 275	pregnancy
Lactobacillus acidophilus, 229, 389	*	
*	lipolysis, 282	Matsés people (Peru), 333
Lactobacillus brevis, 122-23, 129	lipophilic yeast, 73	maximum value, 134
Lactobacillus casei Shirota, 289	lipopolysaccharides (LPS), 221–22	Mayneris-Perxachs, J., 224–25
Lactobacillus crispatus, 177	in allergic disease, 301–3, 308	McCright, Sam, 284
Lactobacillus delbrueckii subsp. bulgaricus,	immune response, 338	MDD (major depressive disorder), 220,
229	in lungs, 241	223–26, 229
Lactobacillus gasseri, 177, 278	in obesity, 276, 282–85	MDRP (multidrug-resistant pathogens), 362
Lactobacillus helveticus, 229	in type 1 diabetes, 200	meadow diversity metaphor, 374, 383–84
Lactobacillus iners, 177–79	literature, 145–74	mean, 92
Lactobacillus jensenii, 177–78	article format, 147–49	mechanical lysis, 100–101
Lactobacillus paracasei, 229, 278	evaluation of, 89–90, 148–58	median value, 134–35
Lactobacillus plantarum, 229	peer review, 90, 146–47, 157	medical professionals, advice from, 375-78
Lactobacillus reuteri, 60, 203, 226, 278,	primary, 89–90, 141, 146–48	medieval microbiome, 330–31
299	searching, 90, 152	
	0	Med13L gene, 340
Lactobacillus rhamnosus, 201	secondary, 146	Meisel, P., 281
Lactococcus, 70	tertiary, 146	melatonin, 212
Lactococcus lactis, 302, 309	types of, 146	membrane argument, 4–5
lactose digestion, 340	Liu, Albert, 201	mental disorders. See also specific disorder
lactulose, 392	liver cancer, 265-66	microbiota-gut-brain axis in, 220-21
large intestine, 58	liver microbiome, 241–42	psychobiotics for, 228–29
,	-)	1 /

messenger RNA, 107	metabolites (see metabolites; specific	molar ratio, 61
metabolic modules, 54	substance)	mold
metabolic states, 362–63	research on (see research)	Hooke's observations of, 17
metabolic syndrome (MetS), 275-76,	microbe-associated molecular patterns	toxic, 345, 355, 359
289	(MAMPs), 301–2	molecular networking, 109
metabolism, 61	microbial clouds, 350	molecular photocopying, 101
metabolites. See also specific substance	microbial ecology, 37	molecular probing, 42–43
in asthma, 314–15	microbial guilds, 279-81	molecular therapies, 226-27
in built environment, 363-64	microbial leash metaphor, 256-57	molecular tree of life, 13-14, 132
in Crohn's disease, 66-69	microbially produced volatile organic	MOM (milk-oriented microbiome), 192
ecological perspective on, 256-58,	compounds (MVOCs), 364	monera, 13
395	microbial seed bank, 341	monocytes, 238
gut transit time, 379	microbiology	monosaccharides, 59
health linked to, 22, 385-86	definition of, 32	Moraxella, 307
immune function, 239, 241	history of, 17-18, 27-38	Morganella, 225
infant microbiome, 188-90, 192,	modern developments in, 38-41	mother's first gift, 186. See also birth mode;
214–15	microbiome	pregnancy
maternal microbiome, 180, 182, 213,	in humans (see human microbiome)	mother's milk. See human milk
242–43, 299	in primates, 322–27	mothur, 121, 140
in microbiota-gut-brain axis, 219, 221,	microbiome analysis programs, 170. See	motor function of the CNS, 211
338	also Qiita	mouse (Mus musculus), 87, 91
in obesity, 278, 281–82	MicrobiomeAnalyst, 170	allergic disease studies, 300-302, 305,
of starch digestion (see short-chain fatty	microbiome rewilding hypothesis, 366-69	307-9, 312-15, 357
acids)	microbiomes of the built environment	autism spectrum disorder studies, 226
metabolome, 109	(MoBE), 345	brain studies, 214–16, 221, 223
metabolomics, 106-7, 109, 214, 362-65,	constituents of, 351–52	Crohn's disease studies, 67
375, 382	control of, 348, 355-56	depression studies, 224–25
Metabolomics Standards Initiative, 109	early studies of, 349-50	germ-free (see germ-free mice)
Metabolomics Workbench, 109	future, 365–69	maternal microbiome, 180-71, 183-85,
metadata, 90, 96–97	health impacts of, 348, 356-58	244
metagenome, 104	history of, 347–48	obesity studies, 43-44, 199, 268,
metagenomics, 38–39, 41–43	metabolomics, 362-65	276–77, 279, 281, 283–85, 289, 290
in built environment, 363	microbial transport in, 350-51	rheumatoid arthritis studies, 246
DNA amplification, 101-6, 117-18	physical factors influencing, 349,	spatial omics, 110
DNA extraction, 99-101, 117	353–56, 359–60, 369	variables, 95
personal screening, 375–77	tracking methods, 358-62	mouth, 58. See also oral microbiome
spatial transcriptomics, 109–10, 263	microbiota	mouth-body connection, 72
metagenomic sequence library, 104	definition of, 19-20, 52	mouthwash, antibacterial, 70
metagenomic (shotgun) sequencing, 106	transfer of (see transplantation)	MRSA (methicillin-resistant S. aureus), 295,
metaproteomics, 106–8, 375, 382	microbiota-gut-brain axis (MGBA), 209,	337
metatranscriptome, 107	217–22, 338	mucin layer
metatranscriptomics, 106–7, 382	autophagy, 222	host-microbiome interactions in, 256–57,
Metchnikoff, Élie, 389	endocrine pathway, 218–19	273, 380
Methanobrevibacter, 69	immune pathway, 219, 221	infant microbiome, 188, 194, 204
Methanobrevibacter smithii, 69, 323-24	neural pathway, 219–21	in obesity, 278, 284–85
methanogenesis, 3, 7	Micrococcus, 78	mucosal firewall, 239–40, 245
methanogens	microglial cells, 185, 213–14, 221, 241–42	mucus escalator, 257
classification of, 14–15	microRNAs (miRs), 284, 298–99	Mullis, Kary, 101
