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Introduction

In any kind of description of the history of a scientific field, there 
will be a fundamental narrative of uncertainly giving way to fact 

and theory, with unknowns and gaps in our knowledge being filled in 
and worked out. But perhaps inevitably, for every fact to hand or 
inference that can be made, there is another that was unknown or 
uncertain. Filling in one gap only tends to reveal another question 
that could not be answered, or perhaps even conceived of being 
answered, before that was known. Palaeontology is no different, 
though when dealing with dinosaurs, the pieces filling in those gaps 
do tend to be rather large.

In the late 1700s and early 1800s, a series of palaeontological finds 
of giant reptiles across the south of England heralded the beginnings 
of a new understanding of the bygone Earth. These animals lived in 
ancient seas and were soon christened with a barrage of now familiar 
names – Ichthyosaurus, Plesiosaurus and Pliosaurus, and less familiar ones 
such as Temnodontosaurus, Opthalomosaurus and Cryptocleidus. Plenty of 
fossil animals had already been discovered at this point, but these were 
primarily those of well-known living groups of mammals like 
elephants and hyenas, or shelly fossils like ammonites, which had 
obvious relatives in living squid and cuttlefish.

But now there was inarguable evidence of major types of animal 
unknown in the modern world, and from a geological era where 
many familiar animals such as birds and mammals were apparently 
absent. These finds indicated that there had once been an Age of 
Reptiles, something quite unlike anything that scientific minds of the 
time might have imagined. This proved to be a sensation, with the 
learned public flocking to hear lectures on these amazing new animals 
from the scientists of the day.
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This was a time of great growth of the natural sciences in Europe. 
Although Charles Darwin’s grand theory of evolution by means of 
natural selection was still decades from publication, the ideas of species 
changing over time, and that species or entire groups could have gone 
extinct and were no longer alive, were under discussion in scientific 
circles. New discoveries in biology, chemistry and physics were fuel-
ling new concepts about the world, and entire fields such as geology 
were being established. The hearts of the great continents in the 
Americas, Africa, Asia and Australia were being explored, and old 
fables were being banished as new information made it back to the 
learned societies of London, Paris, Berlin and others. It was a near 
perfect time to investigate whole new groups of extinct animals.

Before too long, great reptiles that had lived on land started to be 
found and recognised, in addition to those from the seas. Not for 
them the sleek shapes, paddle-like fins and tails of the ocean-going 
animals; instead they possessed more normal reptilian walking limbs, 
which pointed to a terrestrial lifestyle. Although these were initially 
known from only a few, very fragmentary pieces, but researchers 
quickly realised that they were an entirely new group of animals. They 
were christened with the name ‘Dinosauria’. Despite this is commonly 
translated as meaning ‘terrible lizard’, a more accurate version is prob-
ably ‘fearfully great reptile’, which better captures the spirit of how 
these animals were perceived.

When it was published in 1859, Darwin’s On the Origin of Species 
gave the naturalists of the time an evolutionary framework to under-
standing life on Earth both past and present. Indeed, this was a time 
when the fields of geology and palaeontology were very much in 
their infancy.* Science was all about discovering new phenomena, 
new species, new elements, and identifying physical laws, and despite 
the huge efforts in all of these areas, the scaffold for understanding the 
past was still, at best, very limited. Add in a healthy dose of biblical 
literalism – since many naturalists were trained by, or even ordained 
in, the Church – and these infant sciences can be forgiven much for 
their early errors and confusion.

* The two fields were in fact broadly synonymous at this point and known 
for a time by the delightful name of ‘undergroundology’. 
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Even so, what stood out early on was twofold: that so much informa-
tion could be derived from so little data, and that so much more remained 
to be resolved. This apparent paradox is to be a running theme of this 
book; people seem to be consistently amazed at what palaeontologists 
are able to work out about dinosaurs from the limited resources of the 
fossil record, while being equally amazed at things that are unknown.

The second dinosaur

The famous Iguanodon serves as an example of what could be eluci-
dated at the time from very little. This was only the second dinosaur 
to be named (the first being Megalosaurus), the honour going to an 
English doctor named Gideon Mantell, who had become fascinated 
by all things fossiliferous in the south of England. Although the 
Megalosaurus was originally known only from a small number of 
somewhat leaf-shaped teeth, these alone were enough for Mantell to 
work out quite a bit about his animal.

