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The Ancient Origin of Microbes

Hi there! My name is Pyrococcus furiosus. No fears, I am not a furious microbial monster. I
am simply an extremophilic, hyperthermophilic archaeon that thrives in extremely hot envi-
ronments. Maybe now you would prefer me to simply be furious! It isn’t that hard to figure
me out. I love hot! I mean I really, really love hot. My optimal growth temperature is a mere
100°C (or 212°F). I am also “allergic to oxygen,” meaning I need to live in anaerobic environ-
ments, such as near hydrothermal vents. In fact, I was first found in waters near Italy, hanging
out in a vent. Why should you care about little ‘ole me? Well, I am a chemoorganotroph,
meaning I break down sulfur to obtain energy. In the process I produce hydrogenases and
amylases that are extremely heat-stable and efficient, which makes them valuable for some of
your human industrial applications. So, a little kudos to me, please! (Photo from Power and Syred
/ Science Source)

efore we begin our exploration of the human microbiome, we must first de-

velop an understanding of microorganisms, also called microbes—those minute

creatures, far too small to be seen by the naked eye, that are both the creators
and constituents of a breathtaking spectrum of microbiomes found on Earth. As you
will learn, microorganisms emerged on our planet shortly after its origin and have
spent over 4 billion years adapting to every conceivable environment our planet has
to offer, including us! This first chapter provides an overview of the origins and di-
versification of microbes on Earth, with a special emphasis on what makes microbes
so unique among life on our planet.

For general queries, contact info@press.princeton.edu
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2 Chapter1 The Ancient Origin of Microbes

Figure 1.1 Early Earth This art-
ist’s rendition provides a glimpse
of what early Earth may have
looked like. Our planet coalesced
just over 4.5 billion years ago
from cosmic debris. Transient
oceans and lakes existed from
the start, although they had been
repeatedly vaporized by the mas-
sive meteorites that showered
our planet back then. The envi-
ronment of the planet had set-
tled down by about 3.8 million
years ago, when the earliest
rocks appear in the fossil record
in what is now southeast Green-
land, and the planet might have
looked as this artist portrays it.
(Photo © Don Dixon)

1.1 IN THE BEGINNING

If you could peer back in time to the birth of our planet, some 4.5 billion years ago
(bya), what might you find? Certainly nothing even remotely resembling the Earth of
today. Our young planet had no oceans, although there were plenty of volcanoes
spewing out magma, water vapor, and gasses. It had no free oxygen in its atmosphere
and no protective ozone layer, which is the thin layer of the Earth’s atmosphere that
absorbs most of the sun’s harmful ultraviolet light. It would have been an exceedingly
hot place—imagine a surface temperature upwards of 2,000° Celsius (3,632° Fahren-
heit). An artist’s rendition of early Earth shows a planet that does not appear even
remotely hospitable to life (Figure1.1).

Or was it? In fact, some of the earliest signs of life appear in 3.7 bya rock, formed
when our planet was just beginning to cool from its volcanic origin (Dodd et al.,
2017). Some of this ancient rock has survived the ages and paints a fascinating pic-
ture of early life. The dark gray peaks in the cross section of sedimentary rock shown
in Figure1.2A have tentatively been identified as fossilized microbial mats, also known
as stromatolites, which are mounds of layers of lime-secreting bacteria and trapped
sediment. Stromatolites were the only biological structures on Earth until about 540
million years ago (mya), and they can still be found in certain lagoons in Australasia
(Figure 1.2B). In other words, regardless of how inhospitable early Earth might look
to us, by 3.7 bya Earth was already teeming with life!

The word microbe literally means “small life,” from the Greek words mikros
and bios. Microbes are small life forms that are usually too small to be seen with-
out magnification. As we shall learn, they represent the greatest diversity of life on
our planet. Although most of us are aware microbes exist, we may be unaware that
they appeared very early in Earth’s history and have remained the dominant life
forms ever since. Exploring present-day hydrothermal vents in the seafloor pro-
vides valuable clues about how these earliest life forms flourished in the extreme
environments of our young planet. Heated, mineral-rich water flows out of these
seafloor vents, and it supports untold numbers of chemolithotrophs, which are
bacteria that harvest energy from the minerals and chemicals that spew from the
vents and release compounds that other microorganisms then use for food. Fossils
of hydrothermal vents have been discovered in rock as old as 3.8 bya (Cavalazzi
et al., 2021).

For general queries, contact info@press.princeton.edu
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(A) (B)

Each stromatolite is
built up from many thin
layers of different
bacterial species living
together.

Figure1.2 Ancient Microbial Fossils (A) The earliest fossil evidence of microbial communities.
The layering in this rock is very likely due to biological activity. Cyanobacteria form mats of
cells that secrete sticky substances that trap sediments in the surrounding water. Over time,
these sediments form a mat and then new layers of Cyanobacteria attach. Layers of volcanic
ash compacted against these structures, preserving them in the Greenland fossil record for the
past ~3.7 billion years. Small fossils like these, buried under billions of years of collected rock,
allow us to learn more about life in the distant past. (B) A cluster of living stromatolites from
Shark Bay, Australia. There are very few such structures remaining on Earth. (A photo from
Muséum de Toulouse, CC BY-SA 4.0, via Wikimedia Commons; B photo from Paul Harrison, CC BY-SA
3.0, via Wikimedia Commons)

One microbial species commonly found in vents, Methanopyrus kandleri, uses
hydrogen gas as a food source and releases methane as a waste product. This process
is known as methanogenesis, and it is one of the most ancient forms of energy pro-
duction. The name of this microbe describes its fondness for extreme environments;
methanopyrus literally means “methane fire,” which is highly appropriate as it can
grow in temperatures up to 122°C (252°F), the highest temperature known to be
compatible with life. Consider that water boils at 100°C; with this in mind, we can
begin to imagine how life emerged on what we had previously considered to be an
inhospitable early Earth.

Origin of Life

If we can’t rewind the tape of time and return to early Earth, can we ever learn about
life’s origins? In 1953, a young scientist, Stanley Miller, and his mentor, Harold Urey,
showed us the way by answering the question: Could the complex organic molecules
necessary for life be created under the conditions of our planet billions of years ago?
Miller and Urey designed a glass chamber in which they could create conditions that
were believed to mimic those on early Earth (Figure 1.3). Starting with simple ingre-
dients, such as heat, which would have been provided by the Earth’s molten core; an
electrlcal charge to mimic lightning; water (H,O); and an early atmosphere made of
methane (CH,), hydrogen (H,), and ammonia (NH3) gasses, Miller and Urey showed
that complex organic molecules could be created from what was a predominately
inorganic planet. Organic molecules are primarily made of carbon atoms bonded
with hydrogen and other elements and are of biological origin. All living things on
Earth are composed of organic molecules. In contrast, inorganic compounds are sub-
stances that do not contain both carbon and hydrogen. Hydrogen atoms are con-
tained in many inorganic compounds, such as water (H,0) and the hydrochloric acid
(HCI) produced by your stomach. In contrast, only a handful of inorganic com-
pounds contain carbon atoms. Carbon dioxide (CO,) is one of the few examples.
Miller and Urey showed that with heat, electricity, and simple inorganic ingredients,
complex organic molecules, such as amino acids, could be produced. Amino acids are

For general queries, contact info@press.princeton.edu
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2. This primitive
atmosphere is exposed to
sparks of electricity that
simulate lightning storms,
providing an energy source
for the synthesis of new,
more complex compounds.

Electric
chamber

1. A“primordial sea” of

simple chemicals is heated T
to produce an early Earth
atmosphere of water vapor Condenser—-
rich in methane, ammonia,
and hydrogen.

Boiling /

chamber

3. The atmosphere is
cooled with a condenser,
and the compounds rain
——» | down and collectin the
primordial sea.

4. Samples from the primordial
sea reveal the formation of
organic compounds, such

as amino acids.

Figure 1.3 The Miller-Urey Origin of Life Experiment This experimental apparatus was de-
signed to simulate the origin of organic compounds on early Earth.

the building blocks of proteins, the workhorses of cells that carry out many biological
functions.

