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Hi  there! My name is Pyrococcus furiosus. No fears, I am not a furious microbial monster. I 
am simply an extremophilic, hyperthermophilic archaeon that thrives in extremely hot envi-
ronments. Maybe now you would prefer me to simply be furious! It  isn’t that hard to fi gure 
me out. I love hot! I mean I  really,  really love hot. My optimal growth temperature is a mere 
100°C (or 212°F). I am also “allergic to oxygen,” meaning I need to live in anaerobic environ-
ments, such as near hydrothermal vents. In fact, I was fi rst found in  waters near Italy, hanging 
out in a vent. Why should you care about  little ‘ole me? Well, I am a chemoorganotroph, 
meaning I break down sulfur to obtain energy. In the  process I produce hydrogenases and 
amylases that are extremely heat- stable and effi  cient, which makes them valuable for some of 
your  human industrial applications. So, a  little kudos to me, please! (Photo from Power and Syred 
/ Science Source)

   1

Before we begin our exploration of the  human microbiome, we must fi rst de-
velop an understanding of microorganisms, also called microbes— those minute 
creatures, far too small to be seen by the naked eye, that are both the creators 

and constituents of a breathtaking spectrum of microbiomes found on Earth. As you 
 will learn, microorganisms emerged on our planet shortly  after its origin and have 
spent over 4 billion years adapting to  every conceivable environment our planet has 
to off er, including us! This fi rst chapter provides an overview of the origins and di-
versifi cation of microbes on Earth, with a special emphasis on what makes microbes 
so unique among life on our planet.

“ If you  don’t like bacteria,  you’re 
on the wrong planet.”

—Stewart Brand (Brand, 2014)

CHAPTER CONTENTS

1.1 In the Beginning

1.2 The  Great Tree of Life

1.3 Making the Invisible 
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2      Chapter 1  The Ancient Origin of Microbes

1.1 IN THE BEGINNING

If you could peer back in time to the birth of our planet, some 4.5 billion years ago 
(bya), what might you find? Certainly nothing even remotely resembling the Earth of 
today. Our young planet had no oceans, although there were plenty of volcanoes 
spewing out magma, water vapor, and gasses. It had no free oxygen in its atmosphere 
and no protective ozone layer, which is the thin layer of the Earth’s atmosphere that 
absorbs most of the sun’s harmful ultraviolet light. It would have been an exceedingly 
hot place—imagine a surface temperature upwards of 2,000° Celsius (3,632° Fahren-
heit). An artist’s rendition of early Earth shows a planet that does not appear even 
remotely hospitable to life (Figure 1.1).

Or was it? In fact, some of the earliest signs of life appear in 3.7 bya rock, formed 
when our planet was just beginning to cool from its volcanic origin (Dodd et  al., 
2017). Some of this ancient rock has survived the ages and paints a fascinating pic-
ture of early life. The dark gray peaks in the cross section of sedimentary rock shown 
in Figure 1.2A have tentatively been identified as fossilized microbial mats, also known 
as stromatolites, which are mounds of layers of lime-secreting bacteria and trapped 
sediment. Stromatolites were the only biological structures on Earth until about 540 
million years ago (mya), and they can still be found in certain lagoons in Australasia 
(Figure 1.2B). In other words, regardless of how inhospitable early Earth might look 
to us, by 3.7 bya Earth was already teeming with life!

The word microbe literally means “small life,” from the Greek words mikros 
and bios. Microbes are small life forms that are usually too small to be seen with-
out magnification. As we shall learn, they represent the greatest diversity of life on 
our planet. Although most of us are aware microbes exist, we may be unaware that 
they appeared very early in Earth’s history and have remained the dominant life 
forms ever since. Exploring present-day hydrothermal vents in the seafloor pro-
vides valuable clues about how these earliest life forms flourished in the extreme 
environments of our young planet. Heated, mineral-rich water flows out of these 
seafloor vents, and it supports untold numbers of chemolithotrophs, which are 
bacteria that harvest energy from the minerals and chemicals that spew from the 
vents and release compounds that other microorganisms then use for food. Fossils 
of hydrothermal vents have been discovered in rock as old as 3.8 bya (Cavalazzi 
et al., 2021).

Figure  1.1 ​ Early Earth This art-
ist’s rendition provides a glimpse 
of what early Earth may have 
looked like. Our planet coalesced 
just over 4.5 billion years ago 
from cosmic debris. Transient 
oceans and lakes existed from 
the start, although they had been 
repeatedly vaporized by the mas-
sive meteorites that showered 
our planet back then. The envi-
ronment of the planet had set-
tled down by about 3.8 million 
years ago, when the earliest 
rocks appear in the fossil record 
in what is now southeast Green-
land, and the planet might have 
looked as this artist portrays it. 
(Photo © Don Dixon)
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One microbial species commonly found in vents, Methanopyrus kandleri, uses 
hydrogen gas as a food source and releases methane as a waste product. This process 
is known as methanogenesis, and it is one of the most ancient forms of energy pro-
duction. The name of this microbe describes its fondness for extreme environments; 
methanopyrus literally means “methane fire,” which is highly appropriate as it can 
grow in temperatures up to 122°C (252°F), the highest temperature known to be 
compatible with life. Consider that water boils at 100°C; with this in mind, we can 
begin to imagine how life emerged on what we had previously considered to be an 
inhospitable early Earth.

Origin of Life
If we can’t rewind the tape of time and return to early Earth, can we ever learn about 
life’s origins? In 1953, a young scientist, Stanley Miller, and his mentor, Harold Urey, 
showed us the way by answering the question: Could the complex organic molecules 
necessary for life be created under the conditions of our planet billions of years ago? 
Miller and Urey designed a glass chamber in which they could create conditions that 
were believed to mimic those on early Earth (Figure 1.3). Starting with simple ingre-
dients, such as heat, which would have been provided by the Earth’s molten core; an 
electrical charge to mimic lightning; water (H2O); and an early atmosphere made of 
methane (CH4), hydrogen (H2), and ammonia (NH3) gasses, Miller and Urey showed 
that complex organic molecules could be created from what was a predominately 
inorganic planet. Organic molecules are primarily made of carbon atoms bonded 
with hydrogen and other elements and are of biological origin. All living things on 
Earth are composed of organic molecules. In contrast, inorganic compounds are sub-
stances that do not contain both carbon and hydrogen. Hydrogen atoms are con-
tained in many inorganic compounds, such as water (H2O) and the hydrochloric acid 
(HCl) produced by your stomach. In contrast, only a handful of inorganic com-
pounds contain carbon atoms. Carbon dioxide (CO2) is one of the few examples. 
Miller and Urey showed that with heat, electricity, and simple inorganic ingredients, 
complex organic molecules, such as amino acids, could be produced. Amino acids are 

(A) (B)

Each stromatolite is
built up from many thin
layers of di�erent
bacterial species living
together.

Figure 1.2 ​ Ancient Microbial Fossils (A) The earliest fossil evidence of microbial communities. 
The layering in this rock is very likely due to biological activity. Cyanobacteria form mats of 
cells that secrete sticky substances that trap sediments in the surrounding water. Over time, 
these sediments form a mat and then new layers of Cyanobacteria attach. Layers of volcanic 
ash compacted against these structures, preserving them in the Greenland fossil record for the 
past ~3.7 billion years. Small fossils like these, buried under billions of years of collected rock, 
allow us to learn more about life in the distant past. (B) A cluster of living stromatolites from 
Shark Bay, Australia. There are very few such structures remaining on Earth. (A photo from 
Muséum de Toulouse, CC BY-SA 4.0, via Wikimedia Commons; B photo from Paul Harrison, CC BY-SA 
3.0, via Wikimedia Commons)
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the building blocks of proteins, the workhorses of cells that carry out many biological 
functions.

Miller and Urey’s findings were extraordinary for several reasons. First, their data 
suggested that life could have arisen from the simple ingredients present in the “pri-
mordial soup” found on early Earth. We now know that many of the essential build-
ing blocks of life, such as amino acids and nucleotides (the key ingredients of deoxy-
ribonucleic acid, or DNA), would have rapidly accumulated from simple inorganic 
constituents. Furthermore, this was the very first experiment in what was to emerge 
as a rich and exciting field of abiogenesis, or the study of the creation of life from 
nonlife. Their publication helped transform studies of the origin of life into a respect-
able field of research.