skin microbiome, 74–75	Middles Ages, microbes from, 330–31	multicellularity, origin of, 10–12
Methanopyrus kandleri, 3	milk	multidrug-resistant pathogens (MDRP), 362
methanotrophs, 9	cow, allergy to, 312, 314	multi-omics, 109–10, 154, 224–25
methicillin-resistant S. aureus (MRSA), 295,	human (see human milk)	multiple sclerosis, 221
337	probiotic, 202	multiplexing, 117–18
methods section (article), 147–48, 153, 154	milk-oriented microbiome (MOM), 192	Mure, Nancy, 199
Methylobacterium, 351	Miller, Stanley, 3–4	Mus musculus. See mouse
MetS (metabolic syndrome), 275–76, 289	minimum value, 134	MVOCs (microbially produced volatile
MGBA. See microbiota-gut-brain axis	miRs (microRNAs), 284, 298–99	organic compounds), 364
MHC (major histocompatibility complex),	missing-heritability problem, 339	Mycobacterium, 355
238	mitochondrion, 11	Mycobacterium neoaurum, 224
Mian, 170	MoBE. See microbiomes of the built	Mycobacterium tuberculosis, 347
miasma theory (spontaneous generation),	environment	myelination, 217
29–31	model organisms, 87. See also specific	myeloid cells, 236, 243
mice. See mouse	organism or see also specific	mycloid cens, 250, 275
micelles, 5	Crohn's disease, 67	N
microbe(s)	germ-free, 40–41, 87 (see also germ-free	N Nagler, Cathryn, 311
	mice)	
as core of life on Earth, 17	,	naive T cells, 182, 296–97, 305
definition of, 2–3 metabolic states, 362–63	obesity studies, 276–77 variables, 95	Nakajima, Akihito, 183 naked mole rat (Heterocephalus glaber), 87
metabolic states, 362-63	variables, 73	nakeu mole rat (Heterocevhalus glaber). 8/

Namur (Belgium), 330-31	normal (Gaussian) distribution, 93	in liver cancer, 265-66
nasopharynx microbiome, 21, 58, 337,	normal microbiome	in obesity, 281
360–61	core taxa, 54–56	in primates, 327–30
NAST, 154, 158	definition of, 52	site differences, 52
National Institutes of Health (NIH), 45, 254	hallmarks of, 56–57	species count, 69
Naturians, 346–47	research on, 45–47, 54 Norman (Oklahoma), 333	teeth (see dental plaque)
natural environment, <i>versus</i> indoor, 346. <i>See also</i> built environment	nosocomial infections, 186–87, 356, 359–60	orangutans, 322–25 ORFs (open reading frames), 119–20
natural killer T cells, 181, 237–38	nucleosides, 99	origin
natural log, 130	nucleotides, 98–99	of human microbiome, 322–31
natural selection, 7	fluorescent labeling, 104, 117	of organic molecules, 3
nature-based solutions, 366-69	origin of, 4	of species, 12–13
naturopaths, 377–78	triplets of (codons), 119-20	Oscillospira, 192, 286
nausea, during pregnancy, 201-2	null hypothesis, 88-89, 91, 135, 139	OTUs (operational taxonomic units),
Neanderthals, 71, 322, 326–30	nutrient cycling, in oral microbiome, 70	121–24, 154–55, 162–63
necrotizing enterocolitis, 200, 203	nutrient medium. See growth medium	outcome, 86
Neisser, Albert, 85	nutrition. See also diet	outdoor environment, <i>versus</i> indoor, 346.
Neisseria, 307–8 Neisseria gonorrhoeae, 85	microbiome in, 22, 197–98, 244, 268	See also built environment
nematode (Caenorhabditis elegans), 87	nutritionists, 377–78	outliers, 94 oxygen
neonatal intensive care unit (NICU), 360–61	O	in early Earth atmosphere, 2, 7, 9–10
neonates. See newborns	obesity, 273–94	environment without (anoxic), 7–8,
Nepal, 341	definition of, 274–75	37–38
nerve fiber (axon), 185, 217	epidemic of, 274–76, 337	in gut microbiome, 189-90, 257-60,
nerve impulses, 211	genetic mutations in, 43-44	267, 395
nervous system, 210-12. See also brain	gut microbiome in, 43–44, 60–61,	in large intestine, 65
Netherlands, 195	199–200, 268, 276–85, 338	in oral microbiome, 69, 71
network workspace (Qiita), 161–64, 167	infants, 199–200	ozone layer, 2
neural pathway (MGBA), 219–21	versus leanness, 277–79, 281, 289	D
neural tube defects, 216	microbial guilds in, 279–81	P Pace, Norm, 351
neurodegenerative disorders. See also specific disorder	oral microbiome in, 281 treatment of, 40, 275–76, 285–91	Palforzia, 313
microbiota-gut-brain axis in, 221–22	weight loss markers, 281–85	pancreas, 275
neurodivergence, 226–27	obligate anaerobic bacteria, 65, 257–59	Pandorina algae, 9
neuroendocrine system, 211–12, 217–19	observational studies, 86, 202	Paneth cells, 64–66, 257–58
neurogenesis, 219	oceans	parasitic worm infections, 297, 308,
neuroinflammation, 214, 219, 222, 225	dead zones, 9	330–31, 381
neuropeptides, 213	hydrothermal vents, 1, 2, 348	Parkinson, James, 227
neuropsychiatric disorders, 222–28. See also	Ochman, Howard, 322–25	Parkinson's disease (PD), 221, 227–28
specific disorder	OIT (food allergy oral immunotherapy), 313	Parrish, Rosia, 378
neurotransmitters, 220	Oklahoma, 333	participants. See human subjects Parvimonas, 261
neurotrophic factors, 221 neurotrophic signals, 213	old friends hypothesis, 245, 303–4, 366–67 Olesen, S. W., 254–55	passive immunity, 245
neutrophils, 181, 237–38, 296	oligosaccharides, 191, 289, 392–94	Pasteur, Louis, 30–32
newborns	Olle, Bernat, 341	pathobionts, 267
antibiotics in, 196–97, 300, 304–5, 335,	Olsen, I., 281	pathogens. See also specific pathogen
337, 360	omics, 106-10. See also specific type	in built environment, 346, 355–56 (see
birthing process (see birth mode)	one pathogen-one disease paradigm, 267	also built environment)