Miller and Urey’s findings were extraordinary for several reasons. First, their data
suggested that life could have arisen from the simple ingredients present in the “pri-
mordial soup” found on early Earth. We now know that many of the essential build-
ing blocks of life, such as amino acids and nucleotides (the key ingredients of deoxy-
ribonucleic acid, or DNA), would have rapidly accumulated from simple inorganic
constituents. Furthermore, this was the very first experiment in what was to emerge
as a rich and exciting field of abiogenesis, or the study of the creation of life from
nonlife. Their publication helped transform studies of the origin of life into a respect-
able field of research.

By the 1990s many scientists agreed that at least two functions were required for
cellular life to emerge from a nonliving precursor: a means to physically separate the
cell’s internal functions from the environment (a membrane), and the ability to gen-
erate offspring, which involves copying the genetic information and producing
daughter cells (replication). Figure 1.4 provides an overview of how a cell’s genetic
information, DNA, is transcribed into RNA, which is then used to produce proteins.
This theory is known as the Central Dogma of Molecular Biology, and there were vig-
orous debates about which element (DNA, RNA, or protein) came first. One argu-
ment emphasized the role of genetics and inheritance (replication argument), that is,
DNA or RNA was first on the scene. A competing view proposed that creating the
cells” structure came first (membrane argument), that is, proteins creating the struc-
ture of a cell came first. It was at this moment that a particularly innovative thinker
entered the field. Jack Szostak, who won a Nobel Prize for his work on chromosome
structure, which refers to the way DNA is packaged in a cell, decided to retool his
lab and to focus on an entirely new research question—the origin of life. Szostak was
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Figure1.4 Central Dogma The Central Dogma of Molecular Biology describes the fundamen-
tal biological process by which proteins are built. In most cells, the genetic information is en-
coded in the DNA, which can be transcribed into a messenger molecule known as RNA. This
RNA is then translated into proteins, using complex cellular machinery to “read” the RNA
sequence and build the corresponding protein structure. The Central Dogma is essential to our
understanding of early Earth because it illustrates the connection between genetic information
and cellular processes.

fascinated with the origins debate, and he set off to create a primitive cell, or protocell,
that would permit him to experimentally explore how the first cell might have
evolved (Box 1.1).

The Very First Cell

Szostak knew that fatty acids could transition from small spheres (or micelles) into
multilayered membranes as the pH of the local environment goes from a basic to a
more neutral state, so he decided to simply add more membrane-forming molecules
(fatty acids) to the mix and see what happened (see Box 1.1 and Figure 1.5B). The
team added fatty acids, some of which inserted themselves into the cell’s membrane.
This spontaneous growth process transformed the small spheres into long filamentous
vesicles, which could be induced to divide when agitated and then to re-form cells
when the agitation stopped. This elegantly simple protocell appears to possess one of
the key characteristics of life—a cellular structure that could make copies of itself.

Szostak had proven that the earliest cells could have created a protected environ-
ment in which metabolism could take place. Next, he tested whether the RNA frag-
ments located in these protocells were able to replicate, or make copies of themselves,
which would permit the identical genetic information to be passed on when the
protocell divides. Given that RNA is capable of both replicating itself and performing
enzymatic activities, it is often considered the likely ancestor to our own DNA-based
mode of inheritance. However, RNA requires high concentrations of magnesium,
which can destroy the delicate membranes of the cell. Szostak found conditions that
protected the membrane but still provided sufficient magnesium to permit RNA rep-
lication. These experiments provide us with a membrane-bound genetic system that
is capable of self-replication and growth—two of the hallmarks of life. All done in
test tubes in a laboratory!

Since this revolutionary experiment, Szostak and many others continue to dive
ever deeper into questions about the origin of life (Mann, 2021). One current focus
is on planetary habitability, or the potential for planets to develop and sustain life. A
second research area examines the environmental conditions required to produce
biomolecules (such as carbohydrates, lipids, nucleic acids, and proteins) in concentra-
tions that permit metabolism. A third focus is on determining the ways in which the
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precursors to DNA and RNA might have assembled and replicated. These studies are
just beginning to answer some fundamental questions about the origin of life (Mann,
2021). Szostak himself notes, “Many challenges remain before we will be close to a
full understanding of the origin of life, so the future of research in this field is brighter

than ever!” (Szostak, 2017).

BOX 1.1. RESEARCH IN ACTION
Building Life from Scratch—The Quest for a Protocell

Researchers in the Szostak lab made their first proto-
cell out of self-replicating genetic material, in this case
a fragment of RNA. Figure1.5A shows the organization
of this protocell and reveals the inner compartment
created by this structure and the fragments of RNA
floating within. This internal environment would have
permitted the cell to carry out key functions, such as
metabolism, which allows the cell to transform food
into energy. However, the first cells would have had
none of the machinery needed for their own growth
and division. The researchers hypothesized that the
coupled growth and division of protocells could be
achieved using conditions likely to have been present
on Earth over 3 billion years ago.

« Experiment. A protocell is placed in dilute acid,
such that the interior of the protocell is slightly

more acidic than the solution. Osmosis will cause
water to enter the protocell, resulting in large
(~4 mm in diameter) vesicles. Fatty acids are then
added to the mixture and modest shear forces are
provided (Figure1.5B).

Results. The growth of small protocells is achieved
by placing them in a solution where liquid perme-
ates the membrane, resulting in the transformation
of initially spherical vesicles into long threadlike
vesicles that can divide into multiple daughter
vesicles.

Conclusion. This experiment shows that protocells
can be created, enlarged, and replicated in the lab-
oratory, suggesting that similar processes might
have occurred under the prebiotic conditions of
early Earth.

(A) (B)
M'ce”.es. As fatty acids are added, the protocell
containing . X
] grows by forming a tubular extension
fatty acids .
that continually elongates.
(©)

Protc\>cel| © ®l
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The membrane fragments
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Figure1.5 The Protocell (A) A computer-generated image of the type of protocell created by the Szostak lab. The protocell
is spherical but is shown in cross section here so the inside can be seen. The lipid membrane (red outer circle) provides an
internal environment for the protocell to store and replicate its genetic material and undergo metabolic processes to generate
energy. Noticeably lacking are more-complex cellular structures that you may already be familiar with, such as a nucleus
or mitochondrion. The protocell is surrounded by a “primordial soup” consisting of inorganic and organic molecules. Most
of these were small, but some were more complex, such as RNA fragments. (B) The proposed cyclical process of protocell
membrane growth and division. The cell incorporates micelles that cause its size to increase until it reaches a point where
agitation results in its splitting open. The resulting fragments of the original protocell then reconfigure into new cells. This
series of events is a precursor to the modern cell cycle. (A photo courtesy Janet Iwasa, Szostak Laboratory, Harvard Medical School
and Massachusetts General Hospital; B after Zhu and Szostak, 2009.)
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Competition Drives Diversification

Szostak’s research shows us how an ancestral life form could have emerged on early
Earth. However, these primitive processes were inefficient. Each time a new protocell
was formed, a new RNA fragment would have been captured in the cell, which would
have encoded completely different functions, or none at all. We envision the cycle
shown in Figure 1.5B repeating itself billions, if not trillions, of times. Some cells
captured RNA that encoded novel functions, and those cells might have survived
longer and had a greater likelihood of “reproducing,” which at this point means that
the protocell divided into two daughter cells that share the same RNA fragment.
Imagine a primitive ocean filled with trillions upon trillions of protocells. Those that
had features that resulted in the production of more copies would consume more
ingredients, which would then not be available for others.

The process just described is known as natural selection, and it is one of the most
powerful forces affecting life on Earth, through which populations of living organ-
isms adapt to the ever-changing environment. Organisms more adapted to their envi-
ronment are more likely to survive and pass on the genes that contributed to their
success. This process, natural selection, causes species to change and diverge over
time. Individuals in a population are naturally variable, meaning that they all differ
in some ways. This variation means that some individuals have traits better suited to
the present environment than others. Individuals with adaptive traits—traits that give
them some advantage—are more likely to survive and reproduce. These individuals
then pass the adaptive traits on to their offspring. Over time, these advantageous
traits become more common in the population. Through this process of natural se-
lection, favorable traits are transmitted through generations, and organisms adapt to
their environment.