By the 1990s many scientists agreed that at least two functions were required for 
cellular life to emerge from a nonliving precursor: a means to physically separate the 
cell’s internal functions from the environment (a membrane), and the ability to gen-
erate offspring, which involves copying the genetic information and producing 
daughter cells (replication). Figure 1.4 provides an overview of how a cell’s genetic 
information, DNA, is transcribed into RNA, which is then used to produce proteins. 
This theory is known as the Central Dogma of Molecular Biology, and there were vig-
orous debates about which element (DNA, RNA, or protein) came first. One argu-
ment emphasized the role of genetics and inheritance (replication argument), that is, 
DNA or RNA was first on the scene. A competing view proposed that creating the 
cells’ structure came first (membrane argument), that is, proteins creating the struc-
ture of a cell came first. It was at this moment that a particularly innovative thinker 
entered the field. Jack Szostak, who won a Nobel Prize for his work on chromosome 
structure, which refers to the way DNA is packaged in a cell, decided to retool his 
lab and to focus on an entirely new research question—the origin of life. Szostak was 

Electric
chamber

Boiling
chamber

Condenser

1.  A “primordial sea” of 
simple chemicals is heated 
to produce an early Earth 
atmosphere of water vapor 
rich in methane, ammonia, 
and hydrogen.

2.  This primitive 
atmosphere is exposed to 
sparks of electricity that 
simulate lightning storms, 
providing an energy source 
for the synthesis of new, 
more complex compounds.

3.  The atmosphere is 
cooled with a condenser, 
and the compounds rain 
down and collect in the 
primordial sea.

4.  Samples from the primordial 
sea reveal the formation of 
organic compounds, such
as amino acids.

CH4
NH3

H2
H2O

Figure 1.3 ​ The Miller-Urey Origin of Life Experiment This experimental apparatus was de-
signed to simulate the origin of organic compounds on early Earth.
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fascinated with the origins debate, and he set off to create a primitive cell, or protocell, 
that would permit him to experimentally explore how the first cell might have 
evolved (Box 1.1).

The Very First Cell
Szostak knew that fatty acids could transition from small spheres (or micelles) into 
multilayered membranes as the pH of the local environment goes from a basic to a 
more neutral state, so he decided to simply add more membrane-forming molecules 
(fatty acids) to the mix and see what happened (see Box 1.1 and Figure 1.5B). The 
team added fatty acids, some of which inserted themselves into the cell’s membrane. 
This spontaneous growth process transformed the small spheres into long filamentous 
vesicles, which could be induced to divide when agitated and then to re-form cells 
when the agitation stopped. This elegantly simple protocell appears to possess one of 
the key characteristics of life—a cellular structure that could make copies of itself.

Szostak had proven that the earliest cells could have created a protected environ-
ment in which metabolism could take place. Next, he tested whether the RNA frag-
ments located in these protocells were able to replicate, or make copies of themselves, 
which would permit the identical genetic information to be passed on when the 
protocell divides. Given that RNA is capable of both replicating itself and performing 
enzymatic activities, it is often considered the likely ancestor to our own DNA-based 
mode of inheritance. However, RNA requires high concentrations of magnesium, 
which can destroy the delicate membranes of the cell. Szostak found conditions that 
protected the membrane but still provided sufficient magnesium to permit RNA rep-
lication. These experiments provide us with a membrane-bound genetic system that 
is capable of self-replication and growth—two of the hallmarks of life. All done in 
test tubes in a laboratory!

Since this revolutionary experiment, Szostak and many others continue to dive 
ever deeper into questions about the origin of life (Mann, 2021). One current focus 
is on planetary habitability, or the potential for planets to develop and sustain life. A 
second research area examines the environmental conditions required to produce 
biomolecules (such as carbohydrates, lipids, nucleic acids, and proteins) in concentra-
tions that permit metabolism. A third focus is on determining the ways in which the 

DNA RNA
Protein

Transcription

Replication

Translation

Figure 1.4 ​ Central Dogma The Central Dogma of Molecular Biology describes the fundamen-
tal biological process by which proteins are built. In most cells, the genetic information is en-
coded in the DNA, which can be transcribed into a messenger molecule known as RNA. This 
RNA is then translated into proteins, using complex cellular machinery to “read” the RNA 
sequence and build the corresponding protein structure. The Central Dogma is essential to our 
understanding of early Earth because it illustrates the connection between genetic information 
and cellular processes.
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precursors to DNA and RNA might have assembled and replicated.  These studies are 
just beginning to answer some fundamental questions about the origin of life (Mann, 
2021). Szostak himself notes, “Many challenges remain before we  will be close to a 
full understanding of the origin of life, so the  future of research in this fi eld is brighter 
than ever!” (Szostak, 2017).

BOX 1.1. RESEARCH IN ACTION
Building Life from Scratch— The Quest for a Protocell

Researchers in the Szostak lab made their fi rst proto-
cell out of self- replicating ge ne tic material, in this case 
a fragment of RNA. Figure 1.5A shows the  organization 
of this protocell and reveals the inner compartment 
created by this structure and the fragments of RNA 
fl oating within. This internal environment would have 
permitted the cell to carry out key functions, such as 
metabolism, which allows the cell to transform food 
into energy. However, the fi rst cells would have had 
none of the machinery needed for their own growth 
and division. The researchers hypothesized that the 
coupled growth and division of protocells could be 
achieved using conditions likely to have been pre sent 
on Earth over 3 billion years ago.

v Experiment. A protocell is placed in dilute acid, 
such that the interior of the protocell is slightly 

more acidic than the solution. Osmosis  will cause 
 water to enter the protocell, resulting in large 
(~4 mm in dia meter) vesicles. Fatty acids are then 
added to the mixture and modest shear forces are 
provided (Figure 1.5B).

v Results. The growth of small protocells is achieved 
by placing them in a solution where liquid perme-
ates the membrane, resulting in the transformation 
of initially  spherical vesicles into long threadlike 
vesicles that can divide into multiple  daughter 
vesicles.

v Conclusion. This experiment shows that protocells 
can be created, enlarged, and replicated in the lab-
oratory, suggesting that similar pro cesses might 
have occurred  under the prebiotic conditions of 
early Earth.

Growth

Fragmentation

Coalescence

Micelles
containing
fatty acids

Protocell

As fatty acids are added, the protocell 
grows by forming a tubular extension 
that continually elongates.

If the elongated 
protocell is agitated, 
it breaks apart into 
membrane 
fragments.

The membrane fragments 
close up to form new 
spherical protocells.

(B)(A)

RNA fragmentsRNA fragmentsRNA fragments

MembraneMembraneMembrane

Figure 1.5 The Protocell (A) A computer- generated image of the type of protocell created by the Szostak lab. The protocell 
is  spherical but is shown in cross section  here so the inside can be seen. The lipid membrane (red outer circle) provides an 
internal environment for the protocell to store and replicate its ge ne tic material and undergo metabolic pro cesses to generate 
energy. Noticeably lacking are more- complex cellular structures that you may already be familiar with, such as a nucleus 
or mitochondrion. The protocell is surrounded by a “primordial soup” consisting of inorganic and organic molecules. Most 
of  these  were small, but some  were more complex, such as RNA fragments. (B) The proposed cyclical  process of protocell 
membrane growth and division. The cell incorporates micelles that cause its size to increase  until it reaches a point where 
agitation results in its splitting open. The resulting fragments of the original protocell then reconfi gure into new cells. This 
series of events is a precursor to the modern cell cycle. (A photo courtesy Janet Iwasa, Szostak Laboratory, Harvard Medical School 
and Mas sa chu setts General Hospital; B after Zhu and Szostak, 2009.)
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Competition Drives Diversification
Szostak’s research shows us how an ancestral life form could have emerged on early 
Earth. However, these primitive processes were inefficient. Each time a new protocell 
was formed, a new RNA fragment would have been captured in the cell, which would 
have encoded completely different functions, or none at all. We envision the cycle 
shown in Figure 1.5B repeating itself billions, if not trillions, of times. Some cells 
captured RNA that encoded novel functions, and those cells might have survived 
longer and had a greater likelihood of “reproducing,” which at this point means that 
the protocell divided into two daughter cells that share the same RNA fragment. 
Imagine a primitive ocean filled with trillions upon trillions of protocells. Those that 
had features that resulted in the production of more copies would consume more 
ingredients, which would then not be available for others.

The process just described is known as natural selection, and it is one of the most 
powerful forces affecting life on Earth, through which populations of living organ-
isms adapt to the ever-changing environment. Organisms more adapted to their envi-
ronment are more likely to survive and pass on the genes that contributed to their 
success. This process, natural selection, causes species to change and diverge over 
time. Individuals in a population are naturally variable, meaning that they all differ 
in some ways. This variation means that some individuals have traits better suited to 
the present environment than others. Individuals with adaptive traits—traits that give 
them some advantage—are more likely to survive and reproduce. These individuals 
then pass the adaptive traits on to their offspring. Over time, these advantageous 
traits become more common in the population. Through this process of natural se
lection, favorable traits are transmitted through generations, and organisms adapt to 
their environment.