dysbiotic microbiome, 196–200	online data analysis programs, 121, 140,	defenses against (see colonization
feeding (see human milk; infant formula)	145, 154, 158–70. See also specific	resistance; immune system)
immune system, 21, 180–87, 194–95,	program	pathogen trapping, 179
217, 242, 244–45, 297–304, 312–13,	open-access journals, 152	pattern recognition receptors (PRRs), 301
334–35 microbiome, 186–91, 300, 313	open reading frames (ORFs), 119–20 open-source software, 158	PCA (principal component analysis), 139–41, 169–71, 176, 325–26,
preterm, 46, 202–4, 243, 300, 360	operational taxonomic units (OTUs),	329–30, 333
next-generation sequencing, 117–18	121–24, 154–55, 162–63	PCoA (principal coordinate analysis),
niche adaptation, 45	oral immunotherapy, 313	156–57, 176–77
niche modification, 259–60	oral microbiome, 69–72	PCR (polymerase chain reaction), 19, 101,
niche preemption, 259	in built environment, 351–52	117
NICU (neonatal intensive care unit), 360-61	cataloging of, 42–43	PCR (polymerase chain reaction) amplifica
Nightingale, Florence, 359–60	colonization resistance, 70	tion, 101–6, 117–18
NIH (National Institutes of Health), 45, 254	common species in, 69–70	PD (Parkinson's disease), 221, 227–28
nisin, 177	DIY assessment kits, 381	PD (phylogenetic diversity), 132–35
Nissle, Alfred, 36 nitric oxide, 70	dysbiosis, 71–72, 262–65 early studies of, 17, 28, 37, 41–42	peanut allergy, 313–14. <i>See also</i> food allergies
nitrogen, metabolism of, 74–75	evolution of, 70–71	pear-shaped body, 279
noncoding regions, 119	functions of, 70, 329–30	peer review, 90, 146–47, 157
noncoding RNAs, 284, 298–99	gut microbiome connection, 266, 281	penicillin, 34, 335

Penicillius notatum, 34	polymicrobial synergy and dysbiosis (PSD),	for depression, 229
Peptostreptococcus, 261	261–65	for diabetes, 200
perfluorooctane sulfonic acid (PFOS), 364	polyphenols, 288, 388	dietary supplements, 389–92
perforins, 182, 240	polysaccharide A, 189, 301	foods containing, 388–89
		<u> </u>
periodontitis, 69–72, 261–65, 281	polysaccharides (glycans), 59	in infant formula, 193–94
peripheral nervous system (PNS), 210	biological functions, 246, 288	for inflammatory bowel disease, 261
personal microbiome, 373–99	degradation strategy, 60–61	for obesity, 288–89
antibiotic recovery, 394–95	glycan degradation strategy, 60–61	during pregnancy, 201–2
food as medicine, 396	infant microbiome, 188–89	for preterm babies, 203
Gut Microbiome Health Index, 376–77,	primate microbiome, 323–24	for rheumatoid arthritis, 247
384	Porphyromonas, 70–72, 261	synbiotics, 313, 393–94
gut microbiome kits, 380–84	Porphyromonas gingivalis, 71–72, 262–65,	unregulated production of, 204
gut transit time, 379–80	281	Proceedings of the National Academy of
health indicators, 384–87	portal vein, 241	Sciences (PNAS), 148
healthy diet, 387–88	postbiotics, 313	process errors, 118, 121
healthy gut criteria, 375, 385–86	postpartum sepsis, 358–59	proinflammatory cells, 221
microbiome-based therapeutics, 388-94	power, statistical, 91, 141	prokaryotes
professional advice, 375-78	power analysis, 94–95	classification of, 15
stool quality assessment, 378-79	prebiotics, 203, 228	definition of, 10
Peru, 333, 349–50	for allergies, 313, 315	origin of, 10
petri dishes, 77	artificially produced, 392-93	proline, 224–25
pets	in breast milk, 191, 203	propionate, 60–62
in built environment, 350, 353–54, 369	definition of, 289, 392	health linked to, 386
infant microbiome affected by, 192-93,	for depression, 229	immune function, 308
297, 300, 350, 353–54	dietary sources, 340, 388, 392–93	infant microbiome, 193
microbiome assessment kits, 381	in infant formula, 203–4	in obesity, 273, 278, 281-82
Peyer's patches, 243	for obesity, 289–90	Propionibacterium, 73-74, 128-29, 351
PFOS (perfluorooctane sulfonic acid), 364	synbiotics, 313, 393–94	proteases, 73, 310
phageome, gut, 63–65	predatory journals, 147	proteins
phages. See bacteriophages	predictable association, 260	databases of, 120
phagocytes, 237–38	pregnancy	metaproteomics, 106–8, 375, 382
phagocytosis, 11, 181	delivery (see birth mode)	misfolding, 227–28
phenotypes, 13	dysbiosis during, 213, 226	origin of, 4
phenylalanine, 226	immune system during, 180–87, 195,	tree of life based on, 13–14
phosphate groups, 99	217, 242–44, 299–300	Proteobacteria
phospholipid bilayer, 18	inflammation and infection during,	in built environment, 351
	243–44	core microbiome, 54
photosynthesis, 8–9		
phyllosphere, 352–53	microbiome during, 46, 179–80, 212–17,	female reproductive tract microbiome, 176
phylogenetic diversity (PD), 132–35	299–300, 336	•
phylogenetic tree (phylogeny), 12, 132, 138,	postpartum sepsis, 358–59	gut microbiome, 53, 188, 198, 200,
154, 322–23	probiotics during, 201–2	261–62, 325, 330–31, 384
phylum-level diversity, 382	vaginal sampling during, 97–98	infant microbiome, 188–90, 198, 200
phytochemicals, 287–88	preterm birth, 46, 202–4, 243, 300, 360	in obesity, 277–79, 284–85
Picrophilus, 19	Prevotella, 179, 186, 277–79, 336	oral microbiome, 69
pili, 69–70	Prevotellaceae, 194, 332	primate microbiome, 325
pilot study. See birth mode study	Prevotella copri, 279, 321	respiratory microbiome, 307–8
