
Contents

1 Introduction 1
1.1 Motivation 1
1.2 Our main theorems 2
1.3 (ϕ,Γ)-modules with coefficients 4
1.4 Families of extensions 5
1.5 Crystalline lifts 6
1.6 Crystalline and semistable moduli stacks 9
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Chapter One

Introduction

In this book we construct moduli stacks of étale (ϕ,Γ)-modules (projective, of
some fixed rank, and with coefficients in p-adically complete rings), and establish
some of their basic properties. We also present some first applications of this
construction to the theory of Galois representations.

1.1 MOTIVATION

Mazur’s theory of deformations of Galois representations [Maz89] is modeled on
the geometric study of infinitesimal neighborhoods of points in moduli spaces
via formal deformation theory. In the mid-2000s, Kisin suggested that some
kind of moduli spaces of local Galois representations should exist; that is, there
should be formal algebraic stacks over Zp whose closed points correspond to
representations ρ : GK→GLd(Fp), and whose versal rings at such points should
recover appropriate Galois deformation rings. This expectation is borne out
by the results of this book. (In fact, Kisin was motivated by calculations of
crystalline deformation rings for GL2(Qp) that had been carried out by Berger–
Breuil using the p-adic local Langlands correspondence, and suggested that the
versal rings should give crystalline deformation rings. Thus his suggestion is
realized by the stacks X crys,λ

d of Theorem 1.2.4 below.)
A natural way to construct such a stack would be to consider a literal moduli

stack of continuous representations ρ : GK→GLd(A), for K a p-adic field and A
a p-adically complete Zp-algebra; indeed such stacks were constructed by Carl
Wang-Erickson [WE18]. However, the stacks constructed in this way are less
“global” than one would wish, and in particular the corresponding families of
mod p representations ρ : GK→GLd(Fp) have constant semisimplification.

In this book, we instead consider moduli stacks of étale (ϕ,Γ)-modules. These
contain Wang-Erickson’s stacks as substacks, and coincide with them on the level
of Fp-points, but their geometry is quite different; in particular, we see much
larger families, exhibiting some unexpected features (for example, irreducible
representations arising as limits of reducible representations). The relationship
between the theory and constructions that we develop here and the usual for-
mal deformation theory of Galois representations, is the same as that between
the theory of moduli spaces of algebraic varieties and the formal deformation
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theory of algebraic varieties: the latter gives valuable local information about
the former, but moduli spaces, when they can be constructed, capture global
aspects of the situation inaccessible to the purely infinitesimal tools of formal
deformation theory.

1.2 OUR MAIN THEOREMS

Our goal in this book is to construct, and establish, the basic properties of
moduli stacks of étale (ϕ,Γ)-modules. More precisely, if we fix a finite extension
K of Qp, and a non-negative integer d (the rank), then we let Xd denote the
category fibred in groupoids over Spf Zp whose groupoid of A-valued points,
for any p-adically complete Zp-algebra A, is equal to the groupoid of rank d
projective étale (ϕ,Γ)-modules with A-coefficients. (See Section 1.3 below for a
definition of these.) Our first main theorem is the following. (See Corollary 5.5.18
and Theorem 6.5.1.)

1.2.1 Theorem. The category fibred in groupoids Xd is a Noetherian formal alge-
braic stack. Its underlying reduced substack Xd,red (which is an algebraic stack)
is of finite type over Fp, and is equidimensional of dimension [K :Qp]d(d− 1)/2.
The irreducible components of Xd,red admit a natural labelling by Serre
weights.

We will elaborate on the labelling of components by Serre weights further
below. For now, we mention that, under the usual correspondence between étale
(ϕ,Γ)-modules and Galois representations, the groupoid of Fp-points of Xd,
which coincides with the groupoid of Fp-points of the underlying reduced sub-
stack Xd,red, is naturally equivalent to the groupoid of continuous representa-
tions ρ : GK→GLd(Fp). (More generally, if A is any finite Zp-algebra, then the
groupoid Xd(A) is canonically equivalent to the groupoid of continuous rep-
resentations GK→GLd(A).) It is expected that our labelling of the irreducible
components can be refined (by adding further labels to some of the components)
to give a geometric description of the weight part of Serre’s conjecture, so that
ρ corresponds to a point in a component of Xd,red which is labeled by the Serre
weight k if and only if ρ admits k as a Serre weight; we discuss this expec-
tation, and what is known about it, in Section 1.7 below (and in more detail
in Chapter 8).

