Contents

Preface vii

1 Introduction 1
2 Univariate Linear Models: The AR(1) Process and Its Extensions 17
3 Multivariate Linear Models: VARMA Representation 53
4 Simultaneity, Recursivity, and Causality Analysis 81
5 Persistence and Cointegration 105
6 Conditional Heteroscedasticity: Nonlinear Autoregressive Models, ARCH Models, Stochastic Volatility Models 117
7 Expectation and Present Value Models 151
8 Intertemporal Behavior and the Method of Moments 173
9 Dynamic Factor Models 195
10 Dynamic Qualitative Processes 219
11 Diffusion Models 241
12 Estimation of Diffusion Models 285
13 Econometrics of Derivatives 317
14 Dynamic Models for High-Frequency Data 351
15 Market Indexes 409
16 Management of Extreme Risks 427

References 451

Index 477
Introduction

1.1 Assets and Markets

1.1.1 Markets

Financial markets comprise markets for stocks, bonds, currencies, and commodities. During the last decade, these markets have grown remarkably fast in number and volume of daily concluded transactions. Their expansion was paralleled by substantial qualitative improvements. The supply of financial products has increased in size, and several new and sophisticated products have been developed. As well, trading on major stock exchanges has become much faster due to computerized order matching systems that enhance market transparency and accelerate operations.

Financial markets satisfy various commercial and productive needs of firms and investors. For instance, the forward markets of futures on commodities ensure the purchases and future deliveries of goods at prices fixed in advance. Their activity reduces uncertainty in transactions and creates a safe environment for developing businesses. Stock markets satisfy essentially the demand of national and international companies for external funds. The possibility of issuing equity tradable on domestic markets and abroad offers easy access to many investors and allows diversification of shareholders. As for investors, the market value of stocks provides information on the performance of various companies and helps efficient investment decisions to be made.

Financial markets also serve some purely financial purposes: lending, risk coverage, and refinancing. Especially, bonds issued by the Treasury, various states, or companies represent the demand of these institutions for loans. The use of organized markets to collect external funds has several advantages: It allows for a direct match between borrowers and lend-
ers; it extends the number of potential lenders by splitting the requested amount into the so-called bonds or notes; it facilitates the diversification of investments; and it allows financing of very risky plans with low probabilities of repayment (junk bonds and emerging markets). Moreover, the experience of past decades shows that the development of organized markets has contributed to significant growth of pension funds by providing sustained returns in the middle and long run.

Financial assets are also used by investors for coverage against various risks; in financial terminology, this is risk hedging. For example, a European firm that exports its production to the United States and receives its payments in US dollars within six months following a shipment, may wish to cover against the risk of a decrease in the exchange rates between the US dollar and the Euro. Similarly, an institution that provides consumption loans indexed on the short-term interest rate may need to seek insurance against a future decline of this rate. The demand for coverage of diverse types of risk has generated very specific products called derivatives, such as options written on exchange rates or interest rates.

Finally, we need to emphasize the role of secondary markets. A standard credit contract involves a borrower and a lender; the lender is entitled in the future to receive regular payments of interest and capital until the expiry date. Secondary financial markets provide the initial lender an opportunity to sell the rights to future repayments to a secondary lender. The trade of repayment rights is widely used by credit institutions as an instrument of refinancing. A related type of transaction involving mortgages is called securitization, which allows a bank or an institution that specializes in mortgages to create financial assets backed by a pool of individual mortgages and to trade them on the market. The assets created in the process of securitization are called mortgage-backed securities (MBS).

1.1.2 Financial Assets

Financial assets are defined as contracts that give the right to receive (or obligation to provide) monetary cash flows. Typically such a contract specifies the dates, conditions, and amounts of future monetary transfers. It has a market price and can be exchanged whenever there are sufficient potential buyers and sellers. The acquisition of a financial asset can be summarized in terms of a sequence of monetary cash flows, including the purchasing price. It is graphically represented by a bar chart with a horizontal axis that measures the times between consecutive payments and a vertical axis that measures the amounts of cash flows. The cash flows take positive values when they are received and are negative otherwise.

Figure 1.1 shows that, unlike standard real assets, the financial assets
need not exist physically. Instead, most financial assets are recorded and traded by computer systems.

Below are some examples of financial assets and the associated bar charts.

Zero-Coupon Bond (or Discount Bond)
A zero-coupon bond or discount bond is an elementary financial asset. A zero-coupon bond (Figure 1.2) with maturity date \(T \) provides a monetary unit (i.e., $1) at date \(T \). At date \(t \) with \(t \leq T \), this zero-coupon bond has a residual maturity of \(H = T - t \) and a price of

\[
B(t,H) = B(t,T - t).
\]

The zero-coupon bond allows for monetary transfers between the dates \(t \) and \(T \).
Introduction

Figure 1.3 Coupon Bond

Coupon Bond

Coupon bonds are similar to loans with fixed interest rates and constant, regular repayment of interest. The contract specifies the lifetime of the loan (or maturity) and interest payments (or coupons) and states the method of capital repayment. The capital is usually repaid at the terminal date (or in fine). The coupon bond has a market price at any date after the issuing date 0. Figure 1.3 displays the bar chart at issuing date 0.

If the coupon bond is traded at any date t between 0 and the maturity date T, the bar chart needs to be redrawn. The reason is that the sequence of residual cash flows is altered since some payments prior to t have already been made. Therefore, intuitively, the price p_t differs from the issuing price p_0.

Stocks

Stocks are assets that represent equity shares issued by individual companies. They give to shareholders the power to inflict their opinion on the
policy of the firm via their voting rights and to receive a part of the firm’s profits (dividends). If we disregard the value of the right to vote, the current price S_t of a stock is equivalent to the sequence of future dividends, the amounts and payment dates of which are not known at t. Figure 1.4 provides the bar chart representing an indefinitely held stock, whereas Figure 1.5 provides the bar chart of a stock sold at $t + 1$.

Buying and Selling Foreign Currency
To demonstrate transactions that involve buying and selling foreign currency, let us denote by x_t the exchange rate between the US dollar and the Euro at date t. We can buy 1 Euro at t for x_t dollars and sell it at $t + 1$ for x_{t+1} dollars.

The bar chart of Figure 1.6 differs from the one that illustrates a zero-coupon bond because the future exchange rate (i.e., the amount of cash flow at $t + 1$) is not known at date t.

Forward Asset
Let us consider a simple asset, such as an IBM stock. A forward buy contract of this stock at date t and maturity H represents a commitment of a trader
to buy the stock at $t + H$ at a predetermined price. Therefore, the buyer starts receiving the dividends after $t + H$. The existence of forward assets allows stripping the sequence of stock-generated cash flows before and after $t + H$ (Figure 1.7).

Options

Options are contingent assets that give the right to make a future financial transaction as described in the following example. A *European call* on IBM stock with maturity T and strike K gives the opportunity to buy an IBM stock at T at a predetermined price K. The cash flow received by the buyer at T is

$$F_T = \max(S_T - K, 0) = (S_T - K)^+,$$

![Diagram of stripping a stock](image)

Figure 1.7 Stripping of a Stock
where S_T is the price at T of the IBM stock. Therefore, this cash flow is uncertain and depends on the future value S_T. It is equal to $S_T - K$ if $S_T > K$ and is zero otherwise. These two outcomes are illustrated in Figure 1.8. Here, $C_t(T,K)$ denotes the price at t of the European call.

1.2 Financial Theory

Financial theory describes the optimal strategies of portfolio management, risk hedging, and diffusion of newly tailored financial assets. Recently, significant progress has been made in the domain of market microstructures, which explore the mechanisms of price formation and market regulation. In this section, we focus attention on the theoretical aspects of dynamic modeling of asset prices. We review some basic theoretical concepts, not all of which are structural.

1.2.1 Actuarial Approach

The actuarial approach assumes a deterministic environment and emphasizes the concept of fair price of a financial asset. As an illustration, let

![Figure 1.8 European Call](image)

If $S_T < K$

If $S_T > K$
us consider at date 0 a stock that provides future dividends d_1, d_2, \ldots, d_t at predetermined dates 1, 2, \ldots, t. In a deterministic environment, the stock price has to coincide with the discounted sum of future cash flows:

$$S_0 = \sum_{t=1}^{\infty} d_t B(0,t),$$ \hspace{1cm} (1.1)

where $B(0,t)$ is the price of the zero-coupon bond with maturity t. Moreover, if the short-term interest rate r_0 is assumed to be constant at all maturities, the above formula becomes

$$S_0 = \sum_{t=1}^{\infty} \frac{d_t}{(1 + r_0)^t}. \hspace{1cm} (1.2)$$

Formulas (1.1) and (1.2) are the essential elements of the actuarial calculus. However, they are in general not confirmed by empirical evidence. The reason is that formulas (1.1) and (1.2) do not take into account the uncertainty about future dividends and the time variation of the short-term interest rate. Some ad hoc extensions of the actuarial formulas have been proposed in the literature to circumvent this difficulty in part. For instance, the literature on expectation models has come up with the formula

$$S_0 = \sum_{t=1}^{\infty} \frac{E_0(d_t)}{(1 + r_0)^t}, \hspace{1cm} (1.3)$$

in which future dividends are replaced by their expectations evaluated at date 0. However, the pricing formula (1.3) disregards again the uncertainty about future dividends. Intuitively, the larger this uncertainty, the greater the risk on future cash flows is. Hence, the observed price will likely include a risk premium to compensate investors for bearing risk.

An alternative extension assumes the existence of a deterministic relationship between the derivative prices (e.g., an option written on a stock) and the price of an underlying asset (e.g., the stock). This approach is known as the complete market hypothesis, which underlies, for instance, the well-known Black-Scholes formula. The existence of deterministic relations between asset prices also is not confirmed by empirical research.

Essentially, the merit of concepts such as fair price or the deterministic relationship between prices lies rather in their theoretical appeal than in their empirical relevance.

1.2.2 Absence of Arbitrage Opportunity

Let us consider two financial assets; the first one provides systematically, at predetermined dates, the cash flows of amounts smaller than the second one. Naturally, we would expect the first asset to have a lower price.
For instance the price $C(T;K)$ of a European call with maturity T and strike K and written on an underlying asset with price S_t should be less than S_t. Its cash flow at the maturity date $(S_T - K)^+$ indeed is less than S_T.

The inequality between prices is a consequence of the absence of arbitrage opportunity (AAO), which assumes the impossibility of achieving a sure, strictly positive, gain with a zero initial endowment. Thus, the AAO principle suggests imposing deterministic inequality restrictions on asset prices.

1.2.3 Equilibrium Models

In the approach of equilibrium models, market prices arise as outcomes of aggregate asset demand and supply equilibrium. The equilibrium models are rather complicated due to the presence of assumptions on investor behavior and traded volumes involved in the analysis.

Various equilibrium models can be distinguished with respect to the assumptions on individual behavior. Basic differences among them can be briefly outlined as follows. The standard Capital Asset Pricing Model (CAPM) assumes the existence of a representative investor. The equilibrium condition concerns only a limited number of financial assets. The Consumption-Based Capital Asset Pricing Model (CCAPM) instead supposes joint equilibrium of the entire market of financial assets and of a market for a single consumption good. The market microstructure theory focuses on the heterogeneity of economic agents by distinguishing different categories of investors. This classification is based on access to information about the market and therefore makes a distinction between the informed and uninformed investors (the so-called liquidity traders), and the market makers. Microstructure theory also explains the transmission of information between these groups during the process of convergence toward equilibrium.

1.2.4 Predictions

The efficiency of portfolio management and risk control depends on the accuracy of several forecasted variables, such as asset prices, and their time-varying variance (called the volatility). A significant part of financial theory relies on the random walk hypothesis, which assumes that the history of prices contains no information useful for predicting future returns. In practice, however, future returns can often be inferred from past prices and volumes, especially when nonlinear effects are accounted for. There exist various methods to examine nonlinear temporal dependence, such as the technical analysis or the time series analysis of autoregressive conditionally heteroscedastic processes (ARCH).
1.3 Statistical Features

Statistical methods for estimation and forecasting of prices, returns, and traded volumes exploit the informational content of past observations. We give below a few insights on various types of variables used in statistical analysis and on the selection of sampling schemes and methodology.

1.3.1 Prices

Many financial time series represent prices of financial assets. It is important to understand the nature of available data before proceeding to the statistical analysis. The mechanisms of financial markets do not differ substantially from those of standard good markets (see Chapter 14 for more details). The trades are generated by buyers and sellers, whose demand and supply are matched directly by computer systems or by an intermediary. On some stock markets, called order driven, the prices offered by traders who wish to buy or sell (i.e., the quotes), are displayed on computer screens accessible to the public. The quotes are ranked starting with the best bid (proposed buy price) and the best ask (proposed sell price). This type of market includes the Toronto Stock Exchange (TSE) and the Paris Bourse (PB), for example. On other stock markets, such as the New York Stock Exchange (NYSE) and the National Association of Securities Dealers Automated Quotation (NASDAQ), asks and bids are determined by market makers and include their commissions.

The price at which assets are effectively exchanged can therefore be equal to the bid, the ask, or even a different amount, especially in the presence of market makers. Accordingly, the price records may contain the bids, asks, and/or traded prices. Also, prices per share depend not only on the exchanged assets and times of trade, but also on the traded quantities (volume) and individual characteristics of investors and may eventually include the commission of an intermediary. Moreover, in particular cases, the publicly displayed prices may differ from the true trading prices. Therefore, even on well-organized financial markets for which information is accurate and available on line in real time, it is important to know the genuine content of price records. In particular, we have to consider the following questions:

1. Do the available data contain the true trading prices, quotes, or proxies for trading prices computed as geometric averages of bids and asks?

2. Empirical analysis may occasionally concern separately the buyer-initiated (ask) or seller-initiated (bid) trades. In such cases, only sequences of ask and bid prices (signed transactions) need to be extracted from records.
3. Do the prices include transaction costs or commissions of intermediaries? Are they corrected for the tax transfers effectuated by either the buyer or seller?
4. Is the market sufficiently liquid to eliminate noncompetitive effects in price formation? This issue arises in the empirical analysis of infrequently traded assets.
5. Have the prices been adjusted for inflation to facilitate their comparison at different dates? This question is especially important for bonds with coupon payments that commonly are discounted.