Overwhelming evidence shows us that all extant species (meaning that they are
alive today) are related, having descended from a common ancestral protocell. We
call this extinct organism the Last Universal Common Ancestor, or LUCA. LUCA was
very likely a single-celled autotroph, which means it was able to make its own energy
and relied on available inorganic compounds as a food source. It is envisioned that
LUCA engaged in chemolithoautotrophy, meaning it obtained energy by oxidizing
inorganic compounds (like hydrogen or sulfur) and fixing carbon dioxide to produce
organic molecules. Its genetic material was almost certainly DNA, and it employed
RNA molecules, such as tRNA and mRNA, in translating the information encoded
in its DNA into proteins.

Heterotrophs would have emerged next, which are organisms that lack the ability
to make their own organic compounds. Instead, heterotrophs obtain their energy by
breaking down complex organic molecules, such as carbohydrates, fats, and proteins,
which they acquire from other organisms—either by eating plants, animals, or de-
composing organic matter. As heterotrophs reproduced and became more numerous,
they would have rather quickly consumed the organic compounds being produced by
autotrophs, resulting in selection for organisms capable of using alternative foods.

Anaerobic versus Aerobic Respiration

These earliest heterotrophs evolved on a planet with an atmosphere composed of
methane, ammonia, and hydrogen cyanide, which derived primarily from the gasses
emitted from volcanoes. Free oxygen was present at only trace levels. Therefore, the
earliest Earth ecosystems existed in an anexic world, devoid of oxygen, and the mi-
crobial communities present were supported by anaerobic respiration. Cellular respi-
ration is the process by which cells break down sugar and turn it into energy, which
is then used to perform work at the cellular level. The most primitive form happens
in the absence of oxygen and is called anaerobic respiration (Figure 1.6A). Early an-
aerobic microbes used chemicals to derive energy for respiration by mediating the
oxidation and reduction of inorganic compounds in their environments. For example,
methanogens obtain their energy from hydrogen (H,) and carbon dioxide (CO,) and
release methane (CH,) as a waste product, hence their name. Similarly, sulfate-reducing
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Figure1.6 Cellular Respiration Cellular respiration is the process by which cells release energy
by breaking down sugar molecules, such as glucose. (A) Anaerobic respiration, the most prim-
itive form of respiration on Earth, is how cells convert the stored energy of glucose into ade-
nosine triphosphate (ATP) in the absence of free oxygen. It provides energy to the cells very
rapidly. (B) Aerobic respiration is the process through which cells break down the glucose
molecule to convert its stored biochemical energy into ATP in the presence of oxygen.

microbes feed on sulfate. These chemoautotrophs, which use chemicals for energy,
would have had an enormous supply of inorganic chemicals to feed on and are still
commonly found in environments rich in inorganic compounds, such as near deep-
sea hydrothermal vents.

The anaerobic biosphere of early Earth, that is, the regions of the planet occupied
by living organisms, was less energetically active than our present-day aerobic bio-
sphere—in other words, energy flow from chemicals into and between microbes was
slow, roughly 5% of the rate of energy conversion found in our current biosphere.
Life forms would have been engaged in intensive competition for the limited energy
sources, which would have driven the process of natural selection, resulting in novel
approaches to finding and harvesting energy.

Some microbial lineages evolved the ability to use oxygen as an energy source,
which we refer to as aerobic respiration (Figure 1.6B). This novel form of respiration
converts glucose or other organic molecules into energy in the form of ATP, or adenosine
triphosphate, which is essential for various cellular functions. ATP uses the energy
stored in its phosphate bonds to power chemical reactions. It is often referred to as
the “currency” of the cell. Although anaerobic respiration also produces ATP, aerobic
respiration is much more efficient, and it produces ATP much more quickly. This is
because oxygen is an excellent electron acceptor for the chemical reactions involved
in generating ATP.

Photosynthesis Evolves

One of the truly great metabolic innovations involved the ability to harness the sun’s
energy, a process called photosynthesis. The earliest photosynthetic organisms
evolved specialized pigments capable of extracting energy directly from sunlight.
These pigments captured the sun’s energy and used it to transform carbon dioxide
and water into carbohydrates (food) and oxygen (waste product) (Figure 1.7A). The
first organisms capable of photosynthesis were the ancestors of the modern-day Cya-
nobacteria, a phylum of bacteria also known as blue-green algae. Thanks to photo-
synthesis, these organisms no longer needed to rely on a limited pool of organic
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Figure 1.7 Cyanobacterial Photosynthesis and Diversity (A) Cyanobacteria use the energy of
sunlight to drive photosynthesis, a process where the energy of light is used to synthesize or-
ganic compounds from carbon dioxide and water, resulting in oxygen as a waste product.
(B) Some of the diverse types of cyanobacteria. Left column: Blue green algae (top), Dinophysis
algae (bottom). Right column: Spirulin (top), Pandorina (bottom). (B photos from [i] istock.com
/Nnehring; [ii, iii, iv] iStock.com/Elif Bayraktar)

molecules or engage in the far slower process of extracting energy from chemicals and
could instead get their energy directly from the sun, which offered them a profound
selective advantage. Descendants of these very first photosynthetic cells can be found
in almost any water source you examine today. Figure 1.7B provides a snapshot of
some of the stunning and diverse members of this ancient lineage.

Cyanobacteria played a key role in transforming early Earth’s biosphere. Every
time a cell broke down a molecule of carbon dioxide, it would release a molecule of
oxygen as waste. Imagine trillions upon trillions of cells, each puffing out oxygen over
the millennia. At first this free oxygen was captured by minerals, which we see as
massive iron oxide (or rust) deposits in the geological record about 2.5 bya
(Figure 1.8). Once these minerals were saturated with oxygen, the excess began to
accumulate in the atmosphere. This period in Earth’s history is referred to as the
Great Oxidation Event (GOE), in which the atmosphere was transformed into one rich
in oxygen, like Earth’s atmosphere today, which is 78% nitrogen (N,), 21% oxygen
(0,), 0.93% argon (Ar), 0.04% carbon dioxide (CO,), and trace levels of other chem-
icals. Figure 1.8 shows the dramatic impact of the GOE on levels of atmospheric
oxygen on Earth.

The rising levels of oxygen resulted in one of the first mass extinction events on
our planet. A mass extinction event is identified when species go extinct faster than
new species evolve, defined as about 75% of the world’s species being lost in less than
3 million years. Oxygen is toxic to anaerobic bacteria, which do not possess mecha-
nisms to protect their enzymes from oxidants, and thus, most did not survive this
period of atmospheric transformation. A lucky few found ways to avoid the oxygen.
For example, it is likely that the ancestors of modern-day methanotrophs, microor-
ganisms that produce methane (CH,) as a by-product of their metabolism, would
have continued to flourish in the so-called dead zones in the ocean (areas where the
levels of oxygen remain low) and deep in the ocean floor. Our fossil record of that
time is limited, and given the microscopic size of the organisms, we are forced to infer
features of these ancient life forms.

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

10 Chapter1 The Ancient Origin of Microbes
(A)
_ Great Oxidation Event
g 100
g
£ of
&
8
£ 4L
®
[
<
= 0.1+
=
[
2 001F
X
o
ol I

I I I I I I I I
45 40 3.7 35 3.0 27 25 22 20 17 15 12 10
Age (bya)

Figure1.8 The Great Oxidation Event (A) Timeline of atmospheric oxygen levels on early Earth. Note the dramatic increase, labeled
Great Oxidation Event, that corresponds with the saturation of minerals with oxygen, resulting in iron oxide sediments. (B) The red
inserts of sedimentary rock are rust deposits providing evidence of the Great Oxidation Event. Rust is the common name for the
chemicals that result when iron reacts with oxygen and water. Sedimentary rock is built by layering different rocks and soils, where
the oldest layers are at the bottom. (A after R.A. White III 2020; oxygen data were provided by Dr. Sean Crowe [University of British Columbia]
with permission, D.E. Canfield 2005, C. Dupraz and P. T. Visscher 2005, T. W. Lyons et al. 2014, and S.A. Crowe et al., 2013; B photo from Graeme
Churchard from Bristol, UK, CC BY 2.0, via Wikimedia Commons)

Endosymbiosis and the Origin of Eukaryotes

With the rise in atmospheric oxygen and the advent of aerobic respiration, large,
complex multicellular organisms first appear in the fossil record. Multicellularity has
several obvious advantages over single-celled life forms. One of the earliest selective
pressures for it may have been related to the fact that a group of cells presents a great
challenge for a predator. As cells group together, their survival rate increases. Further,
multicellular organisms can have longer lifespans—the organism survives even when
individual cells die. Finally, multicellularity also permits increasing complexity by
allowing differentiation of cell types, or tissue specificity (Pentz et al., 2020). These
changes paved the way for evolution of circulatory and respiratory systems and intes-
tines that break down food sources and extract nutrients from them.

