Contents

Pr	Preface		ix
1	Intro	duction	1
	1.1	Math versus Physics	1
	1.2	What This Book Is About	2
	1.3	A Physical versus a Mathematical Solution: An	
		Example	6
	1.4	Acknowledgments	8
2	The Pythagorean Theorem		9
	2.1	Introduction	9
	2.2	The "Fish Tank" Proof of the Pythagorean Theorem	9
	2.3	Converting a Physical Argument into a Rigorous	
		Proof	12
	2.4	The Fundamental Theorem of Calculus	14
	2.5	The Determinant by Sweeping	15
	2.6	The Pythagorean Theorem by Rotation	16
	2.7	Still Water Runs Deep	17
	2.8	A Three-Dimensional Pythagorean Theorem	19
	2.9	A Surprising Equilibrium	21
	2.10	Pythagorean Theorem by Springs	22
	2.11	More Geometry with Springs	23
	2.12	A Kinetic Energy Proof: Pythagoras on Ice	24
	2.13	Pythagoras and Einstein?	25
3	Minima and Maxima		27
	3.1	The Optical Property of Ellipses	28
	3.2	More about the Optical Property	31
	3.3	Linear Regression (The Best Fit) via Springs	31
	3.4	The Polygon of Least Area	34
	3.5	The Pyramid of Least Volume	36
	3.6	A Theorem on Centroids	39
	3.7	An Isoperimetric Problem	40
	3.8	The Cheapest Can	44
	3.9	The Cheapest Pot	47

CONTENTS

	3.10	The Best Spot in a Drive-In Theater	48	
	3.11	The Inscribed Angle	51	
	3.12	Fermat's Principle and Snell's Law	52	
	3.13	Saving a Drowning Victim by Fermat's Principle	57	
	3.14	The Least Sum of Squares to a Point	59	
	3.15	Why Does a Triangle Balance on the Point of		
		Intersection of the Medians?	60	
	3.16	The Least Sum of Distances to Four Points in Space	61	
	3.17	Shortest Distance to the Sides of an Angle	63	
	3.18	The Shortest Segment through a Point	64	
	3.19	Maneuvering a Ladder	65	
	3.20	The Most Capacious Paper Cup	67	
	3.21	Minimal-Perimeter Triangles	69	
	3.22	An Ellipse in the Corner	72	
	3.23	Problems	74	
4	Inequ	alities by Electric Shorting	76	
	41	Introduction	76	
	4.2	The Arithmetic Mean Is Greater than the Geometric	70	
	1.2	Mean by Throwing a Switch	78	
	4.3	Arithmetic Mean > Harmonic Mean for n Numbers	80	
	44	Does Any Short Decrease Resistance?	81	
	4.5	Problems	83	
5	Center of Mass. Proofs and Solutions			
5	- 1		0.4	
	5.1	Introduction	84	
	5.2	Center of Mass of a Semicircle by Conservation of	05	
	5.2	Center of Mass of a Half Disk (Half Digza)	63 07	
	5.5 5.4	Center of Mass of a Hanging Chain	0/	
	5.4 5.5	Dennus's Controid Theorems	00	
	5.5 5.6	Caua's Theorem	02	
	5.0	Three Applications of Cours's Theorem	92	
	5.1 5.8	Problems	94	
	5.0	FIODEIIIS	90	
6	Geometry and Motion			
	6.1	Area between the Tracks of a Bike	99	
	6.2	An Equal-Volumes Theorem	101	
	6.3	How Much Gold Is in a Wedding Ring?	102	
	6.4	The Fastest Descent	104	