1.3.2 Frequency of Observations

Recent expansion of financial markets has entailed increasing numbers and frequencies of trades due to the implementation of electronic order-matching systems. Until the early 1980s, data on prices were registered daily at either market openings or market closures. Accordingly, daily traded volumes were also recorded. Therefore, a sample spanning, for example, four years of asset trading would amount to about 1,000 daily observed prices (there are about 250 working days per year).

The electronic systems now allow instantaneously updated records to be kept of all transactions. They register on computer screens all movements that reflect all changes in the list of queued orders (called the order book) and have an accuracy of a fraction of one second. Therefore, the size of data files comprising the so-called tick-by-tick data or high-frequency data may be extremely large. A four-year sample may contain more than 1 million records on trades of a liquid stock or more than 3 million records on exchange rates.

Since transaction records are made at various times and are not necessarily integer multiples of a time unit such as one day, the timing of trades requires particular consideration. It is important to distinguish the price data indexed by transaction counts from the data indexed by time of associated transactions. Empirical evidence suggests that the price dynamics in calendar time and in transaction time differ significantly. The comparison of both sampling scales provides insights into the trading activity of an asset and its liquidity.

1.3.3 Definition of Returns

Time series of asset prices display a growing tendency in the long run. Occasionally, however, price series may switch from upward to downward movements and vice-versa in the short or middle run. For this reason, prices of the same asset sampled at different periods of time may exhibit unequal means. Since this feature greatly complicates statistical inference,
it needs to be eliminated. A simple approach consists in transforming the
prices into returns, which empirically display more stationary behavior.

Let us consider a financial asset with price \(p_t \) at date \(t \) that produces
no dividends. Its return over the period \((t, t+H)\) is defined as

\[
r(t, t+H) = \frac{p_{t+H} - p_t}{p_t}.
\]

The return depends on time \(t \) and the horizon \(H \). Very often, statistical
analysts investigate returns at a fixed unitary horizon:

\[
r(t, t+1) = \frac{p_{t+1} - p_t}{p_t},
\]

which in general display more regular patterns than the initial series of
prices.

In theoretical or econometric analysis, the above formula is often re-
placed by the following approximation: Let us suppose the unitary hori-
zon and a series of low-value returns: we obtain

\[
\bar{r}(t, t+1) = \log p_{t+1} - \log p_t
\]

\[
= \log \left(\frac{p_{t+1}}{p_t} \right)
\]

\[
= \log \left(1 + \frac{p_{t+1} - p_t}{p_t} \right)
\]

\[
\approx \frac{p_{t+1} - p_t}{p_t} = r(t, t+1).
\]

The returns defined in (1.5) are used by banks, various financial insti-
tutions, and investors in financial markets. The differences of price loga-
rithms conventionally represent the returns examined by researchers.
However, it is important to note that

\[
\bar{r}(t, t+1) = \log \left(1 + \frac{p_{t+1} - p_t}{p_t} \right)
\]

\[
\approx r(t, t+1) - \frac{r(t, t+1)^2}{2},
\]

when we consider the expansion at order two. Therefore, the approxima-
tion \(\bar{r}(t, t+1) \) undervalues the true return and may induce a significant
bias due to replacing the theoretical definition of returns in (1.5) by the
approximation.

1.3.4 Historical and Dynamic Analysis

The distributional properties of returns provide valuable insights on their
future values. The analysis can be carried over in two frameworks. The
static (historical) approach consists of computing marginal moments such as the marginal mean and variance from a sample of past returns and using these statistics as indicators of future patterns. The dynamic approach concerns the conditional distribution and conditional moments, such as the conditional mean and variance. These are assumed to vary in time, so that at each date \(t \), new estimates need to be computed conditional on past observations. The conditioning is necessary whenever there are reasons to believe that the present returns, to some extent, are determined by the past ones. By the same argument, future returns depend on present and past returns as well, and their values can be used for forecasting.

Historical Approach

The historical approach explores the marginal distribution of returns. For instance, let us consider the series of returns on a single asset \(y_t = r(t, t+1) \). The expected return is evaluated from the data on past returns by

\[
E_y = \frac{1}{T} \sum_{t=1}^{T} y_t = \bar{y}_T,
\]

whereas the variance of the return is approximated by

\[
V_y = \frac{1}{T} \sum_{t=1}^{T} (y_t - \bar{y}_T)^2.
\]

The historical approach can be refined by applying rolling estimators. Implicitly, this procedure assumes that marginal distributions of returns vary in time. It is implemented by introducing a window of a fixed length \(K \) and approximating the expected return at \(t \) by the rolling average:

\[
E_y = \frac{1}{K} \sum_{k=0}^{K-1} y_{t-k} = \frac{1}{K} (y_t + y_{t-1} + \ldots + y_{t-K+1}).
\]

On the transition from \(t \) to \(t+1 \), the approximation of the expected return is updated by adding a new observation \(y_{t+1} \) and deleting the oldest one \(y_{t-K+1} \).

Conditional Distribution

The analysis of the marginal distributions of returns is adequate for processes with a history that provides no information on their current values. In general, the expected values and variances of returns are partly predictable from the past. This property is called temporal dependence and requires a dynamic approach, which consists of updating the conditional moments in time by conditioning them on past observations. Very often, the analysis is limited to the first- and second-order conditional moments:
\[E(y_t \mid y_{t-1}) \quad \text{and} \quad V(y_t \mid y_{t-1}), \]

where \(y_{t-1} = (y_{t-1}, y_{t-2}, \ldots) \) denotes the information available at date \(t - 1 \). Although the conditional moments are more difficult to approximate, in practice they yield more accurate forecasts.

Horizon and Observation Frequency

The conditional distribution may be used for predicting future returns at various horizons and sampling frequencies. While the predictions of future returns may not always be improved by conditioning on the past, the conditional expectations often yield better outcomes than the historical expectations. For illustration, we discuss below the prediction accuracy in computing the conditional variance of prices, called the *price volatility*.

Let us first assume that prices are observed at integer valued dates. The price volatilities at date \(t \) can be computed at one, two, or more units of time ahead:

\[
\begin{align*}
V(p_{t+1} \mid p_t, p_{t-1}, p_{t-2}, \ldots) & \quad \text{at horizon 1}, \\
V(p_{t+2} \mid p_t, p_{t-1}, p_{t-2}, \ldots) & \quad \text{at horizon 2}, \\
V(p_{t+H} \mid p_t, p_{t-1}, p_{t-2}, \ldots) & \quad \text{at horizon } H.
\end{align*}
\]

This approach allows examination of the dependence of volatility on the forecast horizon (the so-called term structure of volatilities).

If prices are observed every two units of time and \(t \) is even, the volatility at horizon 2 is

\[V(p_{t+2} \mid p_t, p_{t-1}, p_{t-4}, \ldots). \]

It differs from the previously given volatility at horizon 2 in terms of the content of the conditioning set, for which observations at odd dates are omitted.

The above discussion suggests that price volatility is a complex notion comprised of the effects of time, horizon, and sampling frequency.

1.3.5 Nonlinearity

The complexity of financial time series has motivated research on statistical methods that allow accommodation of nonlinear dynamics. The nonlinear patterns result from the specificity of financial products and the complexity of strategies followed by investors. We give below some insights on the nature of nonlinearities encountered in theory and/or documented by empirical research.

Nonlinearity of the Variable to Be Predicted

Let us provide two examples of the nonlinearity of the variable to be predicted. First, market risk is related to the volatility of returns, com-
monly approximated by squared returns. Therefore, the variable to predict is a power function of the asset price. Second, there exist derivative assets with definitions that involve nonlinear transformations of the prices of underlying assets. For instance, the pricing formula of a European call is based on an expectation of $(S_T - K)^+$, which is a nonlinear transform of the stock price.

Nonlinearity of the Relationships between Prices
Even though prices of a derivative and of an underlying asset do not generally satisfy a deterministic relationship, they likely are randomly and nonlinearily related. For instance, the price of a European call $C(T,K)$ and the price S, satisfy nonlinear inequality constraints due to the requirement of the AAO.

Nonlinearity with Respect to Parameters
Empirical evidence suggests that both the marginal and the conditional return distributions feature departures from normality. Essentially, research has documented the asymmetry of distributions and fat tails, implying a high probability of observing extreme returns. For this reason, standard analysis based on linear regression models, which involves the first two moments only, may be insufficient or even misleading in many financial applications.

Nonlinearity of the Dynamics
The observed dynamics of returns feature several nonlinear patterns. By looking at a trajectory of returns sampled daily or at a higher frequency, one can easily observe time-varying dispersion of returns around the mean or, equivalently, their time-varying variance (*volatility*). The first observation of this type was made by Mandelbrot in the early 1950s, who empirically found that large returns (positive or negative) have a tendency to be followed by large returns and that small returns have a tendency to be followed by small ones of either sign. This phenomenon is known as *volatility clustering* and points out not only the variation, but also the persistence of volatility. During the last twenty years, estimation and prediction of volatility dynamics have been given considerable attention and have resulted in a large body of literature on models with conditional heteroscedasticity. Technically, future squared returns are represented as functions of past squared returns, and nonlinearity arises from the presence of power functions.

In more recent developments, temporal dependence in volatility has been associated with *regime switching*, which means that episodes of high
or low returns are explained by movements of a latent variable that admit a finite number of discrete states.

Nonlinearity of the Financial Strategies

The myopic or intertemporal optimizations of investors for dynamic portfolio management, hedging, and risk control are nonlinear with respect to the expected future evolution of prices. Then, at equilibrium, the behavior of investors induces nonlinear effects on future prices.
Index

absence of arbitrage condition
 derivative pricing in incomplete market, 272
 factor models, 213, 215
absence of arbitrage opportunity (AAO)
 asymptotic, in price index, 418–19
 in derivative pricing, 259, 261–62, 263, 265
described, 9
 and equilibrium, 83
 in expectation hypothesis, 163, 164, 165
 price approximation, 418–19
 absolute risk aversion, 75
 activity and coactivity measures in intraday durations, 392–94
actuarial approach, 8
actuarial calculus, 8, 163
adapted sequence, 160–61
adaptive prediction scheme, 153–55, 159–60
adjustment coefficient, 154, 226
adverse information cost, 366–71
aggregation, states of Markov chain, 238–39
aggregator function in recursive intertemporal utility function, 186
Ait-Sahalia, Y., 295

Alcatel stock
 activity-coactivity measures, 394
 application, 300–301
 bid-ask curves, 386, 388
 distribution of returns, 428
 estimated trading rate, 393
 initial situation of order book, 355
 returns and volumes, 101
 sampling frequency, 31
 along-the-path multiplier in
 IGARCH models, 132
American Stock Exchange (AMEX), 415
Amihud, Y., 365
amplitude, 59
Amsterdam Stock Exchange, 351
Andersen, T., 363, 376
antithetic simulation technique, 256
antithetic variables, 346, 348
applications
 AR (1) estimation, 28–29
 ARCH models, conditional heteroscedasticity, 133–35
 ARMA process, 48–50
 continuous time models, 310–11
 estimation of diffusion models, 297–301
 option pricing, Monte-Carlo derivatives, 346–49
 VAR models, 66–67

477
approximated models, term structure of interest rates, 166–67
arbitrage, 9
arbitrage opportunities, hypotheses, 212
arbitrage portfolio, 435
arbitrage pricing theory (APT) and diversification, 213–15
factor model extension, 211–13
ARCH. See autoregressive conditionally heteroscedastic
ARCH-M model, conditional heteroscedasticity, 129
ARIMA process, 108
ARMA. See autoregressive moving average
ARMA-GARCH model, conditional heteroscedasticity, 128–29
ARMAX model, 84
Arrow, K., 153, 260
Arrow-Debreu prices, 342
Arrow-Debreu securities, 260
Arrow securities, 270
artificial observations, 308
Artzner, P., 443
Arzac, E., 445
ask curves, 372–73
ask price, 10, 352
ask quote equation, 406
asset price analysis, implementation of GMM, 192
dynamics, 418–20
evolution, 178–80
evolution, measure of, 413
assets. See financial assets assumptions
A.14.1 conditional joint distribution, 367
A.14.2 one investor, 367–68
A.14.3 risk-free rate, 368
A.14.4 market maker, 369
A.14.5 to A.14.7 time deformation, 378
A.14.8 Gaussian random walk, 379
A.14.9 calendar time unit, 379
A.14.10 opening trade characteristics, 402–3
A.14.11 intraday trade characteristics, 403
A.14.12 intraday dynamics, 403
asymmetric reactions, nonlinear autoregressive models, 124
asymmetric smile and stochastic volatility, 333–34
asymmetry of information, 366–67
asymptotically stationary process, homogeneous Markov chain, 224
asymptotic distribution and decomposition formula, 100
asymptotic expansion, 108
asymptotic normality estimators, 26–27
autocorrelation function (ACF), 57
ARMA model, 45–46
described, 21–22
implied volatilities, 324–25
power transformations, 109–10
returns sampled, 374
in test of conditional heteroscedasticity, 130
autocorrelations of AR(1), 21–24
of volatilities, 126
autocorrelogram of order 2, 130
autocovariance-based condition, 203
autocovariance function, 54–55, 383
autoregressive coefficient, 18, 226
autoregressive coefficient matrix, 57
autoregressive conditional duration, intertrade durations, 394–98
autoregressive conditionally heteroscedastic (ARCH) models approximation of diffusion models, 257–58
conditional heteroscedasticity, 126–35 (See also conditional heteroscedasticity, ARCH models)
parametric analysis of VaR, 439–40
 qualitative factor model, 236–37
 used in predicting, 10
 See also conditional heteroscedasticity
 autoregressive conditionally heteroscedastic (ARCH) regressions in implied volatilities, 325–26
 autoregressive models in deformed time, 381–83
 autoregressive moving average (ARMA). See univariate linear models
 autoregressive moving average (ARMA) model, 374–77
 autoregressive moving average (ARMA) process, 42–43, 240
 autoregressive process of order 1 continuous time analog, 251
 defined, 18–20
 dynamic properties, 18–20
 estimation application, 28–29
 model in indirect inference, 312
 Ornstein-Uhlenbeck comparison, 289
 sampling frequency, 30–31
 See also univariate linear models
 autoregressive process of order p, 43
 autoregressive simulators, 433
 average multiplier in IGARCH models, 131–32