First off, the sheer size of these – some were several centimetres 
long – meant that they must have come from a large animal. Second, 
they were almost certainly from a reptile, given both the serrations to 
the edges (very common in reptiles, and almost unknown in mammals) 
and the fact that they were from a time known to be dominated by 
reptiles and devoid of large mammals. The teeth also had long roots, 
implying that they sat inside sockets in the jaws. This feature separated 
them from most other reptiles (though is seen in crocodiles), where 
the teeth are all but stuck to the jawbones and lack roots, but this 
aspect seems to have initially been overlooked.

Finally, the overall shape of the teeth, and especially the nature of 
the serrations, were very similar to those of various herbivorous lizards 
alive today. In particular, these were near identical to the modern 
iguanas, thus the origins of the name – Iguanodon, meaning ‘iguana 
tooth’.* The wear on the teeth showed that the animal probably ate 

* Mantell originally wanted to call his animal Iguanosaurus, but was dissuaded 
on the grounds that this was too much like calling it iguana-reptile, which is 
rather repetitive.
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tough plants and these, and indeed large herbivores generally, are rare 
in aquatic systems. Collectively then, from only a few teeth, Mantell 
was able to work out that he had the remains of a very large herbivo-
rous reptile, which lived on land, ate tough plants, and was like a lizard 
but also somewhat different. It was also dissimilar enough from other 
known species at the time to give it a new name, and so in 1825 he 
published this as: Iguanodon atherfieldensis.

That’s really a lot of information from a few teeth and shows the 
kind of inductive work and comparative anatomy that still stands as 
part of the basic toolkit of palaeontologists today. Still, it left more 
than a bit to be resolved, with huge uncertainties over this creature’s 
size and proportions. As to what its head looked like, the only thing 
they had to go on was its teeth, and there was virtually no real infor-
mation about such things as its skin or colour.

Soon though, much of a skeleton was discovered, and what later 
became known as the ‘Maidstone slab’ or ‘Mantell piece’ made its way to 
him. Now the good doctor had more material to work with, and early 
descriptions of some other giant terrestrial reptiles were starting to appear, 
allowing for some comparisons and generalisations about them to be 
made. Most of these animals would eventually be identified as dinosaurs, 
but that term had yet to be coined, and it was not yet clear if these animals 
were truly distinct from, for example, various fossil crocodiles.

Iguanodon was indeed a large animal with robust and strong bones. 
The shape of the femur (thigh bone) was straight and demonstrated 
that the leg was held vertically under the body, giving it an upright 
posture like a bird or mammal, and not out to the side with a sprawl-
ing posture, such as a lizard or salamander. From this, Mantell inferred 
that these animals may have been quick, active and agile, an idea that 
was controversial at the time, but that turned out to be remarkably 
accurate from so little information.

Already, though, some details were creeping in that, with the 
wonderful clarity of hindsight, turned out to be in error. Mantell and 
his peers were sufficiently able anatomists that they could put a disar-
ticulated skeleton back together and make some reasonable guesses 
about the form of missing pieces, so it’s not like there were arms 
mixed with legs, or tails were put together backwards. However, in his 
sketch of how the animal may have looked, Mantell had the hips and 
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shoulders, while in the right places, at the wrong angles. He recon-
structed his new beast as a huge and squat quadruped, and an isolated 
spur of bone found with the specimen was suggested as a spike on the 
nose, giving the large animal a rhinoceros-like appearance.

This last issue is commonly cited to highlight the mistakes of the early 
palaeontologists, the accusation being made that they were indulging in 
some extravagant guesswork when they should not have been. However, 
this misses a couple of vital points about the work being done at this 
time and how people like Mantell were drawing on the limited available 
information; not only from the few fossils they had, but also from the rest 
of the natural world, which was still being uncovered.

Dinosaurs were different in various ways to the reptiles that came 
before them and the living birds, mammals and lizards to which vari-
ous researchers would have been able to compare them. There were 
always going to be some unique features that would cause confusion 
and, lacking any other even vaguely complete dinosaurs for compari-
son, it was inevitable that unique traits would be hard to interpret. 
Context matters enormously. These early works were the first attempts 
to describe some truly new animals. Given that there were so few of 
them, and not an enormous pile of reference works available on other 
species, errors were predictable, and indeed credit must be given to 
the scientists, working as they were with such little information.