pioneer (primary) species, 394–95	Prevotella histicola, 247	skin microbiome, 73–74
pituitary gland, 212	Prevotella intermedia, 265	stomach microbiome, 336
placenta, 180, 184, 242, 299	primary literature, 89–90, 141, 146–48	Proteus mirabilis, 278–79
plague, 29, 348	primary (pioneer) species, 394–95	protists
planetary habitability, 5	primary starch degraders, 60-61	in oral microbiome, 69–70
plants	primates. See also specific species	in tree of life, 13
in built environment, 353–54, 362,	microbiome in, 322–27	protocell, 5–7
365–69	primer pad region, 101–2	PRRs (pattern recognition receptors), 301
chloroplasts, 11	primers, 101–2, 117	PSD (polymicrobial synergy and dysbiosis)
in diet, 323, 328, 332, 340, 352, 388, 394	primordial soup, 4	261–65
microbiomes, 352–53	principal component analysis (PCA),	pseudomembranous enterocolitis, 39–40
photosynthesis, 8–9	139–41, 169–71, 176, 325–26,	Pseudomonadota, 70
phytochemicals, 287–88	329–30, 333	Pseudomonas, 265, 362
in tree of life, 12–13	principal coordinate analysis (PCoA),	Pseudomonas aeruginosa, 221
plaque. See dental plaque	156–57, 176–77	Pseudomonas fluorescens, 265
plasma membrane, 18	priority, 188	psoriasis, 240
plumbing, 355–56	probability, 92	psychobiotics, 228–29
PNS (peripheral nervous system), 210	probiotics, 228, 341	psychological disorders. See also specific
polymerase chain reaction (PCR), 19, 101,	for allergies, 313–14	disorder
117	brain effects, 220	microbiota-gut-brain axis in, 220-21
polymerase chain reaction (PCR) amplifica-	for cholesterol levels, 279	psychobiotics for, 228–29
tion, 101–6, 117–18	definition of, 288, 389	Public Studies section (Qiita), 159-60

PubMed, 90	examples of, 95-96, 151, 153 (see also	room temperature, 353–55, 362
Puebloans (American Southwest), 347	birth mode study)	Roseburia, 267, 279, 284–85, 327, 386
Puerto Almendras (Peru), 349-50	experimental phase, 97-106 (see also	Roseomonas mucosa, 74–75
pulmonary microbiome, 240-41, 306-9	experiment)	Rothia, 307, 314-15, 336
p-value, 91–92	hypothesis (see hypothesis)	Royal Society of London, 28
Pyrococcus furiosus, 1	literature review, 89–90, 146–58	rRNA. See ribosomal RNA (rRNA)
	power analysis, 94–95	RSV (respiratory syncytial virus), 309
Q	sample size, 91–95, 125, 141, 150, 254,	rugs, 353–54
QIIME 2 (Quantitative Insights into	267	Ruminococcaceae, 261
Microbial Ecology), 121, 124, 140	subjects, 91 (see also human subjects;	Ruminococcus, 192, 247, 279, 327
QIIMP (Quick and Intuitive Interactive	model organisms)	Ruminococcus bromii, 60, 279
Metadata Portal), 97	training in, 86	Ruminococcus gravus, 280
Qiita, 145, 158–70	research questions, 85, 86, 116, 121	rust, 9–10
	resilience, 54, 56–57	1031, 7–10
alpha diversity analysis, 166–69		S
basics, 158–63	resistance, 56	
data transformation, 163–64	antibiotic, 35, 85, 186–87, 310, 330–31,	saccharolytic bacteria, 392
PCA analysis, 169–71	335, 337, 360, 362	saliva, 281, 327
taxonomic distribution analysis, 164–66	colonization (see colonization resistance)	salivary amylases, 60, 330
quality control, in data analysis, 118	resistant starch, 60–61, 229–30, 279,	Salmonella typhimurium, 259
quality scores (QS), 118	286–87, 388	sample size, 91–95, 125, 141, 150, 254, 267
quorum sensing, 230	resistomes, 360, 362	sampling methods, 98. See also culturing
	respiration, cellular, 7–8	DNA extraction, 99–101, 117
R	respiratory syncytial virus (RSV), 309	fecal, 97–98
RA (rheumatoid arthritis), 246–47	respiratory tract	quality control, 118
RABs (recovery-associated bacteria), 394-95	in built environment, 351, 356–57,	skin, 78–80
random (stochastic) process, 266–67	359-60	vaginal, 97–98
rarefaction (species accumulation) curves,	infections, 33, 345	sanitation practices, 333–35, 356, 359–62
124–25, 169–70	microbiome, 240-41, 306-9, 337	SARS-CoV-2 virus, 16, 352, 355, 365
rats	restrooms, 351, 353, 355–56, 363, 364	satiety signal, 62, 277, 282
autoimmune disease studies, 241–42	results section (article), 148, 149, 153–54	SBS (sick building syndrome), 345, 356–57
depression studies, 224, 229	retention rates, 94	SCD (sickle cell disease), 339
naked mole rat, 87	reverse primers, 101–2	SCFAs. See short-chain fatty acids
Parkinson's disease studies, 228	review articles, 146	Schaedler, Russell, 40–41
plague spread by, 348	rewilding hypothesis, 366–69	Schistosoma haematobium, 248
1 0 1	0 ,1	
rDNA. See ribosomal DNA	rheumatoid arthritis (RA), 246–47	scientific education, 86
receptor attachment specificity, 69–70	rhinovirus, 309	scientific literature. See literature
recolonization, 337–38	ribosomal DNA (rDNA), 41	seasonal patterns, 332
recovery-associated bacteria (RABs), 394–95	sequencing of, 41–42, 183–84, 375,	sebaceous glands, 73–76
red blood cells, 339	381-82 (see also specific method or	sebum, 73–76
Redi, Francesco, 29–30	study)	secondary literature, 146
references (article), 148, 152	16S subunit, 18, 41, 133, 183-84	secondary species, 394-95
reference sequences, 119, 121–23, 154, 163,	ribosomal RNA (rRNA)	secondary succession, 395
376	classification by, 14–15	second brain (ENS), 211, 217, 219, 220
regulatory pathways, 54	18S subunit, 14, 103	second quartile, 134
regulatory T cells (Tregs), 182-84, 240, 244,	reference data, 121-23, 154, 163, 376	sedimentary rock, 9-10
