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Out into Space

We live in a time full of remarkable astronomical discoveries. Scarcely 
a week goes by without media reports of some interesting new celestial 
object, be it an Earth-like planet orbiting a nearby star, an object of 
unknown origin arriving in the solar system or, as discussed in this 
book, the most distant known galaxy seen as it would have appeared 
when its light first set out for Earth billions of years ago. The universe 
fascinates many of us, and increasingly so as the pace of discovery ac-
celerates. Unlike some other scientific disciplines, which require the 
understanding of difficult concepts with unfamiliar terminologies, as-
tronomy has the advantage that everyone can understand the fascina-
tion of exploring outer space and discovering what’s out there. Who 
hasn’t, at one time or another, pondered such fundamental questions 
as, are we alone in the universe? Where did the world around us and the 
worlds beyond us come from? What does the future hold for the uni-
verse and our place within it? And what can we learn from gazing bil-
lions of years into its past?

My fascination with astronomy dates from childhood. When I was 
6 years old, I visited the public library in the small coastal town of 
Colwyn Bay in North Wales, where I was born and grew up. One day 
I found a book in the children’s section that set me on a career path of five 
decades as a professional astronomer. Exactly why I picked up this book 
is unclear to me now. It was a little blue book entitled Out into Space, 
with no striking illustrations on its cover or inside. It describes the fic-
tional adventures of a young brother and sister who go to stay with their 
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eccentric Uncle Richard (!), an astronomer with a telescope in his back 
garden. To this day I remember the chapter in which Uncle Richard 
persuades his niece and nephew to get up at six in the morning to ob-
serve the planet Mercury through his telescope. Gazing at Mercury, the 
children are fascinated to observe it as a small pinkish crescent, and they 
are struck by how remote it seems.

The book was written by (later Sir) Patrick Moore (1923–2012), Brit-
ain’s most famous amateur astronomer and presenter of the BBC’s The 
Sky at Night—a monthly documentary programme on astronomy. He 
presented the programme from 1957 until a posthumous broadcast in 
2013, making it the longest-running series with the same host in televi
sion history. I was a guest on this programme twice in the 1990s, and, 
during my first appearance, I mentioned how Moore’s little blue book 
had ignited my youthful interest in astronomy. To my surprise and de-
light, he subsequently sent me a signed version. It appears to have been 
his personal copy (this time with an illustrated cover). Rereading the 
book more than six decades after that trip to the library, I find it still 
evokes the childhood wonder of exploring the universe (see plate 1).

Moore’s book set me on a course of reading everything I could find 
about astronomy. Public interest in the subject certainly grew after So-
viet cosmonaut Yuri Gagarin became the first human to ride a rocket 
into outer space and make one full orbit of the Earth in 1961. I was in 
year six of primary school (the British equivalent of the American fifth 
grade) at the time, and I was asked by my teacher to describe the impor-
tance of this achievement to the class. By this time most of my class-
mates knew that I wanted to become an astronomer. The next logical 
step was to get hold of a telescope. Here I got a bit of help from the 
father of a friend. He generously gave me a small 4-inch reflecting mir-
ror, which I then began to figure out how to fashion into a telescope. 
Acting on the advice of an older cousin, I managed to find a cardboard 
tube of approximately the right dimensions in a carpet shop and var-
nished it with a paint brush. With an eyepiece from a pair of marine 
binoculars that my seafaring father had acquired during his career as a 
captain in the British Merchant Navy, I now had the optical compo-
nents. Then came the challenge of cutting the carboard tube to the right 
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length, while keeping the mirror and eyepiece installed and pointing at 
the moon. This was more than a little nerve-wracking lest I cut the tube 
too short, in which case the telescope would never be in focus!