Again using the correspondence between étale (ϕ,Γ)-modules and Galois
representations, we see that the universal lifting ring of a representation ρ as
above will provide a versal ring to Xd at the corresponding Fp-valued point.
Accordingly we expect that the stacks Xd will have applications to the study
of Galois representations and their deformations. As a first example of this,
we prove the following result on the existence of crystalline lifts; although the
statement of this theorem involves a fixed ρ, we do not know how to prove it
without using the stacks Xd, over which ρ varies.
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1.2.2 Theorem (Theorem 6.4.4). If ρ : GK→GLd(Fp) is a continuous repre-
sentation, then ρ has a lift ρ◦ : GK→GLd(Zp) for which the associated p-adic
representation ρ : GK→GLd(Qp) is crystalline of regular Hodge–Tate weights.

We can furthermore ensure that ρ◦ is potentially diagonalizable.

(The notion of a potentially diagonalizable representation was introduced
in [BLGGT14], and is recalled as Definition 6.4.2 below.) In combination with
potential automorphy theorems, this has the following application to the glob-
alization of local Galois representations.

1.2.3 Theorem (Corollary 6.4.7). Suppose that p � 2d, and fix ρ : GK→GLd(Fp).
Then there is an imaginary CM field F and an irreducible conjugate self dual
automorphic Galois representation r : GF →GLd(Fp) such that for every v|p,
we have Fv

∼=K and either r|GFv
∼= ρ or r|GFvc

∼= ρ.

Another key result of the book is the following theorem, describing moduli
stacks of étale (ϕ,Γ)-modules corresponding to crystalline and semistable Galois
representations.

1.2.4 Theorem (Theorem 4.8.12). If λ is a collection of labeled Hodge–Tate
weights, and if O denotes the ring of integers in a finite extension E of Qp

containing the Galois closure of K (which will serve as the ring of coefficients),

then there is a closed substack X crys,λ
d of (Xd)O which is a p-adic formal algebraic

stack and is flat over O, and which is characterized as being the unique closed
substack of (Xd)O which is flat over O and whose groupoid of A-valued points,
for any finite flat O-algebra A, is equivalent (under the equivalence between étale
(ϕ,Γ)-modules and continuous GK-representations) to the groupoid of continu-
ous representations GK→GLd(A) which become crystalline after extension of
scalars to A⊗O E, and whose labeled Hodge–Tate weights are equal to λ.

Similarly, there is a closed substack X ss,λ
d of (Xd)O which is a p-adic formal

algebraic stack and is flat over O, and which is characterized as being the unique
closed substack of (Xd)O which is flat over O and whose groupoid of A-valued
points, for any finite flat O-algebra A, is equivalent to the groupoid of contin-
uous representations GK→GLd(A) which become semistable after extension of
scalars to A⊗O E, and whose labeled Hodge–Tate weights are equal to λ.

1.2.5 Remark. In fact, Theorem 4.8.12 also proves the analogous result for
potentially crystalline and potentially semistable representations of arbitrary
inertial type, but for simplicity of exposition we restrict ourselves to the crys-
talline and semistable cases in this introduction.

A crucial distinction between the stacks Xd and their closed substacks X crys,λ
d

and X ss,λ
d is that while Xd is a formal algebraic stack lying over Spf Zp, it is

not actually a p-adic formal algebraic stack (in the sense of Definition A.7);
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see Proposition 6.5.2. On the other hand, the stacks X crys,λ
d and X ss,λ

d are
p-adic formal algebraic stacks, which implies that their mod pa reductions are
in fact algebraic stacks. This gives in particular a strong interplay between
the structure of the mod p fibres of crystalline and semistable lifting rings and
the geometry of the underlying reduced substack Xd,red. This plays an impor-
tant role in determining the structure of this reduced substack, and also in the
proof of Theorem 1.2.2. As we explain in more detail in Section 1.7 below, it also
allows us to reinterpret the Breuil–Mézard conjecture in terms of the interaction
between the structure of the mod p fibres of the stacks X crys,λ

d and X ss,λ
d and

the geometry of Xd,red.

