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1

Introduction

Ther e ar e easier things to make than a brain. Driven by the 
promise and resources of biomedical research, developmental neurobi-
ologists are trying to understand how it is done. Driven by the promise 
and advances of computer technology, researchers in artificial intelli-
gence (AI) are trying to create one. Both are fields of contemporary 
research in search of the principles that can generate an intelligent sys-
tem, a thing that can predict and decide, and maybe understand or feel 
something. In both developmental neurobiology and AI based on arti-
ficial neural networks (ANNs), scientists study how such abilities are 
encoded in networks of interconnected components. The components 
are nerve cells, or neurons, in biological brains. In AI, the term neuron 
has been readily adopted to describe interconnected signaling compo-
nents, looking back on some 70 years of ANN research. Yet, to what 
extent the biological analogy is useful for AI research has been a matter 
of debate throughout the decades. It is a question of how much biologi-
cal detail is relevant and needed, a question of the type of information 
necessary to make a functional network. The information problem un-
derlies both fields. What type of information is necessary to wire a 
brain? What do biologists mean when they say something is “encoded 
by genes,” and how is genetic information transformed into a brain? 
And finally, to what extent is the same type of information required to 
wire up biological brains or to create artificial intelligence?

This book is about the information problem and how information 
unfolds to generate functional neural networks. In the case of biological 
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brains, prior to learning, the information for developmental growth is 
encoded in the genome. Yet, there are no chapters about brain regions 
or their connectivity to read in the genome. In fact, compared to the 
information necessary to describe every detail necessary to make a 
functioning brain, there is rather little information available in the ge-
nome. Growth requires genetic information plus time and energy. De-
velopment happens in steps that occur in space and time in an ordered 
fashion. The outcome is a system that would require more information 
to describe than was needed to start its growth. By contrast, most ANNs 
do not grow. Typically, an artificial network with initially random con-
nections learns from data input in a process that is reminiscent of how 
biological brains learn. This process also requires time and energy. 
Learning also occurs in steps, and the order of these steps matters. There 
are important similarities and differences between these stepwise, time- 
and energy-consuming processes. The current hope for AI based on 
ANNs is that the learning process is sufficient and that a developmental 
process analogous to biological brains can therefore be omitted. Re-
markably, there was a time in neurobiology research almost a hundred 
years ago when scientists felt much the same about the brain itself. It 
was inconceivable where the information for wiring should come from 
other than through learning. The idea was that, just like ANNs today, 
the brain must initially be wired rather randomly, and subsequent learn-
ing makes use of its plasticity.1 But if this were so, how could, say, a 
monarch butterfly be born with the ability to follow thousands of miles 
of a migration route that it has never seen before?

As temperatures drop in the fall in North America, millions of mon-
arch butterflies migrate for up to 3,000 miles to overwinter in Mexico. 
Remarkably, millions of butterflies distributed over close to 3 million 
square miles in the north all target only a few overwintering sites that 
cover less than a single square mile. Many theories have been put forth 
as to how a butterfly could do this.2, 3 Similarly remarkable, an individual 
sea turtle will return over thousands of miles to the very beach where it 
was born—many years later. We do not know how sea turtles do it, but 
it is conceivable that they had learned and can remember something 
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about a place where they had once been before. This is where the story 
of the monarch butterfly turns from remarkable to downright unbeliev-
able. The butterflies that started out in the north will overwinter in the 
south until temperatures rise next spring. They then start flying north 
again, but only a few hundred miles. At different places in the southern 
United States they stop, mate, lay eggs and die. A new generation of 
monarchs picks up the trail north, but again only for a few hundred 
miles. It usually takes 3–5 generations for a full round trip.2 By the time 
temperatures drop again in the fall in North America, a monarch but-
terfly is about to embark on the 3,000-mile trip south to a precise loca-
tion that was last visited by its great-great-grandfather. Where is this 
information coming from?

The currently almost exclusive focus of AI on ANNs is a highly suc-
cessful, but recent development. It followed several decades during 
which AI and machine learning focused on formal, symbol-processing 
logic approaches, rather than the somewhat enigmatic neural networks. 
For most of its history, AI researchers tried to avoid the complexities 
and messiness of biological systems altogether.4, 5 How does informa-
tion about the role of a gene for a neuronal membrane protein help to 
program an intelligent system? The history of AI is a history of trying 
to avoid unnecessary biological detail in trying to create something that 
so far only exists in biology. The observation begs the question what 
information can safely be deemed “unnecessary.” To address this ques-
tion, we need to look at biological and artificial brain development from 
the information perspective. An assumption and hope of AI research 
has long been that there is a shortcut to creating intelligent systems. We 
may not yet know what shortcuts work best, but it seems a good idea to 
at least know exactly what it is we are trying to leave out in attempts to 
create nonbiological brains. My hope is that an understanding of the 
way information is encoded and transformed during the making of bio-
logical brains proves useful in the discussion what can and cannot be 
shortcut in the making of AI. This is the story of a neurobiologist track-
ing down that information.
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The Perspective of Neurobiological Information

The biological brain is a complicated network of connections, wired to 
make intelligent predictions. Common analogies for brain wiring in-
clude circuit diagrams of modern microprocessors, the electrical wiring 
installations in skyscrapers or the logistics of transportation networks in 
big cities. How are such connections made during brain development? 
You can imagine yourself trying to make a connection by navigating the 
intricate network of city streets. Except, you won’t get far, at least not if 
you are trying to understand brain development. There is a problem with 
that picture, and it is this: Where do the streets come from? Most con-
nections in the brain are not made by navigating existing streets, but by 
navigating streets under construction. For the picture to make sense, 
you would have to navigate at the time the city is growing, adding street 
by street, removing and modifying old ones in the process, all the while 
traffic is a part of city life. The map changes just as you are changing 
your position in it, and you will only ever arrive if the map changes in 
interaction with your own movements in it. The development of brain 
wiring is a story of self-assembly, not a global positioning system 
(GPS).