 Bachelier, L., 241
 bandwidth, 123
 Bank of Montreal stock, 68, 358, 362, 442
 bank regulators, 428, 434
 banks, 438–39, 442, 450
 Basle Committee, 434
 Basset, G., 441
 Bawa, V., 445
 bear and bull market patterns, 148
 BEKK (Baba-Engle-Kraft-Kroner) model, 141–42
 benchmark for portfolio management, 413–14
 benchmark portfolios, 77, 198
 Bernoulli distribution, 259
 Bessel function in Cox-Ingersoll-Ross model, 252, 291
 beta coefficient, 103, 197
 better price limit order, 357
 bias correction methods, 95
 bid-ask assumptions in adverse information cost, 370
 bid-ask bounce
 in ARMA and GARCH models, 374–76
 described, 359
 trade of Alcatel stock, 31
 bid-ask curves
 in bid-ask analysis, 370
 dynamic models for high-frequency data, 385–88
 in order-driven market, 360
 bid-ask prices, equations, 405–6
 bid-ask spread, 363–71, 366
 bidimensional process, 58–59
 bid price, 10, 352
 bids and asks trading price, 357
 bifurcation prices of binomial tree, 271
 binomial tree
 approximation of diffusion models, 254–55
 derivative pricing in complete market, 259–64
 derivative pricing in incomplete market, 269–71
 description, 259–60
 digital option pricing, 261–63
 jump processes, 277–78
 risk-neutral probability derivation, 267
 and time deformation, 385
 Black, F., 137, 241, 264
 Black Monday effect in GARCH model, 134
 Black-Scholes formula
 derivative pricing in complete market, 264–66
 price of a call, 282–83
 risk-neutral probability, 280–82
Black-Scholes formula (cont.)
in stochastic volatility model, 274
and time deformation, 385
Black-Scholes model
analysis of economics of derivatives, 318–34
derivative price, 348–49
in gamma model, 344–45
See also economics of derivatives
block decomposition, 239
Blume, M., 94
Bollerslev, T., 126, 140, 363, 376
bonds, 1–2, 415, 423
Box, G., 45, 46, 47
Breeden, D., 333
Brennan, M., 313
Brennan-Schwartz model, 313
British pound exchange rate and diagonal model, 140
Brownian motion
geometric
with drift, 248–49
example, 247
maximum likelihood approach, 287–89
in high-sampling frequency, 35
stochastic differential equations, 241–43
Broze, L., 293, 313–14
Bucy, R., 208
budget constraint, 174
budget shares, 214
business cycle fluctuations, 237–38
business time, 377
buyer-initiated trades, intraday price movements, 227
buyers and sellers, mechanisms of financial markets, 10
buy limit order in supply and demand analysis, 360
buy prices of stocks, 352

calendar time and trading time, 11, 374
calibration
indirect inference, 309, 311
in method of simulated moments, 308, 309
on price volatilities, 332
in statistical inference, 341
call auction market, inventory holding cost, 366
call auction versus continuous matching, 353
call price, prediction of future call, 320
Campbell, J., 172
Canadian indexes, 416–17
cancellations, 360
canonical correlations and directions, 210, 295, 297, 299
cap constrained weights in market indexes, 417, 422
capital, minimum required, 428, 434–35, 443, 450
Capital Asset Pricing Model (CAPM)
conditional heteroscedasticity, 142–44
description, 81, 88–95
differences in equilibrium models, 9
hypothesis and market portfolio, 417
See also simultaneity, recursivity, and causality analysis, CAPM
capital requirement evaluation, 443–44
Carpenter, J., 208
cash flow, 6–7
cash flows, 423
catalogues of return patterns, 146
Cauchy distributions, 381, 432
Cauchy-Schwartz inequality, 78, 182
causal chain in simultaneous equations model, 86
causality analysis, 95–103
See also simultaneity, recursivity, and causality analysis
causality measures, 99, 102
causality theory, 95
censoring threshold, 431
Index

Central Banks, 434
central limit theorem, 258, 418
certainty equivalent in recursive inter-
temporal utility function, 186
chain index versus fixed-base index,
 411–12
Chamberlain, G., 213, 214
Chan, K., 293–94, 313, 314
channel pattern, 146
Chapman-Kolmogorov equation, 222
characteristic equation, 64
characteristics in hedonic index, 424
chartism, 124
Chen, N., 213
Chen, X., 294, 296–97
Chicago stock exchange, 351
chi-square distribution
 in CAPM, 93
 in causality measures, 98
 in CIR process, 291
 in Cox-Ingersoll-Ross model, 252
 in estimation of ARMA models,
 47, 50
Choleski decomposition in white
 noise process, 56
Chow, K., 28
Christie, A., 137
circuit breakers, 227
Clark, P. K., 378, 379
Clement, E., 342, 343
closed-form solution of diffusion
 equation, 248, 253
cluster, 433
clustering effects, 144
coaclivity and activity measures in in-
tertrade durations, 392–94
Cochrane, J., 177
codpendence, linear factor models
 with unobservable factors,
 203–4
codpendence direction, 204
coefficients
 adjustment, 154, 226
 autoregressive, 18, 226
 beta, 103, 197
 estimated, 404
moving average, 19
regression, 66, 92
relative risk aversion, 184–85
risk aversion, 74, 89, 237
sensitivity, 197
Sharpe performance, 414
skewness, 428
smoothing, 154, 155
stochastic, 420
stripping, 373
coherent risk measures for VaR,
 443–44
cointegrating vector, 111–12
cointegration, 110–14
commissions, 10, 11
Committee, Basle, 434
committees on index composition,
 421
comparison of dynamics in de-
formed time, 378–79
complete market, hedonic index for
 bonds and derivatives,
 423–24
complete market hypothesis, 8, 241,
 266
complete markets. See derivative
 pricing
composite Laspeyres index, 412
composite Paasche index, 412
composite stock index, 67–70
computerization. See order matching
 systems
conditional distribution
 as dynamic analysis, 14
 of future option price, 320–21
conditional expectation
 in derivative pricing, 337
 operator, 296–97
conditional heteroscedasticity, 117
ARCH models, 126–35
 application, 133–35
 definitions, 126–29
 ARCH-M, 129
 ARCH(q), 126
 ARMA-GARCH, 128–29
 GARCH(p,q), 126–28
Index

conditional heteroscedasticity (cont.) 187–88
 detecting ARCH effect, 129–30
 IGARCH models, 131–33
 along-the-path multiplier, 132
 average multiplier, 131–32
 shock persistence comparison, 132–33
 statistical inference, 130–31
 quasi-maximum likelihood, 130–31
 two-step estimation method, 150
multivariate framework extensions, 138–44
 CAPM, 142–44
 conditional mean and variance, 142–43
 market portfolio, 143–44
multivariate ARCH models, 139–42
 constant conditional correlations model, 140–41
 diagonal model, 139–40
 factor ARCH model, 142
 spectral decomposition model, 141–42
 unconstrained model, 139
nonlinear autoregressive models, 118–26
 asymmetric reactions, 124
 definitions, 118
 inference, parametric and non-parametric models, 120–23
 leptokurtosis, 118–20
 technical analysis, 124–26
price processes, 162
stochastic volatility models, 136–38
 definition, 136–37
 leverage effect, 137–38
 summary, 144–45
 and time deformation, 383
 typology of patterns, 146–49
conditional joint distribution, 403–4
conditional mean and variance
 CAPM in conditional heteroscedasticity, 142–43
conditional moment conditions, 14
conditional moments, 14
conditional overdispersion, 398
conditional quantile, 440–41, 450
conditioning sets, 61, 200
confidentiality, 360
Conley, T., 314
constant absolute risk aversion (CARA) utility functions, 75, 447–48
constant conditional correlations model, 140–41
constant elasticity of substitution, 186
consumer price indexes, 409, 421
Consumption-Based Capital Asset Pricing Model (CCAPM) differences in equilibrium models, 9
 example of parameterized pricing, 355–36
 in intertemporal equilibrium model, 177–78
consumption goods, 174, 410, 424
consumption growth in log-normal model, 181
consumption in intertemporal additive expected utility, 185
consumption theory, 409, 413
contingent assets in binomial tree, 260–61
continuous matching versus call auction, 353
continuous order matching, 402
continuous time
 analog and ARCH model, 258
 derivative pricing in parameterized pricing, 336
 diffusion and Euler discretized version, 254
 models, application to, 310–11
 models with stochastic differential equations, 241
 qualitative processes in duration analysis, 231–32
 trajectory, 256
Index

continuous trading, 353
convergence pattern, 64
convexity effect, 246, 247
Copeland, T., 367
corollaries
 4.3 OLS estimators, 88
 11.1 Ornstein-Ulhenbeck process, 251
 11.2 discrete time process, 251
 11.3 discounted price of asset, 264
correcting term of second order, 246, 247
cost components incurred by dealer, 363
Cotation Assistée en Continu (CAC), 351, 416, 421
coupon bond, 4
covariance function VAR (1), 58
Cox, J., 252, 259, 287
Cox-Ingersoll-Ross model, 252–53, 290–91
cross moments, 169, 170–71, 172
cross-sectional approach of implied volatility surface, 329–30
cross-sectional factors, dynamic factor models, 211–15
cross-sectional regressions in CAPM, 94–95
cumulated hazard function, 392
cumulated market value, 400–401
cumulative distribution function (cdf), 389–90, 429
current option price, determination of, 319–20
cycle patterns, 148
daily closing values, 67
daily price changes, 226
Danielsson, J., 439
Darolles, S., 211, 294, 297, 307, 401, 403–4
data, transaction, 358–59
database of transactions and submitted orders, 357
data frequency as statistical feature, 11
date stamp in database, 358
day index in joint analysis, 401
dealers, 352
decomposition
 block, of transition matrix, 239
 of intraday dynamics, 403–4
 joint spectral, 196, 216–17
 nonlinear canonical, 209–11
 of relative expenditure modification, 410
 spectral, of generator, 294–95
 spectral, of stochastic matrix, 223–25
 spectral estimation, 296–97
decomposition formula in causality measures, 99–101
definitions
 2.1 autoregressive process of order 1, 18–20
 3.1 second-order stationary process, 55
 3.2 weak white noise, 55
 3.3 VAR representation of order 1, 57
 5.1 integrated process, 106
 5.2 fractional process, 108
 5.3 cointegrating vector, 111
 7.1 martingale process, 156
 8.1 moment estimator, 189
 10.1 homogeneous Markov chain, 221
 11.1 Brownian motion, 242
 11.2 stochastic differential equation, 245
 11.3 jump process, 276
 11.4 stochastic differential equation with jump, 277
 13.1 gamma measure, 344
 13.2 Monte Carlo estimator, 345
deformed time, 377–85
Demoura, S., 294, 300
Denning, K., 28
dependent replications, 256
derivative pricing
 binomial tree, 263–64
 in complete market, 280–81
 and continuous time models, 241
 and estimation, 253
derivative pricing (cont.)
 formula, 271
 in incomplete market, 269–75
 in Markov models, 209
 or contingent assets, 260
 in stochastic model, 342–44

derivatives
 hedonic index, 423
 introduced, 2
 support by stock market indexes, 414–16

See also economics of derivatives
deterministic differential equation in
 Itô’s lemma, 246
deterministic environment, 8, 167
deterministic relationship, 317
deterministic term, 247
deterministic trend, 36
Deutsche Börse, 351
deutsche mark, exchange rate with
 US dollar, 374, 376
de Vries, G., 439, 445
Dhaene, G., 309
diagnostics, estimation of ARMA
 models, 47–48
diagonal model, multivariate ARCH
 models, 139–40
dichotomous qualitative variables,
 219, 225
Dickey, D., 40
Dickey-Fuller tests, 40, 48
Diebold, F., 110, 142, 200
diffusion approximation of ARCH
 model, 257–58
diffusion equation and closed-form
 solution, 248, 253
diffusion models, 241
 approximation of, 253–58
 ARCH model, 257–58
 binomial tree, 254–55
 Euler discretization, 253–54
 simulation of path, 255–57
 Black-Scholes price of a call,
 282–83
 Black-Scholes risk-neutral probabil-
 ity, 280–82

derivative pricing in complete mar-
 ket, 259–69
 binomial tree, 259–64
 Black-Scholes formula, 264–66
 general result, 266–69
derivative pricing in incomplete
 market, 269–75
 double binomial tree, 269–71
general result, 271–73
 stochastic volatility model, 273–75
 with explicit solutions, 248–53
 Cox-Ingersoll-Ross model, 252–53
 geometric Brownian motion
 with drift, 248–49
 Ornstein-Uhlenbeck process, 249–51
 jump processes, 275–79
 and associated stochastic inte-
 grals, 276–77
 limit behavior of binomial tree,
 277–78
 risk-neutral probability, 278–79
 stochastic differential equations,
 241–47
 Brownian motion, 241–43
 Itô’s lemma, 246–47
 and stochastic integrals, 244–46
 summary, 279–80