297, 299–301, 305, 308, 312, 314	sequencing, 44, 96, 101-4, 121, 158,	seed bank (microbial), 341
Relman, David, 41-42	163 (see also specific study)	selection, 187-88, 230, 266-67
replication	16S subunit, 14, 18, 41–42, 44, 96, 98,	selection (deterministic) process, 266-67
DNA, 4-7, 99-100	101–4, 121, 132, 158, 163, 322, 375,	self-management. See personal microbiome
viral, 16	381	self-tolerance, 182
replication argument, 4–7	tree of life based on, 14-15, 132	semaphorin 5, 248
reproductive tract, female, 176–79. See also	variable regions, 103	semiconservative replication, 99–100
vaginal microbiome	ribosome, tree of life based on, 13–14, 132	Semmelweis, Ignaz, 358–59
during pregnancy (see birth mode;	richness (species), 126–27, 169–70, 266,	sensitized immune system, 297
pregnancy)	313, 382	sensorimotor deficits, 214
research, 41–47, 85–113. See also specific	RNA	sensory receptors, 210–11
study	versus DNA, 107	sequence alignment, 122–23
ethics in, 150–51	messenger, 107	sequence annotation, 109
funding for, 94, 150	noncoding, 284, 298–99	sequence functions, prediction of, 120
Human Microbiome Project, 45–47, 54,	origin of, 4–7	sequence ID (OTU), 162–63
254	ribosomal (see ribosomal RNA)	sequence read, 117
metagenomics, 41–43	sequencing, 41–42, 107, 123	serial endosymbiosis, 11
origins of, 17, 27-35, 43-44	tree of life based on, 14-15, 132	serotonin, 220
reports on (see literature)	rock, ancient, 2-3, 9-10	sexually transmitted infections (STIs), 178
volume of, 45	Rogers, Sherry, 200	Shannon diversity index, 130-32, 166-69,
research design, 86-88, 90-97	roll-tube, 37–38	363
analysis phase (see data analysis)	Romboutsia, 315	shareable cities, 366
bias in, 45, 376	Rook, Graham, 303	shared dysbiosis, 265-66

Sharif, Maimunah Mohd, 365–66	species, 12, 53	in liver cancer, 265
Shiga toxin, 53	diversity of (see diversity)	nasal microbiome, 360
=	identification of, 121–24	
Shigella, 36–37, 39		in obesity, 280
short-chain fatty acids (SCFAs), 22, 60. See	keystone (see keystone species)	oral microbiome, 70, 71, 328–30
also specific acid	origin of, 12–13	penicillin, 34
ecological perspective on, 256–58, 395	species abundance	respiratory microbiome, 307
function of, 61–62, 64	definition of, 127	stomach microbiome, 336
health linked to, 385-86	measurement of, 124-29, 155, 164-65	Streptococcus anginosus, 330
immune function, 239, 241, 246, 299,	in personal microbiome, 382	Streptococcus gordonii, 263
301, 311–12	in primate microbiome, 325–26	Streptococcus mitis, 265, 330
infant microbiome, 190, 194, 200, 204,	*	
	species accumulation (rarefaction) curves,	Streptococcus mutans, 71, 330, 394
256–57	124–25, 169–70	Streptococcus oralis, 265
in microbiota-gut-brain axis, 219,	species evenness, 126. See also alpha	Streptococcus pneumoniae, 337
221–22, 229, 338	diversity	Streptococcus pyogenes, 330
in obesity, 199, 276, 278, 281-82, 286,	species recovery, 395	Streptococcus salivarius, 330
288	species richness, 126–27, 169–70, 266, 313,	Streptococcus sanguinis, 330
oral microbiome, 70	382	Streptococcus thermophilus, 229
during pregnancy, 182–83, 187, 213–14,	Sphingomonas, 351	stress response, 212, 217, 220, 224–25, 257,
244, 299		378
	spinal cord, 210	
production of, 65	Spirochaetaceae, 332	stromatolites, 2–3
shotgun sequencing, 106	Spirulin algae, 9	subcutaneous fat layer, 73
siblings, 193, 300, 334	spontaneous generation (miasma theory),	subjects
sick building syndrome (SBS), 345, 356–57	29–31	animal (see model organisms; specific
sickle cell disease (SCD), 339	spores, 40	organism)
significance, statistical, 91–94	stability, 56	human (see human subjects)
silica columns, 101	Stachybotrys, 355, 359	subscription model, 152
		Succinivibrionaceae, 332
silkworm studies, 31–32	stack plot, 127–29, 154–57, 164–65	· · · · · · · · · · · · · · · · · · ·
SILVA, 121–23, 154	standard deviation, 92	sugars
similarity-searching algorithms, 120, 123	Staphylococcus, 295	blood levels, 212, 275
single-line identifier, 122	in birth mode study, 128–29	dietary, 22, 59–61, 392
single nucleotide polymorphisms (SNPs),	in built environment, 351, 353, 362	sulfate-reducing microbes, 7–8
339-40	infant microbiome, 193	sunlight, 355
Sinha, Rashmi, 384	nasal microbiome, 360	superantigens, 310
skin cancer, 73–74	in skin microbiome, 73–75, 78	super bug, 85
skin infections, 74–75. See also specific	Staphylococcus aureus	surface area of intestines, 58
	* *	
disorder	enterocolitis caused by, 39	surprising associations, 260
skin microbiome, 21, 73–76	infections, 33, 74–75, 240, 295, 309–11,	Svedberg units, 14
in built environment, 351–53, 362	337	swan-neck flask experiment, 30–31
colonization resistance, 74–75, 240–41,	penicillin mold in, 34	sweat, 73
309	Staphylococcus epidermidis, 73-75, 240,	symbiosis, 11, 20, 22, 34, 322–23, 388
common species in, 73-74, 78, 295	311	synbiotics, 313, 393–94
dysbiosis, 75–76, 240, 309–11	Staphylococcus hominis, 73, 311	synergistic supplements, 394
functions of, 74–75, 240–41	Staphylococcus sciuri, 309	synthesis (next-generation) sequencing,
maternal, 186, 189–90		
	starches, 59–60	117–18
newborn, 190–91	digestion of, 22, 43–44, 328–29	syntrophy, 69