When engineers design the electrical wiring in a building or a com-
puter microchip, they have the final product in mind. We make blueprints 
to understand and build engineered systems with precise outcomes. A 
blueprint shows a picture of the final product, the endpoint. A blueprint 
also contains all the information needed to build that product. It largely 
doesn’t matter in what order the pieces are put in, as long as everything 
is in place when you flip the on switch. But there is no blueprint for 
brain connectivity in the genes. There is also no such information com-
ing from the environment. If neither the genes nor the environment 
contain endpoint information of connectivity, what kind of information 
do they contribute?

Genetic information allows brains to grow. Development progresses 
in time and requires energy. Step by step, the developing brain finds 
itself in changing configurations. Each configuration serves as a new 
basis for the next step in the growth process. At each step, bits of the 
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genome are activated to produce gene products that themselves change 
what parts of the genome will be activated next—a continuous feed-
back process between the genome and its products. A specific step may 
not have been possible before and may not be possible ever again. As 
growth continues, step by step, new states of organization are reached. 
Rather than dealing with endpoint information, the information to 
build the brain unfolds with time. Remarkably, there may be no other 
way to read the genetic information than to run the program. This is not 
a trivial statement to make, and it will take some explaining. If there is 
no way to read the genetic code other than running it, then we are prin-
cipally unable to predict exact outcomes with any analytical method of 
the code. We can simulate it all right, but the result would not have been 
predictable in any way other than actually running the whole simula-
tion. The information is in the genes, but it cannot be read like a blue-
print. It really is a very different type of information that requires time 
and energy to unfold.

The Perspective of Algorithmic Information

Scientists in nonbiological fields are more familiar with this type of in-
formation. There is a simple game, where you draw lines of X’s or O’s 
(or black dots versus blanks) based on simple rules that produce re-
markable patterns. Imagine a single X in a row of an infinite number of 
O’s and a simple rule that determines for each triplet of X’s and O’s 
whether there is an X or an O in the next row. To find out the next line, 
you read the first three characters, write the output X or O underneath 
the center of the triplet below, then move one character and do it again 
for the next partially overlapping triplet. One rule, called rule 110, looks 
innocently enough like this:6

Triplet in previous row: XXX XXO XOX XOO OXX OXO OOX OOO
..determines in next row:  O     X      X      O       X      X        X      O

For example, starting with one X:  .. OOOOOXOOOOO..
will lead to the next row:                .. OOOOXXOOOOO..
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Repeating this process again and again, using each previous line to 
apply the rule and write the next one below, will create a two-dimensional 
pattern (you will find the result in figure 2.3 on page 96). The repeated 
application of defined rules is an iteration. A ruleset that uses the output 
of each preceding step as the input of the next step defines an algorithm. 
The two-dimensional pattern is the outcome of algorithmic growth 
based on the iterative application of simple rules. But what does this 
game have to do with brain development? Shockingly, for the simple 
rule shown above, the two-dimensional pattern turns out to be so sur-
prisingly complicated that it was proven to contain, at some point of its 
pattern growth process, any conceivable computation. Mathematicians 
call this a universal Turing machine or “Turing-complete.” This is not 
an intuitive concept. The information content of the underlying code 
is absurdly low, yet it can produce infinite complexity. What is more, 
there is no analytical method to tell you the pattern at iteration 1,000. If 
you want to know, you must play the game for 1,000 rounds, writing line 
by line. These systems are called cellular automata and are a beloved 
model for a branch of mathematics and the research field of Artificial 
Life (ALife). Some ALifers consider AI a subfield. Many AI researcher 
don’t care much about ALife. And neither of them care much about 
developmental neurobiology.

In information theory, the cellular automaton described above high-
lights an important alternative to describing complete endpoint infor-
mation. Instead of a precise description of every detail of the pattern 
after 1,000 iterations, a complete description of the system is also pos
sible by providing the few simple rules plus the instruction “apply these 
rules 1,000 times.” The information required to generate the complete 
system is also known as Kolmogorov complexity in algorithmic infor-
mation theory. Data compression algorithms do exactly that. An image 
of a uniformly blue sky is easily compressed, because its algorithmic 
information content is low (paint the next 10,000 pixels blue). By con-
trast, a picture cannot be easily compressed if every pixel has a randomly 
different color and no repeating patterns. In the case of the cellular 
automaton, Kolmogorov complexity is very low, while endpoint infor-
mation required to describe the system becomes infinite with infinite 
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iterations. The algorithmic information content required to create the 
system are a few instructions plus time and energy, while the endpoint 
information content is enormous in the case of many iterations.

The rule 110 cellular automaton provides us with a simple example of 
an algorithmic growth process that can generate more information 
based on simple rules, and yet its output can only be determined by 
letting it grow. “More” information is defined here as the information 
needed to describe the output if there were no growth process. How-
ever, in contrast to biological systems, rule 110 can only produce one 
fixed outcome with every iteration based on a set of rules that never 
change. For these reasons alone, rule 110 cannot be a sufficient model 
for biological systems. Yet, rule 110 teaches us that unpredictable unfold-
ing of information is possible even with very simple rules in a determin-
istic system. For rule 110 there is a proof, the proof of Turing universal-
ity. For biological growth based on the genetic code, we face many more 
challenges: The rules are more complicated and change with every itera-
tion of the running algorithm, and stochastic processes are central to its 
run. If a simple system like rule 110 can already be unpredictable, then 
we should not be surprised if algorithmic growth of biological systems 
turns out to be unpredictable. However, the proof for biological systems 
seems currently out of reach. The idea that information unfolding based 
on genomic information cannot be mathematically calculated, but in-
stead requires algorithmic growth or a full simulation thereof, is a core 
hypothesis of this book.