See also estimation of diffusion
 models
diffusion of financial assets, 7
digital option pricing, binomial tree,
 261–63
digital options, 260–61
digital prices of binomial tree, 271
Ding, Z., 109
 directing process, 377
 discount bond, 3
 discounted price of asset, 264
 discount factor. See stochastic dis-
 count factor
discrete state space, 227
discrete time formula, discount fac-
 tor, 338
Index

discrete valued observations, scale
and speed functions, 305–7
discrete-valued prices, 376–77
discretization, Euler, 255–54
discretization, exact, 287, 289
displayed returns, 374
distribution of durations in dynamic
qualitative processes, 230–31
distributions, 15
distributions with heavy tails, 428–33
diversification and arbitrage pricing
theory, 213–15
diversified portfolio, 213–15
dividends, 5, 414, 417
Doob, J., 62
double binomial tree, derivative pric-
ing in incomplete market, 269–71
Dow Jones Company, 415
drift
and geometric Brownian motion, 248–49
in integrated process, 36
invariance with respect to, capital
requirement evaluation, 443
parameter estimation, 319
drift function
in binomial tree, 254
compared to scale and time deforma-
tions, 304
in derivation of nonparametric es-
timators, 307
in diffusion approximation, 257
in diffusion model application, 300
identification problems, 292
in maximum likelihood estimator,
288–89
in nonlinear autoregressive mod-
els, 118, 121, 124
driving process, 377
Duffie, D., 209, 286, 308
dummy values, 219–20
duration analysis in dynamic qualita-
tive processes, 230–34
duration distribution, dynamic
model of intertrade dura-
tions, 389–92
dynamic analysis, 13–14
dynamic factor models, 195
cross-sectional factors, 211–15
joint spectral decomposition, 196,
216–17
linear factor models with observ-
able factors, 196–99
linear factor models with unobserv-
able factors, 199–204
codendependence, 203–4
first- and second-order mo-
moments, 200–201
mimicking portfolios, 201–2
model, 199–200
white noise directions, 202–3
Markov models with finite dimen-
sional dependence, 209–11
nonlinear factor models, 204–9
estimation, 208–9
filtering, 206–8
measurement and transition
equations, 204–6
summary, 215–16
dynamic models for high-frequency
data, 351
equations defining bid-ask prices,
405–6
global or sequential matching,
407
intertrade durations, 388–401
activity and coactivity measures,
392–94
autoregressive conditional dura-
tion, 394–98
duration distribution, 389–92
stochastic volatility duration
models, 398–401
joint analysis of prices, volumes,
trading dates, 401–4
markets, 352–63
available data, 357–63
order-driven market, 354–57
typology of markets, 352–54
Easley, D., 367
economic indicator, 415
economics of derivatives, 317
analysis based on Black-Scholes, 318–34
asymmetric smile and stochastic volatility, 333–34
implied volatilities, 232–38
incompatibility between Black-Scholes and statistical inference, 321–23
inference from price of underlying asset, 319–21
reconstitution of volatility surface, 238–333
Monte-Carlo methods and option pricing, 345–49
parameterized pricing formulas, 334–39
statistical inference, 338–39
stochastic discount factor models, 334–38
statistical inference, 339–42
general case, 341–42
Hull-White model, 339–41
stochastic risk-neutral probability, 342–45
gamma model, 343–45
state price density, 342–43
summary, 349–50
Edgeworth expansions, 331
efficiency frontier, 74–75, 183
efficiency hypothesis. See market efficiency hypothesis
efficiency of market portfolio in CAPM, 93–94
efficient market hypothesis, 41
efficient method of moments (EMM), 310
eigenfunctions spectral decomposition, 294–95
eigenvalues, 58–59
in cointegration, 114
in integrated process, 107
of intraday price movements, 228–29
in linear factor models, 203
in linear factor models with observable factors, 198
matrices of autoregressive coefficients, 71
in spectral decomposition, 294–95
in spectral decomposition estimation, 297
of transition matrix, 223–24
in VAR (1), 57
in VAR process, 64
eigenvectors, 216, 229, 297
elasticity of intertemporal substitution, 185
electronic order matching systems.
See order matching systems
electronic trading systems, 351, 363
elementary time series, 17
Elf-Aquitaine stock, 227, 307
emerging markets, 2
empirical density, 134
empirical mean of price increments, 437
endogenous selectivity in market indexes, 421–24
endogenous variables, 82
endowment, 435
Engle, R., 109, 111, 126, 129, 142, 203, 394–95, 397, 401, 403–4, 440
Epstein, L., 186
Epstein-Zin model, 336
equilibrium and AAO, 83
equilibrium condition, bid-ask prices, 367–70
equilibrium condition and representative investor, 178
equilibrium model, CAPM, 88–95
equilibrium models, 9
equilibrium prices in comparison of volatilities, 324
error correction mechanism, 154
error correction model, cointegration, 111, 112–13
error-in-variable model, 417
essential asset pricing formula, 178
estimated coefficients in noncausality hypotheses, 404
estimated marginal distribution from simulated path of diffusion process, 255–56
estimated probability density function (pdf), 297
estimation
in AR(1) (See univariate linear models)
of ARMA models, 46–48
of financial data, 17 (See also multivariate linear models; univariate linear models)
nonlinear factor models, 208–9
from observations, indirect inference, 311
of parameters in multivariate linear models, 65–67
in presence of unit root, 37–39
from simulations, indirect inference, 311
of value at risk (VaR), 436–42
conditional quantile estimation, 440–41
Gaussian iid price increments, 436–37
local Gaussian approximation, 441–42
nonparametric analysis of iid price increments, 437–38
parametric analysis based on ARCH model, 439–40
parametric analysis based on parametric conditional model, 440
semiparametric analysis of iid price increments, 438–39
of VaR efficient portfolios, 446–47
estimation of diffusion models, 285
indirect inference, 309–14
continuous time models, 310–11
efficient method of moments (EMM), 310
Monte Carlo study, 312–13
short-term interest rate, 313–14
estimation of diffusion models (cont.)
maximum likelihood approach, 287–91
Cox-Ingersoll-Ross process, 290–91
geometric Brownian motion, 287–89
Ornstein-Uhlenbeck process, 289–90
method of moments and infinitesimal generator, 291–301
applications, 297–301
estimation of spectral decomposition, 296–97
identification, 292–93
method of moments, 293–94
moment conditions, 291–92
nonlinear canonical decomposition, 295–96
spectral decomposition of generator, 294–95
method of simulated moments (MSM), 308–9
scale and speed functions, 301–8
discrete valued observations, 305–7
intrinsic scale and time, 302–5
summary, 314–15
Euler conditions
and exponential and power utility functions, 180–81
identified, 174
in intertemporal equilibrium model, 175–77, 178
nonexpected utility hypothesis, 186–87
Euler discretization
approximation of diffusion models, 253–54
in indirect inference, 311–13
in Monte Carlo derivative pricing, 347
in simulation of path of diffusion process, 255, 256
Euro exchange rate and diagonal model, 140
Euronext index, 416
European call options, 261, 264, 266, 274
European calls
described, 6–7
implied state price densities, 332–33
in implied volatility surface, 328–29
prediction of future call price, 320
price determination, 318
pricing formula, 15
and time deformation, 385
European derivatives pricing, 334–38
European put, 449
evolution of consumption and stochastic discount factor, 186–87
exact discretization, 287, 289
exact identification, method of moments, 189
examples
2.1 ARMA process, 44
4.1 equilibrium system, 82–83
4.2 absence of arbitrage opportunity, 83
4.3 equilibrium system, 84
5.1 unidimensional integrated process, 106–7
5.2 multidimensional integrated process, 107
5.3 cointegration, 112
7.1–7.3 adaptive prediction scheme, 154–55
7.4 expectation errors vs. updating errors, 157–58
7.5 present value model, 168–69
7.6 expectation models of term structure, 169
8.1–8.2 moment conditions, 188
8.3 instruments and estimating, 191
9.1 factor ARCH models, 200
9.2 stochastic mean and volatility model, 205
9.3 switching regimes, 206
9.4 Kitagawa’s algorithm, 207
9.5 Kalman filter, 207–8
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6</td>
<td>Markov factors with finite-dimensional dependence, 208</td>
</tr>
<tr>
<td>10.1</td>
<td>Markov chain, 225</td>
</tr>
<tr>
<td>10.2</td>
<td>Qualitative process, 226</td>
</tr>
<tr>
<td>11.1</td>
<td>Geometric Brownian motion, 247</td>
</tr>
<tr>
<td>11.2</td>
<td>Portfolio with digital options, 261</td>
</tr>
<tr>
<td>11.3</td>
<td>Binomial tree digital prices, 271</td>
</tr>
<tr>
<td>11.4</td>
<td>Binomial tree bifurcation prices, 271</td>
</tr>
<tr>
<td>11.5</td>
<td>Stochastic volatility model, 273–74</td>
</tr>
<tr>
<td>11.6</td>
<td>Poisson process, 277</td>
</tr>
<tr>
<td>12.1</td>
<td>Method of moments, 294</td>
</tr>
<tr>
<td>13.1</td>
<td>Implied volatility surface, 330</td>
</tr>
<tr>
<td>13.2</td>
<td>Consumption-based CAPM, 335–36</td>
</tr>
<tr>
<td>13.3</td>
<td>Recursive utility, 336</td>
</tr>
<tr>
<td>13.4</td>
<td>Derivative pricing in continuous time, 336–37</td>
</tr>
<tr>
<td>13.5</td>
<td>Stochastic volatility model, 337</td>
</tr>
<tr>
<td>13.6</td>
<td>Gamma model, 344–45</td>
</tr>
<tr>
<td>14.1</td>
<td>Driving processes, 377</td>
</tr>
<tr>
<td>14.2</td>
<td>Gamma distribution, 391</td>
</tr>
<tr>
<td>14.3</td>
<td>Weibull distribution, 391–92</td>
</tr>
<tr>
<td>14.4</td>
<td>Burr distribution, 391–92</td>
</tr>
<tr>
<td>14.5</td>
<td>ACD model, 395</td>
</tr>
<tr>
<td>14.6</td>
<td>Recursive equation of log time deformation, 395–96</td>
</tr>
<tr>
<td>14.7</td>
<td>Distribution of errors, 396</td>
</tr>
<tr>
<td></td>
<td>Bidimensional process, 58–59</td>
</tr>
<tr>
<td></td>
<td>Eigenvalues, 58–59</td>
</tr>
<tr>
<td></td>
<td>Intraday price movements, 227</td>
</tr>
<tr>
<td></td>
<td>Multivariate white noise, 56–57</td>
</tr>
<tr>
<td></td>
<td>Ex ante measures, 414</td>
</tr>
<tr>
<td></td>
<td>Excess gains, 74, 88–93, 139</td>
</tr>
<tr>
<td></td>
<td>Excess gains and returns, 92–93</td>
</tr>
<tr>
<td></td>
<td>Exchange rates</td>
</tr>
<tr>
<td></td>
<td>Application of multivariate analysis, 53</td>
</tr>
<tr>
<td></td>
<td>And diagonal model, 140</td>
</tr>
<tr>
<td></td>
<td>Dollar/deutsche mark, 374, 376</td>
</tr>
<tr>
<td></td>
<td>Between European currencies, stationary rates, 105</td>
</tr>
<tr>
<td>QTARCH model applied, 124</td>
<td>exogenous effect of order-matching frequency, 371–72</td>
</tr>
<tr>
<td></td>
<td>Exogenous variables, 82</td>
</tr>
<tr>
<td></td>
<td>Expectation error, 155–56, 157</td>
</tr>
<tr>
<td></td>
<td>Expectation hypothesis, present value models, 163–67</td>
</tr>
<tr>
<td></td>
<td>Expectation models. See present value models</td>
</tr>
<tr>
<td></td>
<td>Expectation operator, 295</td>
</tr>
<tr>
<td></td>
<td>Expectation test with unknown parameter test, 170–71</td>
</tr>
<tr>
<td></td>
<td>Expected excess gains, 89, 143</td>
</tr>
<tr>
<td></td>
<td>Expected excess returns, 214</td>
</tr>
<tr>
<td></td>
<td>Expected instantaneous change, 245</td>
</tr>
<tr>
<td></td>
<td>Expected shortfall, 443</td>
</tr>
<tr>
<td></td>
<td>Expected utility, multivariate linear models, 75–76</td>
</tr>
<tr>
<td></td>
<td>Expected utility levels in adverse information cost, 368</td>
</tr>
<tr>
<td></td>
<td>Explosive patterns, 37</td>
</tr>
<tr>
<td></td>
<td>Exponential ACE (EACD) model, 396</td>
</tr>
<tr>
<td></td>
<td>Exponential distribution, 391–92</td>
</tr>
<tr>
<td></td>
<td>Exponential intensity rate, 431</td>
</tr>
<tr>
<td></td>
<td>Exponentially weighted moving average (EWMA), 440, 441</td>
</tr>
<tr>
<td></td>
<td>Exponential smoothing, 154, 155</td>
</tr>
<tr>
<td></td>
<td>Exponential tail distribution, 430</td>
</tr>
<tr>
<td></td>
<td>Exponential utility function, 180</td>
</tr>
<tr>
<td></td>
<td>Ex post performance measures, 414</td>
</tr>
<tr>
<td></td>
<td>Factor ARCH model, 142</td>
</tr>
<tr>
<td></td>
<td>Factor model and price index, 418–20</td>
</tr>
<tr>
<td></td>
<td>Factor models. See dynamic factor models</td>
</tr>
<tr>
<td></td>
<td>Factor representation, 113–14, 197</td>
</tr>
<tr>
<td></td>
<td>Factor space, 197</td>
</tr>
<tr>
<td></td>
<td>Fama, E., 94, 95, 118</td>
</tr>
<tr>
<td></td>
<td>Farka’s lemma, 213</td>
</tr>
<tr>
<td></td>
<td>Fat tails, 15, 450</td>
</tr>
<tr>
<td></td>
<td>Feedback effects, 103</td>
</tr>
<tr>
<td></td>
<td>Fibonacci cycle chart, 148</td>
</tr>
<tr>
<td></td>
<td>Filtering in nonlinear factor models, 206–8</td>
</tr>
</tbody>
</table>
financial assets, 2–7
 coupon bond, 4
foreign currency, 5
forward asset, 5–6
indexes, 421
options, 6–7
stocks, 4–5
zero-coupon bond, 3
financial data
 qualitative representation (See dynamic qualitative processes) recording (See univariate linear models, sampling frequency)
financial theory, 7–10
 absence of arbitrage opportunity (AAO), 9
 actuarial approach, 8
 equilibrium models, 9
 predictions, 9–10
Financial Times, 415
finite-dimensional predictor space, 211
first- and second-order moments
 dynamic properties, multivariate linear models, 54–57
 dynamic properties, univariate linear models, 20–24
linear factor models with unobservable factors, 200–201
 local Gaussian approximations, 442
first-order autocovariance of price changes, 365
Fisher, I., 153, 409
fixed-base index versus chain index, 411–12
fixed number of assets index, 421–22
Florens, J. P., 294, 297
Follmer, H., 273
forecast error, 32
forecast function, 32–34
forecast horizon, 32
forecasting as VAR process, 57
forecasting of financial data, 17
 See also multivariate linear models; univariate linear models
forecast of multivariate series, 59–61
foreign currency, buying and selling, 5
foreign exchange rates. See exchange rates
foreign markets and trade intensity, 393
forward and spot prices, 115
forward asset, 5–6
forward buy contract, 5–6
forward rates, term structure of interest rates, 167
fractional process, unit root, 105, 107–9, 115
French francs, 124
French indexes, 416
frequency of observations, 11
frequency of oscillations, 59
Friedman, M., 154
Friend, I., 94
Frost, A., 124
FT-Actuarial-All Shares index, 415
Fuller, W., 40
fundamental value, 367
fund of funds, 198
future call price, 320–21
future dividends provided by stocks, 8
Gallant, A., 68, 286, 309, 310
gamma model, stochastic risk-neutral probability, 343–45
GARCH. See generalized autoregressive conditionally heteroscedastic
GARCH-M model in diffusion approximation, 258
Garman, 365, 444
Gaussian distribution of tail index, 430
Gaussian iid price increments, 436–37
Gaussian kernel, 122
Gaussian likelihood function in cointegration, 114
Gaussian process in high-sampling frequency, 35
Gaussian random walk, 287
and Brownian motion, 242
See also random walk
Gaussian regression model causality measure, 97
Gaussian shocks in Monte Carlo derivative pricing, 347–48
Gaussian strong white noise in nonlinear transformation, 109
Gaussian value at risk (VaR), 436
Gaussian white noise
in Brownian motion, 242
in dynamic specification of extreme risks, 433
in expectation errors, 158
in inference, 319
in Monte Carlo derivative pricing, 348
in SVD model, 400
in SV model, 136–37
Gauss-Newton algorithm, 446
Gauss software, 47
generalized autoregressive conditionally heteroscedastic (GARCH) model
application in dynamic models for high-frequency data, 374–77
conditional heteroscedasticity, 126–28, 130–33
generalized least squares (GLS) estimators, 235
generalized method of moments (GMM), 170–71, 187–92
generalized moment estimator, 190
geometric Brownian motion
with drift, 248–49
example, 247
maximum likelihood approach, 287–89
Geweke, J., 99, 109
Ghysels, E., 378, 384, 398
Gibbons, M., 93
Giot, P., 403
Girsanov theorem, 267, 273, 275
global matching, 371–72, 407
global maximum likelihood in Hull-White model, 340
global position, 435
Glosten, L., 367
Glosten-Milgrom model, 371
gold mine discoveries and consumer price indexes, 409
Granger, C., 99, 109, 110, 111
Granger cause and noncausality hypothesis, 96
Griliches, Z., 424
Hamilton, J., 207, 401, 403
Hang Seng index, 323
Hannan, E., 84
Hansen, L., 183, 190, 286, 291, 293, 294, 296–97, 308
Hardle, W., 122
Harvey, A., 136, 208
hazard, cumulated, function, 392
hazard function, 390–91, 392
hazard rate, 231
head and shoulders pattern, 146
heavy tails, 133, 134, 380, 427–28, 428–33
hedging, 2, 7, 16, 383
hedging instruments, 414
hedging portfolio, 265
hedonic index for bonds, 423–24
Helsinki Stock Exchange, 422
Hermite polynomials, 298, 331–33
Hessian-based variances, 235
heteroscedasticity. See conditional heteroscedasticity
heteroscedastic models in price dynamics, 376
heuristic methods, 342
hidden Markov chains, qualitative factor model, 236
high-frequency data (HFD)
described, 11
models (See dynamic models for
high-frequency data)
sampling frequency, 29
VAR model application, 67–71
high sampling frequency, 34–35
high value, 259
Hill, D., 428, 431
Hill estimator of tail index, 431, 439
historical analysis, 13
historical binomial tree, 280–81
historical simulation, 438–39
historical volatility, 323–24
Ho, T., 365
homogeneity, capital requirement
evaluation, 443
homogeneous Markov chain, 220–30
See also dynamic qualitative pro-
cesses
homoscedastic residual error term, 214–15
Hong Kong stock exchange, 323
horizons, 14
Huang, C., 94
Huberman, G., 213
Hull, J., 136, 273
Hull-White model
with deformed time increments, 382
economics of derivatives, 339–41
stochastic volatility, 273–75
identification
buyer or seller, 358
estimation of ARMA models, 46
method of moments, 189
method of moments diffusion
model, 292–93
idiosyncratic risk, 179–80, 212
IGARCH models, conditional hetero-
cedasticity, 131–33
implied Black-Scholes volatilities, 317
implied state price densities, 332–33
implied volatilities, 232–38
implied volatility, 323–24
implied volatility surface, 317
reconstitution of, 238–33
and smile effect, 326–27
importance function, 346
impulse response function, 131
incoming better price limit order, 357
incoming buy limit order, 355–56
incoming buy market order, 356
incomplete market
hedonic index for bonds and deriv-
atives, 423, 424
See also derivative pricing
independent drawings, 348
independent generating portfolios, 77
independent identically distributed (iid)
in ACD models, 395
in derivative pricing, 259, 263
in Gaussian regression model, 97–98
in Monte Carlo study, 312
in nonlinear factor models, 205
normal error terms, 47
price increments of VaR, 436–39
standard Gaussian variables in ran-
dom walks, 379
strong white noise, 24
tail distribution, 431
independent shocks in derivative pric-
ing in incomplete market, 271
index
of ask data, 388
with cap, 417, 422–23
day, 401
transaction, 401
indicator, economic, 415
indice second marché, 416
indirect inference, estimation of dif-
fusion models, 309–14
individual behavior, implementation
of GMM, 191–92
individual demand in CCAPM, 177–78
individual orders stripped under vol-
ume constraint, 372–73
inference
parametric and nonparametric models, 120–23
See also indirect inference; statistical inference
in fine, 4
infinite autoregressive representation, 45, 63
infinite memory, 105–6, 115
infinite moving average representation, 43–44, 57–58, 64
infinitesimal generator. See estimation of diffusion models, method of moments and infinitesimal generator
infinitesimal transition rate, 231
inflation and consumer price indexes, 409
inflation rate in log-normal model, 181
information cost, adverse, 366–71
information sets
in expectation scheme, 153, 158
in multivariate linear models, 61–62
in nonlinear factor models, 206
in parameterized pricing formulas, 335
of quoted ask and bid prices, 371
informed investors, role in stock market, 368, 371, 372–73
informed traders, role in stock market, 367
infrequently traded stocks, 354
Ingersoll, J., 213, 252, 287
initial shock, 131
initial situation of order book, 355
innovation component of AR(1), 18
innovation of squared returns process, 127
Inoue, A., 110
in-sample predictions, 152, 158, 206
instantaneous expected excess returns, 272
instantaneous liquidity risk, 394
instantaneous relationship and non-causality hypothesis, 96–97
instantaneous third-order moment in binomial tree, 254–55
instantaneous volatility function, 246
instrument. See instrumental variable instrumental model, 309
instrumental variable, 169, 187–91, 193
instrumental variable (IV) estimators, 95, 171
insurance industry, 443
integrated processes
unit root, 36–37, 106–7
with and without drift, 39–40
intensity, 390–91, 392
intensity function, 276
intercept, 417
interdealer trades, 352
interest payments, 4
interest rates
application of multivariate analysis, 53
cointegration, 115
Cox-Ingersoll-Ross model, 252
short-term, estimation of diffusion models, 313–14
term structure, expectation hypothesis, 165–67
value at risk, 445
international finance, 53
intertemporal additive expected utility, 185
intertemporal behavior, 173
See also method of moments
intertemporal equilibrium model. See method of moments, intertemporal equilibrium model
intertemporal rate of substitution, 177
intertemporal substitution, 184–85
intertemporal utility, 175
intratrade durations
on call auction market, 353
in database, 358
dynamic models for high-frequency data, 388–401, 389–92
intraday dynamics decompositions, 403–4
intraday market activity in joint analysis, 402–3
intraday movements, dynamics, 402–3
intraday patterns, 360–63
intraday price and volume analysis, 67–71
intraday price movements in homogeneous Markov chain, 226–30
intraday seasonality, 70–71, 392
intraday trade dynamics, 403
intrinsic scale and time, 302–5
intrinsic time, 377
intrinsic time autocorrelogram, 383–84
invariance with respect to drift, 443
invariant measure of Markov chain, 222
inventory holding cost, 365–66
inventory misadjustment, 366
inverse demand and supply functions, 360
inverse Gaussian probability density function (pdf), 381
inverse supply, 372
invertible matrix, linear factor models, 200
investors
behavior and intraday price movements, 226–27
in CAPM formula, 88–90
and CARA utility functions, 447
in equilibrium models, 9
individual behavior, 191
informed, role in stock market, 368, 371, 372–73
predictions, 151
representative, and equilibrium condition, 178
Ito, K., 246
Ito’s formula
in Black-Scholes formula, 265
in inference, 319
in maximum likelihood approach, 287
in moment conditions, 292
in scale and time deformations, 303
in simulation of path of diffusion process, 256
Ito’s lemma
in geometric Brownian motion, 248
in Ornstein-Uhlenbeck process, 250
in risk-neutral probability, 268
in stochastic differential equations, 246–47
Jagannathan, 183
Jansen, D., 445
January effect, 362
Japanese indexes, 416
Jarrow, R., 351
Jasiak, J., 110, 208, 209, 211, 378, 384, 392, 398, 433, 441
Jenkins, G., 45, 46
Jensen’s inequality, 132, 382, 412, 419
Jevons, W., 409
Jobson, J., 93
Johansen, S., 114
joint analysis of prices, volumes, trading dates, 401–4
joint probability density function (pdf), 295
joint spectral decomposition, 196, 198–99, 216–17
Jorda, O., 401, 403
jump process
in diffusion models, 275–79
in duration analysis, 231, 232, 240
junk bonds, 2
Kalman, R., 208
Kalman filter, 137, 207–8
Kandel, E., 93
Karatzas, 267
Karlin, S., 305
Kaufman, P., 124
Kemeny, J., 223
kernel, 122
kernel-based canonical analysis, 298–99
kernel-based estimation, 297
kernel-based QML method, 122
kernel estimator of trading intensity, 393
kernel smoothing, 211, 428
King, M., 142
Kitagawa, G., 207, 237
Kitagawa’s algorithm, 207
Kitagawa’s filter, 207–8
Koedijk, K., 445
Koenker, R., 441
Konus, A., 409
Korkie, R., 93
Kramar, K., 409
Kreps, D., 186
kurtosis, 118–20, 134, 427–28, 437
lack of memory, 231, 232
Laffont, J. J., 163
lagged canonical directions, 300–301
lagged dependencies, 55
lagged price in binomial tree, 254
lagged prices in intraday dynamics, 404
lagged values, 371
lagged variables, 417
lagged volatilities, 326
lag operator, 42–43
Lagrange multiplier, 184–85, 310, 446
Lamoureux, C., 325
Lancaster, H., 209, 295
Laplace transform in Cox-Ingersoll-Ross model, 252, 291
Laspeyres, E., 409
Laspeyres index
asymptotic behavior, 418–20
compared to Paasche index, 412–13
in hedonic index for bonds, 423–24
price and quantity effects, 410–11
selection of weights, 421–23
Lastrapes, W., 325
latent factors, 342
latent volatility process, 136–38
Laurent, J. P., 444
law of iterated expectations, 156
least squares method
in AR(1), 24–26
in homogeneous Markov chain, 235
and Markov chain parameters, 234
Le Fol, G., 307, 387, 392, 401, 403–4
left integrable risk aversion (LIRA) utility functions, 448–49
left tail, 429
lemmas
14.1 hazard function, 405–6
14.2 global excess demand, 407
14.3 global and sequential matching, 407
lending, 1
leptokurtic, 119, 428
See also heavy tails
leptokurtosis, 118–20
leverage effect, 124, 137–38, 387
Levy, H., 445
Levy distributions, 432
likelihood function
estimation of diffusion models, 285
parametric specification of time deformation, 384–85
See also log-likelihood function;
maximum likelihood; quasi-maximum likelihood
Lilien, D., 129
limiting behavior of price index, 418–20
limit of Riemann sums, 244
limit order, 355
linear ask curves, 372–73
linear canonical analysis, 199
linear dependence, causality from returns to volumes, 102–3
linear dynamic factor model in bid-ask curves, 387
Index