Overwhelming evidence shows us that all extant species (meaning that they are 
alive today) are related, having descended from a common ancestral protocell. We 
call this extinct organism the Last Universal Common Ancestor, or LUCA. LUCA was 
very likely a single-celled autotroph, which means it was able to make its own energy 
and relied on available inorganic compounds as a food source. It is envisioned that 
LUCA engaged in chemolithoautotrophy, meaning it obtained energy by oxidizing 
inorganic compounds (like hydrogen or sulfur) and fixing carbon dioxide to produce 
organic molecules. Its genetic material was almost certainly DNA, and it employed 
RNA molecules, such as tRNA and mRNA, in translating the information encoded 
in its DNA into proteins.

Heterotrophs would have emerged next, which are organisms that lack the ability 
to make their own organic compounds. Instead, heterotrophs obtain their energy by 
breaking down complex organic molecules, such as carbohydrates, fats, and proteins, 
which they acquire from other organisms—either by eating plants, animals, or de-
composing organic matter. As heterotrophs reproduced and became more numerous, 
they would have rather quickly consumed the organic compounds being produced by 
autotrophs, resulting in selection for organisms capable of using alternative foods.

Anaerobic versus Aerobic Respiration
These earliest heterotrophs evolved on a planet with an atmosphere composed of 
methane, ammonia, and hydrogen cyanide, which derived primarily from the gasses 
emitted from volcanoes. Free oxygen was present at only trace levels. Therefore, the 
earliest Earth ecosystems existed in an anoxic world, devoid of oxygen, and the mi-
crobial communities present were supported by anaerobic respiration. Cellular respi-
ration is the process by which cells break down sugar and turn it into energy, which 
is then used to perform work at the cellular level. The most primitive form happens 
in the absence of oxygen and is called anaerobic respiration (Figure 1.6A). Early an-
aerobic microbes used chemicals to derive energy for respiration by mediating the 
oxidation and reduction of inorganic compounds in their environments. For example, 
methanogens obtain their energy from hydrogen (H2) and carbon dioxide (CO2) and 
release methane (CH4) as a waste product, hence their name. Similarly, sulfate-reducing 
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microbes feed on sulfate. These chemoautotrophs, which use chemicals for energy, 
would have had an enormous supply of inorganic chemicals to feed on and are still 
commonly found in environments rich in inorganic compounds, such as near deep-
sea hydrothermal vents.

The anaerobic biosphere of early Earth, that is, the regions of the planet occupied 
by living organisms, was less energetically active than our present-day aerobic bio-
sphere—in other words, energy flow from chemicals into and between microbes was 
slow, roughly 5% of the rate of energy conversion found in our current biosphere. 
Life forms would have been engaged in intensive competition for the limited energy 
sources, which would have driven the process of natural selection, resulting in novel 
approaches to finding and harvesting energy.

Some microbial lineages evolved the ability to use oxygen as an energy source, 
which we refer to as aerobic respiration (Figure 1.6B). This novel form of respiration 
converts glucose or other organic molecules into energy in the form of ATP, or adenosine 
triphosphate, which is essential for various cellular functions. ATP uses the energy 
stored in its phosphate bonds to power chemical reactions. It is often referred to as 
the “currency” of the cell. Although anaerobic respiration also produces ATP, aerobic 
respiration is much more efficient, and it produces ATP much more quickly. This is 
because oxygen is an excellent electron acceptor for the chemical reactions involved 
in generating ATP.

Photosynthesis Evolves
One of the truly great metabolic innovations involved the ability to harness the sun’s 
energy, a process called photosynthesis. The earliest photosynthetic organisms 
evolved specialized pigments capable of extracting energy directly from sunlight. 
These pigments captured the sun’s energy and used it to transform carbon dioxide 
and water into carbohydrates (food) and oxygen (waste product) (Figure 1.7A). The 
first organisms capable of photosynthesis were the ancestors of the modern-day Cya-
nobacteria, a phylum of bacteria also known as blue-green algae. Thanks to photo-
synthesis, these organisms no longer needed to rely on a limited pool of organic 
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Figure 1.6 ​ Cellular Respiration Cellular respiration is the process by which cells release energy 
by breaking down sugar molecules, such as glucose. (A) Anaerobic respiration, the most prim-
itive form of respiration on Earth, is how cells convert the stored energy of glucose into ade-
nosine triphosphate (ATP) in the absence of free oxygen. It provides energy to the cells very 
rapidly. (B) Aerobic respiration is the process through which cells break down the glucose 
molecule to convert its stored biochemical energy into ATP in the presence of oxygen.
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molecules or engage in the far slower process of extracting energy from chemicals and 
could instead get their energy directly from the sun, which offered them a profound 
selective advantage. Descendants of these very first photosynthetic cells can be found 
in almost any water source you examine today. Figure 1.7B provides a snapshot of 
some of the stunning and diverse members of this ancient lineage.

Cyanobacteria played a key role in transforming early Earth’s biosphere. Every 
time a cell broke down a molecule of carbon dioxide, it would release a molecule of 
oxygen as waste. Imagine trillions upon trillions of cells, each puffing out oxygen over 
the millennia. At first this free oxygen was captured by minerals, which we see as 
massive iron oxide (or rust) deposits in the geological record about 2.5 bya 
(Figure  1.8). Once these minerals were saturated with oxygen, the excess began to 
accumulate in the atmosphere. This period in Earth’s history is referred to as the 
Great Oxidation Event (GOE), in which the atmosphere was transformed into one rich 
in oxygen, like Earth’s atmosphere today, which is 78% nitrogen (N2), 21% oxygen 
(O2), 0.93% argon (Ar), 0.04% carbon dioxide (CO2), and trace levels of other chem-
icals. Figure 1.8 shows the dramatic impact of the GOE on levels of atmospheric 
oxygen on Earth.

The rising levels of oxygen resulted in one of the first mass extinction events on 
our planet. A mass extinction event is identified when species go extinct faster than 
new species evolve, defined as about 75% of the world’s species being lost in less than 
3 million years. Oxygen is toxic to anaerobic bacteria, which do not possess mecha-
nisms to protect their enzymes from oxidants, and thus, most did not survive this 
period of atmospheric transformation. A lucky few found ways to avoid the oxygen. 
For example, it is likely that the ancestors of modern-day methanotrophs, microor-
ganisms that produce methane (CH4) as a by-product of their metabolism, would 
have continued to flourish in the so-called dead zones in the ocean (areas where the 
levels of oxygen remain low) and deep in the ocean floor. Our fossil record of that 
time is limited, and given the microscopic size of the organisms, we are forced to infer 
features of these ancient life forms.

(B)

i. ii.

iii. iv.

(A)
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Carbohydrates

Cyanobacteria
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Figure 1.7 ​ Cyanobacterial Photosynthesis and Diversity (A) Cyanobacteria use the energy of 
sunlight to drive photosynthesis, a process where the energy of light is used to synthesize or-
ganic compounds from carbon dioxide and water, resulting in oxygen as a waste product. 
(B) Some of the diverse types of cyanobacteria. Left column: Blue green algae (top), Dinophysis 
algae (bottom). Right column: Spirulin (top), Pandorina (bottom). (B photos from [i] istock​.com​
/Nnehring; [ii, iii, iv] iStock​.com​/Elif Bayraktar)
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Endosymbiosis and the Origin of Eukaryotes
With the rise in atmospheric oxygen and the advent of aerobic respiration, large, 
complex multicellular organisms first appear in the fossil record. Multicellularity has 
several obvious advantages over single-celled life forms. One of the earliest selective 
pressures for it may have been related to the fact that a group of cells presents a great 
challenge for a predator. As cells group together, their survival rate increases. Further, 
multicellular organisms can have longer lifespans—the organism survives even when 
individual cells die. Finally, multicellularity also permits increasing complexity by 
allowing differentiation of cell types, or tissue specificity (Pentz et al., 2020). These 
changes paved the way for evolution of circulatory and respiratory systems and intes-
tines that break down food sources and extract nutrients from them.