A Shared Perspective

Biologists like to talk about the genes that contain a certain amount of 
information to develop the brain, including its connectivity. But in 
order to appreciate the information content of genes, we must under-
stand the differences and consequences of information encoding for a 
self-assembling system versus a connectivity map. The genetic code 
contains algorithmic information to develop the brain, not information 
that describes the brain. It can be misleading to search for endpoint in-
formation in the genes or the mechanisms of the proteins they encode. 
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Address codes, navigational cues and key-and-lock mechanisms all 
follow such a rationale and make intuitive sense. And they all exist as 
molecular mechanisms, in brain wiring as elsewhere in biology. But 
they are part of unfolding algorithmic information, not endpoint in-
formation of brain connectivity. As the brain grows, different genes 
are turned on and off in a beautiful ballet in space and time, endowing 
each individual neuron with a myriad of properties that play out and 
change in communication with its neighbors. The neuron navigates 
as the city map grows and changes in interaction with the neuron’s own 
movement in it.

The study of genes in developmental neurobiology is a success story 
from at least two perspectives. First, in the quest for molecular mecha-
nisms. What a gene product does at any point in time and space during 
brain development tells us something about a part of the growth pro-
gram that is currently executed. But information about a specific molecu-
lar mechanism may only be a tiny part of the information that unfolds in 
the wake of a random mutation in the genome. A mutation can lead to 
more aggressive behavior of the animal. And yet, the mutation may well 
affect some metabolic enzyme that is expressed in every cell of the body. 
The molecular function of the gene product may tell us nothing about 
animal behavior. How the molecular mechanism of this gene is connected 
to the higher order behavior may only be understood in the context of 
the brain’s self-assembly, its algorithmic growth.

Many mutations have been found that change predispositions for 
behavioral traits, yet there may be only very few cases that we could 
reasonably call “a gene for a trait.” Most gene products contribute to 
develop the trait in the context of many other gene products, but do not 
contain information about the trait itself. A mutation, selected by evolu-
tion for behavioral changes, must change either brain development or 
function. If the effect is developmental, then we have to face the infor-
mation problem: There may be no way to know what the altered code 
produces other than running the entire process in time (or simulating 
it on a computer). There may be no shortcut. This is the problem with 
the street navigation analogy: You have to navigate a changing map on 
a path that only works if the map changes just as you are navigating it. 
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The full route on the map never existed, neither at the beginning nor at 
the end of your trip, but instead the route was made in interaction with 
your own actions. This is the essence of self-assembly.

We can study self-assembly either as it happens in biology or by try-
ing to make a self-assembling system from scratch. As of 2020, biological 
neural networks (i.e., brains) are still unparalleled in their intelligence. 
But AI is on it. And yet, self-assembly is not a major focus of AI. For 
many years, AI focused on formal symbol-processing logic, including 
enormous expert systems built on decision-making trees. As recently as 
the early 2000s, the victory of formal, logical symbol-processing AI was 
declared. Since then, just when some thought we were done with neural 
networks, a revolution has taken place in AI research. In the few years 
since 2012, practically every AI system used to predict what friends or 
products we allegedly want has been replaced with neural networks. 
“Deep learning” is the name of the game in AI today.

The ANNs we use as tools today are not grown by a genetic code to 
achieve their initial architecture. Instead, the initial network architec-
ture is typically randomly connected and thus contains little or no in-
formation. Information is brought into an ANN by feeding it large 
amounts of data based on a few relatively simple learning rules. And yet, 
there is a parallel to algorithmic growth: The learning process is an itera-
tive process that requires time and energy. Every new bit of data changes 
the network. And the order matters, as the output of a preceding learn-
ing step becomes the input of the next. Is this a self-assembly process? 
Do we ultimately need algorithmic growth or self-assembly to under-
stand and create intelligence? One obvious problem with the question 
is that the definition of intelligence is unclear. But the possible role of 
self-assembly may need some explaining, too.

In the search for answers, I went to two highly respected conferences 
in late summer 2018, an Artificial Life conference themed “Beyond Ar-
tificial Intelligence” by the International Society for Artificial Life and 
the Cold Spring Harbor meeting “Molecular Mechanisms of Neuronal 
Connectivity.” I knew that these are two very different fields in many 
respects. However, my reasoning was that the artificial life and artificial 
intelligence communities are trying to figure out how to make something 
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that has an existing template in biological systems. Intelligent neural 
networks do exist; I have seen them grow under a microscope. Surely, 
it must be interesting to AI researchers to see what their neurobiology 
colleagues are currently figuring out—shouldn’t it help to learn from 
the existing thing? Surely, the neurobiologists should be equally inter-
ested in seeing what AI researchers have come up with, if just to see 
what parts of the self-assembly process their genes and molecules are 
functioning in.

Alas, there was no overlap in attendance or topics. The differences in 
culture, language and approaches are remarkable. The neurobiological 
conference was all about the mechanisms that explain bits of brains as 
we see them, snapshots of the precision of development. A top-down 
and reverse engineering approach to glimpse the rules of life. By con-
trast, the ALifers were happy to run simulations that create anything 
that looked lifelike: swarming behavior, a simple process resembling 
some aspect of cognition or a complicated representation in an evolved 
system. They pursue a bottom-up approach to investigate what kind of 
code can give rise to life. What would it take to learn from each other? 
Have developmental biologists really learned nothing to inform artifi-
cial neural network design? Have Alifers and AI researchers really found 
nothing to help biologists understand what they are looking at? I wanted 
to do an experiment in which we try to learn from each other; an experi-
ment that, if good for nothing else, would at least help to understand 
what it is that we are happy to ignore.