linear expectation (LE), 32
linear factor model, 212–13, 420
See also dynamic factor models
linear forecasting, 32–34
linear innovation, 63
linearity of measurement equation, 343
linear measurement equation, 199
linear models. See multivariate linear models; univariate linear models
linear prediction, 45
linear predictions and noncausality hypothesis, 96
linear representation of qualitative process in Markov chain, 225–26
linear solutions for price processes, 161–62
linear state-space model, 137
Lintner, J., 88
liquidation value, 367
liquidity, 11, 352, 421
liquidity risk, 405
liquidity traders, 9
Litzenberger, R., 94, 95, 333
Ljung, G., 47
Lo, A., 28
local Gaussian approximation, 441–42
Lofton, T., 124
logarithmic ACD (LACD) model, 396
log-likelihood function
ARCH model, 130–31
in Gaussian regression model, 97–98
in homogeneous Markov chain, 233, 234–35
inference in nonlinear autoregressive models, 120
modified for indirect inference, 309
nonlinear factor models, 208
tail distribution, 431
in time deformation, 397–98
log-logistic distribution in Burr distribution, 392
log-normal distribution in prediction of future call price, 320
log-normal model, 181–82, 187
log-transformed bid-ask quotes, 387, 388
log-volatility, 136
London Stock Exchange, 351, 415
trade intensity, 393
long memory, 105–6, 115
long-range persistence, 105–6, 115
low-frequency data sampling, 29
low value, 259

MacDonald, I. L., 236
macroeconomics, 163, 164, 172, 192, 415

Madan, D., 331
maintenance of inventory, 366
management of extreme risks, 427
distributions with heavy tails, 428–33
dynamic specification, 431–33
Hill estimator, 431
tail index, 429–31
summary, 450
utility functions for extreme risks, 447–49
CARA drawbacks, 447–48
LIRA, 448–49
LIRA portfolio management, 449
value at risk (VaR), 434–44
coherent risk measures, 443–44
definition, 435–36
estimation of, 436–42
Gaussian VaR, 436
VaR efficient portfolios, 444–47
estimation of VaR efficient portfolios, 446–47
optimization problem, 445–46
sensitivity of VaR, 444–45