For the first half of the history of life on Earth, single-celled prokaryotes, whose 
genetic information is found floating in the cell’s cytoplasm, were the sole inhabitants. 
However, sometime around 2 bya, a new type of cellular life form arose: the eukary-
otes, whose DNA is enclosed in a protective membrane called the nucleus. Figure 1.9 
provides a comparison of a simple prokaryote and a more complex eukaryotic cell.
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Figure 1.8 ​ The Great Oxidation Event (A) Timeline of atmospheric oxygen levels on early Earth. Note the dramatic increase, labeled 
Great Oxidation Event, that corresponds with the saturation of minerals with oxygen, resulting in iron oxide sediments. (B) The red 
inserts of sedimentary rock are rust deposits providing evidence of the Great Oxidation Event. Rust is the common name for the 
chemicals that result when iron reacts with oxygen and water. Sedimentary rock is built by layering different rocks and soils, where 
the oldest layers are at the bottom. (A after R.A. White III 2020; oxygen data were provided by Dr. Sean Crowe [University of British Columbia] 
with permission, D.E. Canfield 2005, C. Dupraz and P. T. Visscher 2005, T. W. Lyons et al. 2014, and S.A. Crowe et al., 2013; B photo from Graeme 
Churchard from Bristol, UK, CC BY 2.0, via Wikimedia Commons)
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Figure 1.9 ​ Prokaryote versus Eukaryote Cellular Complexity This diagram illustrates the sim-
ilarities and differences between prokaryotic and eukaryotic cells. Both contain genetic material, 
a cell membrane, and ribosomes. Eukaryotic cells also contain membrane-bound organelles, 
such as the nucleus, mitochondria, and Golgi body, whereas prokaryotic cells do not.
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In 1967 Lynn Margulis, a microbiologist and evolutionary biologist at the 
University of Massachusetts, proposed that the eukaryotic cell was the result of a 
chance fusion between two prokaryotes. An ancestral prokaryotic host cell en-
gulfed, but didn’t digest, a second prokaryotic cell, one capable of aerobic metab-
olism (Figure 1.10A shows this with a eukaryotic cell). The engulfed cell, or endo-
symbiont, provided its host with the ability to use oxygen to release energy stored 
in nutrients. In turn, the host cell protected the endosymbiont from predators. 
Over time, a symbiotic relationship, which refers to a close, long-term interaction 
between two different species, where at least one of the species benefits from the 
relationship, developed between the two organisms to the point that neither could 
survive on its own. This endosymbiotic event is immortalized in eukaryotic cells 
by the presence of the mitochondrion, which is the descendent of that ancient, 
engulfed aerobic symbiont and now serves as the energy factory in nearly all eu-
karyotic cells today.

Margulis’s idea was largely ridiculed, and some 15 journals rejected her research 
findings before they were published (Sagan, 1967). She spent much of her career 
defending the hypothesis until enough experimental evidence was garnered to 
support its recognition as a valid theory. In fact, it is now clear that a series of 
symbiotic events (serial endosymbiosis) occurred. One endosymbiosis resulted in 
eukaryotic cells possessing a mitochondrion, which became the cell’s energy factory 
(Figure 1.10B). Plant cells went even further, with chloroplasts resulting from a fusion of 
a heterotrophic bacterium with a photosynthetic cyanobacterium (Figure  1.10C). 
Chloroplasts are the membrane-bound organelles in plants and algae where photo-
synthesis takes place. Margulis was an extraordinary scientist, one who remained 
steadfast in her then-revolutionary belief that eukaryotic origins could be found. 
When questioned about the controversy surrounding her proposal of endosymbiosis, 
she replied, “I don’t consider my ideas controversial. I consider them right” (Teresi, 
2011).

With the advent of the eukaryotic cell, the diversification of life took on a whole 
new dimension. A tidal wave of biological diversification occurred about 540 mya. 
This period, known as the Cambrian Explosion, was literally that, an explosion of 
macroscopic life forms that appear all at once in the fossil record during the geolog-
ical period known as the Cambrian. What was previously a planet dominated by 
microscopic prokaryotes is now rich with complex macroscopic, multicellular life 
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Figure 1.10 ​ The First Endosymbiotic Events Imagine an ancestral eukaryotic cell (A), similar 
to a present-day amoeba. It engaged in phagocytosis, gaining energy from ingested organic 
matter, such as prokaryotic cells. The endosymbiotic theory posits that in several instances, the 
ingested cells survived and developed a symbiotic relationship with the host. Mitochondria (in 
B) and chloroplasts (in C) were the result of this process and were capable of aerobic respira-
tion or photosynthesis, respectively.
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forms that fuel successive waves of ecological and environmental transformations on 
Earth.

1.2 THE GREAT TREE OF LIFE

Now that our planet is teeming with microscopic and macroscopic life, we need a 
system to name all this diversity. In 1735, Carolus Linnaeus proposed a hierarchical 
scheme of classification that started with the most inclusive groupings, kingdoms, and 
descended into smaller and smaller subgroups, ultimately ending with a species 
name. Linnaeus would assign each species a unique two-word Latin name, or bino-
mial, such as Homo sapiens, the binomial for humans. It consists of the species des-

ignation (sapiens or “wise man”) preceded by the 
genus (Homo). Genera were grouped into families, 
families into superfamilies, and so on until the level of 
kingdom was reached. Figure 1.11 shows a portion of 
the hierarchical levels of the Linnaean classification 
system and provides an example of how the human 
species is classified. Beyond the level of order, humans 
are members of the class Mammalia, the phylum 
Chordata, and the kingdom Animalia.

Although Linnaeus sought to classify organisms 
based upon similarities, his methods often resulted in 
clusters that reflected evolutionary relationships, 
which we can represent in a phylogenetic tree. A 
phylogenetic tree (also phylogeny or evolutionary tree) 
is a branching diagram showing the evolutionary re-
lationships among organisms based upon similarities 
and differences in their physical or genetic character-
istics. In 1859, when Charles Darwin published his 
thesis on the origin of species, he introduced the con-
cept of a great tree of life (ToL) connecting all living 
and extinct life forms to a common ancestor (Darwin, 
1859). He envisioned an ever-growing tree whose 
root is our common ancestor (LUCA), with the 
branches representing distinct lineages terminating in 
foliage, which represent the species. Figure  1.12A 
shows Darwin’s illustration of his tree of life. He went 
so far as to describe the fallen limbs and leaves as 
those extinct lineages that we know only from the 
fossil record: “Buds give rise by growth to fresh buds, 
and these, if vigorous, branch out and overtop on all 
sides many a feebler branch, so by generation I believe 
it has been with the great Tree of Life, which fills with 
its dead and broken branches the crust of the earth, 
and covers the surface with its ever branching and 
beautiful ramifications” (Darwin, 1859).

The ToL envisioned by Darwin was transformed 
over the next hundred years as more and more organ-
isms were discovered, described, and added. Fig-
ure 1.12B provides a version of the ToL popular in the 
mid-20th century, called the five-kingdom ToL, with 
animals, plants, fungi, protists, and monera identified 
as the five categories, or kingdoms, of life. Animals 
and plants are obvious; however, you may be less fa-
miliar with the other kingdoms. Fungi refers to spore-
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Figure 1.11 ​ Hierarchical Classification This image shows a portion of 
the Linnaean classification of humans, or Homo sapiens. The broad-
est level of Linnaeus’s classification system is kingdom. The kingdom 
Animalia includes all animals, including humans. The groups become 
more specific as classification continues. Humans are in the genus 
Homo, which contains modern humans as well as now-extinct 
humans, such as Neanderthals. A species’ name consists of its genus 
name followed by its species name, which is specific to it, so humans 
are given the name Homo sapiens. (Photo from Universal Images Group 
North America LLC/Alamy Stock Photo)
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producing organisms that feed on organic matter, including molds, yeast, mushrooms, 
and toadstools. Protists are single-celled eukaryotic organisms, such as protozoa or 
simple algae. Monera is the kingdom into which prokaryotes, such as bacteria, are 
placed. This view of life’s diversity focuses your attention first and foremost on the 
macroscopic organisms and suggests that protists and monera are somewhat more 
primitive and less diverse. In truth, scientists at that time couldn’t make sense of the 
evolutionary relationships among monera, simply because they didn’t have pheno-
types, or observable characteristics, to compare.