For the first half of the history of life on Earth, single-celled prokaryotes, whose
genetic information is found floating in the cell’s cytoplasm, were the sole inhabitants.
However, sometime around 2 bya, a new type of cellular life form arose: the eukary-
otes, whose DNA is enclosed in a protective membrane called the nucleus. Figure1.9
provides a comparison of a simple prokaryote and a more complex eukaryotic cell.

(A) Prokaryote (B) Eukaryote
Nuclear Nucleus
brane
Fla eIIum/ ; mem
g Nucleoid N Nucleolus
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reticulum /\j
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Golgi
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(some prokaryotes) Mitochondrion

Figure1.9 Prokaryote versus Eukaryote Cellular Complexity This diagram illustrates the sim-
ilarities and differences between prokaryotic and eukaryotic cells. Both contain genetic material,
a cell membrane, and ribosomes. Eukaryotic cells also contain membrane-bound organelles,
such as the nucleus, mitochondria, and Golgi body, whereas prokaryotic cells do not.
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In 1967 Lynn Margulis, a microbiologist and evolutionary biologist at the
University of Massachusetts, proposed that the eukaryotic cell was the result of a
chance fusion between two prokaryotes. An ancestral prokaryotic host cell en-
gulfed, but didn’t digest, a second prokaryotic cell, one capable of aerobic metab-
olism (Figure 1.10A shows this with a eukaryotic cell). The engulfed cell, or endo-
symbiont, provided its host with the ability to use oxygen to release energy stored
in nutrients. In turn, the host cell protected the endosymbiont from predators.
Over time, a symbiotic relationship, which refers to a close, long-term interaction
between two different species, where at least one of the species benefits from the
relationship, developed between the two organisms to the point that neither could
survive on its own. This endosymbiotic event is immortalized in eukaryotic cells
by the presence of the mitochondrion, which is the descendent of that ancient,
engulfed aerobic symbiont and now serves as the energy factory in nearly all eu-
karyotic cells today.

Margulis’s idea was largely ridiculed, and some 15 journals rejected her research
findings before they were published (Sagan, 1967). She spent much of her career
defending the hypothesis until enough experimental evidence was garnered to
support its recognition as a valid theory. In fact, it is now clear that a series of
symbiotic events (serial endosymbiosis) occurred. One endosymbiosis resulted in
eukaryotic cells possessing a mitochondrion, which became the cell’s energy factory
(Figure 1.10B). Plant cells went even further, with chloroplasts resulting from a fusion of
a heterotrophic bacterium with a photosynthetic cyanobacterium (Figure 1.10C).
Chloroplasts are the membrane-bound organelles in plants and algae where photo-
synthesis takes place. Margulis was an extraordinary scientist, one who remained
steadfast in her then-revolutionary belief that eukaryotic origins could be found.
When questioned about the controversy surrounding her proposal of endosymbiosis,
she replied, “I don’t consider my ideas controversial. I consider them right” (Teresi,
2011).

With the advent of the eukaryotic cell, the diversification of life took on a whole
new dimension. A tidal wave of biological diversification occurred about 540 mya.
This period, known as the Cambrian Explosion, was literally that, an explosion of
macroscopic life forms that appear all at once in the fossil record during the geolog-
ical period known as the Cambrian. What was previously a planet dominated by
microscopic prokaryotes is now rich with complex macroscopic, multicellular life

Animals
Endoplasmic  Nuclear envelope
reticulum

Nucleus Mitochondrion
Engulfing of
o, Engulfing of aerobic photosynthetic
A heterotrophic prokaryote prokaryote

(A) Ancestral (B) Ancestral (C) Ancestral
eukaryotic cell heterotrophic photosynthetic
eukaryote eukaryote

Figure 1.10 The First Endosymbiotic Events Imagine an ancestral eukaryotic cell (A), similar
to a present-day amoeba. It engaged in phagocytosis, gaining energy from ingested organic
matter, such as prokaryotic cells. The endosymbiotic theory posits that in several instances, the
ingested cells survived and developed a symbiotic relationship with the host. Mitochondria (in
B) and chloroplasts (in C) were the result of this process and were capable of aerobic respira-
tion or photosynthesis, respectively.
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forms that fuel successive waves of ecological and environmental transformations on

Earth.

1.2 THE GREAT TREE OF LIFE

Now that our planet is teeming with microscopic and macroscopic life, we need a
system to name all this diversity. In 1735, Carolus Linnaeus proposed a hierarchical
scheme of classification that started with the most inclusive groupings, kingdoms, and
descended into smaller and smaller subgroups, ultimately ending with a species
name. Linnaeus would assign each species a unique two-word Latin name, or bino-
mial, such as Homo sapiens, the binomial for humans. It consists of the species des-

Classification of Homo sapiens within the order Primates

species contained forms:
sapiens modern humans
genus \ modern and
Homo archaic humans

family h humans and
Hominidae \ ; great apes
< humans and
superfamily all apes
Hominoidea (great apes
and gibbons)
infraorder \ H \ f‘ﬁ. * humans,
Simiiformes - apes, and
; % monkeys
suborder
Haplorrhini

TR &
! ) K@’”@& wpes monkers

2# 4829 |
Xaa kY

Figure1.11 Hierarchical Classification This image shows a portion of
the Linnaean classification of humans, or Homo sapiens. The broad-
est level of Linnaeus’s classification system is kingdom. The kingdom
Animalia includes all animals, including humans. The groups become
more specific as classification continues. Humans are in the genus
Homo, which contains modern humans as well as now-extinct
humans, such as Neanderthals. A species’ name consists of its genus
name followed by its species name, which is specific to it, so humans
are given the name Homo sapiens. (Photo from Universal Images Group
North America LLC/Alamy Stock Photo)

humans, apes,
monkeys,

'y,

M

ignation (sapiens or “wise man”) preceded by the
genus (Homo). Genera were grouped into families,
families into superfamilies, and so on until the level of
kingdom was reached. Figure 1.11 shows a portion of
the hierarchical levels of the Linnaean classification
system and provides an example of how the human
species is classified. Beyond the level of order, humans
are members of the class Mammalia, the phylum
Chordata, and the kingdom Animalia.

Although Linnaeus sought to classify organisms
based upon similarities, his methods often resulted in
clusters that reflected evolutionary relationships,
which we can represent in a phylogenetic tree. A
phylogenetic tree (also phylogeny or evolutionary tree)
is a branching diagram showing the evolutionary re-
lationships among organisms based upon similarities
and differences in their physical or genetic character-
istics. In 1859, when Charles Darwin published his
thesis on the origin of species, he introduced the con-
cept of a great tree of life (ToL) connecting all living
and extinct life forms to a common ancestor (Darwin,
1859). He envisioned an ever-growing tree whose
root is our common ancestor (LUCA), with the
branches representing distinct lineages terminating in
foliage, which represent the species. Figure 1.12A
shows Darwin’s illustration of his tree of life. He went
so far as to describe the fallen limbs and leaves as
those extinct lineages that we know only from the
fossil record: “Buds give rise by growth to fresh buds,
and these, if vigorous, branch out and overtop on all
sides many a feebler branch, so by generation I believe
it has been with the great Tree of Life, which fills with
its dead and broken branches the crust of the earth,
and covers the surface with its ever branching and
beautiful ramifications” (Darwin, 1859).