Mandelbrot, B., 15, 118, 379
Manganelli, S., 440
marginal distribution of intraday price movements, 227–28
do returns, 13–14
Index

from simulated path of diffusion process, 255–56
marginal expected value, 33
marginal kurtosis, 118–20
marginal maximum likelihood in Hull-White model, 340
marginal moment conditions, 187–88
marginal probability density function (pdf), 123, 295
marginal return distribution, 437
market closures, 11, 226–27
market crash, October 1987, 48
market efficiency hypothesis in intraday dynamics, 404
in multivariate linear models, 61
and selected timescale, 380
market incompleteness, 172
market indexes, 409
dependent selectivity, 421–24
hedonic index for bonds, 423–24
weight selection, 421–23
market indexes, 413–18
main stock market indexes, 415–17
and market portfolio, 417–18
use of, 413–15
price index and factor model, 418–20
price indexes, 409–13
fixed-base versus chain index, 411–12
Laspeyres and Paasche comparison, 412–13
summary, 424–25
market index returns in log-normal model, 181
market makers role in stock market, 10, 352, 363, 365–66, 367–71
market microstructure theory, 9
market openings and data frequency, 11
dynamics, 402–3
and investor behavior, 226–27
market portfolio
CAPM in conditional heteroscedasticity, 143–44
in CAPM model, 91–92
and market indexes, 417–18
market risk capital, 434
markets available data, 357–63
introduced, 1–2
order-driven market, 354–57
quote-driven markets, 363
quote-driven markets versus order-driven markets, 352–53
market time, 377
market value threshold, 401
Markov assumption, 186
Markov chain
hidden, qualitative factor model, 236
homogeneous (See dynamic qualitative processes, homogeneous Markov chain)
invariant measure, 222
in nonlinear factor model, 206
state aggregation, 238–39
Markov models with finite dimensional dependence, 209–11
Markov processes
in diffusion approximation, 257
in Euler conditions, 176
in nonlinear canonical decomposition, 296
in parameterized pricing formulas, 335
Markov process of returns, 441
Markov property and homogeneous Markov chain, 221
Markov switching regimes in qualitative factor model, 237–38
Markowitz, H., 73
Marshall, A., 411
martingale, 156–57, 158
martingale condition of prices, 40–41
martingale difference sequence, 40, 156–57
martingale hypothesis, unit root, asset pricing, 40–41
martingale measure in derivative
pricing, 263
matching procedure, 354–57, 402
maturity, 4
maximum likelihood approach
in dynamic qualitative process,
234–35
estimation of diffusion models,
287–91
in Hull-White model, 339–40
maximum likelihood (ML) estimators
in Black-Scholes model, 319
causality measures, 98
in diffusion models, 288, 290
in Monte Carlo study, 312–13
tail distribution, 431
maximum likelihood (ML) method,
25–26
in continuous time models, 311
in Hull-White model, 340
nonlinear factor models, 208
maximum simulated likelihood esti-
mator, 340–41
McBeth, J., 94, 95
McKinlay, A., 28
mean of multivariate process, 54
mean reverting parameters, estima-
tion methods, 312–13
mean reverting stationary processes,
50
mean square error, 152
mean-variance approach and portfo-
lios, 73–75, 448
mean-variance efficiency, 71–78
mean-variance frontier, 182–84
measurement equation
linear, 199
linearity of, 343
in nonlinear factor models, 204–6
in stochastic discount factor
model, 338
in SVD model, 399
measure of asset price evolution,
413
Melino, A., 136
Mendelson, H., 365
Merton, R., 267
method of moments, 173
generalized method of moments
(GMM), 187–92
estimation method, 189–91
implementation, 191–92
instrumental variables, 187–88
identification cases, 189
intertemporal equilibrium model,
174–84
basic pricing model, 178–80
CCAPM, 177–78
intertemporal choices, 174–77
mean-variance frontier, 182–84
utility functions, 180–82
nonexpected utility hypothesis,
184–87
Euler condition, 186–87
recursive utility, 185–86
risk aversion and intertemporal
substitution, 184–85
summary, 192–93
See also estimation of diffusion
models, method of mo-
tments and infinitesimal gen-
erator
method of simulated moments
(MSM), 308–9, 341–42
Meyer, B., 387
microstructure theory, 9, 363–73
Milgrom, P., 367
Milne, F., 331
mimicking factors in bid-ask curves,
388
mimicking portfolios, 201–2
minimum required capital, 428, 434–
35, 443, 450
model building method, 439
moment conditions, 291–92, 293
moment estimator, 189–90, 293
Monday effect, 362
moneyness-strike, 318, 323, 334
Monfort, A., 45, 101, 123, 124, 163,
208, 209, 286–87, 309, 342,
397, 448
monotonicity, capital requirement
evaluation, 443
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte Carlo approximation of marginal distribution</td>
<td>256</td>
</tr>
<tr>
<td>Monte Carlo estimation of diffusion models</td>
<td>297–300, 312–13</td>
</tr>
<tr>
<td>Monte Carlo methods, economics of derivatives</td>
<td>345–49</td>
</tr>
<tr>
<td>Morgan, J. P.</td>
<td>437</td>
</tr>
<tr>
<td>mortgage-backed securities (MBS)</td>
<td>2</td>
</tr>
<tr>
<td>Mossin, J.</td>
<td>88</td>
</tr>
<tr>
<td>moving average coefficient</td>
<td>19</td>
</tr>
<tr>
<td>moving average orders in codependence</td>
<td>203–4</td>
</tr>
<tr>
<td>moving average process of order q</td>
<td>43</td>
</tr>
<tr>
<td>moving average representation of AR(1)</td>
<td>19</td>
</tr>
<tr>
<td>in codependence</td>
<td>203–4</td>
</tr>
<tr>
<td>dynamic properties</td>
<td>18–20</td>
</tr>
<tr>
<td>multiasset framework</td>
<td>393–94</td>
</tr>
<tr>
<td>multidimensional integrated process</td>
<td>107</td>
</tr>
<tr>
<td>multiplicity of equilibrium dynamics</td>
<td>160–61</td>
</tr>
<tr>
<td>price dynamics of CAPM</td>
<td></td>
</tr>
<tr>
<td>multiplicity of pricing formulas</td>
<td></td>
</tr>
<tr>
<td>derivative pricing in incomplete market</td>
<td>271</td>
</tr>
<tr>
<td>multiplier effect</td>
<td>19, 57</td>
</tr>
<tr>
<td>multistate Poisson process, standard assumptions</td>
<td>231–32</td>
</tr>
<tr>
<td>multivariate autocovariance function</td>
<td>54–55</td>
</tr>
<tr>
<td>multivariate framework extensions, conditional heteroscedasticity</td>
<td>138–44</td>
</tr>
<tr>
<td>multivariate linear models</td>
<td>53</td>
</tr>
<tr>
<td>dynamic properties</td>
<td>54–65</td>
</tr>
<tr>
<td>first- and second-order moments</td>
<td>54–57</td>
</tr>
<tr>
<td>VARMA representation</td>
<td>62–65</td>
</tr>
<tr>
<td>vector autoregressive process of order 1</td>
<td>57–62</td>
</tr>
<tr>
<td>estimation of parameters</td>
<td>65–67</td>
</tr>
<tr>
<td>application to VAR models</td>
<td>66–67</td>
</tr>
<tr>
<td>seemingly unrelated regressions</td>
<td>65–66</td>
</tr>
<tr>
<td>intraday price and volume analysis</td>
<td>67–70</td>
</tr>
<tr>
<td>estimation of VAR</td>
<td>67–69</td>
</tr>
<tr>
<td>intraday seasonality</td>
<td>70–71</td>
</tr>
<tr>
<td>mean-variance efficiency</td>
<td>71–78</td>
</tr>
<tr>
<td>efficiency frontier</td>
<td>74–75</td>
</tr>
<tr>
<td>expected utility</td>
<td>75–76</td>
</tr>
<tr>
<td>portfolios</td>
<td>73–74</td>
</tr>
<tr>
<td>VAR processes of returns</td>
<td>77–78</td>
</tr>
<tr>
<td>summary</td>
<td>78–79</td>
</tr>
<tr>
<td>multivariate stationarity</td>
<td>55</td>
</tr>
<tr>
<td>Murphy, J.</td>
<td>124</td>
</tr>
<tr>
<td>Muth, J.</td>
<td>159</td>
</tr>
<tr>
<td>Nadaraya-Watson estimator of implied volatility surface</td>
<td>330</td>
</tr>
<tr>
<td>naive expectation scheme</td>
<td>154</td>
</tr>
<tr>
<td>national accounting</td>
<td>415</td>
</tr>
<tr>
<td>National Association of Securities Dealer Automated Quotation (NASDAQ)</td>
<td>10, 354, 415</td>
</tr>
<tr>
<td>National Bank announcements</td>
<td>363</td>
</tr>
<tr>
<td>Nelson, D.,</td>
<td>131, 254, 258, 274, 396</td>
</tr>
<tr>
<td>Nerlove, M.,</td>
<td>142, 154, 200</td>
</tr>
<tr>
<td>New York Stock Exchange (NYSE),</td>
<td>10, 67, 354, 415</td>
</tr>
<tr>
<td>trade intensity</td>
<td>393</td>
</tr>
<tr>
<td>Ng, V.,</td>
<td>142</td>
</tr>
<tr>
<td>Nicholson, J.</td>
<td>409</td>
</tr>
<tr>
<td>Nikkei index</td>
<td>416</td>
</tr>
<tr>
<td>nonexpected utility hypothesis</td>
<td>184–87</td>
</tr>
<tr>
<td>nonlinear autoregressive models. See conditional heteroscedasticity</td>
<td></td>
</tr>
<tr>
<td>nonlinear canonical decomposition</td>
<td>209–11, 295–96</td>
</tr>
<tr>
<td>nonlinear factor models</td>
<td>204–9</td>
</tr>
<tr>
<td>nonlinear forecasting of future returns</td>
<td>124</td>
</tr>
<tr>
<td>nonlinearity</td>
<td>14–16</td>
</tr>
<tr>
<td>and persistence</td>
<td>109–10</td>
</tr>
<tr>
<td>nonlinear transformation</td>
<td>109–10</td>
</tr>
<tr>
<td>nonparametric analysis of iid price increments</td>
<td>437–38</td>
</tr>
</tbody>
</table>
nonparametric estimation methods, 211
nonparametric model in nonlinear autoregressive models, 122–23
nonstationary observations, present value models, 171–72
notes, 2
nullity constraint and noncausality hypothesis, 96
numeraire portfolio, 182
NYSE, 421
observable factors and linear factor models, 196–99
observable volatility, 136–38
observation frequency, 14
observed variables, 338–39
O’Hara, M., 365, 367
Olfield, G., 365
one-asset case, 392–93
opening trade characteristics, 402–3
optimal weighting matrix, 190
optimization criterion of investor, 373
optimization problem of intertemporal equilibrium model, 174
VaR efficient portfolios, 445–46
option price
determination of current, 319–20
Monte Carlo methods, 346–49
prediction of future, 320–21
option pricing estimates of latent parameters, 383
and time deformation, 385
options, 6–7
order book content summarized by bid-ask curves, 385
data on uncommon events, 360 described, 11
electronic, 351
in order-driven market, 354–55
order-driven market, 10
matching procedure, 354–57
versus quote-driven market, 352–53
order matching systems, 1, 11, 351
order processing cost, 363–65
order statistics, 431
ordinary least squares (OLS) applied to AR(1), 24–26
applied to VARMA, 65
in cross moments restrictions, 169
in spectral decomposition estimation, 297
ordinary least squares (OLS) estimators
CAPM regressions, 94–95
causality measures, 98
in dynamic qualitative processes, 235
of fractional order, 108–9
in presence of unit root, 39, 40
in simultaneous equations model, 87–88
Ornstein-Uhlenbeck process
in diffusion model, 249–51
in Hull-White model, 339
in maximum likelihood approach, 289–90
in sampling frequency, 34–35
in stochastic volatility model, 274
orthonormal eigenvectors, 216
orthonormal functions in Hermite polynomial, 331
Osborne, M., 241
oscillation frequency, 59
out-of-sample predictions, 158
overidentification in method of moments, 189
overidentification test, 170
Paasche, H., 409
Paasche index, 410, 412–13, 420
PACF. See partial autocorrelation function
Pagan, A., 122
parabolic pattern of intraday price movements, 230
parameterized pricing formulas in economics of derivatives, 334–39
parametric analysis of VaR, 439–40
Index

