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1

INTRODUCTION

It so happens that one of
the greatest mathematical
discoveries of all times
was guided by physical
intuition.

—George Polya, on
Archimedes’ discovery of

integral calculus

1.1 Math versus Physics

Back in the Soviet Union in the early 1970s, our undergraduate

class—about forty mathematics and physics sophomores—was

drafted for a summer job in the countryside. Our job included

mixing concrete and constructing silos on one of the collective

farms. My friend Anatole and I were detailed to shovel gravel.

The finals were just behind us and we felt free (as free as one

could feel in the circumstances). Anatole’s major was physics; mine

was mathematics. Like the fans of two rival teams, each of us

tried to convince the other that his field was superior. Anatole said

bluntly that mathematics is a servant of physics. I countered that

mathematics can exist without physics and not the other way around.

Theorems, I added, are permanent. Physical theories come and go.

Although I did not volunteer this information to Anatole, my own

reason for majoring in mathematics was to learn the main tool of

physics—the field which I had planned to eventually pursue. In fact,

the summer between high school and college I had bumped into my

high school physics teacher, who asked me about my plans for the

Fall. “Starting on my math major,” I said. “What? Mathematics? You

are nuts!” was his reply. I took it as a compliment (perhaps proving

his point).
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1.2 What This Book Is About

This is not “one of those big, fat paperbacks, intended to while away

a monsoon or two, which, if thrown with a good overarm action, will

bring a water buffalo to its knees” (Nancy Banks-Smith, a British

television critic). With its small weight this book will not bring

people to their knees, at least not by its physical impact. However, the

book does exact revenge—or maybe just administers a pinprick—

against the view that mathematics is a servant of physics. In this

book physics is put to work for mathematics, proving to be a very

efficient servant (with apologies to physicists). Physical ideas can

be real eye-openers and can suggest a strikingly simplified solution

to a mathematical problem. The two subjects are so intimately

intertwined that both suffer if separated. An occasional role reversal

can be very fruitful, as this book illustrates. It may be argued that the

separation of the two subjects is artificial.1

Some history. The physical approach to mathematics goes back

at least to Archimedes (c. 287 BC – c. 212 BC), who proved his

famous integral calculus theorem on the volumes of the cylinder, a

sphere, and a cone using an imagined balancing scale. The sketch of

this theorem was engraved on his tombstone. Archimedes’ approach

can be found in [P]. For Newton, the two subjects were one. The

books [U] and [BB] present very nice physical solutions of math-

ematical problems. Many of fundamental mathematical discover-

ies (Hamilton, Riemann, Lagrange, Jacobi, Möbius, Grassmann,

Poincaré) were guided by physical considerations.

Is there a general recipe to the physical approach? As with

any tool—physical2 or intellectual—this one sometimes works and

sometimes does not. The main difficulty is to come up with a

1“Mathematics is the branch of theoretical physics where the experiments are cheap”

(V. Arnold [ARN]). Not only are the experiments in this book cheap—they are even free,

being the thought experiments (see, for instance, problems 2.2, 3.3, 3.13, and, in fact, most of

the problems in this book).
2With apologies for the pun.
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physical incarnation of the problem.3 Some problems are well

suited for this treatment, and some are not (naturally, this book

includes only the former kind). Finding a physical interpretation of

a particular problem is sometimes easy, and sometimes not; readers

can form their own opinions by skimming through these pages.

One lesson a student can take from this book is that looking for a

physical meaning in mathematics can pay off.

Mathematical rigor. Our physical arguments are not rigorous, as

they stand. Rather, these arguments are sketches of rigorous proofs,

expressed in physical terms. I translated these physical “proofs” into

mathematical proofs only for a few selected problems. Doing so

systematically would have turned this book into a “big, fat . . . ”.

I hope that the reader will see the pattern and, if interested, will be

able to treat the cases I did not treat. Having made this disclaimer

I feel less guilty about using the word “proof” throughout the text

without quotation marks.

The main point here is that the physical argument can be a tool of

discovery and of intuitive insight—the two steps preceding rigor. As

Archimedes wrote, “For of course it is easier to establish a proof if

one has in this way previously obtained a conception of the question,

than for him to seek it without such a preliminary notion” ([ARC],

p. 8).