as nutritional desert, 73	resistant, 60-61, 229-30, 279, 286-87,	Szostak, Jack, 4–5
sampling methods, 76–80	388	
species count, 73	start codon, 119-20	T
small intestine, 58	startle response, 214–16	tagmentation, 104
digestion in, 60	statistical power, 91, 141	Taleb, Nassim Nicholas, 391-92
immune function, 239	statistical significance, 91–94	Tannerella forsythia, 262
leash effect, 257–58	statistical significance, 71–74 statistical tests, 139–41	
		Tanzania, 331–32
microbes in, 59 (see also gut	stem cells, 217, 243	Taq polymerase, 19, 102
microbiome)	sterility control, 37–38, 77–78	targeted metabolomics, 109
smallpox, 16	STIs (sexually transmitted infections), 178	target gene amplicon sequencing, 101-2,
smoking, 46	stochastic (random) process, 266-67	381. See also specific target
SNPs (single nucleotide polymorphisms),	stomach, 21, 58, 257	target gene amplification, 105-6
339–40	immune system in, 337	taste receptors, 71
software packages, data analysis, 121, 140,	microbiome, 21, 59, 235, 336-37 (see	taurine, 283
145, 154, 158–70. See also specific	also gut microbiome)	taxonomic distribution analysis (Qiita),
	stomach cancer, 248–49, 337	164–66
program		
soil-associated microbes, 346, 353, 362,	stool. See feces	taxonomic identities, assignment of, 121–24
367	stop codon, 119–20	taxonomy, 12–17, 28, 53–54
somatic (voluntary) nervous system, 210	Strachan, D. P., 334	TB (tuberculosis), 347
Sonnenburg, Justin, 332–33	strains, 53, 278, 390-94	T cells, 182, 236–38
spatial transcriptomics, 109–10, 263	Streptococcus	in allergic response, 296-97, 299, 305
specialized functions, of core microbiome,	in cancer treatment, 250	development of, 243–44
55, 329–30	in hospital environment, 250	helper, 182, 226–27, 296–97, 308
JJ, JE/ JU	iii iiospitai ciiviioiiiiiciit, 230	ncipei, 102, 220-2/, 2/0-//, 300

killer, 181–82	Tunanusa maanla (Andas) 222	Vintura Anthony 201
	Tunapuco people (Andes), 333	Virtue, Anthony, 284
naive, 182, 305	Turcimonas, 247	virulence factors, 264–65, 310
regulatory (Tregs), 182–84, 240, 244,	Turvey, Stuart, 314	viruses. See also specific microbe
297, 299–301, 305, 308, 312, 314	twin studies, 199, 275, 277	asthma linked to, 309
in stomach, 337	type 1 diabetes, 200, 245	in built environment, 351–52, 355,
temperature	type 1 T helper cells (Th1), 296–97, 308	365–66
early Earth, 2	type 2 diabetes, 26, 247, 280	characteristics of, 16–17
extremophiles, 1, 3, 18–19	type 2 T helper cells (Th2), 296–97, 308	genomes, 103
PCR, 102	typhoid fever, 333	gut microbiome, 63–64, 330–31
room, 353–55, 362		immune responses to, 237, 245 (see also
sampling protocols, 98	U	immune system)
temporal core, 55–56	ulcerative colitis (UC), 66–67, 248,	infant microbiome, 189
tertiary literature, 146	258–59	skin microbiome, 73
tertiary species, 394–95	ultrasound, 104	visualisations
testable hypothesis, 76, 87–88	ultraviolet (UV) light, 355-56, 359	diversity estimates, 139-41, 155-56,
testosterone, 224	umbilical cord, 181, 242	163–64
therapies, microbiome-based, 39-41, 201-4,	UniFrac (unique fraction) metric, 137–39,	microbial guilds, 280
228–29, 250. See also specific	141, 176–77	phylogenetic trees, 12, 154, 322-23
therapy	UniProt, 120	Visualization and Analysis of Microbial
Theriot, Casey, 283	United Nations Human Settlements	Population Structures (VAMPS),
thermocycler, 102	Programme, 365–66	170
thermophilic archaeans, 1, 19	University of California, San Diego, 46-47	vitamins, 22, 258
thioalcohols, 73	University of Chicago hospital, 361-62	Vivomixx, 229
Thion, Morgane, 185	untargeted metabolomics, 109	VMT (vaginal microbiome transplant), 202,
third quartile, 134	uracil, 107	340
Thomas, Lewis, 33	urban lifestyle, 315-16, 348-50, 357,	volatile organic compounds, microbially
3' (three prime), 99	365-69. See also built environment;	produced (MVOCs), 364
throat, 21, 58, 337, 360-61. See also gut	Western lifestyle	voluntary (somatic) nervous system, 210
microbiome	urease, 67, 336	vomiting, during pregnancy, 201–2
thymine, 99, 107	Urey, Harold, 3–4	vortex, 99
thymus, 236	urinary tract infections (UTIs), 177–78	VSL#3, 289
thymus-dependent cells. See T cells	UV (ultraviolet) light, 355–56, 359	Vuong, H. E., 185, 214–16
tight junctions (TJs), 246, 276	ov (unitaviolet) light, 333-36, 337	vuong, 11. L., 103, 211 10
tipping points, 56	V	W
title (article), 147–49	vaccines, 337	Wadwah, Arun, 203
TJs (tight junctions), 246, 276	vacuoles, 222–23	waist-to-hip ratio (WHR), 279, 289
TLRs (toll-like receptors), 283–84, 301	vaginal delivery, 186–87, 191. See also birth	Walker, Allan, 389, 391
T lymphocytes Saa T cells		Wang C D 261 62
T lymphocytes. See T cells TNE a (tympor pagagia factor alpha)	mode study	Wang, G. P., 261–62
TNF-α (tumor necrosis factor alpha),	vaginal microbiome, 176-79, 201	Wang, Y., 392
TNF-α (tumor necrosis factor alpha), 283–84	vaginal microbiome, 176–79, 201 community state types, 177–78	Wang, Y., 392 Warinner, Christina, 327–29
TNF-α (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336
TNF-α (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. <i>See</i> dental plaque	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46