CONTENTS

VII

	6.5 6.6	Finding $\frac{d}{dt} \sin t$ and $\frac{d}{dt} \cos t$ by Rotation Problems	106 108
7	Com	outing Integrals Using Mechanics	109
	7.1	Computing $\int_0^1 \frac{x dx}{\sqrt{x^2}}$ by Lifting a Weight	109
	7.2	Computing $\int_{0}^{x} \sin t dt$ with a Pendulum	111
	7.3	A Fluid Proof of Green's Theorem	112
8	The Euler-Lagrange Equation via Stretched Springs		115
	8.1 8.2	Some Background on the Euler-Lagrange Equation A Mechanical Interpretation of the Euler-Lagrange	115
		Equation	117
	8.3	A Derivation of the Euler-Lagrange Equation	118
	8.4	Energy Conservation by Sliding a Spring	119
9	Lense	es, Telescopes, and Hamiltonian Mechanics	120
	9.1	Area-Preserving Mappings of the Plane: Examples	121
	9.2	Mechanics and Maps	121
	9.3	A (Literally!) Hand-Waving "Proof" of Area	100
	0.4	Preservation The Concreting Euroption	123
	9.4 9.5	A Table of Analogies between Mechanics and	124
	7.5	Analysis	125
	9.6	"The Uncertainty Principle"	126
	9.7	Area Preservation in Optics	126
	9.8	Telescopes and Area Preservation	129
	9.9	Problems	131
10	A Bic	ycle Wheel and the Gauss-Bonnet Theorem	133
	10.1	Introduction	133
	10.2	The Dual-Cones Theorem	135
	10.3	The Gauss-Bonnet Formula Formulation and	
		Background	138
	10.4	The Gauss-Bonnet Formula by Mechanics	142
	10.5	A Bicycle Wheel and the Dual Cones	143
	10.6	The Area of a Country	146
11	Com	blex Variables Made Simple(r)	148
	11.1	Introduction	148
	11.2	How a Complex Number Could Have Been Invented	149

VIII

CONTENTS

11.2	Eurotions of Ideal Eluid Elevis	150			
11.5	Functions as Ideal Fluid Flows	150			
11.4	A Physical Meaning of the Complex Integral	153			
11.5	The Cauchy Integral Formula via Fluid Flow	154			
11.6	Heat Flow and Analytic Functions	156			
11.7	Riemann Mapping by Heat Flow	157			
11.8	Euler's Sum via Fluid Flow	159			
Appendix	Appendix. Physical Background				
A.1	Springs	161			
A.2	Soap Films	162			
A.3	Compressed Gas	164			
A.4	Vacuum	165			
A.5	Torque	165			
A.6	The Equilibrium of a Rigid Body	166			
A.7	Angular Momentum	167			
A.8	The Center of Mass	169			
A.9	The Moment of Inertia	170			
A.10	Current	172			
A.11	Voltage	172			
A.12	Kirchhoff's Laws	173			
A.13	Resistance and Ohm's Law	174			
A.14	Resistors in Parallel	174			
A.15	Resistors in Series	175			
A.16	Power Dissipated in a Resistor	176			
A.17	Capacitors and Capacitance	176			
A.18	The Inductance: Inertia of the Current	177			
A.19	An Electrical-Plumbing Analogy	179			
A.20	Problems	181			
Bibliogra	183				
Index	185				

185

1 INTRODUCTION

IT SO HAPPENS THAT ONE OF THE GREATEST MATHEMATICAL DISCOVERIES OF ALL TIMES WAS GUIDED BY PHYSICAL INTUITION. —GEORGE POLYA, ON ARCHIMEDES' DISCOVERY OF

INTEGRAL CALCULUS

1.1 Math versus Physics

Back in the Soviet Union in the early 1970s, our undergraduate class-about forty mathematics and physics sophomores-was drafted for a summer job in the countryside. Our job included mixing concrete and constructing silos on one of the collective farms. My friend Anatole and I were detailed to shovel gravel. The finals were just behind us and we felt free (as free as one could feel in the circumstances). Anatole's major was physics; mine was mathematics. Like the fans of two rival teams, each of us tried to convince the other that his field was superior. Anatole said bluntly that mathematics is a servant of physics. I countered that mathematics can exist without physics and not the other way around. Theorems, I added, are permanent. Physical theories come and go. Although I did not volunteer this information to Anatole, my own reason for majoring in mathematics was to learn the main tool of physics-the field which I had planned to eventually pursue. In fact, the summer between high school and college I had bumped into my high school physics teacher, who asked me about my plans for the Fall. "Starting on my math major," I said. "What? Mathematics? You are nuts!" was his reply. I took it as a compliment (perhaps proving his point).