An axiomatic approach. Instead of translating each physical

“proof” into a rigorous proof, an interesting project would entail

systematically developing “physical axioms”—a set of axioms

equivalent to Euclidean geometry/calculus—and then repeating the

proofs given here in the new setting.

One can imagine an extraterrestrial civilization that first developed

mechanics as a rigorous and pure axiomatic subject. In this dual

world, someone would have written a book on using geometry to

prove mechanical theorems.

Perhaps the real lesson is that one should not focus solely on one

or the other approach, but rather look at both sides of the coin. This

3It is a contrarian approach: normally one starts with a physical problem, and abstracts it to

a mathematical one; here we go in the opposite direction.
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book is a reaction to the prevalent neglect of the physical aspect of

mathematics.

Some psychology. Physical solutions from this book can be trans-

lated into mathematical language. However, something would be lost

in this translation. Mechanical intuition is a basic attribute of our

intellect, as basic as our geometrical imagination, and not to use

it is to neglect a powerful tool we possess. Mechanics is geometry

with the emphasis on motion and touch. In the latter two respects,

mechanics gives us an extra dimension of perception. It is this that

allows us to view mathematics from a different angle, as described

in this book.

There is a sad Darwinian principle at work. Physical reasoning

was responsible for some fundamental mathematical discoveries,

from Archimedes, to Riemann, to Poincaré, and up to the present day.

As a subject develops, however, this heuristic reasoning becomes

forgotten. As a result, students are often unaware of the intuitive

foundations of subjects they study.

The intended audience. If you are interested in mathematics and

physics you will, I hope, not toss this book away.

This book may interest anyone who thinks it is fascinating that

• The Pythagorean theorem can be explained by the law of conserva-

tion of energy.

• Flipping a switch in a simple circuit proves the inequality
√

ab ≤
1
2
(a + b).

• Some difficult calculus problems can be solved easily with no

calculus.

• Examining the motion of a bike wheel proves the Gauss-Bonnet

formula (no prior exposure is assumed; all the background is

provided).

• Both the Cauchy integral formula and the Riemann mapping theo-

rem (both explained in the appropriate section) become intuitively

obvious by observing fluid motion.
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This book should appeal to anyone curious about geometry or

mechanics, or to many people who are not interested in mathematics

because they find it dry or boring.

Uses in courses. Besides its entertainment value, this book can be

used as a supplement in courses in calculus, geometry, and teacher

education. Professors of mathematics and physics may find some

problems and observations to be useful in their teaching.

Required background. Most of the book (chapters 2–5) requires

only precalculus and some basic geometry, and the level of difficulty

stays roughly flat throughout those chapters, with a few crests and

valleys. Chapters 6 and 7 require only an acquaintance with the

derivative and the integral. At the end of chapter 7 I mention the

divergence, but in a way that requires no prior exposure. This chapter

should be accessible to anyone familiar with precalculus.

The second part (chapters 6–11) uses on rare occasions a few

concepts from multivariable calculus, but I tried to avoid the jargon

as much as possible, hoping that intuition will help the reader jump

over some technical gaps.

Everything one needs from physics is described in the appendix;

no prior background is assumed.

This book can be read one section or problem at a time; if you get

stuck, it only takes turning a page to gain traction. A few exceptions

to this topic-per-page structure occur, mostly in the later chapters.

Sources. Many, but not all solutions in this book are, to my

knowledge, original. These include solutions to problems 2.6, 2.9,

2.10, 2.11, 2.13, 3.3, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.17, 3.18,

3.19, 3.20, 3.21, 5.2, 5.3, 6.1, 6.2, 6.3, 6.4, 6.5, 7.1, and 7.2. The

interpretations in chapter 8 and in sections 9.3, 9.8 and 11.8 appear

to be new.

There is not much literature on the topic of this book. When I

was in high school, an example from Uspenski’s book [U] struck

me so much that the topic became a hobby.4 More problems of the

4This is the first example of this book, in section 2.2. Tokieda’s article [TO] contains,

together with this example, some very nice additional ones.
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Figure 1.1. If X minimizes total distance X A + X B + XC , then the angles at X are

120◦.

kind described here are in the small book by Kogan [K] and Balk

and Boltyanskii [BB], and in chapter 9 of Polya’s book [P]. And the

main source of such problems and solutions is the 24-centuries-old

work by Archimedes [ARC].