So I assembled a seminar series, a workshop, about the common 
ground of both fields. The seminars are presented from the perspective 
of a neurobiologist who wants to know how our findings on brain de-
velopment relate to the development of ANNs and the ultimate goal of 
artificial general intelligence. Many neurobiologists feel that ANNs are 
nothing like the biological template, and many AI scientists feel that 
their networks should not try to resemble biology more than they cur-
rently do. The seminars are therefore presented with a broad target audi-
ence in mind: there is so little common ground that it is easily shared 
with any basic science-educated layperson. The average neurobiologist 
is a layperson when it comes to AI, and most ANN developers are 
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laypeople when it comes to neurobiology. Developmental neurobiolo-
gists may feel they are not missing anything by not following the bot-
tom-up approach of AI, and ANN developers may feel they are safe to 
ignore biological detail. But to decide what is not needed, it helps to at 
least know what it is we are choosing to not know.

One of the best outcomes of good seminars are good discussions. 
And here I didn’t need to search long. Going to conferences with these 
ideas in mind has provided me for years with experiences for how and 
where such discussions can go. I started writing this book with these 
discussions in mind. Initially, I only used them as a guide to pertinent 
questions and to identify problems worth discussing. As I kept on going 
back to my own discussions and tried to distill their meaning in writing, 
it turned out all too easy to lose their natural flow of logic and the as-
sociations that come with different perspectives. So I decided to present 
the discussions themselves. And as any discussion is only as good as the 
discussants, I invented four entirely fictional scientists to do all the hard 
work and present all the difficult problems in ten dialogs. The participants 
are a developmental geneticist, a neuroscientist, a robotics engineer and 
an AI researcher. I think they are all equally smart, and I do hope you’ll like 
them all equally well.

The Ten Seminars

The seminars of the series build on each other, step by step. Preceding 
each seminar is a discussion of the four scientists who exchange ques-
tions and viewpoints in anticipation of the next seminar. The series 
starts with The Historical Seminar: The Deeply Engrained Worship 
of Tidy-Looking Dichotomies, a rather unusual seminar on the his-
tory of the field. The “field” being really two fields, developmental neu-
robiology and AI research, this seminar provides an unusual and selec-
tive historical perspective. Their shared history puts each other’s 
individual stories in the spotlight of shared questions and troubles. Both 
struggle with remarkably similar tension fields between seemingly op-
posing approaches and perceptions. There are those who feel that the 
approaches, hypotheses and analyses must be rigorously defined for any 



12  I n t r o du c t i o n

outcome to be meaningful. Then there are those who feel that, like evo-
lution, random manipulations are okay as long as one can select the ones 
that work—even if that means giving up some control over hypotheses, 
techniques or analyses.

Both fields begin their shared history by independently asking simi-
lar questions about information. The discovery of individual nerve cells 
itself was a subject of divisive contention. Even before scientists were 
sure that separable neurons exist, concerns were already raised about 
the information necessary to put them all together in a meaningful net-
work. Much easier to envision the network as a randomly preconnected 
entity. And when early AI researchers built their very first networks with 
a random architecture, they did so because they felt it had to be like that 
in nature—where should the information have come from to specifi-
cally connect all neurons? A randomly connected network contains 
little or no information; the network has to grow smart through learn-
ing. In biology, the dominance of this view was challenged already in 
the 1940s by studies that focused on the precision and rigidity of con-
nectivity that is not learned. This work marked a turning point that led 
neurobiologists to ask questions about how network information can 
develop based on genetic information. By contrast, today’s artificial 
neural networks used in typical AI applications still only grow smart by 
learning; there is no genetic information. Yet, years in both fields played 
out in similar tension fields between precision and flexibility, between 
rigidity and plasticity. The fields may not have talked much to each 
other, but they mirrored each other’s troubles.

The historical background forms the basis for three sessions. The first 
session explores the types of information that underlie biological and 
artificial neural networks. The second session builds on the information-
theoretical basis to discuss the approaches taken by biologists to under-
stand how genetic information leads to network information—the 
missing element in most ANNs. The third session connects algorithmic 
growth to learning and its relevance for AI.

Each session consists of three seminars. The first session starts with 
Seminar 2: From Algorithmic Growth to Endpoint Information, 
which deals with the difference between information required to make 



I n t r o du c t i o n   13

a system and information required to describe a system. Genes contain 
information to develop neuronal connectivity in brains; they don’t 
contain information that describes neuronal connectivity in brains. We 
are facing one of the hardest problems right from the start, mostly 
because human intelligence lacks intuition for this kind of information. 
The core concept is algorithmic growth. A set of simple rules is suffi-
cient to create mindboggling complexity. But what is complexity? The 
journey to understand information encoding is intricately linked to this 
question. If a cellular automaton based on a very simple rule set can 
produce a Turing-complete system, including unlimited complexity of 
patterns, where is the information coming from? The algorithmic infor-
mation content of the rules is sufficient to create the entire system. This 
is very little information, and there is clearly no complexity there. On 
the other hand, the analysis of the pattern created by such a cellular 
automaton reveals unlimited depth. To describe the pattern requires a 
lot of information, something we like to call complex. All the while, the 
cellular automaton is a deterministic system, meaning repeated runs 
with the same rules will always produce the same pattern. The informa-
tion for the development of this precision is somehow in the rules, but 
only unfolds to our eyes if the rules are applied iteratively, step by step, 
in a time- and energy-consuming process. This is the idea of algorithmic 
growth. The brain develops through algorithmic growth. Yet, in contrast 
to the cellular automaton, brain development includes nondeterminis-
tic processes and the rules change during growth. How useful is the 
analogy of the cellular automaton in light of these constraints? This 
question brings us back to the information that is encoded by the gene
tic code. When we discuss genes, we focus on biological neural net-
works. In the process, we learn about the type of information and the 
consequences of growth and self-assembly that define the network’s 
properties. These are the types of information that are typically left out 
in ANN design, and they may thus serve as a survey of what exactly is 
cut short in AI and why.