parametric estimation, ACD model, 398
parametric model in nonlinear auto-regressive models, 120–21
parametric recursive utility function, 186
parametric specification of time deformation, 384–85
Pareto distribution, 399–400
Pareto tail, 438
Pareto tail distribution, 430
Pareto type, 110, 430–31, 439
Paris Bourse, 10, 101, 307, 351, 354, 386, 393, 421, 428
stock market index, 416
Paris Stock Exchange, 101
partial autocorrelation function (PACF), 46, 130
partial differential equations in risk-neutral probability derivation, 267
particle algorithm, 208
path-dependent tails, 428
path simulation in approximation of diffusion models, 255–57
paths of returns, 374
patterns
parabolic, intraday price movements, 230
prices, sequences of ups and downs, 239
patterns of returns
conditional heteroscedasticity, 146–49
detecting, 124–25
Peaucelle, I., 203
pension funds, 2
perfect foresight, 154
periodic model in intertrade durations, 392
periodic phenomena, 362
persistence and cointegration, 105
cointegration, 110–14
characterization of cointegrating vectors, 111–12
definition, 111
error correction model, 112–13
factor representation, 113–14
statistical inference, 114
summary, 115
unit root, 105–10
fractional process, 107–9, 115
integrated process, 106–7
nonlinearity, 109–10
persistence coefficient of volatility, 376–77
persistence measure, 22
Pham, H., 267, 273
Phillips, P., 114
Pierce, D., 47
Pitts, M., 208
Poisson distribution from binomial distribution, 278
Poisson process, multistate, standard assumptions, 231–32
Porter-Hudak, S., 109
Porteous, E., 186
portfolio
allocation defined, 73
allocations, 175
arbitrage, 435
hedging, 265
market, in CAPM model, 91–92
numeraire, 182
self-financed, 41
value, 41
portfolio management
analysis of high-frequency data, 405
based on LIRA utility, 449
benchmark, 413–14
dynamic, 175
in financial theory, 7
in linear factor model, 197
mean-variance rules, 138–39
nonlinearity, 16
prediction dependency, 9
qualitative factor model, 236
strategy of obtaining structure, 226–27
value at risk, 444
portfolios
benchmark, 77
benchmark defined, 198
portfolios (cont.)
with digital options, 261
diversified, 213–15
efficient, multivariate linear models, 73–74, 77–78
elimination of risk, 211–13
independent generating, 77
mimicking, 201–2
and multivariate models, 53
and representativeness, 418, 421
portmanteau statistic, 47, 50
Poterba, J., 131
power utility function, 180–81, 183
Prechter, R., 124
predetermined parameters in simultaneous equations model, 88
prediction
defined, 152
error, 157–58
error defined, 152
in financial theory, 9–10
function, 152–53
of future returns and volatilities, 151
horizon, 152–53
in Markov models, 209–11
origin, 152–53
schemes (See present value models)
updating, 152–54
predictor space, 211
present value models, 151
expectation hypothesis, 163–67
present value model, 164–65
term structure of interest rates, 165–67
expectation scheme, 152–60
adaptive scheme, 153–55
adaptive scheme optimality, 159–60
basic notions, 152–53
rational scheme, 155–59
price dynamics of CAPM, 160–63
multiplicity of equilibrium dynamics, 160–61
selected price dynamics, 161–63
statistical issues, 168–72
expectation test with unknown parameter test, 170–71
nonstationary observations, 171–72
rational expectation hypothesis test, 169–70
summary, 172
price
of a call, Black-Scholes, 282–83
of derivatives, methods of expression, 334
of European derivative, stochastic model, 342–43
as statistical feature, 10–11
of underlying asset, based on Black-Scholes, 319–21
price dynamics of CAPM
present value models, 160–63
price dynamics of high-frequency data, 373–88
price evolution
for derivative pricing in complete market, 260
measure of, 415
in price indexes, 411, 412
price increments, Gaussian iid, 436–39
price index and factor model, 418–20
price indexes, 409–13
price movements in intraday dynamics, 404
price patterns, 239
price per share and coherent risk measures, 443
price per share as transaction data, 358
price process in calendar time, 378
prices and joint modeling with volumes and trading dates, 401–4
price series, 12
price surface
of European calls, 332–33
and volatility surface, 329
price volatility, 14
and bid-ask curves, 386–87
and trading frequency and traded volume, 372
pricing formulas, 8
Black-Scholes formula, 322
parameterized derivatives, 334–39
in SV model, 274–75
pricing model, intertemporal equilibrium, 178–80
pricing probability, 177, 263
probability density function (pdf)
ACD model, 398
defined, 177
in duration distribution, 389–91
estimated, 297
in Hermite polynomial, 331
inverse Gaussian, 381
joint, 295
marginal, 123, 295
in nonlinear canonical decomposition, 209
of random walk, 380, 381
tail index, 429
processes integrated of order 1, unit root, 36–37
profit and loss distribution, 435
propositions
2.1 autoregressive process of order 1, 19
2.2 AR(1) second-order stationarity, 20
2.3 AR(1) with strong white noise, 25
2.4 AR(1) sampling frequency, 30–31
2.5 AR(1) linear forecast, 32
2.6 integrated process without drift, 39
2.7 integrated process with drift, 39
2.8 portfolio value, 41
2.9 Wold theorem, 42
2.10 dynamic multipliers and transitory shock, 43–44
2.11 linear prediction, 45
2.12 MA(q) process, 45
2.13 ARMA and autocorrelation function, 46
2.14 PACF, 46
3.1 forecast in multivariate series, 60
3.2 unidimensional ARMA representation, 62
3.3 Wold theorem, 63
3.4 VARMA estimators, 66
3.5 mean-variance efficient portfolio, 74
4.1 OLS estimators, 87
4.2 OLS estimators, 87
4.3 static supply, 91
4.4 mean-variance efficient portfolio, 92
4.5 asymptotic distribution, 100
4.6 decomposition formula components, 101
5.1 fractional process, 108
5.2 cointegration, 112
5.3 error correction model, 113
6.1 QML estimator, 121
6.2 marginal probability density, 123
6.3 GARCH model, 132
6.4 market portfolio, 144
7.1 rational scheme, 155
7.2 rational expectation error, 155–56
7.3 variance decomposition, 156
7.4 law of iterated expectations, 156
7.5 sequence of updating errors, 157
7.6 rational expectation sequence, 158
7.7 adaptive and rational schemes, 159
7.8 multiplicity of equilibrium dynamics, 160
8.1 moment estimator, 189–90
8.2 moment estimator, 190
9.1 linear factor model, 196
9.2 nonlinear canonical decomposition, 209
propositions (cont.)
9.3 predictor space, 211
9.4 residual error term, 213
9.5 expected excess returns, 214
10.2 transition probability matrix, 221–22
10.3 transition probabilities and matrix, 222
10.4 strongly stationary stochastic process, 222–23
10.5 eigenvalues of transition matrix, 223–24
10.6 absolute value of eigenvalues, 224
10.7 distribution of durations, 231
10.8 multistate Poisson process, 232
10.9 multistate Poisson process, 232
10.10 homogeneous Markov chain, 233
10.11 maximum likelihood estimators, 235
10.12 ML and least squares estimators, 235
10.13 Markov chain aggregation, 238
10.14 state aggregation, 239
11.1 Brownian motion, 242–43
11.2 Ito’s lemma, 246
11.3 Ornstein-Uhlenbeck process, 251
11.4 square root process, 252
11.5 Euler discretization, 254
11.6 binomial tree, 254
11.7 ARCH model diffusion, 258
11.8 GARCH in mean model, 258
11.9 digital options, 261
11.10 digital options, 262
11.11 derivative pricing, 263–64
11.12 hedging portfolio, 265
11.13 Black-Scholes price of European call, 266
11.14 Girsanov theorem, 267
11.15 Girsanov theorem, 273
11.16 Poisson process, 278
11.17 risk-neutral probability, 279
12.1 moment conditions, 291
12.2 scale and time deformations, 303
12.3 scale and time deformations, 304–5
12.4 differential equation, 305
13.1 implied volatility, 333–34
14.1 transaction cost component, 364
14.2 equilibrium bid-ask prices, 369
14.3 global matching and sequential procedures, 372
14.4 price process in calendar time, 378
14.5 dynamics of price processes compared, 378–79
14.6 random walks, 379
14.7 time deformation and heavy tails, 380
14.8 inverse Gaussian pdf and Cauchy distribution, 381
14.9 smoothed estimator, 384
15.1 composite Laspeyres and Paasche indexes, 412
15.2 invariant budget shares, 412
15.3 covariance, 412–13
15.4 asymptotic AAO, 419
16.1 value at risk portfolio, 444
16.2 VaR efficient portfolio, 446
16.3 LIRA utility functions, 449
pseudomaximum likelihood method, 234
pseudottrue value, 310
qualitative factor analysis, 239
qualitative factor model, 236–39
qualitative process, linear representation in Markov chain, 225–26
qualitative threshold autoregressive conditionally heteroscedastic (QTARCH) model, 124
qualitative variables, 219–20
quantile estimation, 439, 440–41
quasi-likelihood function, 66
quasi-maximum likelihood estimator (QMLE), 120, 312–13
quasi-maximum likelihood (QML)
ARCH model, 130–31
in efficient method of moments, 310
estimator in nonlinear autoregres-
sive models, 120–21
estimators in test of conditional heteroscedasticity, 129
in SV model, 137
in time deformation, 397
quasi-maximum likelihood (QML)
method, 26
in cointegration, 114
in VAR process, 66
quote-driven markets
and microstructure theory, 363
versus order-driven markets, 352–53
quotes, 10

Ramaswamy, K., 95, 254
random walk, 115
in deformed time, 379–81
for derivative pricing in complete
market, 260
discouned price of asset, 264
in integrated process, unit root, 106
transition probabilities compatibil-
ity, 227
See also Gaussian random walk
random walk hypothesis, 9–10, 363
rank condition, 216–17
rates of return, 313
rational expectation
hypothesis test in present value
models, 169–70
rational prediction sheme, 155–
57
sequence, 158
rational prediction scheme, 155–59
reconstitution of implied volatility
surface, 238–333
recursive algorithm for weight val-
ues, 422
recursive estimation algorithms,
297–38
recursive utility
nonexpected utility hypothesis, 185–86
parameterized pricing, 336
recursivity. See simultaneity, recursiv-
ity, and causality analysis
refinancing, 1
regime duration, 110
regime switching, 16
regressing asset returns or gains, 417
regression approach, estimation of
implied volatility surface, 329–30
regression coefficients, 66, 92
regression model, cross-sectional re-
gressions, 94
regressogram, estimation of implied
volatility surface, 330
reinsurance contract, 444
relative expenditure modification de-
composition, 410
relative forecast accuracy, 34
relative purchasing power parity, 204
relative risk aversion coefficient, 184
remarks
2.1 AR(1) extension, 19–20
2.2 autoregressive includes con-
stant term, 24
2.3 estimating parameters, 26
2.4 asymptotic normality estima-
tors, 26–27
2.5 AR (1) with forecast, 34
3.1 structure of joint temporal de-
pendence, 55
3.2 market efficiency hypothesis,
60–61
4.1 VARX representation, 84
4.2 excess returns, 90
4.3 excess returns and gains, 92
4.4 degrees of freedom in CAPM,
94
6.1 SV model, 137
7.1 adaptive scheme efficiency, 155
7.2 suboptimal expectations, 159
8.1 Euler condition, 175
<table>
<thead>
<tr>
<th>Remarks (cont.)</th>
<th>Return index, 414</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 Asset price movement, 177</td>
<td>Return patterns, 124–25, 146–49</td>
</tr>
<tr>
<td>8.3 Consumption plans, 177</td>
<td>Returns, 12–13, 374</td>
</tr>
<tr>
<td>8.4 Log-normal model, 181–82</td>
<td>Returns and volumes, 69, 101–3</td>
</tr>
<tr>
<td>8.5 Mean-variance frontier slope, 183</td>
<td>Return series, intraday prices, 67–71</td>
</tr>
<tr>
<td>8.6 Log-normality assumption, 187</td>
<td>Revuz, A., 296</td>
</tr>
<tr>
<td>9.1 Temporal dependence extension, 200</td>
<td>Riemann sums limit, 244</td>
</tr>
<tr>
<td>9.2 Invertible matrix, 200</td>
<td>Right tail, 429</td>
</tr>
<tr>
<td>12.1 Drift and volatility functions, 295</td>
<td>Risk</td>
</tr>
<tr>
<td>13.1 Discount factor discrete time formula, 338</td>
<td>In CAPM formula, 88–90</td>
</tr>
<tr>
<td>14.1 Limit orders on quote-driven market, 356</td>
<td>Elimination of, 211–12</td>
</tr>
<tr>
<td>14.2 Order-matching system and liquidity, 356</td>
<td>Idiosyncratic, 179–80, 212</td>
</tr>
<tr>
<td>15.1 Risk-free asset and risk premium, 419</td>
<td>Residual, 212, 214</td>
</tr>
<tr>
<td>15.2 Paasche chain index, 420</td>
<td>Systematic, 179–80</td>
</tr>
<tr>
<td>16.1 Arbitrage portfolio, 435</td>
<td>See also management of extreme risks</td>
</tr>
<tr>
<td>16.2 Rolling, 437</td>
<td>Risk assessment in ARMA models, 117</td>
</tr>
<tr>
<td>16.3 Empirical mean and variance-covariance matrix, 437</td>
<td>Risk aversion coefficient, 74, 89, 237</td>
</tr>
<tr>
<td>16.4 Nonparametric approach, 440</td>
<td>Risk aversion in nonexpected utility hypothesis, 184–85</td>
</tr>
<tr>
<td>16.5 Sensitivity of VaR, 444–45</td>
<td>Risk control, 16</td>
</tr>
<tr>
<td>Renault, E., 101, 286, 309</td>
<td>Risk coverage, 1</td>
</tr>
<tr>
<td>Replication, 255</td>
<td>Risk-free asset</td>
</tr>
<tr>
<td>Representative investor, 178</td>
<td>In Black-Scholes formula, 264</td>
</tr>
<tr>
<td>Representativeness of asset prices, 418, 421</td>
<td>Derivative pricing in markets, 259, 261–63, 266, 270</td>
</tr>
<tr>
<td>Required capital, 435</td>
<td>Value at risk, 445</td>
</tr>
<tr>
<td>Resampling high-frequency process, 34–35</td>
<td>Risk hedging, 2, 7, 16, 383</td>
</tr>
<tr>
<td>Reserve amount, 435–36, 443, 445</td>
<td>Risk Metrics, 437, 440</td>
</tr>
<tr>
<td>Residual error term equal to zero, 213–14</td>
<td>Risk-neutral binomial tree, 281–82</td>
</tr>
<tr>
<td>Residual maturity, 3, 266</td>
<td>Risk-neutral probability, 177</td>
</tr>
<tr>
<td>Residual risk, 212, 214</td>
<td>Black-Scholes diffusion models, 280–82</td>
</tr>
<tr>
<td>Residuals, least squares, 25</td>
<td>In derivative pricing in markets, 263–64, 271</td>
</tr>
<tr>
<td>Resonance case, 59</td>
<td>Determination of, 267–69</td>
</tr>
<tr>
<td>Restricted index, 422</td>
<td>Jump processes, 278–79</td>
</tr>
<tr>
<td>Restrictions</td>
<td>and Poisson distribution, 278</td>
</tr>
<tr>
<td>On cross moments, 169</td>
<td>Stochastic assumption, 342–45</td>
</tr>
<tr>
<td>On variances, 170</td>
<td>Risk premium, 8, 89, 179</td>
</tr>
<tr>
<td></td>
<td>Risky asset</td>
</tr>
<tr>
<td></td>
<td>In Black-Scholes formula, 264</td>
</tr>
<tr>
<td></td>
<td>Derivative pricing in markets, 259, 261–63, 266, 270</td>
</tr>
<tr>
<td></td>
<td>Value at risk, 445</td>
</tr>
</tbody>
</table>
Index