A Molecular Tree of Life
In 1977, Carl Woese tackled this formerly intractable problem, inferring the evolu-
tionary relationships among the monera, or prokaryotes (Woese & Fox, 1977). 
Lacking visible physical traits with which to classify microorganisms, Woese turned 
to molecules. He chose the ribosome, which is a complex of RNA and associated 
proteins that functions to synthesize proteins, and which is one of the most ancient 
and well-conserved biochemical structures shared by all life. This means that any two 
species’ ribosomes are similar, even if the species are not otherwise closely related. The 
ribosome is essentially a mini factory that translates genetic information into proteins 
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Figure 1.12 ​ Darwin’s Tree of Life (A) Darwin’s illustration of the tree of life, which was first 
drawn in one of his notebooks in 1837. The base of the tree, which is labeled by the number 
1, represents the cenancestor (or LUCA), and the ends of the branches represent species. A 
version of this illustration was included in his landmark book on evolution, On the Origin of 
Species, which was published 12  years after Darwin’s original tree drawing. (B) The five-
kingdom ToL was widely used until molecular technology became advanced enough to permit 
us a window into the incredible diversity of Protista and Monera, which we now recognize as 
the prokaryotes. Monera, which includes bacteria and other prokaryotes in this ToL, is at the 
base. Monera was seen as a more primitive group, from which more-advanced multicellular 
life evolved. The uppermost branches of the tree represent plants, animals, and fungi. Scientists 
could easily observe these large, multicellular life forms, so their diversity was better under-
stood and took up most of the branches of the tree. (A illustration reproduced by kind permission 
of the Syndics of Cambridge University Library.)
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(Figure 1.13). All life forms use this same fundamental process for making proteins, so 
they all share at least some portions of the ribosomal RNA–protein complex.

Woese proposed that by comparing portions of the ribosomal complex among all 
life forms, it would be possible to group organisms in the same manner that they had 
been grouped previously using physical traits, or phenotypes. Within the ribosomal 
complex are subunits made of RNA and protein. The RNA molecules within those 
subunits are named based upon their weight in Svedberg units, such as 16S and 18S. 
All organisms, even those from across the three domains of life, have ribosomal sub-
units. Woese used information obtained by cleaving the RNA sequences of these ri-
bosomal subunits and comparing the resulting fragments to estimate how closely re-
lated two organisms are. Pairs of taxa that are more similar in their ribosomal 
fragments are inferred to be more closely related. The number of differences between 
the ribosomal RNA fragments then serves as a measure of the amount of evolution-
ary time that separates a pair of taxa. These evolutionary distances can be used to 
create a phylogeny.

The Three Domains of Life
Woese first focused on a subunit of the ribosome (the 16S subunit) that is present in 
all bacteria. He produced fragments of the 16S ribosomal RNA (rRNA) for a diverse 
sample of what he thought of as bacteria and immediately noticed something strik-
ing. There was one cluster of fragments that was quite different from all the others. 
The organisms represented by that cluster were methanogens, prokaryotic cells that 
produce methane as a waste product. Woese quickly realized the significance of this 
finding: methanogens were not bacteria, but something completely different. He then 
employed an additional subunit of the ribosome (the 18S subunit), which is related 
to the 16S subunit but is found in eukaryotes, so that he could include eukaryotes in 
his clustering process. Although methanogens looked superficially like bacteria, their 
ribosomes reveal a very different ancestry. To his surprise the ribosomal fragments of 
methanogens were more like those found in eukaryotes than in bacteria. Woese 
named this new lineage Archaea, which is a Latin term meaning “primitive.”

Based upon these results, Woese created a new ToL, which required a higher level 
of organization than the five kingdoms. He identified and named three groups within 
a higher level of biological relationships: Eukarya (animals, plants, fungi, and 
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(A) (B)Figure  1.13 ​ Carl Woese and a 
Molecular-Based Tree of Life 
(A)  Photograph of Carl Woese 
peering at a radiograph that 
shows the ribosomal fragments 
of a microorganism’s 16S rRNA 
separated based upon electrical 
charge. (B) Two-dimensional 
structure of the 16S rRNA mole-
cule with regions indicated in 
blue that are cleaved during the 
RNA digestion procedure em-
ployed by Woese. (A photo cour-
tesy of Jason Lindsey, University of 
Illinois Urbana-Champaign)
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protists), Bacteria, and Archaea (Figure  1.14). The discovery of Archaea stimulated 
both enormous interest and intense skepticism at first. However, as more lineages of 
Archaea were identified, it became clear that it did, indeed, represent a novel and ancient 
branch on the ToL. Table 1.1 summarizes some of the similarities and differences observed 
between members of the three domains. The prokaryotes, which encompass members 
of the domains Archaea and Bacteria, share certain characteristics, such as size and a 
lack of intracellular organelles, while the eukaryotes appear to be chimeras, sharing key 
characteristics with both archaeans and bacteria. If we think back to the endosymbiotic 
theory, these patterns of similarities and differences begin to make sense. Eukaryotes, 
which were created through a series of endosymbiotic events, may very well have been 
derived from an ancestral archaean host that harbored a bacterial endosymbiont.

Woese’s breakthrough was momentous for several reasons. First, by focusing on the 
ribosome, he had identified a way to compare all cellular life. Second, Woese revealed our 
ignorance of one of the three main branches of life, the Archaea. Further, he showed us 
that microbes occupy a dominant place in Earth’s biodiversity. If we compare the five-
kingdom and three-domain views of biodiversity, we see a fundamental shift from a view 
of life in which the eukaryotic crown species (plants, animals, and fungi) dominate, to 
one in which these eukaryotes are in the minority (see Figures 1.12B and 1.14). Woese 
himself described how unsettling this new view of life’s diversity truly was: “Imagine 
walking out in the countryside and not being able to tell a snake from a cow from a 
mouse from a blade of grass, that’s been the level of our ignorance” (Blakeslee, 1996).
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bacteria
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Figure  1.14 ​ The Ribosomal 
RNA–Based Tree of Life This 
phylogenetic tree was developed 
using data from rRNA sequences. 
While eukaryotes made up most 
of the five-kingdom-view-based 
tree, they are only a small por-
tion of the modern tree of life. 
Monera was found to include 
two distinct domains: Bacteria 
and Archaea. Although archae-
ans are microorganisms like bac-
teria, they are actually more 
closely related to eukaryotes, like 
us, than they are to bacteria! 
(After  M.  T. Madigan and M. Mar-
tinko, 2006.)

Table 1.1 Comparison of Domains

EUKARYA BACTERIA ARCHAEA

Cell type Eukaryotic Prokaryotic Prokaryotic

Chromosomes Linear Circular Circular

Membrane-bound organelles Yes No No

Nuclear envelope Yes No No

RNA polymerase Many One Many

Cell wall composition Not always present Plants—cellulose 
Fungi—chitin

Peptidoglycan Lacks peptidoglycan

Cell membrane composition Ester linked lipid with proteins  
(straight chain)

Ester linked lipids with D-glycerol  
(straight chain)

Ester linked lipids with L-glycerol  
(branched chain)
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The Tiniest Microbes
There is one group of microbes that were not included in Woese’s molecular tree of 
life, the viruses. Viruses are microscopic organisms that require a living cell, or host, 
to multiply. They are ubiquitous and may even be the most abundant biological en-
tities on our planet. Viruses are simple in structure, with a genetic material (DNA or 
RNA) and a protein coat (Figure  1.15A). Some sport an additional outer layer, the 
envelope, which may have spikes that help the virus latch onto and enter a host cell. 
If the cellular conditions are right, the viruses then multiply within their host, often 
killing the host cell in the process.

Each type of virus has its own host range, which refers to the breadth of hosts it 
can infect. Some have a narrow host range; for example, Variola virus, which causes 
smallpox, can only infect humans. Other viruses have broad host ranges; for exam-
ple, SARS-CoV-2, the causative agent of COVID-19, may infect hundreds of different 
hosts, including humans and other primates, bats, pangolins, ferrets, and camels.

Viruses are generally not given species names, so they don’t fit neatly into the 
Linnaean classification system. In fact, many scientists don’t consider them to be 
alive! They lack some of the basic features we think of when we attempt to define 
life, such as being cellular, maintaining homeostasis (or a stable internal state), grow-
ing, and making or acquiring energy. They do, however, replicate—using the host’s 
replication machinery—and they adapt to their environment. Whether they are alive 
or not, viruses are one of the most abundant and diverse forms of microorganisms on 
Earth. They are categorized according to various characteristics they possess, includ-
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Figure  1.15 ​ Viral Structure and Diversity (A) Most viruses are enclosed by an envelope 
embedded with proteins, which help the virus enter a host cell. A virus may have a DNA 
or RNA genome, which may be protected by a capsid. (B) A variety of different viral struc-
tures: [i] Acidianus bottle-shaped virus (colorized electron micrograph image), [ii] Bacterio-
phage on a bacterial cell (computer generated image), [iii] Ebola virus (microscopic view), 
and [iv] SARS-CoV-2 (computer generated image). (B photos from [i] ICTV International Com-
mittee on Taxonomy of Viruses, David Prangishvili, Mart Krupovic, Andrew M. Kropinski, Stuart G. 
Siddell, CC BY-SA 4.0, via Wikimedia Commons; [ii] extender_01/Shutterstock; [iii] iStock​.com​/Nixx​
photography; [iv] iStock​.com​/Naeblys)
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ing their shape and size, the type of genetic material they possess (DNA or RNA), and 
whether they have an envelope layer. Figure  1.15B illustrates the major types of 
viruses.