1.3 (ϕ,Γ)-MODULES WITH COEFFICIENTS

There is quite a lot of evidence, for example from Colmez’s work on the p-adic
local Langlands correspondence [Col10], and work of Kedlaya–Liu [KL15], that
rather than considering families of representations of GK , it is more natural to
consider families of étale (ϕ,Γ)-modules.

The theory of étale (ϕ,Γ)-modules for Zp-representations was introduced by
Fontaine in [Fon90]. There are various possible definitions that can be made, with
perfect, imperfect, or overconvergent coefficient rings, and different choices of Γ;
we discuss the various variants that we use, and the relationships between them,
at some length in the body of the book. For the purpose of this introduction
we simply let AK =W (k)((T ))∧, where k is a finite extension of Fp (depending
on K), and the hat denotes the p-adic completion. This ring is endowed with
a Frobenius ϕ and an action of a profinite group Γ (an open subgroup of Z×

p )
that commutes with ϕ; the formulae for ϕ and for this action can be rather
complicated for general K, although they admit a simple description if K/Qp

is abelian. (See Definition 2.1.12 and the surrounding material.)
An étale (ϕ,Γ)-module is then, by definition, a finite AK -module endowed

with commuting semi-linear actions of ϕ and Γ, with the property that the lin-
earized action of ϕ is an isomorphism. There is a natural equivalence of categories
between the category of étale (ϕ,Γ)-modules and the category of continuous rep-
resentations of GK on finite Zp-modules.

Let A be a p-adically complete Zp-algebra. We letAK,A :=A ⊗̂Zp
AK (where

the completed tensor product is taken with respect to the p-adic topology on A
and the so-called weak topology on AK), and define an étale (ϕ,Γ)-module
with A-coefficients just as in the case A=Zp described above, but now using
the ringAK,A. In the case that A is finite as a Zp-module there is again an equiv-
alence of categories with the category of continuous representations of GK on
finite A-modules, but for more general A no such equivalence exists. Our moduli
stack Xd is defined to be the stack over Spf Zp with the property that Xd(A)
is the groupoid of projective étale (ϕ,Γ)-modules of rank d with A-coefficients.
(That this is indeed an étale stack, indeed even an fpqc stack, follows from
results of Drinfeld.) Using the machinery of our paper [EG21] we are able to
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show that Xd is an Ind-algebraic stack, but to prove Theorem 1.2.1 we need to
go further and make a detailed study of its special fiber and of the underlying
reduced substack. This study is guided by ideas coming from Galois deforma-
tion theory and the weight part of Serre’s conjecture, in a manner that we now
describe.

1.4 FAMILIES OF EXTENSIONS

As we have already explained, over a general base A there is no longer an equiv-
alence between (ϕ,Γ)-modules and representations of GK . Perhaps surprisingly,
from the point of view of applications of our stacks to the study of p-adic Galois
representations, this is a feature rather than a bug. For example, an examination
of the known results on the reductions modulo p of two-dimensional crystalline
representations of GQp

(see for example [Ber11, Thm. 5.2.1]) suggests that any
moduli space of mod p representations of GK should have the feature that the
representations are generically reducible, but can specialize to irreducible rep-
resentations. A literal moduli space of representations of a group cannot behave
in this way (essentially because Grassmannians are proper), but it turns out
that the underlying reduced substack Xd,red of Xd does have this property. (See
also Section 6.7 and Remark 7.2.19 for further discussions of the relationship
between our stacks of (ϕ,Γ)-modules and stacks of representations of a Galois
or Weil–Deligne group.)

More precisely, the results of [Ber11, Thm. 5.2.1], together with the weight
part of Serre’s conjecture, suggest that each irreducible component of Xd,red

should contain a dense set of Fp-points which are successive extensions of char-
actersGK→Fp, with the extensions being as nonsplit as possible. This turns out
to be the case. The restrictions of these characters to the inertia subgroup IK are
constant on the irreducible components, and the discrete data of these charac-
ters, together with some further information about peu- and très ramifiée exten-
sions, determines the components. This discrete data can be conveniently and
naturally organized in terms of “Serre weights” k, which are tuples of integers
which biject with the isomorphism classes of the irreducible Fp-representations
of GLd(OK). The relationship between Serre weights and Galois representations
is important in the p-adic Langlands program, and in proving automorphy lifting
theorems, and we discuss it further in Section 1.7.