Finally I was ready to set up an observation station in the back gar-
den. Even though I had a reasonably good idea of what to expect after 
all my reading, I was still unprepared for my first clear sight of the mag-
nified night sky. I was immediately struck by the various colours of 
bright stars (indicative of their different temperatures), and, on subse-
quent nights, I followed the orbits of Jupiter’s four largest moons and 
inspected craters and mountains on our own moon. These were exciting 
times for a young boy. I found I couldn’t wait for it to get dark: there was 
so much to explore. But Wales is famous for its rainy climate, and, re-
gardless, it is often overcast. The uncooperative weather, along with the 
interfering glare of nearby street lights and the limitations of my primi-
tive telescope, which could not track the movement of stars across the 
sky, led to much frustration.

Today, youngsters with a keen interest in astronomy are likely to have 
more opportunities for encouragement and practical support. Numer-
ous sites on the internet provide information about purchasing small 
telescopes and offer advice about assembling them; mobile-phone ap-
plications make it possible to view the night sky’s appearance at any 
time and place across the globe. Local astronomical societies host view-
ing nights and offer talks and even workshops with both professional 
and experienced amateur astronomers.

North Wales in the early 1960s offered no such opportunities. My 
high school had no scientific societies, and even my parents, who gener-
ally kept close track of my educational progress and stressed the impor-
tance of academic success, rarely came outside to share my enthusiasm. 
Books from the public library and Patrick Moore’s television pro-
gramme were my only sources of information. Fortunately, Colwyn 
Bay’s library had an excellent collection of quite advanced astronomy 
books, although my junior member’s ticket wouldn’t let me borrow 
books from the adult section. I had to be resourceful. From careful ob-
servations over several visits, I identified a librarian who appeared not 
to be aware of the difference between books in the children’s and adults’ 
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sections. One afternoon I waited patiently until it was her turn at the 
desk and promptly presented her with a selection of astronomy books 
from the adult section to check out. This strategy worked well until one 
memorable day when, just as I marched up to the librarian in question, 
she was relieved of duty and replaced by another, who told me smugly, 
“You can’t take out these books from the adult section on a junior 
ticket!” Despite that momentary setback, I eventually managed to ex-
tract and read most of the astronomy books in the adult section. Years 
later, I learned that the Colwyn Bay library had been established in 1904 
with a benefaction of several thousand pounds from Andrew Carnegie, 
the wealthy Scottish American industrialist and philanthropist who 
played a major role in the development of Californian astronomy.1

Having exhausted the local library’s resources, I began to look else-
where for guidance and advice on how to develop my interest in 
astronomy. At about the age of 15, I joined the British Astronomical 
Association (BAA), which held regular meetings and organised amateur 
activities that involved coordinated telescope observations of the sun, 
planets, variable stars, comets, and so on. Unfortunately, all these events 
were based in or around London. It was impractical to hope to get in-
volved at a distance of nearly 250 miles away in the wilds of North Wales. 
I did send for, and received, a BAA brochure entitled “Astronomy as a 
Career” (price 1 shilling) but found it painted a gloomy picture, warning 
of years of study and many hurdles to overcome before I could “enter 
the holy of holies: the dome of a large telescope for a night’s 
observations.”2 Although I later found out that some of this advice was 
true (I didn’t get to use one of the world’s largest telescopes until more 
than a decade later), these were hardly words to encourage and inspire 
a 15-year-old.

The BAA brochure did offer me some practical and, as it turned out, 
highly useful advice. Mixed in with the “holy of holies” verbiage was the 
hard-headed admonition that modern astronomy is a rigorous and 

1. ​Colwyn Bay: Its Origin and Growth, Norman Tucker (Colwyn Bay Borough Council 1953), 
p214.

2. ​Astronomy as a Career, E. A. Beet and R. H. Garstang (British Astronomical Association 
1962), p5.
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challenging physical science. To become a professional astronomer, a 
fascination with discovering the night sky, rewarding and exciting 
though that activity can be, is insufficient. A thorough grasp of mathe
matics and physics is essential. Indeed, in my career, I have met more 
than a few professional astronomers who are completely unfamiliar 
with the constellations, unable to name any bright star (other than the 
sun!), and generally content just to grapple with equations and program 
supercomputers.