It is challenging to identify the origin of viruses, as they don’t leave fossils. In 
addition, some viruses can insert their genetic material into their hosts’ genomes, 
which makes it difficult to untangle viral from host evolutionary histories. Since vi-
ruses do not share homologous genes or proteins with members of the three domains 
(Bacteria, Archaea, and Eukarya), we are not able to place them onto one or more 
branches of the ToL, leaving their relationships with other life forms in question.

1.3 MAKING THE INVISIBLE VISIBLE

With Woese’s transformation of the ToL, microbes took center stage in our under-
standing of the diversity of life for the first time. In fact, according to Woese, microbes 
are the core of life on Earth: “If you wiped all multicellular life-forms off the face of 
the earth, microbial life might shift a tiny bit, if microbial life were to disappear, that 
would be it—instant death for the planet” (Blakeslee, 1996).

Before the 16S rRNA ToL revolution, we hadn’t appreciated the immense diver-
sity of microbes on our planet. In large part this was due to their seemingly simple 
morphology, which resulted in our tendency to group these simple life forms together. 
In the five-kingdom view of life, we see the microbial lineages clustered in two pools 
at the base of the tree (see Figure  1.12B). These pools represent the protists and 
monera (Bacteria and Archaea) with virtually no branches to represent what we now 
know is an incredible diversity of microscopic life.

We have known that microbes exist for over 400 years, 
ever since Robert Hooke invented the first microscope and 
explored the detailed structure of all sorts of biological en-
tities, such as sponges, seaweed, and wood. Of particular 
interest here are his observations of mold. He describes its 
appearance on numerous decaying substances and notes 
that these creatures “will not be unworthy of our more se-
rious speculation and examination” (Hooke, 1665). In 
short, Hooke was describing a microorganism’s appearance 
for the first time.

The First Sightings of Bacteria
Inspired by Hooke, Antonie van Leeuwenhoek developed 
an even more powerful microscope and explored numerous 
samples from his own body, such as stool. In 1677, he re-
ported to the British Royal Society that he had discovered 
over 1,000 “animalcules,” or little animals, that differed 
from one location in the body to another (Figure 1.16) (van 
Leeuwenhoek, 1677). When he examined scrapings from 
his teeth, van Leuwenhoek noted, “I then most always saw, 
with great wonder, that in the said matter there were many 
very little living animalcules, very prettily a-moving. The 
biggest sort . . . ​had a very strong and swift motion and shot 
through the water (or spittle) like a pike does through the 
water. The second sort . . . ​oft-times spun round like a 
top . . . ​and these were far more in number” (van Leeuwen-
hoek, 1677). These were the very first observations of living 
bacteria ever recorded, and they inspired the development 
of an entirely new field of study, microbiology, or the branch 
of science that deals with microorganisms. Van Leuwen-
hoek is considered the father of microbiology, and from the 

Figure 1.16 ​ Animalcules Antonie van Leeuwenhoek was the 
first person to record observations of the microbiome. He 
obtained microbiome samples from various body parts and 
viewed them under a microscope. The “animalcules,” or 
microorganisms, he saw are illustrated in this figure. (Photo 
from The Picture Art Collection/Alamy Stock Photo)
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late 1600s to present day, scientists have been exploring the rich diversity of microbes 
on Earth.

Culturing the Invisible
Ever since the invention of the microscope, microbiologists have developed a rich 
toolbox with which to further explore microscopic life forms. The most common 
approach is to culture the cells, which allows them to grow and divide until there are 
enough for us to see. The basic procedure is straightforward. Say you want to see 
some of the microorganisms present in a nearby pond. You start with a sample of 
pond water and spread a drop of it on a rich growth medium. Each cell lands on a 
unique spot on the growth medium. If its requirements for growth are present, it 
grows and divides in this spot, and its daughter cells then replicate and eventually 
form a visible “colony” of hundreds of thousands of identical cells (Figure 1.17). In 
our pond water sample, we might find 50 or more different types of microbes growing 
on the food source we provide.

By altering the nutrients offered in growth medium to meet different species’ 
growth requirements, scientists have identified several thousand prokaryotic and 
protist species. However, that seemingly impressive number pales in comparison with 
the number that actually inhabit the pond water. If we were to apply Woese’s molec-
ular methods of comparing all the 16S rDNA present in our pond water sample, we 
might find several thousand microbial species. This discrepancy between what we can 
grow in artificial media and what microscopic life is present in a sample is known as 
the great plate count anomaly, and it hindered progress in microbiology for decades. 
We simply didn’t know what (or how much) we didn’t know! For example, it is com-
mon knowledge that urine is sterile, unless you have a urinary tract infection. And 
yet, if you take a sample of supposedly sterile urine from a bladder and sequence the 
16S rDNA present, you will find a wealth of different microbes have made urine, or 
the bladder, their home. For every novel environment we sample, we identify an ever-
greater breadth and depth of microbial diversity.

Extremophiles, Life on the Edge
With the advent of molecular tools for identifying microbes, microbiologists engaged in 
an expansive hunt for novel microorganisms. We now know that microbes exist in 

Microbes can be isolated and 
puri�ed by transferring them 
to a new plate.

Figure 1.17 ​ Bacterial Culture To isolate a genetically identical group of bacteria, a sample can 
be spread across a nutrient-filled petri dish to isolate individual cells, which can grow and di-
vide to form visible colonies (A). Every member of a colony is a descendant of the first individ-
ual cell that landed on that spot on the petri dish. To obtain a pure culture of each individual 
cell from the original sample, cells from a colony are transferred to a fresh petri dish and grown 
in isolation (B). (Photos from [left] iStock​.com​/aorphoto; [right] iStock​.com​/Sinhyu)
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some of Earth’s most extreme environments. Some thrive in ice or salt, 
in the most acidic or basic conditions, living in organic solvents, con-
suming heavy metals and even toxic waste. Such extremophiles have 
been found in every imaginable, and even the most unimaginable, con-
ditions on Earth. In every extreme environment investigated, a variety 
of organisms have been shown to not only tolerate the conditions there, 
but often require them to survive. Table 1.2 shows just a sliver of the 
extreme environments where extremophiles have been identified so far.

The term extremophile means “lover of the extreme,” and the 
Archaea domain is where most extremophiles are found. In fact, when 
archaeans were unveiled to the world, they were thought of as extrem-
ophile weirdos. We now know that archaeans can readily adapt to 
extreme conditions, which may be due, in part, to the composition of 
their cell membrane. All cells have a plasma membrane made of a 
phospholipid bilayer, which evolved from the lipid-based protocell 
membrane we discussed earlier. The archaeans employ ether bonds in that bilayer, 
while bacteria and eukaryotes use ester bonds. This distinction is important because 
ether bonds are more resistant to chemical activity, which permits archaeal cells to 
survive in more extreme environments.

Some archaeans are among the most extremely thermophilic (heat tolerant), aci-
dophilic (acid tolerant), alkaliphilic (base tolerant), and halophilic (salt tolerant) mi-
croorganisms known. Figure 1.18 shows the location where extremophiles were first 
discovered, in the hot springs of Yellowstone National Park. The genus Picrophilus, 
a member of Archaea, includes the most acidophilic organisms known, which can 
grow at a pH of 0.06, which is more acidic than hydrochloric acid. Despite their heat-
loving reputation, archaeans are also found in very cold places, like Arctic seawater. 
Aside from our fascination with how extremophiles adapt to their extreme environ-
ments, this relatively unknown domain of life is particularly important to humans, 
due to its position on the ToL. Eukaryotes share a more recent common ancestor with 
Archaea than they do with Bacteria. Archaeans are our sister 
lineage, and there is so much more we must learn from them 
about them, and thus our own place in the biosphere.

1.4 THE MICROBES WITHIN US

We now understand that microbes have a long and rich evolu-
tionary history on Earth, one that is essentially as old as the 
planet itself. They continuously adapt to novel environments, 
invent new methods of energy capture, and in the process, 
have transformed our planet. Given this central role of mi-
crobes in the biosphere, it may be less surprising to learn that 
microbes have also adapted to living in and on us. We refer to 
these invisible residents as members of our microbiome (from 
the Greek terms micro meaning “small” and bios meaning 
“life”). The formal definition of a microbiome refers to a char-
acteristic microbial community occupying a defined habitat 
that has certain properties. We can find microbiomes essen-
tially everywhere we look—in our gut, in the soil surrounding 
the roots of a plant, in clouds, and even in the plume from a 
hydrothermal vent.