2

CHAPTER 1

1.2 What This Book Is About

This is not "one of those big, fat paperbacks, intended to while away a monsoon or two, which, if thrown with a good overarm action, will bring a water buffalo to its knees" (Nancy Banks-Smith, a British television critic). With its small weight this book will not bring people to their knees, at least not by its *physical* impact. However, the book does exact revenge—or maybe just administers a pinprick against the view that mathematics is a servant of physics. In this book physics is put to work for mathematics, proving to be a very efficient servant (with apologies to physicists). Physical ideas can be real eye-openers and can suggest a strikingly simplified solution to a mathematical problem. The two subjects are so intimately intertwined that both suffer if separated. An occasional role reversal can be very fruitful, as this book illustrates. It may be argued that the separation of the two subjects is artificial.¹

Some history. The physical approach to mathematics goes back at least to Archimedes (c. 287 BC – c. 212 BC), who proved his famous integral calculus theorem on the volumes of the cylinder, a sphere, and a cone using an imagined balancing scale. The sketch of this theorem was engraved on his tombstone. Archimedes' approach can be found in [P]. For Newton, the two subjects were one. The books [U] and [BB] present very nice physical solutions of mathematical problems. Many of fundamental mathematical discoveries (Hamilton, Riemann, Lagrange, Jacobi, Möbius, Grassmann, Poincaré) were guided by physical considerations.

Is there a general recipe to the physical approach? As with any tool—physical² or intellectual—this one sometimes works and sometimes does not. The main difficulty is to come up with a

¹"Mathematics is the branch of theoretical physics where the experiments are cheap" (V. Arnold [ARN]). Not only are the experiments in this book cheap—they are even free, being the thought experiments (see, for instance, problems 2.2, 3.3, 3.13, and, in fact, most of the problems in this book).

²With apologies for the pun.

з

physical incarnation of the problem.³ Some problems are well suited for this treatment, and some are not (naturally, this book includes only the former kind). Finding a physical interpretation of a particular problem is sometimes easy, and sometimes not; readers can form their own opinions by skimming through these pages.

One lesson a student can take from this book is that looking for a physical meaning in mathematics can pay off.

Mathematical rigor. Our physical arguments are not rigorous, as they stand. Rather, these arguments are sketches of rigorous proofs, expressed in physical terms. I translated these physical "proofs" into mathematical proofs only for a few selected problems. Doing so systematically would have turned this book into a "big, fat ...". I hope that the reader will see the pattern and, if interested, will be able to treat the cases I did not treat. Having made this disclaimer I feel less guilty about using the word "proof" throughout the text without quotation marks.

The main point here is that the physical argument can be a tool of discovery and of intuitive insight—the two steps preceding rigor. As Archimedes wrote, "For of course it is easier to establish a proof if one has in this way previously obtained a conception of the question, than for him to seek it without such a preliminary notion" ([ARC], p. 8).

An axiomatic approach. Instead of translating each physical "proof" into a rigorous proof, an interesting project would entail systematically developing "physical axioms"—a set of axioms equivalent to Euclidean geometry/calculus—and then repeating the proofs given here in the new setting.

One can imagine an extraterrestrial civilization that first developed mechanics as a rigorous and pure axiomatic subject. In this dual world, someone would have written a book on using geometry to prove mechanical theorems.

Perhaps the real lesson is that one should not focus solely on one or the other approach, but rather look at both sides of the coin. This

 $^{^{3}}$ It is a contrarian approach: normally one starts with a physical problem, and abstracts it to a mathematical one; here we go in the opposite direction.

4

CHAPTER 1

book is a reaction to the prevalent neglect of the physical aspect of mathematics.

Some psychology. Physical solutions from this book can be translated into mathematical language. However, something would be lost in this translation. Mechanical intuition is a basic attribute of our intellect, as basic as our geometrical imagination, and not to use it is to neglect a powerful tool we possess. Mechanics is geometry with the emphasis on motion and touch. In the latter two respects, mechanics gives us an extra dimension of perception. It is this that allows us to view mathematics from a different angle, as described in this book.