In this regard I was fortunate in high school to have a dedicated phys-
ics teacher, Mr. E.O.P. Williams, who introduced me to the magic of 
applying the laws of physics across a wide range of everyday life. I was 
captivated by how familiar words such as “force,” “energy,” and “power” 
acquired tangible physical meaning, and by how physical laws could be 
used to predict the behaviour of objects in the real world. However, the 
headmaster of my high school was quite concerned when I told him 
I wanted to become an astronomer. A strict Welshman, unpopular even 
with his staff and willing to use corporal punishment on his students 
(including me), he tried to discourage me. He claimed he knew some-
one working at the Royal Greenwich Observatory who was “going no-
where fast.” On the home front, my mother nurtured hopes that I would 
become a medical doctor or banker. Fortunately, she eventually recog-
nised my unwavering determination and came around to accept that I 
was going to be an astronomer.

Teenage life was not, of course, all about academic study and prepara-
tions for a future career. The year was 1966, and a cultural revolution was 
under way in Britain, led by the Beatles and Rolling Stones, whose influ-
ence on music, fashion, and acceptable behaviour permeated every facet 
of adolescent life. Like teenage boys throughout Britain and the United 
States, my school friends and I formed a rock band called The Omegas 
and had some fun times performing at local venues. Not surprisingly, 
my burgeoning distaste for authority led to much friction with the head-
master, who had made known to all pupils his aversion to long hair. The 
school rule was that a boy’s hair should not touch his collar. To this day 
I recall encountering the headmaster in the school corridor and rapidly 
assuming a posture with head bent forward and collar rolled back to be 
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compliant. In my final 2 years of high school, known in Britain as the 
sixth form, students were usually appointed as “prefects,” a supposed 
distinction that gave them authority to maintain order amongst the 
younger boys. My fellow Omegas and I unilaterally declined this respon-
sibility, in conformity with our rebellion against any level of authority! 
One of my friends, who was skilled at restoring old automobiles, bought 
an enormous Mark 7 Jaguar for five pounds, in which he and I regularly 
skipped classes, driving out of the school car park at high speed in this 
huge green car. Of course, our “bunking” eventually got noticed and led 
to the inevitable showdown with the headmaster.

This new-found liberation notwithstanding, when the time came to 
apply to university, my career ambitions severely limited my options. In 
1960s Britain, the procedure for college-bound students was to priori-
tise six university choices on an application form submitted to a central-
ised admissions authority. My applications listed just three, the only 
institutions in the United Kingdom at that time to offer astronomy as 
an undergraduate major. I simply left the other boxes of the application 
form blank. Although I was warned that this was a risky strategy, it cer-
tainly indicated I knew what I wanted to study. University College Lon-
don (UCL) was the most appealing choice and ranked number one, and 
I was fortunate to be admitted as a first-year student in October 1968.

Life in London had many attractions, one of which was the opportu-
nity to meet and interact with the professional astronomical community 
in the nation’s capital. Undergraduates in UCL’s astronomy programme 
were encouraged to attend monthly meetings of the Royal Astronomi-
cal Society (RAS), where professional astronomers gathered once a 
month in Burlington House, Piccadilly. However, this was “Swinging 
London” in the late 1960s at the height of the era of hippies, psychedelic 
drugs, and rock music. Whereas some university lecturers had adapted 
to teaching long-haired students, my reaction to seeing professional as-
tronomers at RAS meetings for the first time was that they looked as-
tonishingly dull and old-fashioned. Their tweed suits, ties, and, to my 
mind, excessively formal and humourless demeanour did nothing to 
enliven the atmosphere in meetings that I found to be unbearably stuffy. 
Did I really want to spend my life working with these people?
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Inevitably, almost all participants were male, and their talks mostly 
revolved around the life cycle of stars or, more appealing to me, theories 
of cosmology—the nature and evolution of the universe on large scales. 
If, occasionally, someone presented results based on actual observations 
with a telescope, it was usually on what I considered to be a mundane 
topic, such as the varying light output of an individual star. Young as 
I was, I began to sense a disconnect in Britain’s professional community 
between the theorists, aspiring to address the big astrophysical ques-
tions, and the observers, who, it seemed to me, were content to study 
minutiae.