TNF-α (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. <i>See</i> dental plaque toxic black mold, 345, 355, 359	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. <i>See also</i> metabolites;
TNF-α (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. <i>See</i> dental plaque toxic black mold, 345, 355, 359 training, scientific, 86	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance
TNF-α (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. <i>See</i> dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363
TNF-α (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. <i>See</i> dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202,	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35
TNF-α (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. <i>See</i> dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38
TNF-α (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. <i>See</i> dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261,	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity
TNF-α (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. <i>See</i> dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46
TNF-\(\alpha\) (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42
TNF-α (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. <i>See</i> dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303
TNF-\(\alpha\) (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures),	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16
TNF-\(\alpha\) (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340,
TNF-\(\alpha\) (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392
TNF-\(\alpha\) (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244,	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment)
TNF-\(\alpha\) (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development,
TNF-a (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314 Treponema denticola, 262	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103 variables, 89, 95	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development, 340–41
TNF-a (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314 Treponema denticola, 262 Trichinella, 29	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103 variables, 89, 95 Variola virus, 16	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development, 340–41 microbiota loss caused by, 334–38,
TNF-a (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314 Treponema denticola, 262 Trichinella, 29 trichinosis, 29	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103 variables, 89, 95 Variola virus, 16 Veillonella, 307, 314–15, 328, 336	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development, 340–41 microbiota loss caused by, 334–38, 341
TNF-a (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314 Treponema denticola, 262 Trichinella, 29 trichinosis, 29 Trichomonas, 69	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103 variables, 89, 95 Variola virus, 16 Veillonella, 307, 314–15, 328, 336 Veillonellaceae, 179	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development, 340–41 microbiota loss caused by, 334–38, 341 white blood cells, 237–38, 296–97. See also
TNF-a (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314 Treponema denticola, 262 Trichinella, 29 trichinosis, 29	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103 variables, 89, 95 Variola virus, 16 Veillonella, 307, 314–15, 328, 336	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development, 340–41 microbiota loss caused by, 334–38, 341
TNF-a (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314 Treponema denticola, 262 Trichinella, 29 trichinosis, 29 Trichomonas, 69 triglycerides, 275 trophic interactions, 188	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103 variables, 89, 95 Variola virus, 16 Veillonella, 307, 314–15, 328, 336 Veillonellaceae, 179 ventilation, 349, 353–55, 359–60, 365 Vermes (worms) phylum, 28	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development, 340–41 microbiota loss caused by, 334–38, 341 white blood cells, 237–38, 296–97. See also specific cell type White HMP, 45
TNF-a (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314 Treponema denticola, 262 Trichinella, 29 trichinosis, 29 Trichomonas, 69 triglycerides, 275 trophic interactions, 188 tryptophan, 214, 220, 226	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103 variables, 89, 95 Variola virus, 16 Veillonella, 307, 314–15, 328, 336 Veillonellaceae, 179 ventilation, 349, 353–55, 359–60, 365 Vermes (worms) phylum, 28 Verrucomicrobia, 194, 325	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development, 340–41 microbiota loss caused by, 334–38, 341 white blood cells, 237–38, 296–97. See also specific cell type White HMP, 45 whole-genome reconstruction, 119
TNF-a (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314 Treponema denticola, 262 Trichinella, 29 trichinosis, 29 Trichomonas, 69 triglycerides, 275 trophic interactions, 188	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103 variables, 89, 95 Variola virus, 16 Veillonella, 307, 314–15, 328, 336 Veillonellaceae, 179 ventilation, 349, 353–55, 359–60, 365 Vermes (worms) phylum, 28	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development, 340–41 microbiota loss caused by, 334–38, 341 white blood cells, 237–38, 296–97. See also specific cell type White HMP, 45