The ToL envisioned by Darwin was transformed
over the next hundred years as more and more organ-
isms were discovered, described, and added. Fig-
ure1.12B provides a version of the ToL popular in the
mid-20th century, called the five-kingdom ToL, with
animals, plants, fungi, protists, and monera identified
as the five categories, or kingdoms, of life. Animals
and plants are obvious; however, you may be less fa-
miliar with the other kingdoms. Fungi refers to spore-
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Figure 1.12 Darwin’s Tree of Life (A) Darwin’s illustration of the tree of life, which was first
drawn in one of his notebooks in 1837. The base of the tree, which is labeled by the number
1, represents the cenancestor (or LUCA), and the ends of the branches represent species. A
version of this illustration was included in his landmark book on evolution, On the Origin of
Species, which was published 12 years after Darwin’s original tree drawing. (B) The five-
kingdom ToL was widely used until molecular technology became advanced enough to permit
us a window into the incredible diversity of Protista and Monera, which we now recognize as
the prokaryotes. Monera, which includes bacteria and other prokaryotes in this ToL, is at the
base. Monera was seen as a more primitive group, from which more-advanced multicellular
life evolved. The uppermost branches of the tree represent plants, animals, and fungi. Scientists
could easily observe these large, multicellular life forms, so their diversity was better under-
stood and took up most of the branches of the tree. (A illustration reproduced by kind permission
of the Syndics of Cambridge University Library.)
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producing organisms that feed on organic matter, including molds, yeast, mushrooms,
and toadstools. Protists are single-celled eukaryotic organisms, such as protozoa or
simple algae. Monera is the kingdom into which prokaryotes, such as bacteria, are
placed. This view of life’s diversity focuses your attention first and foremost on the
macroscopic organisms and suggests that protists and monera are somewhat more
primitive and less diverse. In truth, scientists at that time couldn’t make sense of the
evolutionary relationships among monera, simply because they didn’t have pheno-
types, or observable characteristics, to compare.

A Molecular Tree of Life

In 1977, Carl Woese tackled this formerly intractable problem, inferring the evolu-
tionary relationships among the monera, or prokaryotes (Woese & Fox, 1977).
Lacking visible physical traits with which to classify microorganisms, Woese turned
to molecules. He chose the ribosome, which is a complex of RNA and associated
proteins that functions to synthesize proteins, and which is one of the most ancient
and well-conserved biochemical structures shared by all life. This means that any two
species’ ribosomes are similar, even if the species are not otherwise closely related. The
ribosome is essentially a mini factory that translates genetic information into proteins
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Figure 1.13 Carl Woese and a
Molecular-Based Tree of Life
(A) Photograph of Carl Woese
peering at a radiograph that
shows the ribosomal fragments
of a microorganism’s 16S rRNA
separated based upon electrical
charge. (B) Two-dimensional
structure of the 16S rRNA mole-
cule with regions indicated in
blue that are cleaved during the
RNA digestion procedure em-
ployed by Woese. (A photo cour-
tesy of Jason Lindsey, University of
Illinois Urbana-Champaign)
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(Figure1.13). All life forms use this same fundamental process for making proteins, so
they all share at least some portions of the ribosomal RNA-protein complex.

Woese proposed that by comparing portions of the ribosomal complex among all
life forms, it would be possible to group organisms in the same manner that they had
been grouped previously using physical traits, or phenotypes. Within the ribosomal
complex are subunits made of RNA and protein. The RNA molecules within those
subunits are named based upon their weight in Svedberg units, such as 16S and 18S.
All organisms, even those from across the three domains of life, have ribosomal sub-
units. Woese used information obtained by cleaving the RNA sequences of these ri-
bosomal subunits and comparing the resulting fragments to estimate how closely re-
lated two organisms are. Pairs of taxa that are more similar in their ribosomal
fragments are inferred to be more closely related. The number of differences between
the ribosomal RNA fragments then serves as a measure of the amount of evolution-
ary time that separates a pair of taxa. These evolutionary distances can be used to
create a phylogeny.

The Three Domains of Life

Woese first focused on a subunit of the ribosome (the 16S subunit) that is present in
all bacteria. He produced fragments of the 16S ribosomal RNA (rRNA) for a diverse
sample of what he thought of as bacteria and immediately noticed something strik-
ing. There was one cluster of fragments that was quite different from all the others.
The organisms represented by that cluster were methanogens, prokaryotic cells that
produce methane as a waste product. Woese quickly realized the significance of this
finding: methanogens were not bacteria, but something completely different. He then
employed an additional subunit of the ribosome (the 18S subunit), which is related
to the 16S subunit but is found in eukaryotes, so that he could include eukaryotes in
his clustering process. Although methanogens looked superficially like bacteria, their
ribosomes reveal a very different ancestry. To his surprise the ribosomal fragments of
methanogens were more like those found in eukaryotes than in bacteria. Woese
named this new lineage Archaea, which is a Latin term meaning “primitive.”

Based upon these results, Woese created a new ToL, which required a higher level
of organization than the five kingdoms. He identified and named three groups within
a higher level of biological relationships: Eukarya (animals, plants, fungi, and
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protists), Bacteria, and Archaea (Figure 1.14). The discovery of Archaea stimulated
both enormous interest and intense skepticism at first. However, as more lineages of
Archaea were identified, it became clear that it did, indeed, represent a novel and ancient
branch on the ToL. Table1.1 summarizes some of the similarities and differences observed
between members of the three domains. The prokaryotes, which encompass members
of the domains Archaea and Bacteria, share certain characteristics, such as size and a
lack of intracellular organelles, while the eukaryotes appear to be chimeras, sharing key
characteristics with both archaeans and bacteria. If we think back to the endosymbiotic
theory, these patterns of similarities and differences begin to make sense. Eukaryotes,
which were created through a series of endosymbiotic events, may very well have been
derived from an ancestral archaean host that harbored a bacterial endosymbiont.
Woese’s breakthrough was momentous for several reasons. First, by focusing on the
ribosome, he had identified a way to compare all cellular life. Second, Woese revealed our
ignorance of one of the three main branches of life, the Archaea. Further, he showed us
that microbes occupy a dominant place in Earth’s biodiversity. If we compare the five-
kingdom and three-domain views of biodiversity, we see a fundamental shift from a view
of life in which the eukaryotic crown species (plants, animals, and fungi) dominate, to
one in which these eukaryotes are in the minority (see Figures 1.12B and 1.14). Woese
himself described how unsettling this new view of life’s diversity truly was: “Imagine
walking out in the countryside and not being able to tell a snake from a cow from a
mouse from a blade of grass, that’s been the level of our ignorance” (Blakeslee, 1996).

Table 1.1 Comparison of Domains

EUKARYA BACTERIA
Cell type Eukaryotic Prokaryotic
Chromosomes Linear Circular
Membrane-bound organelles Yes No
Nuclear envelope Yes No
RNA polymerase Many One
Cell wall composition Not always present Plants—cellulose = Peptidoglycan

Fungi—chitin

Cell membrane composition Ester linked lipids with D-glycerol

(straight chain)

Ester linked lipid with proteins
(straight chain)
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Figure 1.14 The Ribosomal
RNA-Based Tree of Life This
phylogenetic tree was developed
using data from rRNA sequences.
While eukaryotes made up most
of the five-kingdom-view-based
tree, they are only a small por-
tion of the modern tree of life.
Monera was found to include
two distinct domains: Bacteria
and Archaea. Although archae-
ans are microorganisms like bac-
teria, they are actually more
closely related to eukaryotes, like
us, than they are to bacteria!
(After M. T. Madigan and M. Mar-
tinko, 2006.)
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The Tiniest Microbes

There is one group of microbes that were not included in Woese’s molecular tree of
life, the viruses. Viruses are microscopic organisms that require a living cell, or host,
to multiply. They are ubiquitous and may even be the most abundant biological en-
tities on our planet. Viruses are simple in structure, with a genetic material (DNA or
RNA) and a protein coat (Figure 1.I5A). Some sport an additional outer layer, the
envelope, which may have spikes that help the virus latch onto and enter a host cell.
If the cellular conditions are right, the viruses then multiply within their host, often
killing the host cell in the process.

Each type of virus has its own host range, which refers to the breadth of hosts it
can infect. Some have a narrow host range; for example, Variola virus, which causes
smallpox, can only infect humans. Other viruses have broad host ranges; for exam-
ple, SARS-CoV-2, the causative agent of COVID-19, may infect hundreds of different
hosts, including humans and other primates, bats, pangolins, ferrets, and camels.