There is a sad Darwinian principle at work. Physical reasoning was responsible for some fundamental mathematical discoveries, from Archimedes, to Riemann, to Poincaré, and up to the present day. As a subject develops, however, this heuristic reasoning becomes forgotten. As a result, students are often unaware of the intuitive foundations of subjects they study.

The intended audience. If you are interested in mathematics and physics you will, I hope, not toss this book away.

This book may interest anyone who thinks it is fascinating that

- The Pythagorean theorem can be explained by the law of conservation of energy.
- Flipping a switch in a simple circuit proves the inequality $\sqrt{ab} \leq \frac{1}{2}(a+b)$.
- Some difficult calculus problems can be solved easily with no calculus.
- Examining the motion of a bike wheel proves the Gauss-Bonnet formula (no prior exposure is assumed; all the background is provided).
- Both the Cauchy integral formula and the Riemann mapping theorem (both explained in the appropriate section) become intuitively obvious by observing fluid motion.

5

This book should appeal to anyone curious about geometry or mechanics, or to many people who are not interested in mathematics because they find it dry or boring.

Uses in courses. Besides its entertainment value, this book can be used as a supplement in courses in calculus, geometry, and teacher education. Professors of mathematics and physics may find some problems and observations to be useful in their teaching.

Required background. Most of the book (chapters 2–5) requires only precalculus and some basic geometry, and the level of difficulty stays roughly flat throughout those chapters, with a few crests and valleys. Chapters 6 and 7 require only an acquaintance with the derivative and the integral. At the end of chapter 7 I mention the divergence, but in a way that requires no prior exposure. This chapter should be accessible to anyone familiar with precalculus.

The second part (chapters 6-11) uses on rare occasions a few concepts from multivariable calculus, but I tried to avoid the jargon as much as possible, hoping that intuition will help the reader jump over some technical gaps.

Everything one needs from physics is described in the appendix; no prior background is assumed.

This book can be read one section or problem at a time; if you get stuck, it only takes turning a page to gain traction. A few exceptions to this topic-per-page structure occur, mostly in the later chapters.

Sources. Many, but not all *solutions* in this book are, to my knowledge, original. These include solutions to problems 2.6, 2.9, 2.10, 2.11, 2.13, 3.3, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.17, 3.18, 3.19, 3.20, 3.21, 5.2, 5.3, 6.1, 6.2, 6.3, 6.4, 6.5, 7.1, and 7.2. The interpretations in chapter 8 and in sections 9.3, 9.8 and 11.8 appear to be new.

There is not much literature on the topic of this book. When I was in high school, an example from Uspenski's book [U] struck me so much that the topic became a hobby.⁴ More problems of the

⁴This is the first example of this book, in section 2.2. Tokieda's article [TO] contains, together with this example, some very nice additional ones.

Figure 1.1. If X minimizes total distance XA + XB + XC, then the angles at X are 120°.

kind described here are in the small book by Kogan [K] and Balk and Boltyanskii [BB], and in chapter 9 of Polya's book [P]. And the main source of such problems and solutions is the 24-centuries-old work by Archimedes [ARC].

1.3 A Physical versus a Mathematical Solution: An Example

Problem. Given three points A, B, and C in the plane, find the point X for which the sum of distances XA + XB + XC is minimal.

Physical approach. We start by drilling three holes at *A*, *B*, and *C* in a tabletop (this is cheaper to do as a thought experiment or at a friend's home). Having tied the three strings together, calling the common point *X*, I slip each string through a different hole and hang equal weights under the table, as shown in figure 1.1. Let us make each weight equal to 1; the potential energy of the first string is then *AX*: indeed, to drag *X* from the hole *A* to its current position *X* we have to raise the unit weight by distance *AX*. We endowed the sum of distances XA + XB + XC with the physical meaning of potential energy. Now, if this length/energy is minimal, then the system is in equilibrium. If each angle in $\triangle ABC$ is less than 120° , then the equilibrium position of *X* is not at *A*, *B*, *C*. The three forces of tension acting on *X* then add up to zero and hence they form a triangle (rather than an open path) if placed head-to-tail, as shown in

INTRODUCTION

7

figure 1.1(*b*). This triangle is equilateral since the weights are equal, and hence the angle between positive directions of these vectors is 120° . We showed that $\angle AXB = \angle BXC = \angle CXA = 120^{\circ}$.