The second point that is overlooked, especially when it comes to 
the nose horn, is that Mantell was doing something entirely sensible. 
He wasn’t comparing the larger and robust herbivore to a rhino 
directly, but to the iguanas. Many of them have bosses of bone on the 
nose, and one, the aptly named rhinoceros iguana, even has a pair of 
them stuck one behind the other. Mantell was well aware of this; he 
even included a sketch of the skull of one in a paper he wrote in 1841 
and made the comparison rather explicitly. Lacking the evidence for 
large bipedal reptiles and stuck with an incomplete skeleton, it was 
entirely reasonable to propose a fully quadrupedal animal with such 
an adornment on the nose.

All in all, it was a brilliant start, but there was much more to come. 
Specimens of Iguanodon and other large terrestrial reptiles continued 
to accumulate, and scientific descriptions of the new teeth and bones 
appeared, allowing other researchers to add their input.
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In 1842, Richard Owen, a legendary anatomist and the man who 
would later found the Natural History Museum in London, coined the 
name ‘Dinosauria’. It was quite some claim to suggest that there was an 
important new group of reptiles out there, given that the dinosaurs at 
the time consisted of exactly three animals – Iguanodon, Megalosaurus 
and Hylaeosaurs – and none of them were known from especially 
complete remains – but time has shown that Owen was right to recog-
nise that these were new and should all be grouped together.

Several other animals were known at the time that would later be 
recognised as dinosaurs, and plenty would soon be added from other 
discoveries. However, this small triumvirate were enough to show 
that these animals truly were different and special compared to the 
other finds of the time. Iguanodon’s place in dinosaurian research was 
thus already assured, since it was the best represented of these newly 
recognised species. Looking back, it was a tremendous piece of insight 
from Owen to link these bits together as something special, but three 
fragmentary species, all from the south of England, would never 
provide sufficient information to say much about what dinosaurs 
were really like without much better specimens.

Happily, however, this problem was about to be greatly reduced 
thanks to a Belgian coal mine.

Skeletons by the dozen

In the year 1878, in the Walloonian town of Bernissart, a huge collec-
tion of dinosaur bones was discovered. Not only were there very large 
amounts of bones from a very large number of individuals, but complete 
and articulated specimens were unearthed, including the skulls. These 
animals were rapidly identified as belonging to Iguanodon (although it 
was given a new species name – Iguanodon bernissartensis), and thus 
between them and still more material that had been recovered in the 
UK, a new understanding of these animals was possible.

The nose horn was revealed to be a very unusual thumb, and 
presumably represented some kind of weapon. Iguanodon’s arms were 
rather like its legs in general form, though shorter and more slender, 
suggesting the animal, even if it was a quadruped, was rather less 
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elephantine (or even rhinoceros-like) in stature and proportions. The 
tail was not quite as long or lizard-like as assumed, and the head was 
certainly not that of an iguana, however large.

The changing face of Iguanodon over the years. Left, based 
on the model displayed in London in the late 1800s; middle, 
a typical ‘kangaroo’ pose common from most of the 1900s; 

and right, a modern interpretation. Illustration by Scott 
Hartman, with left illustration based on the work of Benjamin 

Waterhouse Hawkins, and middle that of Zdenĕ  k Burian.

Also novel was both the number of specimens and the fact that 
they appeared to have died together in a massive group (this has 
turned out not to be the case, and the Bernissart dinosaurs most  
likely represent the deaths of animals alone or in small groups over 
many years, rather than one mass mortality). Such a find suggested 
large groups of animals living together, which would again make 
them different from most modern reptiles and pointed to more 
complex behaviours among these ancient creatures.
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Thus our understanding of Iguanodon took a major step forwards. 
Not the lumbering beast of the earliest reconstructions with the 
rhinoceros-like horn and huge columnar limbs (as exemplified by the 
famous reconstructions led by Richard Owen in London’s Crystal 
Palace), but a svelte and perhaps agile animal, that moved in herds. The 
discoveries pointed to creatures that were far from simply being large 
lizards, but a truly special set of animals.*

Dinosaurs everywhere

By this time the Americas were yielding their own great trove of dino-
saurs. Whole new types of dinosaur were being uncovered across the 
Atlantic, and those known from only scraps in Europe were now repre-
sented by whole skeletons. At the dawn of the twentieth century, 
animals like Stegosaurus, Allosaurus, Diplodocus and Triceratops were well 
known in scientific circles and even to the public, and were the subject 
of huge debates and fractious discussions among palaeontologists. 
Dinosaurs appeared from further afield too at this time, with specimens 
now being found in Tanzania, India, Mongolia and Brazil (and with the 
imperialist attitudes of the time, these were shipped straight to Europe).