Viruses are generally not given species names, so they don’t fit neatly into the
Linnaean classification system. In fact, many scientists don’t consider them to be
alive! They lack some of the basic features we think of when we attempt to define
life, such as being cellular, maintaining homeostasis (or a stable internal state), grow-
ing, and making or acquiring energy. They do, however, replicate—using the host’s
replication machinery—and they adapt to their environment. Whether they are alive
or not, viruses are one of the most abundant and diverse forms of microorganisms on
Earth. They are categorized according to various characteristics they possess, includ-

(A) (B)

Envelope protein

— Envelope

Figure 1.15 Viral Structure and Diversity (A) Most viruses are enclosed by an envelope
embedded with proteins, which help the virus enter a host cell. A virus may have a DNA
or RNA genome, which may be protected by a capsid. (B) A variety of different viral struc-
tures: [i] Acidianus bottle-shaped virus (colorized electron micrograph image), [ii] Bacterio-
phage on a bacterial cell (computer generated image), [iii] Ebola virus (microscopic view),
and [iv] SARS-CoV-2 (computer generated image). (B photos from [i] ICTV International Com-
mittee on Taxonomy of Viruses, David Prangishvili, Mart Krupovic, Andrew M. Kropinski, Stuart G.
Siddell, CC BY-SA 4.0, via Wikimedia Commons; [ii] extender_01/Shutterstock; [iii] iStock.com/Nixx
photography; [iv] iStock.com/Naeblys)
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ing their shape and size, the type of genetic material they possess (DNA or RNA), and
whether they have an envelope layer. Figure 1.15B illustrates the major types of
viruses.

It is challenging to identify the origin of viruses, as they don’t leave fossils. In
addition, some viruses can insert their genetic material into their hosts’ genomes,
which makes it difficult to untangle viral from host evolutionary histories. Since vi-
ruses do not share homologous genes or proteins with members of the three domains
(Bacteria, Archaea, and Eukarya), we are not able to place them onto one or more
branches of the ToL, leaving their relationships with other life forms in question.

1.3 MAKING THE INVISIBLE VISIBLE

With Woese’s transformation of the ToL, microbes took center stage in our under-
standing of the diversity of life for the first time. In fact, according to Woese, microbes
are the core of life on Earth: “If you wiped all multicellular life-forms off the face of
the earth, microbial life might shift a tiny bit, if microbial life were to disappear, that
would be it—instant death for the planet” (Blakeslee, 1996).

Before the 16S rRNA ToL revolution, we hadn’t appreciated the immense diver-
sity of microbes on our planet. In large part this was due to their seemingly simple
morphology, which resulted in our tendency to group these simple life forms together.
In the five-kingdom view of life, we see the microbial lineages clustered in two pools
at the base of the tree (see Figure 1.12B). These pools represent the protists and
monera (Bacteria and Archaea) with virtually no branches to represent what we now
know is an incredible diversity of microscopic life.

We have known that microbes exist for over 400 years,
ever since Robert Hooke invented the first microscope and
explored the detailed structure of all sorts of biological en-

tities, such as sponges, seaweed, and wood. Of particular ﬁ[/ Jl
interest here are his observations of mold. He describes its < /ﬁ ‘Q ;

appearance on numerous decaying substances and notes I X
that these creatures “will not be unworthy of our more se- ~ S % y
rious speculation and examination” (Hooke, 1665). In

short, Hooke was describing a microorganism’s appearance
for the first time.

The First Sightings of Bacteria

Inspired by Hooke, Antonie van Leeuwenhoek developed
an even more powerful microscope and explored numerous
samples from his own body, such as stool. In 1677, he re-
ported to the British Royal Society that he had discovered
over 1,000 “animalcules,” or little animals, that differed
from one location in the body to another (Figure 1.16) (van
Leeuwenhoek, 1677). When he examined scrapings from
his teeth, van Leuwenhoek noted, “I then most always saw,
with great wonder, that in the said matter there were many
very little living animalcules, very prettily a-moving. The
biggest sort . . . had a very strong and swift motion and shot 4
through the water (or spittle) like a pike does through the e
water. The second sort. .. oft-times spun round like a
top . . . and these were far more in number” (van Leeuwen-
hoek, 1677). These were the very first observations of living
bacteria ever recorded, and they inspired the development

.v'.y.?.l.'-«

s Lrrsnaliicdes

Figure1.16 Animalcules Antonie van Leeuwenhoek was the
first person to record observations of the microbiome. He
obtained microbiome samples from various body parts and

of an entirely new field of study, microbiology, or the branch viewed them under a microscope. The “animalcules,” or
of science that deals with microorganisms. Van Leuwen- microorganisms, he saw are illustrated in this figure. (Photo
hoek is considered the father of microbiology, and from the from The Picture Art Collection/Alamy Stock Photo)
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late 1600s to present day, scientists have been exploring the rich diversity of microbes
on Earth.

Culturing the Invisible

Ever since the invention of the microscope, microbiologists have developed a rich
toolbox with which to further explore microscopic life forms. The most common
approach is to culture the cells, which allows them to grow and divide until there are
enough for us to see. The basic procedure is straightforward. Say you want to see
some of the microorganisms present in a nearby pond. You start with a sample of
pond water and spread a drop of it on a rich growth medium. Each cell lands on a
unique spot on the growth medium. If its requirements for growth are present, it
grows and divides in this spot, and its daughter cells then replicate and eventually
form a visible “colony” of hundreds of thousands of identical cells (Figure 1.17). In
our pond water sample, we might find 50 or more different types of microbes growing
on the food source we provide.

By altering the nutrients offered in growth medium to meet different species’
growth requirements, scientists have identified several thousand prokaryotic and
protist species. However, that seemingly impressive number pales in comparison with
the number that actually inhabit the pond water. If we were to apply Woese’s molec-
ular methods of comparing all the 16S rDNA present in our pond water sample, we
might find several thousand microbial species. This discrepancy between what we can
grow in artificial media and what microscopic life is present in a sample is known as
the great plate count anomaly, and it hindered progress in microbiology for decades.
We simply didn’t know what (or how much) we didn’t know! For example, it is com-
mon knowledge that urine is sterile, unless you have a urinary tract infection. And
yet, if you take a sample of supposedly sterile urine from a bladder and sequence the
16S rDNA present, you will find a wealth of different microbes have made urine, or
the bladder, their home. For every novel environment we sample, we identify an ever-
greater breadth and depth of microbial diversity.

Extremophiles, Life on the Edge

With the advent of molecular tools for identifying microbes, microbiologists engaged in
an expansive hunt for novel microorganisms. We now know that microbes exist in

Microbes can be isolated and
purified by transferring them

Figure1.17 Bacterial Culture To isolate a genetically identical group of bacteria, a sample can
be spread across a nutrient-filled petri dish to isolate individual cells, which can grow and di-
vide to form visible colonies (A). Every member of a colony is a descendant of the first individ-
ual cell that landed on that spot on the petri dish. To obtain a pure culture of each individual
cell from the original sample, cells from a colony are transferred to a fresh petri dish and grown
in isolation (B). (Photos from [left] iStock.com/aorphoto; [right] iStock.com/Sinhyu)
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some of Earth’s most extreme environments. Some thrive in ice or salt,
in the most acidic or basic conditions, living in organic solvents, con-
suming heavy metals and even toxic waste. Such extremophiles have
been found in every imaginable, and even the most unimaginable, con-
ditions on Earth. In every extreme environment investigated, a variety
of organisms have been shown to not only tolerate the conditions there,
but often require them to survive. Table 1.2 shows just a sliver of the
extreme environments where extremophiles have been identified so far.

The term extremophile means “lover of the extreme,” and the
Archaea domain is where most extremophiles are found. In fact, when
archaeans were unveiled to the world, they were thought of as extrem-
ophile weirdos. We now know that archaeans can readily adapt to
extreme conditions, which may be due, in part, to the composition of
their cell membrane. All cells have a plasma membrane made of a
phospholipid bilayer, which evolved from the lipid-based protocell
membrane we discussed earlier. The archaeans employ ether bonds in that bilayer,
while bacteria and eukaryotes use ester bonds. This distinction is important because
ether bonds are more resistant to chemical activity, which permits archaeal cells to
survive in more extreme environments.

Some archaeans are among the most extremely thermophilic (heat tolerant), aci-
dophilic (acid tolerant), alkaliphilic (base tolerant), and halophilic (salt tolerant) mi-
croorganisms known. Figure 1.18 shows the location where extremophiles were first
discovered, in the hot springs of Yellowstone National Park. The genus Picrophilus,
a member of Archaea, includes the most acidophilic organisms known, which can
grow at a pH of 0.06, which is more acidic than hydrochloric acid. Despite their heat-
loving reputation, archaeans are also found in very cold places, like Arctic seawater.
Aside from our fascination with how extremophiles adapt to their extreme environ-
ments, this relatively unknown domain of life is particularly important to humans,
due to its position on the ToL. Eukaryotes share a more recent common ancestor with
Archaea than they do with Bacteria. Archaeans are our sister
lineage, and there is so much more we must learn from them
about them, and thus our own place in the biosphere.