Having guessed that the Fp-points of Xd should be arranged in irreducible
components in this way, an inductive strategy to prove this suggests itself. It
is easy to see that irreducible representations of GK are “rigid”, in that there
are up to twist by unramified characters only finitely many in each dimension;
furthermore, it is at least intuitively clear that each such family of unrami-
fied twists of a d-dimensional irreducible representation should give rise to a
zero-dimensional substack of Xd (there is a Gm of twists, but also a Gm of

automorphisms). On the other hand, given characters χ1, . . . , χd : GK→F
×
p , a

Galois cohomology calculation suggests that there should be a substack of Xd,red
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of dimension [K :Qp]d(d− 1)/2 given by successive extensions of unramified
twists of the χi. Accordingly, one could hope to construct the stacks correspond-
ing to the Serre weights k by inductively constructing families of extensions of
representations.

To confirm this expectation, we use the machinery originally developed by
Herr [Her98, Her01], who gave an explicit complex which is defined in terms
of (ϕ,Γ)-modules and computes Galois cohomology. This definition goes over
unchanged to the case with coefficients, and with some effort we are able to
adapt Herr’s arguments to our setting, and to prove finiteness and base change
properties (following Pottharst [Pot13], we in fact find it helpful to think of
the Herr complex of a (ϕ,Γ)-module with A-coefficients as a perfect complex of
A-modules). Using the Herr complex, we can inductively construct irreducible

closed substacks X k
d,red of Xd,red of dimension [K :Qp]d(d− 1)/2 whose generic

Fp-points correspond to successive extensions of characters as described above
(the restrictions of these characters to IK being determined by k). Further-

more, by a rather involved induction, we can show that the union of the X k
d,red,

together possibly with a closed substack of Xd,red of dimension strictly less

than [K :Qp]d(d− 1)/2, exhausts Xd,red. In particular, each X k
d,red is an irre-

ducible component of Xd,red, and any irreducible component that is not one of

the X k
d,red is of strictly smaller dimension than these components.

One way to show that the X k
d,red exhaust the irreducible components of Xd,red

would be to show that every representation GK→GLd(Fp) occurs as an Fp-

valued point of some X k
d,red. We expect this to be difficult to show directly;

indeed, already for d=2 the paper [CEGS19] shows that the closed points

of X k
d,red are governed by the weight part of Serre’s conjecture, and the explicit

description of this conjecture is complicated (see, e.g., [BDJ10, DDR16]). Fur-
thermore it seems hard to explicitly understand the way in which families of
reducible (ϕ,Γ)-modules degenerate to irreducible ones, or to reducible repre-
sentations with different restrictions to IK (phenomena which are implied by
the weight part of Serre’s conjecture).

Instead, our approach is to show by a consideration of versal rings that Xd,red

is equidimensional of dimension [K :Qp]d(d− 1)/2; this suffices, since our induc-
tive construction showed that any other irreducible component would necessarily
have dimension strictly less than [K :Qp]d(d− 1)/2. Our proof of this equidi-
mensionality relies on Theorems 1.2.2 and 1.2.4, as we explain in Remark 1.5.4
below.

1.5 CRYSTALLINE LIFTS

Theorem 1.2.2 solves a problem that has been considered by various authors,
in particular [Mul13, GHLS17]. It admits a well-known inductive approach
(which is taken in [Mul13, GHLS17]): one writes ρ as a successive extension
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of irreducible representations, lifts each of these irreducible representations to
a crystalline representation, and then attempts to lift the various extension
classes. The difficulty that arises in this approach (which has proved an obstacle
to obtaining general statements along the lines of Theorem 1.2.2 until now) is
showing that the mod p extension classes that appear in this description of ρ can
actually be lifted to crystalline extension classes in characteristic 0. The basic
source of the difficulty is that the local Galois H2 can be nonzero, and nonzero
classes in H2 obstruct the lifting of extension classes (which can be interpreted
as classes lying in H1). In fact, the difficulty is not so much in obtaining crys-
talline extension classes, as in lifting to any classes in characteristic 0; indeed, it
was not previously known that an arbitrary ρ had any lift to characteristic 0 at
all. (Subsequently a different proof of the existence of such a lift has been found
by Böckle–Iyengar–Paškūnas [BIP21].)