A Universe of Microbes within Us
The term microbiome refers to both the microorganisms pre
sent and the functions they provide, while the term microbiota 
refers simply to which species are present. For example, our 

Table 1.2 Types of Extreme Environments

Hot springs

Deep sea hydrothermal vents

Salt lakes

Polar regions

Volcanic areas

Acidic mine drainage

Deserts

Environments with high radiation levels

Figure 1.18 ​ Extremophiles at Yellowstone National Park 
Extremophiles were first discovered in Yellowstone Na-
tional Park’s hot springs, where the water regularly 
reaches 189°F. The thermophiles that live in the hot 
springs give the pool its ring of colors. To survive at such 
high temperatures, these bacteria have evolved very stable 
membranes and proteins. One of these proteins, Taq poly-
merase, is now used in an important technique for creat-
ing copies of DNA, known as the polymerase chain reac-
tion, or PCR. Taq is able to maintain its structure and 
function even at the high temperatures required for PCR. 
We can thank extremophiles for our ability to perform 
PCR for COVID-19 testing, gene sequencing, forensic 
testing, and more! (Photo from Framalicious/Shutterstock)
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gut microbiome is home to approximately 300 to 500 species of microbes, collec-
tively called the gut microbiota. These members together with the functions they 
provide, such as digesting some of the food we ingest, are called our gut microbiome. 
Each microbiome is integrated into its host or ecosystem and is crucial for the proper 
functioning and health of the organism(s) in that niche.

Our goal in this textbook is to explore what microbes are present in humans, 
what functions they encode in their genomes, and how those functions impact us, 
their human hosts, in both healthy and diseased states. This knowledge may force 
us to redefine what it means to be human. Rather than consider ourselves as distinct 
biological entities, separate from all other life forms, we must now acknowledge 
that humans, indeed all multicellular organisms, are composed of numerous com-
plex ecosystems each consisting of a mixture of their own and microbial cells. This 
new entity, the human with all its microbiomes, is referred to as the holobiont, a 
term derived from the Greek hólos or “whole” and biont for “unit of life.” The 
term was coined by Lynn Margulis in the 1990s as she was exploring the endosym-
biotic origin of eukaryotes. Her intent was to provide a term that would acknowl-
edge the key role of symbiotic relationships in the evolution and diversification of 
multicellular eukaryotic organisms, such as when an ancestral prokaryotic cell gave 
rise to mitochondria or chloroplasts. However, the term is equally appropriate to 
refer to a human body with its invisible microbial symbionts that, as you will learn, 
provide the key to our health while at the same time serving as the harbingers of 
certain diseases.

Each of us consists of about 30 trillion human cells, which carry our genetic 
blueprint and the machinery required to translate that information into what be-
comes the visible “us.” These cells form collections of tissues and organs, which play 
critical roles in keeping our bodies functioning. For example, skin serves as our front-
line defense against invading pathogens, while the heart provides the force required 
to ensure all of our cells receive the oxygen-rich blood they require. For several thou-
sand years physicians and scientists have explored our cells, tissues, and organs in 
their quest to understand what makes us uniquely human, what keeps us healthy, and 
what can go wrong in our bodies to cause disease and death.

We have long known that bacteria and viruses could invade our bodies and cause 
illness; however, they were considered temporary intruders that our bodies, or the 
medications we took, would fight to eliminate. In just the past 20  years we have 
gained an entirely new perspective on the important role microorganisms play in 
keeping our bodies healthy, leading some to argue that the microbiome should be 
considered the 11th critical organ, equal in importance to our brain! Let’s explore this 
new organ and learn a bit about its role in keeping us healthy.

How Much of You Is Human?
It’s estimated that we have about 35 trillion microbes in and on our bodies—about 5 
trillion more than the number of human cells! This count excludes viruses, whose 
numbers may dwarf the human and microbial cell counts combined. Those numbers 
translate into a weight of just over 1 kg (2.5 pounds), with a volume of about 1.5 
liters (6 cups) of cells. That’s nearly half a gallon of microbes per human!

Our body hosts numerous, distinct microbiomes (Figure 1.19). We have an oral 
microbiome in our mouth, one that covers our skin, another in our urinary tract, one 
in our gut, and even one deep in our lungs. There are far more fine-tuned distinctions 
we could make. For example, the microbes that inhabit the surface of our tongue are 
distinct from those that live under our gums, which are different from those that live 
attached to our teeth, and so on.

These distinct microbial communities also vary greatly in their cell densities. 
Blood is a virtual microbial desert, while the large intestine contains one of the dens-
est microbial communities on Earth (Bojanova & Bordenstein, 2016)! While the 
precise number of microbes may differ, each microbiome is highly diverse, with over 
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300 distinct bacterial species identified in the human gut microbiome alone (Almeida 
et al., 2021).

Even more compelling than their sheer numbers is the fact that the genetic infor-
mation our microbiomes encode far exceeds our own. The human genome encodes 
20,000 genes, while our microbiomes provide an additional 45 million, each encod-
ing functions with the potential to impact us, their host. For example, if not for genes 
carried by certain species of bacteria, we would not be able to digest most of the fiber 
we consume.

1.5 OUR MICROBIOMES, OUR HEALTH

The rapidly growing field of microbiome science is revealing the complex roles these 
fellow travelers serve in human health. There is now overwhelming evidence that 
most functions of our body, such as growth, development, and metabolism, depend 
on our microbiome. Our immune system is trained first by our mother’s microbiome 
during pregnancy and then by our own microbiome, particularly during the first few 
years of life. Dysfunctions in the gut microbiome are associated with several autoim-
mune diseases such as arthritis, fibromyalgia, and multiple sclerosis. Our gut micro-
biome also plays a role in several intestinal conditions, such as inflammatory bowel 
disease (IBD) and irritable bowel syndrome (IBS), while obesity is often associated 
with an imbalance in the members of our gut microbiome.
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Figure 1.19 ​ So Many Human Microbiomes The human microbiome includes many different 
microbial communities, each with its own unique composition of species and role in maintain-
ing our health. (After V. D. Appanna, 2018.)
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Microbiomes and Human Nutrition
Another example of the key role our microbiome serves is in nutrition. Sugars and 
starches are two classes of carbohydrates synthesized by all organisms. The plants we 
eat contain thousands of different carbohydrates, which are broken down to their 
simplest components to provide us with energy. The human genome has fewer than 
20 enzymes involved in digesting carbohydrates. Enzymes are proteins that act as 
biological catalysts by accelerating chemical reactions. Those carbohydrates we can’t 
digest end up in the large intestine, where our microbiome takes over. The microbes 
in our gut encode thousands of carbohydrate-digesting enzymes in their genomes, 
which they employ to break down, or ferment, carbohydrates that are not digestible 
by humans, for energy.

Microbial Metabolites, Key to Human Health
One outcome of the microbiome’s digestive efforts is their waste, some of which is 
essential for human health. These waste molecules, also known as by-products, serve 
key roles in our nutrition and metabolism. For example, our bodies require vitamins, 
which are organic compounds that are essential for maintaining various body sys-
tems, including the immune and nervous systems. You might have learned that the 
vitamins our bodies need can only be obtained from the food we eat. In fact, our 
microbes can produce several key vitamins for us. Many vitamins are metabolites, or 
intermediaries, produced during the fermentation of fibrous foods by the microbes 
living in our gut. Bacteria in the microbiome also produce short-chain fatty acids 
(SCFAs), which are fatty acids with fewer than six carbon atoms. They are primarily 
produced through the fermentation of dietary fibers by gut bacteria in the colon. 
SCFAs are an essential energy source for our intestinal cells. It is an elegant symbiosis: 
our gut provides an energy-rich environment that supports an incredible diversity of 
microbial life, while that life, in turn, provides us with some of the key ingredients 
required to ensure our health.

Reflections on Your Microbiome
Let’s think about our microbiomes from a slightly different perspective. As you walk 
from one lecture hall to another, passing people who may look very different from 
you—in height, weight, skin, or eye color—consider this fact: your genome differs by 
about 0.1% from any other human genome. Regardless of how different you look, 
you are nearly identical in terms of your DNA content. Now, look again at those 
passing by, and imagine that you can see the members of their microbiomes as easily 
as you see their facial features. Each person’s microbiome differs by as much as 90% 
in terms of the species present, not to mention the genetic repertoires those species 
possess.