Table 1.2 Types of Extreme Environments

Hot springs

Deep sea hydrothermal vents
Salt lakes

Polar regions

Volcanic areas

Acidic mine drainage
Deserts

Environments with high radiation levels

1.4 THE MICROBES WITHIN US

We now understand that microbes have a long and rich evolu-
tionary history on Earth, one that is essentially as old as the
planet itself. They continuously adapt to novel environments,
invent new methods of energy capture, and in the process,
have transformed our planet. Given this central role of mi-
crobes in the biosphere, it may be less surprising to learn that
microbes have also adapted to living in and on us. We refer to
these invisible residents as members of our microbiome (from
the Greek terms micro meaning “small” and bios meaning
“life”). The formal definition of a microbiome refers to a char-
acteristic microbial community occupying a defined habitat
that has certain properties. We can find microbiomes essen-
tially everywhere we look—in our gut, in the soil surrounding
the roots of a plant, in clouds, and even in the plume from a
hydrothermal vent.

Figure 1.18 Extremopbhiles at Yellowstone National Park
Extremophiles were first discovered in Yellowstone Na-
tional Park’s hot springs, where the water regularly
reaches 189°F. The thermophiles that live in the hot
springs give the pool its ring of colors. To survive at such
high temperatures, these bacteria have evolved very stable
membranes and proteins. One of these proteins, Taq poly-
merase, is now used in an important technique for creat-
ing copies of DNA, known as the polymerase chain reac-
tion, or PCR. Taq is able to maintain its structure and

A Universe of Microbes within Us
function even at the high temperatures required for PCR.

The term microbiome refers to both the microorganisms pre-
sent and the functions they provide, while the term microbiota
refers simply to which species are present. For example, our

We can thank extremophiles for our ability to perform
PCR for COVID-19 testing, gene sequencing, forensic
testing, and more! (Photo from Framalicious/Shutterstock)
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gut microbiome is home to approximately 300 to 500 species of microbes, collec-
tively called the gut microbiota. These members together with the functions they
provide, such as digesting some of the food we ingest, are called our gut microbiome.
Each microbiome is integrated into its host or ecosystem and is crucial for the proper
functioning and health of the organism(s) in that niche.

Our goal in this textbook is to explore what microbes are present in humans,
what functions they encode in their genomes, and how those functions impact us,
their human hosts, in both healthy and diseased states. This knowledge may force
us to redefine what it means to be human. Rather than consider ourselves as distinct
biological entities, separate from all other life forms, we must now acknowledge
that humans, indeed all multicellular organisms, are composed of numerous com-
plex ecosystems each consisting of a mixture of their own and microbial cells. This
new entity, the human with all its microbiomes, is referred to as the holobiont, a
term derived from the Greek hdlos or “whole” and biont for “unit of life.” The
term was coined by Lynn Margulis in the 1990s as she was exploring the endosym-
biotic origin of eukaryotes. Her intent was to provide a term that would acknowl-
edge the key role of symbiotic relationships in the evolution and diversification of
multicellular eukaryotic organisms, such as when an ancestral prokaryotic cell gave
rise to mitochondria or chloroplasts. However, the term is equally appropriate to
refer to a human body with its invisible microbial symbionts that, as you will learn,
provide the key to our health while at the same time serving as the harbingers of
certain diseases.

Each of us consists of about 30 trillion human cells, which carry our genetic
blueprint and the machinery required to translate that information into what be-
comes the visible “us.” These cells form collections of tissues and organs, which play
critical roles in keeping our bodies functioning. For example, skin serves as our front-
line defense against invading pathogens, while the heart provides the force required
to ensure all of our cells receive the oxygen-rich blood they require. For several thou-
sand years physicians and scientists have explored our cells, tissues, and organs in
their quest to understand what makes us uniquely human, what keeps us healthy, and
what can go wrong in our bodies to cause disease and death.

We have long known that bacteria and viruses could invade our bodies and cause
illness; however, they were considered temporary intruders that our bodies, or the
medications we took, would fight to eliminate. In just the past 20 years we have
gained an entirely new perspective on the important role microorganisms play in
keeping our bodies healthy, leading some to argue that the microbiome should be
considered the 11th critical organ, equal in importance to our brain! Let’s explore this
new organ and learn a bit about its role in keeping us healthy.

How Much of You Is Human?

It’s estimated that we have about 35 trillion microbes in and on our bodies—about 5
trillion more than the number of human cells! This count excludes viruses, whose
numbers may dwarf the human and microbial cell counts combined. Those numbers
translate into a weight of just over 1 kg (2.5 pounds), with a volume of about 1.5
liters (6 cups) of cells. That’s nearly half a gallon of microbes per human!

Our body hosts numerous, distinct microbiomes (Figure 1.19). We have an oral
microbiome in our mouth, one that covers our skin, another in our urinary tract, one
in our gut, and even one deep in our lungs. There are far more fine-tuned distinctions
we could make. For example, the microbes that inhabit the surface of our tongue are
distinct from those that live under our gums, which are different from those that live
attached to our teeth, and so on.

These distinct microbial communities also vary greatly in their cell densities.
Blood is a virtual microbial desert, while the large intestine contains one of the dens-
est microbial communities on Earth (Bojanova & Bordenstein, 2016)! While the
precise number of microbes may differ, each microbiome is highly diverse, with over
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Figure 1.19 So Many Human Microbiomes The human microbiome includes many different
microbial communities, each with its own unique composition of species and role in maintain-
ing our health. (After V. D. Appanna, 2018.)

300 distinct bacterial species identified in the human gut microbiome alone (Almeida
et al., 2021).

Even more compelling than their sheer numbers is the fact that the genetic infor-
mation our microbiomes encode far exceeds our own. The human genome encodes
20,000 genes, while our microbiomes provide an additional 45 million, each encod-
ing functions with the potential to impact us, their host. For example, if not for genes
carried by certain species of bacteria, we would not be able to digest most of the fiber
we consume.

1.5 OUR MICROBIOMES, OUR HEALTH

The rapidly growing field of microbiome science is revealing the complex roles these
fellow travelers serve in human health. There is now overwhelming evidence that
most functions of our body, such as growth, development, and metabolism, depend
on our microbiome. Our immune system is trained first by our mother’s microbiome
during pregnancy and then by our own microbiome, particularly during the first few
years of life. Dysfunctions in the gut microbiome are associated with several autoim-
mune diseases such as arthritis, fibromyalgia, and multiple sclerosis. Our gut micro-
biome also plays a role in several intestinal conditions, such as inflammatory bowel
disease (IBD) and irritable bowel syndrome (IBS), while obesity is often associated
with an imbalance in the members of our gut microbiome.
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Microbiomes and Human Nutrition

Another example of the key role our microbiome serves is in nutrition. Sugars and
starches are two classes of carbohydrates synthesized by all organisms. The plants we
eat contain thousands of different carbohydrates, which are broken down to their
simplest components to provide us with energy. The human genome has fewer than
20 enzymes involved in digesting carbohydrates. Enzymes are proteins that act as
biological catalysts by accelerating chemical reactions. Those carbohydrates we can’t
digest end up in the large intestine, where our microbiome takes over. The microbes
in our gut encode thousands of carbohydrate-digesting enzymes in their genomes,
which they employ to break down, or ferment, carbohydrates that are not digestible
by humans, for energy.

Microbial Metabolites, Key to Human Health

One outcome of the microbiome’s digestive efforts is their waste, some of which is
essential for human health. These waste molecules, also known as by-products, serve
key roles in our nutrition and metabolism. For example, our bodies require vitamins,
which are organic compounds that are essential for maintaining various body sys-
tems, including the immune and nervous systems. You might have learned that the
vitamins our bodies need can only be obtained from the food we eat. In fact, our
microbes can produce several key vitamins for us. Many vitamins are metabolites, or
intermediaries, produced during the fermentation of fibrous foods by the microbes
living in our gut. Bacteria in the microbiome also produce short-chain fatty acids
(SCFAs), which are fatty acids with fewer than six carbon atoms. They are primarily
produced through the fermentation of dietary fibers by gut bacteria in the colon.
SCFAs are an essential energy source for our intestinal cells. It is an elegant symbiosis:
our gut provides an energy-rich environment that supports an incredible diversity of
microbial life, while that life, in turn, provides us with some of the key ingredients
required to ensure our health.