While I pondered my future prospects, I was learning the techniques 
of observing. UCL has a well-equipped teaching observatory at Mill 
Hill, a leafy North London suburb, where we undertook observational 
projects once a week (plate 2). Although the London skies were as 
cloudy as the Welsh ones much of the time, we students could still un-
dertake “cloudy night experiments” based on analyses of photographic 
plates previously taken by cameras attached to the Mill Hill telescopes. 
But when the weather was clear, taking and analysing my own photo
graphs was inspirational! The largest telescope available for students 
was—and still is—the Radcliffe 24-inch (60 cm) refractor. I used it to 
photograph our Milky Way galaxy’s nearest large neighbour, the An-
dromeda spiral (Messier 31), and to study the outermost layers of 
the sun during a partial solar eclipse (plate 2). Undertaking observa-
tions at Mill Hill was addictive. Although cosmology continued to have 
its attractions, I had no doubt that my future lay with observational 
astronomy.

I began my undergraduate studies at a time when astronomers were 
beginning to exploit wavelengths beyond the familiar optical region, 
which had been the sole province of telescopes back to Galileo. In 1800 
William Herschel, one of Britain’s most famous astronomers, discov-
ered in a laboratory experiment that there were invisible “calorific rays” 
that could be reflected and refracted just like optical light. This infrared 
radiation has a wavelength longer than that of visible light and is emitted 
from objects cooler than the sun. Around the same time, Johann Ritter, 
a German chemist, conducted experiments with chemicals that reacted 
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to sunlight and found “chemical rays” that extended to shorter wave-
lengths, which we now know as the ultraviolet. These pioneering experi-
ments eventually led to the far-reaching discovery that celestial objects 
radiate across a much wider range of wavelengths than the narrow band 
accessible to our human eyes, from X-rays at the shortest wavelengths 
to radio waves at the longest.

In the 1960s, radio astronomy had emerged as a particularly active 
research field in the United Kingdom, as the immensely successful de-
ployment of radar in wartime was adapted to peaceful uses, including 
studies of the cosmos. Radio telescopes had been built at Jodrell Bank, 
near Manchester, and at Cambridge University. I certainly heard a lot 
about their observations as an undergraduate, including the discovery 
of pulsars by Antony Hewish (1924–2021) and his graduate student Joc-
elyn Bell. Pulsars, the remnants of massive collapsed stars, are rapidly 
rotating compact objects that emit regular pulses of radio waves from 
their magnetic poles, rather like a celestial lighthouse. However, unlike 
optical and radio studies, making successful observations across much 
of the electromagnetic spectrum necessitates getting above the Earth’s 
atmosphere since, fortunately for the human race, harmful X-rays and 
ultraviolet rays are absorbed by it. The same is largely true of the more 
benign infrared radiation. The 1960s saw the launch of modest tele-
scopes aboard both high-altitude balloons and rockets to explore the 
sky at these new wavelengths for the first time. Perhaps because I was 
so inspired by the use of the optical facilities at Mill Hill, it never oc-
curred to me to move into these new areas. There was enough excite-
ment with traditional optical astronomy.