Mathematical solution. Let a, b, c, and x denote the position vectors of the points A, B, C, and X respectively. We have to minimize the sum of lengths $S(\mathbf{x}) = |\mathbf{x} - \mathbf{a}| + |\mathbf{x} - \mathbf{b}| + |\mathbf{x} - \mathbf{c}|$. To that end, we set partial derivatives of S to zero: $\frac{\partial S}{\partial x} = \frac{\partial S}{\partial y} = 0$, where $\mathbf{x} = (x, y)$, or, expressing the same condition more compactly and geometrically, we set the gradient $\nabla S = \langle \frac{\partial S}{\partial x}, \frac{\partial S}{\partial y} \rangle = 0$. We now compute ∇S . We have $\frac{\partial}{\partial x} |\mathbf{x} - \mathbf{a}| = \frac{\partial}{\partial x} \sqrt{(x - a_1)^2 + (y - a_2)^2} =$ $(x - a_1)/\sqrt{(x - a_1)^2 + (y - a_2)^2}$, and similarly $\frac{\partial}{\partial y} |\mathbf{x} - \mathbf{a}| = (y - a_1)^2$ a_2 / $\sqrt{(x-a_1)^2+(y-a_2)^2}$. Thus $\nabla |\mathbf{x}-\mathbf{a}| = (\mathbf{x}-\mathbf{a})/|\mathbf{x}-\mathbf{a}|$ is a unit vector, pointing from A to X. We will denote this vector by \mathbf{e}_{a} . This result came from an explicit calculation, but its physical meaning, borrowed from the physical approach, is simply the force with which X pulls the string. Differentiating the remaining two terms $|\mathbf{x}-\mathbf{b}|$ and $|\mathbf{x} - \mathbf{c}|$ in S we obtain $\nabla S = \mathbf{e}_a + \mathbf{e}_b + \mathbf{e}_c$, where \mathbf{e}_b and \mathbf{e}_c are defined similarly to \mathbf{e}_a . We conclude that the optimal position X corresponds to $\nabla S = \mathbf{e}_a + \mathbf{e}_b + \mathbf{e}_c = \mathbf{0}$. Thus the unit vectors \mathbf{e}_a , \mathbf{e}_b , \mathbf{e}_c form an equilateral triangle, and any exterior angle of that triangle, that is, the angle between any pair of our unit vectors, is 120° .

It is fascinating to observe how the difficulty changes shape in passing from one approach to the other. In the mathematical solution, the work goes into a formal manipulation. In the physical approach, the work goes into inventing the right physical model. This pattern is shared by many problems in this book.

Relative advantages of the two approaches.

Physical approach

Mathematical approach

Less or no computation Answer is often conceptual Can lead to new discoveries Less background is required Accessible to precalc students Universal applicability Rigor

8

CHAPTER 1

The physical approach suits some subjects more than others. The subject of complex variables is one example where physical intuition is very fruitful. Some of the fundamental ideas of the subject, such as the Cauchy-Goursat theorem, the Cauchy integral formula, and the Riemann mapping theorem, can be made intuitively obvious in a short time, with minimal physical background. With these ideas Euler's formula

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots = \frac{\pi^2}{6}$$

acquires a nice interpretation, saying that, for a special incompressible fluid flow in the plane, the fluid injected at the origin at the rate of $\frac{\pi^2}{6}$ gallons per second is absorbed entirely by sinks located at integer points (the details are given in section 11.8 on complex variables). Many such examples can be found in other fields of mathematics, and I hope more will be written on this in the future.

1.4 Acknowledgments

This book would probably not have been written had it not been for something my father said when I was 16. I showed him a physical paradox that had occurred to me, and he said: "Why don't you write it down and start a collection?" This book is an excerpt from this collection, with a few additions.