In places there was painfully little evidence available to help resolve 
the outstanding questions or come down on one side or other of a 
disagreement: for all this new knowledge and improved understand-
ing of the dinosaurs, it was clear that there was a huge amount that we 
did not know about them. Were dinosaurs warm or cold blooded? 
Why did they die out? How did they get so big? How many different 
species were there? And how and why did they evolve into the pleth-
ora of forms that were already known?

Darwin’s theories were now accepted science and new ideas about 
evolution, extinction and adaptation were settling into the mind of 
researchers. New fields such as ecology and ethology would shortly 

* Some modern studies suggest that these two animals were not just differ-
ent species, but actually different genera. Thanks to a quirk of taxonomic 
history, the Belgian animal retains the name Iguanodon, whereas the British 
creature Mantell worked on is now called Mantellisaurus in his honour.
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arise (or become recognised as fields in their own right), giving greater 
context, and opening up new aspects and depths to our ignorance. 
while presenting new possibilities for understanding.

In this twenty-first century there are more specimens, more research-
ers, and more techniques and technologies available than ever before. 
Both our understanding and our ignorance have multiplied. It would 
be something of an embarrassment to palaeontologists, given the abun-
dance of tools available to us now, were this not a golden age for research, 
but we are standing on the shoulders of the wealth of data previously 
accumulated, the power of analyses available to modern scientists, and 
indeed the huge amount of history that has come before.

Previous generations of researchers made plenty of mistakes, but 
science is self-correcting (eventually). Modern science allows us to 
learn from these mistakes and not make them again (hopefully). And, 
of course, palaeontologists of the past got a lot right and generated 
much of the vast amounts of data that we can use. Indeed, such is the 
reliance of palaeontology on original descriptions and details of speci-
mens that it is one of the few fields in the sciences that makes regular 
and copious use of research published not just decades, but even 
centuries ago.

Dinosaurs now number well over a thousand species and are known 
from thousands of skeletons and many hundreds of thousands of less 
complete ones, along with bones, teeth and footprints, with their 
fossils recovered on every continent. There are specimens with scales, 
feathers, claws and even internal organs intact (or at least impressions 
of them), and eggs, nests and burrows have been found. Juvenile dino-
saurs and embryos have been described and some tantalising claims of 
original biological material that have survived tens of millions of 
years, if not yet quite proven, are certainly credible.

With such information comes the possibilities that have not so 
much eluded science as seemed redundant. It was natural to assume 
that some dinosaurs were camouflaged and others brightly coloured, 
that some had spots and others stripes, while males and females may 
have been dramatically different in colour. Such features are all but 
universal among modern animals like birds, mammals and reptiles, so 
were assumed to be the case for dinosaurs. Yet with no possible way of 
determining the colours or patterns of these animals, the point was 
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moot – it was not that we didn’t know the details for the dinosaurs so 
much that we never could know, so there was little value in wasting 
effort speculating about it.

There were some reasoned extrapolations that creatures like 
Triceratops with its advertising billboard of a shield on its head might 
be brightly coloured, and that smaller dinosaurs living in forests would 
have disruptive patterns to help hide them, but that was about it. With 
no way to actually test these ideas though, they remained as reasona-
ble, but ultimately unknowable, speculations.

Now, however, the spectacular preservation of soft tissues in feath-
ered dinosaurs from China and Brazil, coupled with high-resolution 
imaging, have allowed traces of pigments and patterns to be discerned 
for a small number of animals. In one sense we have a revolutionary 
new understanding of some species, and yet for every dinosaur for 
which we know the colour, there are hundreds that we do not. An 
area of dinosaur biology that used to be considered virtually beyond 
our grasp is now ripe with possibility. We know today that we can 
potentially know something, but that we do not know it – a stark shift 
that emphasises what we do not, and may never, know.

Many more issues of this type are coming to the fore – areas that 
had been abandoned intellectually as being impossible to engage 
with, owing to a lack of data, are becoming rich seams of research 
and new ideas. As each is mined and examined, yet more information 
is revealed and the grand framework of our understanding of dino-
saurs is fleshed out a little more. Even if it is a web of information, 
which is more hole than strand, the fundamentals are clear. What 
awaits is the gaps to be filled in and we are at a time when we are 
likely to see many of these completed.

We will start, however, with the end.
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