Our proof of Theorem 1.2.2 relies on the inductive strategy described in the
preceding paragraph, but we are able to prove the following key result, which
controls the obstructions that can be presented by H2, and is a consequence of
Theorems 5.5.12 and 6.5.1 (see also Remark 1.5.4).

1.5.1 Proposition. The locus of points ρ∈Xd,red(Fp) at which

dimH2(GK , ρ)≥ r

is Zariski closed in Xd,red(Fp), and is of codimension ≥ r.

Let R�
ρ denote the universal lifting ring of ρ, with universal lifting ρuniv. For

each regular tuple of labeled Hodge–Tate weights λ, we let R
crys,λ
ρ denote the

quotient of R�
ρ corresponding to crystalline lifts of ρ with Hodge–Tate weights λ

(of course, this quotient is zero unless ρ admits such a crystalline lift). Then
H2(GK , ρuniv) is an R�

ρ -module, and Proposition 1.5.1 implies the following
corollary.

1.5.2 Corollary. For any regular tuple of labeled Hodge–Tate weights λ the locus

of points x∈ SpecR
crys,λ
ρ /p for which

dimκ(x) H
2(GK , ρuniv)⊗R�

ρ
κ(x)≥ r

has codimension ≥ r.

1.5.3 Remark. Tate local duality, together with the compatibility of H2 with
base change, shows that

dimκ(x)

(
H2(GK , ρuniv)⊗R�

ρ
κ(x)
)
=dimκ(x) H

2
(
GK , ρuniv⊗R�

ρ
κ(x)
)

=dimκ(x) HomGK

(
(ρuniv)∨⊗R�

ρ
κ(x), ε
)
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(where ε denotes the mod p cyclotomic character, thought of as taking values
in κ(x)×). Thus the statement of Corollary 1.5.2 is related to the way in which

SpecR
crys,λ
ρ /p intersects the reducibility locus in SpecR�

ρ .

Given Corollary 1.5.2, we prove Theorem 1.2.2 by working purely within the
context of formal lifting rings. However we don’t know how to prove the corol-
lary while staying within that context. Indeed, as Remark 1.5.3 indicates, this
corollary is related to the way in which the special fiber of a potentially crys-
talline deformation ring intersects another natural locus in SpecR�

ρ (namely,
the reducibility locus). Since the special fiber of a potentially crystalline lift-
ing ring is not directly defined in deformation-theoretic terms, such questions
are notoriously difficult to study directly. Our proof of the corollary proceeds
differently, by replacing a computation on the special fiber of the potentially
crystalline deformation ring by a computation on Xd,red; this latter space has
a concrete description in terms of families of varying ρ, whose H2 we are able
to compute, as a result of the inductive construction of families of extensions
described in Section 1.4.

In order to deduce Corollary 1.5.2 from Proposition 1.5.1, it is crucial that we
know that the natural morphism Spf Rcrys,λ/p→Xd is effective, in the sense that
it arises from a morphism SpecRcrys,λ/p→Xd. More concretely, the universal
representation ρuniv gives an étale (ϕ,Γ)-module over each Artinian quotient
of R�

ρ . By passing to the limit over these quotients, we obtain a “universal formal

étale (ϕ,Γ)-module” over the completion of (k⊗Zp
R�

ρ /p)((T )) with respect to

the maximal ideal m of R�
ρ . Since the special fiber of Xd is formal algebraic but

not algebraic (see Section 1.8 below), there is no corresponding (ϕ,Γ)-module
with R�

ρ /p-coefficients; the ϕ and Γ actions on the universal formal étale (ϕ,Γ)-

module involve Laurent tails of unbounded degree (with the coefficients of T−n

tending to zero m-adically as n→∞).
The assertion that Spf Rcrys,λ/p→Xd is effective is equivalent to showing

that the base change of the universal formal étale (ϕ,Γ)-module to Rcrys,λ/p
arises from a genuine (ϕ,Γ)-module, i.e., from one that involves only Lau-
rent tails of bounded degree. We deduce this from Theorem 1.2.4. Indeed, the
ring Rcrys,λ/p is a versal ring for the special fiber of the p-adic formal algebraic

stack X crys,λ
d , and (by the very definition of a p-adic formal algebraic stack) this

special fiber is an algebraic stack; and the versal rings for algebraic stacks are
always effective.