Many of my friends and colleagues contributed to this book by suggestions and advice. I thank in particular Andrew Belmonte, Alain Chenciner, Charles Conley, Phil Holmes, Vickie Kearn, Nancy Kopell, Paul Nahin, Anna Pierrehumbert, and Sergei Tabachnikov. Thanks to their stimulation the collection was massaged into a presentable form. I am in particular debt to Andy Ruina, who read much of the manuscript and made many suggestions and corrections. I express especial thanks to Tadashi Tokieda, whose extensive suggestions and corrections vastly improved this book.

I gratefully acknowledge support by the National Science Foundation under Grant No. 0605878.

INDEX

Archimedes, 1-4, 6, 116, 117 area, 1, 3-9, 11, 12, 28, 34, 35, 40, 41, 43-47, 68, 74, 75, 89, 91, 92, 99, 100, 102, 108, 113, 114, 120-132, 134, 135, 137, 141, 142, 147, 148, 162–165, 178 bike: tracks of, 99-102, 108; wheel of, 4, 135, 143-146 binoculars, 120, 122, 126, 143 bursting pipes, 163, 164 Cauchy integral formula, 8, 148, 154, 156 center of mass, 27, 59-62, 84-89, 93-98, 169.171 centroid, 28, 36, 37, 39, 40, 68, 85, 87-90, 92, 98, 102 concurrent lines, 49, 65, 66, 69, 71, 73, 93-96.98 cones, 67, 135-139, 141-147 curl, 148, 150, 151, 153, 154, 157 current, 159-169 curvature, 135, 139-144 determinant, 9, 13, 15, 16 divergence, 112, 113, 148, 150, 151, 154 dual cones, 135-137, 139, 142-147 ellipse, 28-31, 72-75 energy: conservation of, 4, 10, 17, 19, 20, 85, 115, 119, 157; kinetic, 19, 24-26, 174, 176, 182; potential, 6, 21–23, 27, 31, 33, 35, 37, 40, 46, 47, 49, 58, 59, 62–64, 66, 68, 70, 73, 88, 91, 111, 112, 115-119, 138, 161-165, 181, 182 Euler-Lagrange equation, 115–119 Euler's formula, 8, 149, 159, 160

Fermat's principle, 52-55, 57

Gauss-Bonnet's formula, 134–136, 138–140, 142–144, 146, 148 generating function, 122, 124, 125, 131

inertia, moment of, 60, 170, 171

lenses, 53, 120, 121, 123, 125, 127–129, 131, 132 linear regression, 31, 32

magnification, 129, 130

mapping: area-preserving, 120–132; Gauss, 141, 142; symplectic, 124–126 mean: arithmetic, 78–80; geometric, 50, 51, 78, 79; harmonic, 79, 80

perimeter, 40-44, 69-71, 75

Pythagorean theorem, proof by: fish tank, 9–12, 17; kinetic energy, 24–26; springs and rings, 21, 22; sweeping, 13, 99, 100

resistance, 76-78, 80-83, 174-176, 180-182

shock, 178, 179 skating rink, 24 Snell's law, 52, 54–59 soap film, 27, 55, 162–165 spherimeter, 147 springs, 49, 51, 66, 73, 83, 115–117, 119, 122, 161, 162, 177; constant tension, 31, 58, 62, 70, 137, 138; zero-length, 21–24, 33, 59, 124, 125, 131, 132 sweeping, the idea of: and bike tracks, 100; and the determinant, 15, 16; and the Pythagorean theorm, 24; and the ring's volume, 101–104

186

INDEX

theorem: Cauchy-Goursat's, 8, 154; on centroids, 34, 39; Ceva's, 69, 72, 92–95; fundamental, of calculus, 9, 14; Green's, 112; on inscribed angles, 51; Pappus's, on area, 89, 92; Pappus's, on volume, 89–92, 101, 102; Pythagorean, 9–13, 15–17, 19–26; Riemann mapping, 148, 157, 158

- torque, 10–12, 17, 18, 23, 24, 28, 33–35, 49, 51, 65–68, 72, 73, 90, 109, 110, 165–171
- vacuum, 34–37, 39, 40, 53, 64, 65, 90, 91, 162, 163, 165, 181
- volume, 16, 20, 21, 36–40, 45, 47, 67, 68, 72, 73, 89–92, 101–104, 165, 178, 180

wavefront, 55, 59, 105