Seminar 3: From Randomness to Precision explores what happens 
when we add noise to algorithmic growth. Both an elementary set of 
rules for a one-dimensional cellular automaton or a genetic code will 
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deterministically produce identical results with every run in a precise 
computer simulation. But nature is not a precise computer simulation, 
or at least so we think. (Yes, the universe could be a big deterministic 
cellular automaton, but let’s not go there for now.) Biology is famously 
noisy. Noise can be annoying, and biological systems may often try to 
avoid it. But noise is also what creates a pool of variation for evolution 
to select from. From bacteria recognizing and moving towards sugar to 
the immune system recognizing and battling alien invaders, nature is 
full with beautifully robust systems that only work based on fundamen-
tal random processes that create a basis for selection. We will have some 
explaining to do, as we transition from the idea of simple rules that yet 
produce unpredictably complex outcomes on one hand to perfectly 
random behavior of individual components that yet produce com-
pletely predictable behavior on the other hand. Intuition may be of 
limited help here.

Awe and excitement about brain wiring mostly focuses on the exqui-
site synaptic specificity of neural circuitry that ensures function. As far 
as specific connectivity is absolutely required for precise circuit func-
tion, synaptic specificity has to be rigid. On the other hand, the brain 
develops with equally awe-inspiring plasticity and robustness based on 
variable neuronal choices and connections. In particular, neurons that 
find themselves in unexpected surroundings, be it through injury or a 
developmental inaccuracy or perturbation, will make unspecific syn-
apses with the wrong partners. In fact, neurons are so driven to make 
synapses that scientists have yet to find a mutation that would prevent 
them from doing so as long as they are able to grow axons and dendrites 
and contact each other. Neurons really want to make synapses. If the 
right partner can’t be found, they’ll do it with a wrong partner. If a 
wrong partner can’t be found, they’ll do it with themselves (so-called 
autapses). This is what I call the synaptic specificity paradox: How can 
synaptic specificity be sufficiently rigid and precise to ensure function, 
if individual neurons are happy to make unspecific synapses?

The answer is closely linked to algorithmic growth: promiscuous syn-
apse formation can be permissible, or even required, depending on 
when and where it occurs as part of the algorithm. For example, many 
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neurons have the capacity to initially form too many synapses, which 
contain little information. Through subsequent steps of the growth al-
gorithm, this pool of synapses will be pruned and refined, thereby in-
creasing the information content in the network. Rules for the weaken-
ing or strengthening of synapses are a core functional principle of all 
neural networks, both biological and artificial. This reminds us of brain 
function, learning and memory. But remarkably, neuronal activity can 
be part of the growth algorithm, long before there is even an opportu-
nity for meaningful environmental input or learning. I call this post-
specification, the specification of synapses late in the developmental al-
gorithm, following initially more promiscuous synapse formation. By 
contrast, synaptic pre-specification occurs when only certain neurons get 
to see each other in space and time during their period of synaptogenic 
competency, i.e., the time window when they can make synaptic con-
nections. If the patterns of the running algorithm restrict the synaptic 
partners that get to see each other, the problem of identifying the part-
ner is greatly facilitated. The more spatiotemporal positions pre-specify 
partnerships, the more promiscuous, random synapse formation is 
permissible.

Random processes therefore need not be an enemy of precision in 
neural networks. Instead, random processes are abundantly utilized 
during algorithmic growth of the brain, just as in so many other biologi-
cal processes. But random developmental processes do not necessarily 
produce variability in the outcome; they can also lead to almost per-
fectly precise synaptic connectivity patterns. And random developmen-
tal processes give rise to two of the most astonishing properties of bio-
logical brain wiring: flexibility and robustness. Connections not only 
change with experience, but also rewire in response to injury and devel-
opmental perturbation. ANNs also have some of these properties. And 
yet, historically, both neurobiology and AI had a rather strained rela-
tionship with randomness. Even today, most neurobiologists and ANN 
developers will consider noise as something to avoid, rather than as a 
design principle for a network. An understanding of the roles of noise 
will bring us closer to appreciating how to make networks flexible and 
robust in addition to making them with precision.
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Seminar 4: From Local Rules to Robustness brings us back to the 
essence of self-assembly: local interactions during algorithmic growth. 
In order for local interactions to flexibly react to changing environ-
ments, local agents must be able to make their own decisions, indepen
dent of, and unknowing of, the larger system they create. This is the 
concept of autonomous agents. If the individual players of a soccer 
game would not make their own decisions, the game would be boring. 
If the players would not follow a common set of rules, the game would 
fall apart. The local interactions, the players’ decisions and flexibility, 
make the game interesting (if this kind of game happens to be interesting 
to you) and robust. The outcome is unpredictable at the level of the in-
dividual game, but the average outcomes over seasons are remarkably 
predictable. Which of the two, the individual game or the average season, 
is more interesting is in the eye of the beholder. For biological systems 
the beholder is evolutionary selection. For example, whatever local mo-
lecular and cellular interactions lead to different fingerprints may leave 
the outcome unpredictable at the level of the individual thumb, but per-
fectly predictable and robust at the level of selectable functionality.