Robbins, R., 129
Robinson, P., 109
Roll, R., 363, 417
rolling, 437
rolling average, 13
Roll’s critique, 417
Rosen, S., 424
Ross, S., 213, 252, 259, 287
Rossi, P., 68
Rothschild, M., 142, 213, 214
Roy, A., 73, 445
Royal Bank stock, 442
Rubinstein, M., 259
Rudd, A., 331
Ruiz, E., 136
Russell, J., 394–95, 397, 401, 403–4
safety first criterion, 445
sampling frequency, 14
 of AR(1) proposition, 30–31
 in calendar time and trading time, 374
 in univariate linear models, 29–35
sampling frequency effect, 288–89
Samuelson, P., 158
Sarnat, M., 445
SAS software, 47
Scaillet, O., 293, 309, 313–14, 444
scale and speed functions, 301–8
scale deformation, 302–3
scale function, 304
Scheinkman, J., 286, 291, 294, 296–97
Scholes, M., 241, 264
Schumpeter, I., 409
Schwartz, M., 313
Schweizer, M., 273
Schwert, G., 122, 137
Scott, L., 273
secondary financial markets, 2
second-order stationarity, 20
second-order stationary process, 42, 55
second-order stationary time series, 17
securitization, 2
security in present value model, 164
security market line, 94
seemingly unrelated regression
 (SUR) model
 in cointegration, 114
 in dynamic qualitative processes, 235
 and efficiency of market portfolio, 93–94
 in linear factor models with observable factors, 196, 198
 in simultaneous equations model, 87
 in spectral decomposition estimation, 297
 and VAR process, 65–66
self-financed portfolio, 41, 272
self-financing condition, 41, 261, 268
self-reinsurance, 444
sell prices of stocks, 352
semiparametric ACD model estimation, 397–98
semiparametric analysis of iid price increments, 438–39
semiparametric method of moments, 172
sensitivity coefficient, 197
sensitivity of VaR efficient portfolios, 444–45
sequential matching, dynamic models for high-frequency data, 372, 407
SETS electronic trading system, 351
Shanken, J., 95
Sharpe, W., 73, 88
Sharpe performance, 75
 coefficient, 414
Shephard, N., 136, 208
Shiller, R., 165, 172
shock effect in ARCH model, 131
shock persistence comparison in
 IGARCH models, 132–33
shocks, 18–19, 22
 in binomial tree, 254
 in Hermite polynomial, 331

For general queries, contact webmaster@press.princeton.edu
shocks (cont.)
independent, derivative pricing in
incomplete market, 271, 272
in market indexes, 413
and Poisson distribution, 278
short-term interest rate, 313–14
Shreve, S., 267
sieve method, 211, 296–97
signed trades, 376
signed transactions, 11
simulated path of diffusion models,
255–57
simulated path of geometric Brown-
ian motion, 249
simulation-based methods for nonlinear
factor models, 208–9
synchronicity, 96–97
synchronicity, recursivity, and causali-
ity analysis, 81
Capital Asset Pricing Model
(CAPM), 88–95
derivation of, 88–90
static supply, 91–92
test of hypothesis, 92–95
causality, 95–103
measures, 97–100
noncausality hypotheses, 96–97
dynamic structural model, 82–88
forms, 82–85
ordinary least squares, 87–88
to time series model, 85–86
summary, 103–4
simultaneous equation model, 82–85
simultaneous equations, 81
Singleton, K., 209, 286, 308
skewness, 145, 437
coefficient, 428
slowly varying function, 430–31
smoothed estimator, 383–84
smoothing coefficient, 154, 155
smooth surface implied volatility,
329
Snell, J. L., 223
Société des Bourses Françaises, 416
software
for estimation of ARMA models,
46–47, 128, 129
use of standard error estimates,
235
spectral analysis, 216
spectral decomposition
estimation, 296–97
of generator estimation of diffu-
sion models, 294–95
model, multivariate ARCH,
141–42
of stochastic matrix in homoge-
neous Markov chain,
223–25
speculative bubble, 162–63
speculative interventions, 421
speed measure, 304
spline approximations in bid-ask
curves, 388
spot price, 318
spread, 352
squared returns, serial correlation,
144
squared variables in ARCH models,
126–28
square root process, 252
St. Gobain stock, activity-coactivity
measures, 394
stable, families of distributions,
432
standard market efficiency hypothe-
sis, 363–64
standard moment estimator, 308
standard normal density in Hermite
polynomial, 331
Standard & Poor’s index
ARMA application, 48
fixed number of assets, 421
GARCH model application, 133
a main US index, 415
returns at different frequencies,
376
Security Price Index Record, 68
stock index, 67
volatility smiles, 328
standard t statistics, 39
state aggregation of qualitative Mar-
kov chain, 238–39
state-contingent claims, 260
Index

state price density, stochastic model, 342–43
state space
 model, 199
 representation of nonlinear factor models, 204
in state aggregation, 239
state variables in information set, 335–39
static approach, 13
static supply and market portfolio, 91–92
stationarity condition, 21, 222–23
stationary expectation schemes, 153
stationary time series, 17
statistical features, 10–16
 frequency of observations, 11
 historical and dynamic analysis
 conditional distribution, 14
 historical approach, 13
 horizon and observation frequency, 14
nonlinearity, 14–16
prices, 10–11
returns defined, 12–13
statistical inference
 ARMA, 46–48
 cointegration, 114
 compatibility with stochastic discount factor model, 338–39
conditional heteroscedasticity, 130–31
dynamic qualitative processes, 234–35
economics of derivatives, 339–42
incompatibility from Black-Scholes, 321–23
 present value models, 168–72
 from price of underlying asset, 319–21
time-deformed processes, 383
Staumbaugh, R., 93
stochastic coefficients, 420
stochastic differential equations
 in AR (1) sampling frequency, 35
 diffusion models, 241–47
 with jump, 277
See also diffusion models, stochastic
differential equations
 stochastic discount factor
 and evolution of consumption, 186–87
 interpreting portfolio value, 182–83
 in intertemporal equilibrium model, 176, 178, 180
 models, 174, 334–38
stochastic environment, 167
stochastic integrals
 and jump processes, 276–77
 and stochastic differential equations, 244–46
stochastic matrix spectral decomposition, 223–25
stochastic parameter in dynamic specification of extreme risks, 432–33
stochastic process, strongly stationary, 222
stochastic properties of ACD models, 396–97
stochastic risk-neutral probability in economics of derivatives, 342–45
stochastic volatility duration (SVD) models, 398–401
stochastic volatility (SV) model
 and asymmetric smile, 333–34
 bivariate model, 258
 conditional heteroscedasticity, 156–38
 derivative pricing in incomplete market, 273–75
 extension, 205
See also conditional heteroscedasticity
Stock, J., 378, 379
Stock Exchange Automated Quotation (SEAQ), 352, 354
stock market indexes. See market indexes
stock markets. See markets
stock return analysis, 398

For general queries, contact webmaster@press.princeton.edu
Index

stocks, 4–5
Stoll, H., 365
strike, 318
strike price, 261, 449
stripping coefficient, 373
stripping of individual orders under
volume constraint, 372–73
strong white noise
in microstructure theory, 363–64
in nonlinear autoregressive mod-
els, 118–19
in qualitative factor model, 236, 237
in univariate linear models, 24–25
Stroock, D., 254
structural form of simultaneous equa-
tion model, 82–85
structural model to time series
model, 85–86
Student statistics, 39
Student t distribution, 440
subadditivity, capital requirement
evaluation, 443–44
subjective discount factor, 175
suboptimal expectations, 159
Summers, L., 131
superconsistency, 40
supply and demand equilibrium, 81
supply and demand functions in or-
der book, 360
survivor function, 390–91, 429–30
switching regimes, 110, 237–38
synchronized movements of asset
prices, 110–11, 115
systematic risk, 179–80
Szroeter, J., 170

TAIEX (Taiwan), 354
tail index
Hill estimator of, 431, 439
management of extreme risks,
429–31
tails
described, 427–28
distributions with heavy tails,
428–33
exponential distribution, 430
fat, 15, 450
heavy, 133, 134, 380, 427–28
left, 429
right, 429
thickness of, 118–20
underestimated, 437–38
tail VaR, 443
Tauchen, G., 67, 286, 309, 310
Taylor, S., 136, 305, 379
technical analysis, 10
temporal dependence, 14, 200
tenreiro, C., 123
Terasvirta, T., 110
term structure of predictions, 152
term structure of volatilities, 14
theta, first derivative, 330
tick, 227, 358
tick-by-tick data, 11, 374
time. See calendar time
time deformation, 302–3, 377–85,
428
time disaggregation, 34–35
time factors in bid-ask curves, 388
timescales, 377–78
time series, 10, 82
time series models
of conditional means and vari-
ances, 117
multivariate, 53
from structural model, 85–86
univariate, 17–18
time stamp in database, 358
timing of orders in microstructure
theory, 371–73
timing of trades, 11
Tokyo Stock Exchange, 416
TOPIX index, 416
Toronto Stock Exchange (TSE), 10,
71, 227, 351, 354, 358, 416–
17, 442
Touzi, N., 267, 273, 294
traded quantity, 83
traded volume, trading frequency
and price volatility, 372
traders role in stock market, 369–71
trades and high-frequency data, 351
trading dates, 269, 277, 385, 401–4

For general queries, contact webmaster@press.princeton.edu
Index

trading day pattern, 362
trading frequency, traded volume
and price volatility, 372
trading intensity, 392–93
trading price path, 359
trading price per share, 401
trading rate in stock markets,
392–94
trading time and calendar time, 374
trajectory
of Brownian motion, 243
of continuous time, 256
transaction cost component, 364–65
transaction data, 11, 358–59
transaction index in joint analysis,
401
transaction price, 363, 370
transaction time, 11
transition equations, 199, 204–6
transition function in discount factor
models, 338
transition intensity, 231
transition matrix, 221, 227
transition probabilities of intraday
price movements, 227–28
transition probability matrix, 221–22
transitory shock, 22
in ARCH model, 131
in codependence, 204
multiplier effect, 58
proposition, 43–44
triangle pattern, 146
Trognon, A., 397
TSA electronic trading system, 351
TSP software, 47
Turnbull, 136
two-step estimation method in
ARCH model, 130
two-step least squares, 121
two-step method in Hull-White
model, 340
typology of markets, 352–54
unconstrained model, 139
underestimated tails, 437–38
underidentification in method of mo-
mements, 189
unidimensional ARMA representa-
tion, 62
unidimensional integrated process,
106–7
unidirectional causality tests, 102
unidirectional noncausality in intra-
day dynamics, 404
United Kingdom indexes, 415
unit root
 persistence and cointegration,
105–10
in volatility equation, 131
See also univariate linear models,
unit root
univariate linear models, 17
ARMA, 41–50
 application, 48–50
 functions, autocorrelation,
45–46
 representations, 42–45
 statistical inference, 46–48
 Wold theorem, 41–42
dynamic properties, 18–24
 autoregressive process, 18–
20
 first- and second-order mo-
mements, 20–24
 moving average representation,
18–20
estimation and tests, 24–29
 application, 28–29
 parameter estimation, 24–27
 variance ratio analysis, 28
sampling frequency, 29–35
 high, 34–35
 linear forecasting, 32–34
 low, 30–31
Ornstein-Ulhenbeck process,
34–35
summary, 50–51
unit root, 36–41
 estimation, 37–39
 martingale hypothesis, 40–41
 processes integrated of order 1,
36–37
 test of integrated process of or-
der 1, 39–40
unknown parameters, linear factor models with observable factors, 196, 198
unobservable factors and linear factor models, 199–204
unobserved latent variables, 342
up and down price movements, 254, 259, 280–81
up and down terminology, 259
updating errors, 157–58
upper bound on weight values, 422
ups and downs, 239
US dollar exchange rate and diagonal model, 140
exchange rate with deutsche mark, 374, 376
in volatility smile, 326
U shape for returns and volumes, 71
US indexes, 415
US Treasury bills, 93, 313
utility functions for extreme risks, 447–49
utility functions in intertemporal equilibrium model, 180–82

Vahid, F., 203
value at risk (VaR). See management of extreme risks
value-weighted average, 67
Varadhan, S., 254
variance bounds, 165
variance-covariance matrix
in CARA utility, 447
of price increments, 437
price index, 418
variance decomposition, 156
variance ratio analysis, 28
variances restrictions, 170
Vasicek, O., 287
vector autoregressive exogenous (VARX) representation, 84
vector autoregressive moving average (VARMA)
dynamics in derivation of SVD models, 399
estimators, 66
process, 63
representation, 62–65 (See also multivariate linear models)
vector autoregressive (VAR) process, 63
of order 1, 57–62
of returns in multivariate linear models, 77–78
representation of bivariate process, 85–86
of CAPM model, 90
in test of expectation hypothesis, 170, 171
vector moving average (VMA) process, 63
and white noise directions, 202
vector of observations, 338–39
vector of state variables, 338–39
vega, first derivative, 330
Vieu, P., 122
volatilities comparison, 323–26
volatility in ARCH model, 126
defined, 9
estimation methods, 312–13
of returns, 14–15
stochastic models, 136–38
See also implied volatility
volatility clustering, 15
volatility-covolatility matrix, 394, 420
volatility function in binomial tree, 254
compared to scale and time deformations, 304
derivation of nonparametric estimators, 307
in diffusion approximation, 257
diffusion model application, 300
identification problems, 292
instantaneous, 246
in maximum likelihood estimator, 288–89
in nonlinear autoregressive models, 118, 121, 124
volatility parameter estimation, 319
Index

volatility pattern, 125
volatility persistence, 126, 131, 376–77
volatility premium, 337
volatility smile, 326–28
volatility surface, 326–28
volume and prices, 10
volume constraint and stripping of individual orders, 372–73
volume factors in bid-ask curves, 388
volume of market, 370
volume per trade, 372–73
volumes, joint modeling with prices and trading dates, 401–4
volume series of intraday prices, 67–71
volume thresholds in bid-ask curves, 386
volume-weighted durations, 400–401

Wald statistics, 93, 134, 310
weakly stationary process, 42
weak white noise
 in causality measures, 100
 in causality theory, 96
 defined, 17–18, 24, 55
hypothesis in bid-ask bounce, 374
innovation process, 127
martingale process, 40
second-order stationary process, 42
in simultaneous equation model, 82
Weibull ACD (WACD) model, 396
weighted empirical mean and variance, 123
weights in market indexes, 412, 415–17, 419–20
selection of, 421–23

Weil, P., 186
Weiss, A., 128
White, A., 136, 273
white noise
 in AR(1), 18, 20, 25
 defined, 24
 directions in linear factor models, 202–3
 hypotheses, 27–29
 processes defined, 17
 second-order stationary process, 55–56, 58
See also strong white noise; weak white noise
Wiener, N., 241
Wiener process, 241
Wold theorem, 41–42, 63
Working, H., 241

Xetra electronic trading system, 351

yen, Japanese, 140, 326
Yor, M., 296
Yule-Walker equations, 45

Zakoian, J. M., 293, 313–14
Zellner, 87
zero-coupon bond, 3
 in derivative pricing, 267
 in present value model, 164, 166, 167
price of, 8
 prices in hedonic index for bonds, 423–24
zero-expectation error, 154
Zin, S., 186
Zucchini, W., 236