1.5.4 Remark. As our citation of both Theorems 5.5.12 and 6.5.1 for the proof
of Proposition 1.5.1 may indicate, our proof of Proposition 1.5.1 is somewhat
intricate. Indeed, in Theorem 5.5.12, we show that Xd,red has dimension at
most [K :Qp]d(d− 1)/2, and that the locus considered in Proposition 1.5.1 has
dimension at most [K :Qp]d(d− 1)/2− r. This is in fact enough to deduce Corol-
lary 1.5.2, as SpecRcrys,λ/p is known to be equidimensional.

Given Corollary 1.5.2, we prove Theorem 1.2.2. In combination with the effec-
tive versality of the crystalline deformation rings discussed above we are then
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able to deduce the equidimensionality of Xd,red, and then also prove Proposi-
tion 1.5.1 as stated.

1.6 CRYSTALLINE AND SEMISTABLE MODULI STACKS

We now explain the proof of Theorem 1.2.4; the proof is essentially identical
in the crystalline and semistable cases, so we concentrate on the crystalline
case. To prove the theorem, it is necessary to have a criterion for a (ϕ,Γ)-
module to come from a crystalline Galois representation. In the case that K/Qp

is unramified, it is possible to give an explicit criterion in terms of Wach mod-
ules [Wac96], but no such direct description is known for general K. Instead, fol-

lowing Kisin’s construction of the crystalline deformation rings Rcrys,λ
ρ in [Kis08],

we use the theory of Breuil–Kisin modules. More precisely, Kisin shows that
crystalline representations of GK have finite height over the (non-Galois) Kum-
mer extension K∞/K obtained by adjoining a compatible system of p-power
roots of a uniformizer of K; here being of finite height means that the corre-
sponding étale ϕ-modules admit certain ϕ-stable lattices, called Breuil–Kisin
modules.

While not every representation of finite height over K∞ comes from a crys-
talline representation, we are able to show in Appendix F (jointly written by
T. G. and Tong Liu) that a representation GK→GLd(Zp) is crystalline if and
only if it is of finite height for every choice of K∞, and if the corresponding
Breuil–Kisin modules satisfy certain natural compatibilities. (These compatibil-
ities are best expressed in terms of Bhatt–Scholze’s prismatic site, as in [BS21],
but we do not make use of that perspective in this book. Instead, we write
down explicit conditions on the corresponding Breuil–Kisin–Fargues modules;
recall that Breuil–Kisin–Fargues modules are a variant of Breuil–Kisin modules
introduced by Fargues; see, e.g., [BMS18, §4].)

We use this description of the crystalline representations to prove the exis-
tence of the stacks X crys,λ

d . The proof that X crys,λ
d is a p-adic formal algebraic

stack relies on an analogue of results of Caruso–Liu [CL11] on extensions of the
Galois action on Breuil–Kisin modules, which roughly speaking says that the
action of GK∞ determines the action of GK up to a finite amount of ambiguity.
More precisely, given a Breuil–Kisin module over a Z/pa-algebra for some a≥ 1,
there is a finite subextension Ks/K of K∞/K depending only on a, K and the
height of the Breuil–Kisin module, such that there is a canonical action of GKs

on the corresponding Breuil–Kisin–Fargues module. This canonical action is con-
structed by Frobenius amplification, and in the case that the Breuil–Kisin mod-
ule arises from the reduction modulo pa of a crystalline representation of GK ,
the canonical action coincides with the restriction to GKs

of the GK -action
on the Breuil–Kisin–Fargues module. (In [CL11] a version of this canonical
action is used to prove ramification bounds on the reductions modulo pa of crys-
talline representations; in Chapter 7, we use analogous arguments in the setting
of (ϕ,Γ)-modules to relate our stacks to stacks of Weil group representations in
the rank 1 case.)
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There is one significant technical difficulty, which is that we need to define
morphisms of stacks that correspond to the restriction of Galois representations
from K to K∞. In order to do this we have to compare (ϕ,Γ)-modules with
A-coefficients (which are defined via the cyclotomic extension K(ζp∞)/K) to ϕ-
modules with A-coefficients defined via the extension K∞/K. We do not know
of a direct way to do this; we proceed by proving a correspondence between ϕ-
modules over Laurent series rings with ϕ-modules over the perfections of these
Laurent series rings and proving the following descent result which may be of
independent interest; in the statement, C denotes the completion of an algebraic
closure of Qp.