In neural networks, both development and function vitally depend 
on individual neurons behaving as autonomous agents. The growing tip 
of a neuron employs random exploration of its environment through 
filopodia, tiny fingerlike protrusions. The neuron must be allowed to 
individually and locally decide whether it likes something it senses on 
the left or on the right using these protrusions. Similarly, the ability to 
learn in both biological and artificial neural networks relies on indi-
vidual neurons, and individual synapses, to adapt their function. The 
concept of autonomous agents has made repeated stage appearances in 
AI. In all cases, the actions of autonomous agents only make sense in 
the context of a process that develops in time. The agents’ decisions and 
collective actions set the stage for higher order organization that devel-
ops step by step. They are part of self-assembly in space and time. And 
this brings us, at the end of session 1, back to the question of types of 
information. It is possible to describe, in arbitrary detail, the precise 
angles of the movements of every soccer player or a neuron’s growing 
protrusions. However, at what level of detail a situation must be described 
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in order to understand a distinct step of the underlying growth algo-
rithm is not an easy question to answer.

In the second session we approach this question by diving into the 
realities of players and rules during the self-assembly of the biological 
brain prior to learning. All three seminars in this session focus on those 
aspects of the neurobiological history and their outcomes that are criti-
cal from the perspective of information theory: When and where does 
the information get into the network? ANNs used in AI today do not 
encode much information prior to learning; they are engineered and 
switched on for training. The second session is therefore all about biol-
ogy, but with the goal to understand what it is exactly that ANNs are 
leaving out.

A powerful way to study brain development is experimental pertur-
bation through mutation of the genetic code. After all, evolution did it 
before: genetic changes that affect development result in changes to the 
brain. The evolutionary approach is based on trial and error and does 
not require a need to predict the outcome of a genetic change as long as 
it can be selected. Selection of heritable, meaningful changes are evolu-
tion’s way of reprogramming the brain. But what are these meaningful 
changes to the genome? Are there special genes for the brain and be
havior, or could any mutation in the genome help to reprogram the 
brain through information unfolding during development?

The second session starts with Seminar 5: From Molecular Mecha-
nisms to Evolutionary Programming, in which we will explore these 
questions by analyzing how mutations can reprogram animal behavior. 
We will approach the answer through a discussion of programming by 
evolution: If a mutation causes heritable, meaningful and selectable 
change, then evolution can use it to rewire and reprogram the network. 
For this to work, it is not necessary that the functional mechanism of 
the protein encoded by the mutated gene is in any intuitive or direct way 
related to connection specificity. Rather, the effect of a mutation has to 
be such that the developmental process, and the unfolding of informa-
tion that comes with it, reproducibly change the network. In this way, 
a behavioral predisposition can certainly be caused by a single mutation, 
yet there need not be a single “gene for that behavior.”



18  I n t r o du c t i o n

The fact that single mutations in the genome can reprogram animal 
behavior is well established. Pioneering experiments with fruit flies have 
surprised and enlightened this field for more than 50 years. Examples 
include mutants that affect courtship behavior and the internal clock 
that predictively guides behavior through the daily cycle of day and 
night. Importantly, the way such mutations were (and still are) found is 
based on accelerated evolution in the lab. The first step is to dramatically 
increase the occurrence of random mutations without any prediction 
as to what this might cause. The second steps is to let thousands of the 
randomly mutagenized animals develop. The third step is to take those 
flies that survived the high mutation rate and assay them for behavioral 
alterations. These forward genetic screens for behavioral mutants led to 
the successful identification of mutants with altered behavior; over the 
years, several genes harboring these mutations were discovered. Some 
of the best studied of these genes are those where a molecular function 
directly relates to the behavior. There are beautiful examples, but they 
may be the exceptions. Most mutations that modify animal behavior 
affect genes that function in surprising ways during developmental 
growth, often at many steps or in many different cells. Such mutations 
can lead to heritable, meaningful and selectable behavioral change, but 
not through specific molecular mechanisms that are related to the be
havior itself. Mutations may cause unpredictable developmental altera-
tions that nonetheless lead to reproducibly different brains based on 
changes in network development or function. Those are the mutations 
that served evolution in the slow, trial-and-error reprogramming of 
brains and their astonishing behavioral innate programs. There is no 
single gene solely responsible for the spider’s ability to weave a species-
specific web or the monarch butterfly’s ability to migrate a route of 
thousands of miles over a succession of generations. If our goal is to 
understand the programming of a neural network that accomplishes 
such feats, we must step beyond the idea of a single gene coding for a 
single behavior. We must learn how evolution reprograms the abilities 
of networks, including human intelligence.

Seminar 6: From Chemoaffinity to the Virtues of Permissiveness 
deals with the historical and ongoing quest of developmental 
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neurobiologists to understand underlying molecular mechanisms. The 
invariable hope is to draw direct lines from mutations to genes to the 
gene products’ molecular mechanisms in trying to decipher neural net-
work design. Neurobiologists prefer to characterize those genes whose 
gene products execute molecular mechanisms that make intuitive sense 
with respect to neuronal connectivity, hence the terms “guidance mol-
ecules” or “chemoattractants.” This is such a powerful idea and promi-
nent concept in developmental neuroscience that we need to discuss 
examples of such molecules and their roles during algorithmic growth 
in some detail.