In my final undergraduate year, astronomy students had to produce 
a short dissertation on a research topic of their own choice, the idea 
being to give students a feel for what it is like to conduct original re-
search. For my topic I chose quasar absorption lines, which offered an 
ingenious new means of studying the universe by analysing the nature 
of light emanating from its most distant objects. I was intrigued by the 
idea that one could study phenomena at enormous distances, well be-
yond the confines of our own Milky Way galaxy, in what astronomers 
called the “extragalactic universe.”
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This investigation opened up a whole new world for me. Quasars—
short for quasi-stellar objects, or QSOs—were discovered in the early 
1960s. Their large recessional velocities indicated they were being seen 
at enormous distances (more on this in chapters 2 and 3). Although 
their precise nature remained a mystery for many years, we now know 
that these exotic objects are spectacularly luminous galaxies whose nu-
clei harbour massive black holes. With masses often a billion times or 
more that of the sun, these heavyweight black holes are capable of ac-
creting large amounts of gaseous matter from the rest of the galaxy 
through their dominant gravitational influence. As this gas spirals in-
wards, it releases copious amounts of radiation, which can be used to 
probe the nature of the intergalactic medium—the tenuous clouds of 
hydrogen gas and other material that fill the cosmos between galaxies.

How does this work? As the light from a distant quasar makes its way 
to a telescope, it intercepts clouds of intergalactic hydrogen. Although 
these clouds do not emit their own light and are, therefore, from the 
astronomer’s perspective “dark,” they are capable of absorbing portions 
of the quasar light at a particular wavelength through atomic interac-
tions with the light particles (photons). A spectrum of the quasar re-
veals these absorption signals as cosmic “fingerprints” that contain valu-
able information about the properties of these clouds, including their 
chemical composition and distribution in space. Through this type of 
detective work, remote and otherwise inscrutable tracts of the universe 
become accessible to analysis. One can think of the quasar in some 
sense as a distant car headlight that is bright enough to reveal otherwise 
invisible wisps of mist rolling along the road towards you.

Atomic spectroscopy was taught at UCL by a talented and disarm-
ingly modest assistant professor (a “lecturer,” in UK academic parlance) 
named Bill Somerville. In his precise and soft-spoken accent (a curious 
blend of Scottish and Irish), he explained the mathematics of this phe-
nomenally powerful tool of the astronomer. In an instrument called a 
spectrograph, through the application of a prism or diffraction grating, 
the light from a celestial object can be dispersed into its constituent 
wavelengths. This “spectrum” has a much higher fidelity than the co-
lours visible in a rainbow and can reveal a wealth of information about 
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the chemical and physical make-up of stars, galaxies, and the intergalac-
tic medium. My introduction to spectroscopy’s potential for probing 
the far reaches of the universe left an impression not unlike my earliest 
stargazing experiences, except here, I realised, was a tool far more for-
midable and sophisticated than the primitive backyard telescope that 
first introduced me to the night sky.

I spent nearly all my spare time poring over the latest astronomical 
journals in the polished wood surroundings of UCL’s main library, im-
mersing myself in this fascinating new topic. The key question for as-
tronomers, and the topic of my project, was, exactly where was this 
absorption in the quasar light occurring? Was it happening in the gas-
eous clouds in the immediate vicinity of quasars or in the vast interga-
lactic spaces in between galaxies? Today we know that the answer is the 
latter, but that was far from clear at the time. Some astronomers even 
questioned whether quasars were truly energy-emitting sources at great 
distances; conceivably, they argued, quasars were nearby sources ex-
pelled at high velocity from our own Milky Way.

I was discovering a fascinating topic at the frontier of knowledge. 
None of my UCL lecturers seemed familiar with my topic of research, 
and yet the pace of discovery was rapid; every new issue of the Astro-
physical Journal, a premier research publication in astrophysics, con-
tained articles with new data. Significantly, the progress was almost 
entirely observational. Without exception, the quasar spectra came 
from telescopes in the United States, most notably from the renowned 
instrument where quasars were first discovered—the 200-inch Hale 
Telescope on Mount Palomar near San Diego, California. Although I 
found some theoretical papers on the topic authored by UK astrono-
mers, they were primarily concerned with interpreting the data taken 
by their American counterparts This dichotomy between British and 
American astronomers reflected the simple fact that without access to 
their own large telescope, British astronomers could not lead observa-
tional campaigns at the frontier of knowledge such as those that in-
spired my undergraduate dissertation on quasar absorption lines.