Reflections on Your Microbiome

Let’s think about our microbiomes from a slightly different perspective. As you walk
from one lecture hall to another, passing people who may look very different from
you—in height, weight, skin, or eye color—consider this fact: your genome differs by
about 0.1% from any other human genome. Regardless of how different you look,
you are nearly identical in terms of your DNA content. Now, look again at those
passing by, and imagine that you can see the members of their microbiomes as easily
as you see their facial features. Each person’s microbiome differs by as much as 90%
in terms of the species present, not to mention the genetic repertoires those species
possess.

All these facts are causing us to reconsider how we think of ourselves as uniquely
‘us.” Traditional explanations for what makes an individual unique focus on our
brain or the contents of our genome. However, as you will learn, our microbial resi-
dents communicate directly with our brain, and they provide far more gene functions
than does our own genome. We are realizing that humans are not discrete entities of
human cells and genes; rather, each of us is a consortium of thousands of organisms
that result in a functioning, hopefully healthy, human. Indeed, it takes a microbial
village to be a human!

Take a moment to reflect on what this new understanding of our microbial part-
nerships means to you. Does it scare you (or gross you out) to imagine the astronom-
ical numbers of microbes in and on your body? Do you get excited about the genetic
potential we carry inside us? Or do your thoughts turn to the role these microbes
have played in our evolutionary history? Perhaps you wonder if you can take advan-
tage of them to improve your health. Simply said, we are not alone, and it can feel
empowering to understand that you have a fair bit of help in keeping your body

healthy.

I3
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CHECK YOUR UNDERSTANDING

1. Approximately when do we think life emerged on this
planet?

4 billion years ago

b. 1 million years ago

c. 0.5 million years ago

d. 1,000 years ago

d

. The Miller-Urey experiment was designed to test
whether
a. early Earth’s conditions could be mimicked.
b. organic molecules could be created under early
Earth conditions.
c. inorganic molecules could create life.
d. life could be created in a glass chamber.

. Which represents the Central Dogma of Molecular
Biology?

a. RNA — DNA — protein
b. Membrane — DNA — protein
c. DNA — RNA — protein
d. DNA — membrane — protein

. The advanced protocell created by Szostak’s lab was

essentially a

a. membrane-bound cell containing DNA.

b. fragment of RNA that could replicate itself.

c. cellular structure that could make copies of
itself.

d. cellular structure that was unable to replicate
itself.

. Natural selection occurs when

a. an individual organism gains new, advantageous
traits during its lifespan.

b. individuals with advantageous traits are better
able to survive and reproduce, and those traits
become more common in the population over
time.

c. random events result in organisms better able to
survive and reproduce.

d. a population of organisms survives to reproduce.

. Hydrothermal vents provide a rich nutrient source
that some of the earliest life forms likely took advan-

tage of.
a. True
b. False

7. What are deep-sea hydrothermal vents?

Magma transmitted from the Earth’s core

The ocean’s equivalent of geysers

Very hot plumes of air at the bottom of the ocean
Underwater volcanoes

oo o

10.

11.

12.

13.

14.

15.

16.
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. The two competing arguments about the origin of life

are the replication argument and the cell division

argument.
a. True
b. False

. The protocell membrane was created with

a. DNA.

b. RNA.

c. fatty acids.
d. proteins.

What’s the difference between autotrophs and
heterotrophs?

a. An autotroph makes its own food.

b. A heterotroph makes its own food.

c. A heterotroph uses the sun’s energy to fuel itself.
d. An autotroph uses the sun’s energy to fuel itself.

How did the Great Oxidation Event affect life?

a. Anaerobic life largely went extinct.

b. Aerobic life largely went extinct.

c. It created the rust deposits found in some sedi-
mentary rocks.

d. It enabled anaerobic life to flourish.

Identify 2 characteristics of eukaryotes not found in
prokaryotes.

a. Cell membranes, flagella

b. Nuclei, mitochondria

c.  Nuclei, flagella

d. Golgi bodies, cell membranes

Lynn Margulis proposed that eukaryotic cells came
from a chance fusion of 2 protists.

a. True

b. False

How did cyanobacteria transform Earth’s atmosphere?
a. By producing methane

b. By consuming all the existing oxygen

c. By producing oxygen

d. By consuming all the existing carbon dioxide

LUCA was the very first organism.
a. True
b. False

What technology allowed the microbiome to be
viewed for the first time?

a. Telescope

b. Microscope

c. Electron microscope

d. 16S ribosomal sequence
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17.

18.

19.

20.

21.
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What genus are humans members of?

a. FEukarya

b. Sapiens

c. Mammalia
d. Homo

Which kingdom were prokaryotes a part of in the
5-kingdom view of life?

a. Monera

b. Fungi
c. Protists
d. Bacteria

What did Carl Woese use to infer relationships be-
tween prokaryotes?

a. Whole genome sequencing

b. Phenotypic observations

c.  Metabolic pathways

d. 16S rRNA

What are the 3 domains of life?
Eukarya, Prokarya, and Monera
b. Eukarya, Bacteria, and Archaea
c. Fungi, Protista, and Bacteria

d. Eukarya, Bacteria, and Protista

i

What is the cause of the great plate anomaly?

a. Some bacteria have RNA genomes.

b. Many bacteria cannot be cultured using available
techniques.

c. It is difficult to find bacteria in the environment.

d. It is impossible to isolate a single species from a
sample.

DIVING DEEPER

. Why were deep-sea hydrothermal vents advantageous

locations for early life?

. How did Miller and Urey show that the organic mol-

ecules necessary for life could form from inorganic
material?

. What were the two competing views about the origin

of life, and what did Jack Szostak’s protocell reveal?

. What’s the difference between autotrophs and

heterotrophs?

. How did the Great Oxidation Event affect life?

. Can you explain three differences and three similari-

ties between prokaryotes and eukaryotes?

. According to Lynn Margulis’s endosymbiotic theory,

how did eukaryotic cells acquire mitochondria and
chloroplasts?

. Identify three differences between the five-kingdoms

and three-domains views of life’s diversity.

22. Extremophiles are microbes that survive in intense
conditions, such as very high or low temperatures.
a. True
b. False

23. Which human microbiome is less dense than the
others?
a. Gut microbiome
b. Oral microbiome
c. Blood microbiome
d. Skin microbiome

24. A human and their microbiome have about the
same number of enzymes involved in digesting carbo-

hydrates.
a. True
b. False

25. Vitamins, short-chain fatty acids, and other metabo-
lites are produced when certain microbes digest which
compounds in food?

a. Simple sugars
b. Fatty acids

c. Lipids

d. Fibers

Answers: 1A, 2B, 3C, 4C, 5B, 6A, 7B, 8B, 9C, 10A, 11A, 12B
13B, 14C, 15B, 16B, 17D, 18A, 19D, 20B, 21B, 224, 23C, 24B,
25D

9. Why is the ribosome a good tool to use for inferring
the tree of life?

10. Why was Woese’s use of 16S rDNA sequencing
revolutionary?

11. What technology allowed the microbiome to be
viewed for the first time?

12. Why are bacterial culture techniques limited, and
what technology solves this problem?

13. Can you give examples of the environments that ex-
tremophiles are able to live in?

14. What is a virus’s host range?

15. Why can’t viruses be placed on the tree of life, and
how are they different from Bacteria, Archaea, and
Eukarya?

16. What’s the difference between the microbiome and
microbiota?
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17. Lynn Margulis introduced the term holobiont to ex-
plain what?

18. Can you list five microbiomes found in/on humans?

19. How does the human microbiome vary by body part?

DISCUSSING AND REFLECTING

1. Lynn Margulis’s serial endosymbiosis theory was a
harbinger of the discovery of the microbiome. Ex-
plain what is meant by that statement.

2. Woese’s impact on our understanding of biodiversity
has been enormous. Describe the key features of bio-
diversity that we were ignorant about before Woese’s
research revealed the three-domain tree of life.

3. What can extremophiles tell us about the origin of life
on Earth and the possibility of life existing on other
planets?
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