In search of information encoding for brain wiring, the holy grail has 
been the search for mechanisms that instruct the neuron where to make 
a connection. The idea of instructive mechanisms contrast with permis-
sive mechanisms, which may be necessary to allow growth, but do not 
guide it actively. Oddly, the most widely used attractant for the guidance 
of growing neuronal protrusions in experimental culture is nerve 
growth factor—NGF. This is a molecule that the neuron needs to grow. 
By providing NGF only on the left, but not on the right, we can make 
neurons grow robustly to the left. This is clearly instructive. But wait, it’s 
a growth factor! The neuron simply will not grow where it is not pre
sent. That’s rather permissive. Obviously, a permissive mechanism (like 
a growth factor) can contribute to the neuron’s choice where to grow. 
From an information-theoretical perspective, the information for the 
directionality must have previously been provided in the location of 
the growth factor, which may lay out an entire path. The factor itself 
may be permissive, but the path it marks is instructive. Which brings us 
to the information needed to mark the path—and that brings us back 
to algorithmic growth where, step by step, paths may be laid out through 
the interactions of many autonomous agents, including the growing 
neuron itself. The path may not exist either at the beginning or the end 
of the neuron’s journey, but results from the interactions of the neuron 
with its surroundings as it grows. Some molecules on neuronal and non-
neuronal surfaces convey local and temporally restricted attractive or 
repulsive signals. Yet other molecular mechanisms alter the propensity 
of the neuron to further grow extensions at all or gain or lose the 
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capacity to make synapses, or alter its mechanical interactions with the 
surroundings. In the context of algorithmic growth, the composite of 
all these factors determines the rules for each step in the algorithm. A 
genetic instruction need not be attached to a molecular mechanism of 
a single gene product. Instead, composite instructions are fleeting states 
of the system defined by the molecular and cellular contexts that hap-
pen to emerge at any given time and place during algorithmic growth.

Seminar 7: From Genes to Cells to Circuits is all about levels, from 
molecules to neural circuits, as we move towards the function of neu-
rons in the network. How is it that in the field today the study of neural 
circuit function is obviously a question to be studied at the level of cells, 
while the study of the same neural circuit’s assembly is obviously a ques-
tion to be studied at the level of molecules? This brings us back to the 
type of information encoded in the genome and its relation to processes 
at other levels. Single genes usually do not describe processes at higher 
levels, even though a specific mutation in a single gene can heritably and 
meaningfully change that process.

The levels problem is particularly pertinent when we are trying to 
span all the levels from the immediate effects of a mutation in the ge-
nome to a behavioral trait. Genome-wide association studies try to es-
tablish probabilities for a given genomic variation to be associated with 
a specific behavior. The probabilistic nature of the data and the difficulty 
to establish causality in such experiments is directly linked to the nature 
of algorithmically unfolding information.

Neuronal function is the level at which grown biological networks 
and engineered artificial networks meet. But in the biological template 
neuronal activity can in fact be part of the genetically encoded growth 
algorithm. Neuronal activity is part of information unfolding. As we 
have already discussed in the context of synaptic post-specification, ac-
tivity is known to kick in before there is any environmental input. Cor-
related neuronal activity is one of the ingredients of algorithmic growth 
that require a random process to function robustly. It also provides a 
bridge to neural network function and AI.

The third session is all about transitions. First, there is the transition 
from development to function in neural networks. Next, the transition 
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from the naïve to the trained and functional network, and with it the 
transition from biological to artificial networks. The transition from dull 
to intelligent. And then there is the transition from separate biological 
and artificial networks to their interactive future. In all cases, the idea of 
information unfolding in a time- and energy-consuming manner serves 
as framework to assess possibilities and limitations.

In Seminar 8: From Development to Function we explore in what 
ways developmental self-assembly is relevant for network function. We 
will start with the burden of evolution and development for biological 
brains. Evolution had to work with the outputs of previous states, no 
matter how inappropriate they may have been when selection pressures 
changed. Evolutionary change happens in steps, however small, in a 
necessarily sequential manner. And the process takes, of course, time 
and energy. As a result, brains feature some remarkable and apparently 
nonsensical oddities that only make sense in light of development—
and the way development was slowly shaped over millennia of evolu-
tionary modification.

These kinds of biological oddities, and messiness, led computer en-
thusiasts who were trying to develop AI in the ’80s to take pride in ig-
noring what their neuroscience colleagues were doing. “We can engi-
neer things much better,” they may have thought, so why learn about 
the nonsensical solutions biology had to put up with?

And yet, if we avoid the burden of developmental history by starting 
with a randomly connected network prior to learning, the first problem 
we are confronted with is the time and energy it takes to train. And 
training, again, is a stepwise, time- and energy-consuming process. The 
order of input matters. And the ultimate function of the network is 
made possible, and burdened, by its training history. We will explore 
how information is stored in biological and artificial networks. How 
does the neural network save a four-digit PIN? The amount of bits 
needed to store this information is clearly defined in computational 
terms. Yet, neural networks save and retrieve this information flexibly 
and robustly, even if random neurons in the network drop out. In addi-
tion, the biological network does not have a separate training and func-
tion period. Learning is inseparable from using the network; storing is 
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inseparable from retrieving information. And again, we meet an evolu-
tionary principle and the power of sequences in time. Many bits of in-
formation in the biological network—memories—can only be accessed 
by going through a sequence in time. Try saying your phone number in 
reverse order. How is this information content programmed, stored and 
retrieved?

If self-assembly is any guide, then information has to enter by chang-
ing the sequential, auto-associative network, which means it changes 
algorithmic information. Maybe memories should not be understood 
as stored entities at all, but rather as algorithmic rules sufficient to re
create them with a certain robustness, flexibility and variability. This 
bring us back to the cellular automaton that does not store the memory 
of the pattern at iteration 1,000, but instead the information to recreate 
this state. We will explore to what extent this process resembles algo-
rithmic growth, and how it transitions from development to function.