How could this situation, so detrimental to British astronomy, have 
arisen? The story dates back to the late 1920s, when the giant 200-inch 
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telescope at Palomar was conceived by the visionary solar astronomer 
and indefatigable fundraiser George Ellery Hale, whose role in estab-
lishing Southern California’s Mount Wilson Observatory and co-
founding the California Institute of Technology in the early part of the 
twentieth century would greatly influence the course of American sci-
ence. Following its completion in 1948, the Hale Telescope (named for 
its originator) reigned as the world’s largest and most powerful optical 
telescope for the next four decades. It is no exaggeration to say it domi-
nated the field of observational astronomy (chapter 3).

In 1946, in recognition of the 300th anniversary of Isaac Newton’s 
birth, the Royal Society of London announced plans to fund a 98-inch 
telescope, a facility that would have seven times the light-gathering power 
of Britain’s largest telescope at the time. This term refers to an optical 
telescope’s capacity for collecting photons. The larger the area of the 
telescope’s primary mirror, the more photons it is capable of accumulat-
ing. The hope was that this Isaac Newton Telescope (INT) would go 
some way towards rectifying the depressing fact that, as far as optical 
astronomy was concerned, US astronomers were making nearly all the 
observational discoveries. Indeed, I later discovered many of those “US 
astronomers,” including the ones pioneering the study of quasar spec-
troscopy, were like myself born and educated in Britain. They had emi-
grated to the United States when they realised there were no profes-
sional prospects for them in their native country.

It was agreed that the INT would be operated and maintained by staff 
at the Royal Greenwich Observatory (RGO). Astonishingly, by the late 
1950s, more than 10 years after it was first envisioned, there had been 
little progress in constructing the telescope, other than acquiring a free 
mirror blank (i.e., unpolished glass) originally intended for a telescope 
in Michigan that was never built. Following the appointment in 1956 of 
a new energetic Astronomer Royal, Sir Richard van der Riet Woolley 
(1906–1986), construction eventually progressed. However, soon after, 
the bewildering and fateful decision was made to locate the new tele-
scope alongside the RGO, which had recently been moved from Lon-
don to Herstmonceux Castle in Sussex (plate 3). Apparently the prox-
imity of RGO staff to the telescope was a more important consideration 
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than avoiding the infamous English weather. Although some had argued 
that Sussex was the sunniest part of England, they failed to notice that 
sea mist regularly rolled in from the coast at night. These problems im-
mediately became apparent upon the telescope’s completion in 1965 and 
its subsequent opening in a ceremony with Queen Elizabeth II. Plans 
to have Her Majesty view the planet Saturn and its regal rings on that 
occasion had to be scrapped because it was raining. This did not augur 
well for the revival of British observational astronomy!

As a result of its poor location, the INT at Herstmonceux was not a 
great success. Indeed, I wasn’t even aware of its existence until the early 
1970s, by which time there were serious discussions about moving it. 
Ultimately, under pressure from the British astronomical community, 
and in a remarkable admission of failure, the INT was disassembled, 
transported across the sea, and then reassembled, “brick by brick,” as it 
were, on the island of La Palma in the Canaries in 1979. In the early 1980s 
I was appointed to commission two new instruments on the relocated 
telescope (see chapter 5).

Such was the state of UK observational astronomy after I graduated 
from UCL and began a PhD in astrophysics at Oxford in 1971. My UCL 
research project had definitely fired up my enthusiasm for observations 
of distant extragalactic sources, but where would I get the relevant data 
to continue such studies? Oxford’s only extragalactic astronomer, John 
Peach, was no longer taking graduate students for exactly this reason. 
Instead, for my PhD thesis work, I was redirected to a project research-
ing the atmospheres of the sun and a bright star, Arcturus, that was 
within reach of the smaller telescopes to which Oxford had access. Brit-
ain was continuing to produce talented astronomers and theoretical 
research was progressing well, but, for the foreseeable future, those 
seeking observational data for world-class projects would have to 
emigrate to the United States. There was, seemingly, nowhere else for 
them to go.
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