TNF-a (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314 Treponema denticola, 262 Trichinella, 29 trichinosis, 29 Trichomonas, 69 triglycerides, 275 trophic interactions, 188 tryptophan, 214, 220, 226	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103 variables, 89, 95 Variola virus, 16 Veillonella, 307, 314–15, 328, 336 Veillonellaceae, 179 ventilation, 349, 353–55, 359–60, 365 Vermes (worms) phylum, 28 Verrucomicrobia, 194, 325	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development, 340–41 microbiota loss caused by, 334–38, 341 white blood cells, 237–38, 296–97. See also specific cell type White HMP, 45 whole-genome reconstruction, 119
TNF-a (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiome, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314 Treponema denticola, 262 Trichinolia, 29 trichinosis, 29 Trichomonas, 69 triglycerides, 275 trophic interactions, 188 tryptophan, 214, 220, 226 t-test, 139	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103 variables, 89, 95 Variola virus, 16 Veillonella, 307, 314–15, 328, 336 Veillonellaceae, 179 ventilation, 349, 353–55, 359–60, 365 Vermes (worms) phylum, 28 Verrucomicrobia, 194, 325 vertical loss, 336–37	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development, 340–41 microbiota loss caused by, 334–38, 341 white blood cells, 237–38, 296–97. See also specific cell type White HMP, 45 whole-genome reconstruction, 119 WHO (World Health Organization), 340,
TNF-a (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiome, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314 Treponema denticola, 262 Trichinella, 29 trichinosis, 29 Trichomonas, 69 triglycerides, 275 trophic interactions, 188 tryptophan, 214, 220, 226 t-test, 139 tuberculosis (TB), 347	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103 variables, 89, 95 Variola virus, 16 Veillonella, 307, 314–15, 328, 336 Veillonellaceae, 179 ventilation, 349, 353–55, 359–60, 365 Vermes (worms) phylum, 28 Verrucomicrobia, 194, 325 vertical loss, 336–37 Vidal, Daniel Ramón, 394	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development, 340–41 microbiota loss caused by, 334–38, 341 white blood cells, 237–38, 296–97. See also specific cell type White HMP, 45 whole-genome reconstruction, 119 WHO (World Health Organization), 340, 390 WHR (waist-to-hip ratio), 279, 289 windows, 355, 359–60, 362
TNF-a (tumor necrosis factor alpha), 283–84 toll-like receptors (TLRs), 283–84, 301 tooth plaque. See dental plaque toxic black mold, 345, 355, 359 training, scientific, 86 trans-galactooligosaccharide, 229 transit time (gut), 379–80 transplantation fecal microbiota, 39–41, 253, 260, 261, 290–91, 305, 314, 341, 377, 388 fetal microbiota, 202 gut microbiome, 268, 277 vaginal microbiome, 202, 340 transportation, 365–66 tree of life (ToL), 12–17, 19, 132 Tregs (regulatory T cells), 182–84, 240, 244, 297, 299–301, 308, 312, 314 Treponema denticola, 262 Trichinella, 29 trichinosis, 29 Trichomonas, 69 triglycerides, 275 trophic interactions, 188 tryptophan, 214, 220, 226 t-test, 139 tuberculosis (TB), 347 tumor microbiomes, 248–49	vaginal microbiome, 176–79, 201 community state types, 177–78 diversity in, 255 DIY assessment kits, 381 dysbiosis, 179 functions of, 178–79 leash effect, 256 vaginal microbiome transplant (VMT), 202, 340 vaginal sampling, 97–98 vaginosis, bacterial, 179, 202, 255 vagus nerve, 211, 219, 228 VAMPS (Visualization and Analysis of Microbial Population Structures), 170 van der vossen, E. W. J., 280 variability, data, 134–35, 140 variable regions, 103 variables, 89, 95 Variola virus, 16 Veillonella, 307, 314–15, 328, 336 Veillonellaceae, 179 ventilation, 349, 353–55, 359–60, 365 Vermes (worms) phylum, 28 Verrucomicrobia, 194, 325 vertical loss, 336–37 Vidal, Daniel Ramón, 394 Viking coprolite, 326–27	Wang, Y., 392 Warinner, Christina, 327–29 Warren, J. Robin, 336 Washington University (St. Louis), 46 waste molecules, 22. See also metabolites; specific substance waterborne microbes, 355–56, 363 water supply, 333–35 Watson, 38 weight, body, 274–79. See also obesity Weizmann Institute, 46 Welch, Jessica, 42 Western lifestyle, 287, 303 allergic diseases linked to, 315–16 diet, 287, 303, 332–33, 335–36, 340, 365, 388, 392 environment (see built environment) healthful microbiota development, 340–41 microbiota loss caused by, 334–38, 341 white blood cells, 237–38, 296–97. See also specific cell type White HMP, 45 whole-genome reconstruction, 119 WHO (World Health Organization), 340, 390 WHR (waist-to-hip ratio), 279, 289

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

450 Index

workspace (Qiita), 161–64, 167 World Health Organization (WHO), 340, 390 worm infections, 297, 308, 330–31, 381 worms (Vermes) phylum, 28 wound healing, 74–75, 240 Wu, Gary, 67, 280 X Xycrobe, 76 Y Yamazaki, K., 281 Yang, J., 225 Yates, J.A.F., 328–30 yeast gut microbiome, 59, 381 skin microbiome, 73 vaginal microbiome, 179 Yellowstone National Park, 19 Yersinia pestis, 348 Yost, S., 265