In Seminar 9: From Algorithmic Growth to Artificial Intelli-
gence we focus on artificial neural networks and their relationship to 
self-organization and algorithmic growth. We will finally also discuss 
definitions of self-assembly and intelligence. Most ANNs are based on the 
idea of an engineered design, flipping the on switch and training the 
network. By contrast, in biological networks the information encoding 
goes hand in hand with the development of the brain. The brains of a 
newborn, a toddler or a 10-year-old are clearly recognizable for their 
developmental stages morphologically, functionally and by their behav-
ioral output. The question is whether a tedious, years-long process of 
self-assembly is a desirable step to create an artificially intelligent sys-
tem. More specifically, is there ever a need to grow a neural network, or 
is training a predesigned network like in deep learning sufficient, maybe 
equivalent, or even superior?

A common idea in ANN development is that the product of develop-
ment is only hardware infrastructure. A lot of biological idiosyncrasies 
can be congealed in a single parameter, like the synaptic weight. These 
are shortcuts that have served ANNs well for many years and many 
tasks. Yet, a key question associated with this reduction is how it may 
limit learning. In biology, the single parameter contains none of the 
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parameter space necessary for evolutionary programming to modify an 
algorithmically growing network. Based on these considerations, we 
dive deeper into the way engineered ANNs do, and do not, function.

Finally, in Seminar 10: From Cognitive Bias to Whole Brain Emu-
lation, we will discuss the consequences of algorithmic information 
storage in neural network for the function and interaction of biological 
and artificial networks. We will start with a discussion of heuristics, the 
probabilistic nature of any information in the network. Neural network 
function is less the computing of input in conjunction with stored data 
based on logical operations, and more a process of probabilistic align-
ment and selection of patterns based on previous experiences. Both bio-
logical and artificial networks are biased by their experience. An ANN 
that has only been trained with numbers 0 to 9 will interpret the picture 
of an elephant as a number from 0 to 9.

We are all well-trained neural networks, but our brains come with a 
history track, as do ANNs. New information is not stored independent 
of other safely stored information content. Instead, any new bit of infor-
mation is processed in the context of the entire history of the network. 
The same experience means something different for every individual. 
And the better the information is aligned with previous experiences, the 
easier it is for the network to “believe” the new arrival. This simple 
thought has some interesting consequences for the concept of cognitive 
bias: in a network built on algorithmic growth, bias is a feature, not a 
bug of the system, whether we like it or not.

Finally, if information is stored as an algorithmic process that re-
quires time and energy, can it be retrieved and transferred in toto? That 
is, what does the self-assembling brain teach us about the potential to 
upload or download our brains? If information is not stored in any dedi-
cated bits, but as algorithmic rules sufficient to recreate that informa-
tion, then bandwidth of connection may not be the biggest challenge 
for data transfer. In the development of AI, we continue the debate 
about how similar artificial systems should be to the biological analog. 
But if we want to extend or copy our own brains, a clearer understand-
ing of how information is actually stored or retrieved is needed. We 
encounter the levels problem again. To generate artificial human 
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intelligence, what parts of the algorithmic growth of the human brain 
can be cut short? In the design of ANNs, shortcuts are useful to shorten 
computation time by throwing out irrelevant detail. This approach 
works, as long as we do not need or want to simulate, say, spatially and 
temporally restricted modulation of many synapses through diffusible 
neuromodulators. But if we want to simulate human intelligence, don’t 
we need the neuromodulators, since circuit function requires synaptic 
changes that depend on the neuromodulatory context? We come to the 
question of the AI we want to generate. The shortcuts we choose in the 
development of artificially intelligent systems define what intelligence 
we get.

On Common Ground

This book was written with readers in mind that are interested in devel-
opmental biology or AI alike. However, those deeply immersed in either 
field will find much that is treated too superficially or from an unfamiliar 
perspective. I did not attempt to provide objective overviews over either 
field’s history or main achievements; many great works already exist on 
both accounts and are referenced throughout the seminars. My goal was 
to identify common ground, with a focus on underlying questions of 
information encoding. My hope is that a reader with deeper knowledge 
in either topic will still find reason to smile when trying to think what 
it may read like for someone in the other field.

I am convinced that all concepts presented here have been part of 
many ideas in different contexts before. Algorithmic growth in particu
lar is not a new concept. It is implicit in all developmental processes and 
any attempt to understand how the genome encodes growing things. 
Yet, intuitive and mechanistic thinking in either field rarely considers 
the implications of unpredictable information unfolding. Those familiar 
with self-organizing systems may find most concepts presented here 
oversimplified, or my definition of self-assembly (seminar 9) wanting. 
Similarly, developmental neurobiologists are likely to find much that 
could have been added from the boundless list and beauty of molecular 
mechanisms underlying neural network development and function. But 



I n t r o du c t i o n   25

common ground lies more in the motivation, the desire to understand 
how neural networks grow smart, than in the details of the individual 
disciplines. On this account, I hope the historical perspectives pre-
sented throughout the seminars may provide helpful parallels.

I am aware that many ALife and AI researchers may feel that reading 
a book written by a neurobiologist is not likely to be helpful for their 
work, both for reasons of perspective and the inevitable focus on un-
helpful biological “messiness.” Similarly, some developmental neurobi-
ologists may currently read a book or two on the application of deep 
learning to analyze their data, rather than to learn from the AI commu-
nity about how “real” brains come to be. I started this project wishing 
there were a book that both would enjoy having a look at, or at least get 
sufficiently upset about to trigger discussion between the fields.
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