1.3 A Physical versus a Mathematical Solution: An
Example

Problem. Given three points A, B, and C in the plane, find the point
X for which the sum of distances X A + X B + XC is minimal.

Physical approach. We start by drilling three holes at A, B, and
C in a tabletop (this is cheaper to do as a thought experiment or

at a friend’s home). Having tied the three strings together, calling

the common point X , I slip each string through a different hole and

hang equal weights under the table, as shown in figure 1.1. Let us

make each weight equal to 1; the potential energy of the first string

is then AX : indeed, to drag X from the hole A to its current position

X we have to raise the unit weight by distance AX . We endowed

the sum of distances X A + X B + XC with the physical meaning

of potential energy. Now, if this length/energy is minimal, then the

system is in equilibrium. If each angle in �ABC is less than 120◦,
then the equilibrium position of X is not at A, B, C . The three forces

of tension acting on X then add up to zero and hence they form a

triangle (rather than an open path) if placed head-to-tail, as shown in
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figure 1.1(b). This triangle is equilateral since the weights are equal,
and hence the angle between positive directions of these vectors is

120◦. We showed that ∠AX B = ∠B XC = ∠C X A = 120◦.

Mathematical solution. Let a, b, c, and x denote the position

vectors of the points A, B, C , and X respectively. We have to

minimize the sum of lengths S(x) = |x − a| + |x − b| + |x − c|.
To that end, we set partial derivatives of S to zero: ∂S

∂x = ∂S
∂y = 0,

where x = (x, y), or, expressing the same condition more compactly

and geometrically, we set the gradient ∇S = 〈 ∂S
∂x , ∂S

∂y 〉 = 0. We now

compute ∇S. We have ∂
∂x |x − a| = ∂

∂x

√
(x − a1)2 + (y − a2)2 =

(x − a1)/
√

(x − a1)2 + (y − a2)2, and similarly ∂
∂y |x − a| = (y −

a2)/
√

(x − a1)2 + (y − a2)2. Thus∇|x−a| = (x−a)/|x−a| is a unit
vector, pointing from A to X . We will denote this vector by ea . This

result came from an explicit calculation, but its physical meaning,

borrowed from the physical approach, is simply the force with which

X pulls the string. Differentiating the remaining two terms |x−b| and
|x−c| in S we obtain ∇S = ea +eb +ec, where eb and ec are defined

similarly to ea . We conclude that the optimal position X corresponds

to ∇S = ea + eb + ec = 0. Thus the unit vectors ea, eb, ec form

an equilateral triangle, and any exterior angle of that triangle, that is,

the angle between any pair of our unit vectors, is 120◦.
It is fascinating to observe how the difficulty changes shape in

passing from one approach to the other. In the mathematical solution,

the work goes into a formal manipulation. In the physical approach,

the work goes into inventing the right physical model. This pattern is

shared by many problems in this book.

Relative advantages of the two approaches.

Physical approach
Less or no computation

Answer is often conceptual

Can lead to new discoveries

Less background is required

Accessible to precalc students

Mathematical approach
Universal applicability

Rigor
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The physical approach suits some subjects more than others. The

subject of complex variables is one example where physical intuition

is very fruitful. Some of the fundamental ideas of the subject, such

as the Cauchy-Goursat theorem, the Cauchy integral formula, and

the Riemann mapping theorem, can be made intuitively obvious in

a short time, with minimal physical background. With these ideas

Euler’s formula

1 + 1

22
+ 1

32
+ · · · + 1

n2
+ · · · = π2

6

acquires a nice interpretation, saying that, for a special incompress-

ible fluid flow in the plane, the fluid injected at the origin at the rate of
π2

6
gallons per second is absorbed entirely by sinks located at integer

points (the details are given in section 11.8 on complex variables).

Many such examples can be found in other fields of mathematics,

and I hope more will be written on this in the future.
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