All these facts are causing us to reconsider how we think of ourselves as uniquely 
“us.” Traditional explanations for what makes an individual unique focus on our 
brain or the contents of our genome. However, as you will learn, our microbial resi-
dents communicate directly with our brain, and they provide far more gene functions 
than does our own genome. We are realizing that humans are not discrete entities of 
human cells and genes; rather, each of us is a consortium of thousands of organisms 
that result in a functioning, hopefully healthy, human. Indeed, it takes a microbial 
village to be a human!

Take a moment to reflect on what this new understanding of our microbial part-
nerships means to you. Does it scare you (or gross you out) to imagine the astronom-
ical numbers of microbes in and on your body? Do you get excited about the genetic 
potential we carry inside us? Or do your thoughts turn to the role these microbes 
have played in our evolutionary history? Perhaps you wonder if you can take advan-
tage of them to improve your health. Simply said, we are not alone, and it can feel 
empowering to understand that you have a fair bit of help in keeping your body 
healthy.
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CHECK YOUR UNDERSTANDING

 1. Approximately when do we think life emerged on this 
planet?
a. 4 billion years ago
b. 1 million years ago
c. 0.5 million years ago
d. 1,000 years ago

 2. The Miller- Urey experiment was designed to test 
 whether
a. early Earth’s conditions could be mimicked.
b. organic molecules could be created  under early 

Earth conditions.
c. inorganic molecules could create life.
d. life could be created in a glass chamber.

 3. Which represents the Central Dogma of Molecular 
Biology?
a. RNA → DNA → protein
b. Membrane → DNA → protein
c. DNA → RNA → protein
d. DNA → membrane → protein

 4. The advanced protocell created by Szostak’s lab was 
essentially a
a. membrane- bound cell containing DNA.
b. fragment of RNA that could replicate itself.
c. cellular structure that could make copies of 

itself.
d. cellular structure that was unable to replicate 

itself.

 5. Natu ral se lection occurs when
a. an individual organism gains new, advantageous 

traits during its lifespan.
b. individuals with advantageous traits are better 

able to survive and reproduce, and  those traits 
become more common in the population over 
time.

c. random events result in organisms better able to 
survive and reproduce.

d. a population of organisms survives to reproduce.

 6. Hydrothermal vents provide a rich nutrient source 
that some of the earliest life forms likely took advan-
tage of.
a. True
b. False

 7. What are deep- sea hydrothermal vents?
a. Magma transmitted from the Earth’s core
b. The ocean’s equivalent of geysers
c. Very hot plumes of air at the bottom of the ocean
d. Underwater volcanoes

 8. The two competing arguments about the origin of life 
are the replication argument and the cell division 
argument.
a. True
b. False

 9. The protocell membrane was created with
a. DNA.
b. RNA.
c. fatty acids.
d. proteins.

 10. What’s the diff erence between autotrophs and 
heterotrophs?
a. An autotroph makes its own food.
b. A heterotroph makes its own food.
c. A heterotroph uses the sun’s energy to fuel itself.
d. An autotroph uses the sun’s energy to fuel itself.

 11. How did the  Great Oxidation Event aff ect life?
a. Anaerobic life largely went extinct.
b. Aerobic life largely went extinct.
c. It created the rust deposits found in some sedi-

mentary rocks.
d. It enabled anaerobic life to fl ourish.

 12. Identify 2 characteristics of eukaryotes not found in 
prokaryotes.
a. Cell membranes, fl agella
b. Nuclei, mitochondria
c. Nuclei, fl agella
d. Golgi bodies, cell membranes

 13. Lynn Margulis proposed that eukaryotic cells came 
from a chance fusion of 2 protists.
a. True
b. False

 14. How did cyanobacteria transform Earth’s atmosphere?
a. By producing methane
b. By consuming all the existing oxygen
c. By producing oxygen
d. By consuming all the existing carbon dioxide

 15. LUCA was the very fi rst organism.
a. True
b. False

 16. What technology allowed the microbiome to be 
viewed for the fi rst time?
a. Telescope
b. Microscope
c. Electron microscope
d. 16S ribosomal sequence
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 17. What genus are  humans members of?
a. Eukarya
b. Sapiens
c. Mammalia
d. Homo

 18. Which kingdom  were prokaryotes a part of in the 
5- kingdom view of life?
a. Monera
b. Fungi
c. Protists
d. Bacteria

 19. What did Carl Woese use to infer relationships be-
tween prokaryotes?
a.  Whole genome sequencing
b. Phenotypic observations
c. Metabolic pathways
d. 16S rRNA

 20. What are the 3 domains of life?
a. Eukarya, Prokarya, and Monera
b. Eukarya, Bacteria, and Archaea
c. Fungi, Protista, and Bacteria
d. Eukarya, Bacteria, and Protista

 21. What is the cause of the  great plate anomaly?
a. Some bacteria have RNA genomes.
b. Many bacteria cannot be cultured using available 

techniques.
c. It is diffi  cult to fi nd bacteria in the environment.
d. It is impossible to isolate a single species from a 

sample.

 22. Extremophiles are microbes that survive in intense 
conditions, such as very high or low temperatures.
a. True
b. False

 23. Which  human microbiome is less dense than the 
 others?
a. Gut microbiome
b. Oral microbiome
c. Blood microbiome
d. Skin microbiome

 24. A  human and their microbiome have about the 
same number of enzymes involved in digesting carbo-
hydrates.
a. True
b. False

 25. Vitamins, short- chain fatty acids, and other metabo-
lites are produced when certain microbes digest which 
compounds in food?
a.  Simple sugars
b. Fatty acids
c. Lipids
d. Fibers

Answers: 1A, 2B, 3C, 4C, 5B, 6A, 7B, 8B, 9C, 10A, 11A, 12B 
13B, 14C, 15B, 16B, 17D, 18A, 19D, 20B, 21B, 22A, 23C, 24B, 
25D

DIVING DEEPER

 1. Why  were deep- sea hydrothermal vents advantageous 
locations for early life?

 2. How did Miller and Urey show that the organic mol-
ecules necessary for life could form from inorganic 
material?

 3. What  were the two competing views about the origin 
of life, and what did Jack Szostak’s protocell reveal?

 4. What’s the diff erence between autotrophs and 
heterotrophs?

 5. How did the  Great Oxidation Event aff ect life?

 6. Can you explain three diff erences and three similari-
ties between prokaryotes and eukaryotes?

 7. According to Lynn Margulis’s endosymbiotic theory, 
how did eukaryotic cells acquire mitochondria and 
chloroplasts?

 8. Identify three diff erences between the fi ve- kingdoms 
and three- domains views of life’s diversity.

 9. Why is the ribosome a good tool to use for inferring 
the tree of life?

 10. Why was Woese’s use of 16S rDNA sequencing 
revolutionary?

 11. What technology allowed the microbiome to be 
viewed for the fi rst time?

 12. Why are bacterial culture techniques  limited, and 
what technology solves this prob lem?

 13. Can you give examples of the environments that ex-
tremophiles are able to live in?

 14. What is a virus’s host range?

 15. Why  can’t viruses be placed on the tree of life, and 
how are they diff  er ent from Bacteria, Archaea, and 
Eukarya?

 16. What’s the diff erence between the microbiome and 
microbiota?
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DISCUSSING AND REFLECTING

 1. Lynn Margulis’s serial endosymbiosis theory was a 
harbinger of the discovery of the microbiome. Ex-
plain what is meant by that statement.

 2. Woese’s impact on our understanding of biodiversity 
has been enormous. Describe the key features of bio-
diversity that we  were ignorant about before Woese’s 
research revealed the three- domain tree of life.

 3. What can extremophiles tell us about the origin of life 
on Earth and the possibility of life existing on other 
planets?

 4. Refl ection. Carl Woese said, “If you wiped all multi-
cellular life- forms off the face of the earth, microbial 
life might shift a tiny bit, if microbial life  were to dis-
appear, that would be it— instant death for the 
planet” (Blakeslee, 1996). How do you feel now that 
you know the importance of microbes, and how does 
this aff ect your view of life on this planet?

 17. Lynn Margulis introduced the term holobiont to ex-
plain what?

 18. Can you list fi ve microbiomes found in/on  humans?

 19. How does the  human microbiome vary by body part?

 20. Why is the microbiome necessary for carbohydrate 
digestion?

 21. What are the two main metabolites bacteria produce 
as waste, and why are they impor tant for  human 
health?
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