1.6.1 Theorem (Theorem 2.4.1). Let A be a finite type Z/pa-algebra, for some
a≥ 1. Let F be a closed perfectoid subfield of C, with tilt F �, a closed perfectoid
subfield of C�. Write W (F �)A :=W (F �)⊗Zp

A.

Then the inclusion W (F �)A→W (C�)A is a faithfully flat morphism of Noeth-
erian rings, and the functor M 	→W (C�)A⊗W (F �)A M induces an equivalence

between the category of finitely generated projective W (F �)A-modules and the
category of finitely generated projective W (C�)A-modules endowed with a con-
tinuous semi-linear GF -action.

The existence of the required morphism of stacks follows easily from two
applications of Theorem 1.6.1, applied with F equal to respectively the comple-
tion of K∞ and the completion of K(ζp∞). Furthermore, this construction gives
an alternative description of our stacks, as moduli spaces of W (C�)A-modules
endowed with commuting semi-linear actions of GK and ϕ. It seems plausible
that this description will be useful in future work, as it connects naturally to
the theory of Breuil–Kisin–Fargues modules (and indeed we use this connection
in our construction of the potentially semistable moduli stacks). Note though
that the description in terms of (ϕ,Γ)-modules is important (at least in our
approach) for establishing the basic finiteness properties of our stacks.

1.7 THE GEOMETRIC BREUIL–MÉZARD CONJECTURE

AND THE WEIGHT PART OF SERRE’S CONJECTURE

We will now briefly explain our results and conjectures relating our stacks to
the Breuil–Mézard conjecture and the weight part of Serre’s conjecture. Further
explanation and motivation can be found throughout Chapter 8. Some of these
results were previewed in [GHS18, §6], and the earlier sections of that paper (in
particular the introduction) provide an overview of the weight part of Serre’s
conjecture and its connections to the Breuil–Mézard conjecture that may be
helpful to the reader who is not already familiar with them. As in the rest
of this introduction, we ignore the possibility of inertial types, and we also
restrict to crystalline representations for the purpose of exposition. Everything
in this section extends to the more general setting of potentially semistable
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representations, and indeed as we explain in Section 8.6 when discussing the
papers [CEGS19] and [GK14], the additional information provided by non-trivial
inertial types is very important.

Let ρ : GK→GLd(F) be a continuous representation (for some finite exten-
sion F of Fp), and let R�

ρ be the corresponding universal lifting ring. The corre-

sponding formal scheme Spf R�
ρ doesn’t carry a lot of evident geometry in and of

itself; for example, its underlying reduced subscheme is simply the closed point
SpecF, corresponding to ρ itself. On the other hand, Xd has a quite non-trivial
underlying reduced substack Xd,red, which parameterizes all the d-dimensional
residual representations of GK . It is natural to ask whether this underlying
reduced substack has any significance in formal deformation theory. More pre-
cisely, we could ask for the meaning of the fiber product Spf R�

ρ ×Xd
Xd,red.

This fiber product is a reduced closed formal subscheme of Spf R�
ρ of dimen-

sion d2 + [K :Qp]d(d− 1)/2. It arises (via completion at the closed point) from a
closed subscheme of SpecR�

ρ (as does any closed formal subscheme of the Spf of
a complete Noetherian local ring), whose irreducible components, when thought
of as cycles on SpecR�

ρ , are precisely the cycles that (conjecturally) appear in
the geometric Breuil–Mézard conjecture of [EG14]. More precisely, we obtain the
following qualitative version of the geometric Breuil–Mézard conjecture [EG14,
Conj. 4.2.1].

1.7.1 Theorem (Theorem 8.1.4). If ρ : GK→GLd(F) is a continuous represen-
tation, then there are finitely many cycles of dimension d2 + [K :Qp]d(d− 1)/2
in SpecR�

ρ /p, such that for any regular tuple of labeled Hodge–Tate weights λ,

the special fiber SpecR
crys,λ
ρ /p is set-theoretically supported on the union of some

number of these cycles.

The cycles in the statement of the theorem are precisely those arising from
the fiber products Spf R�

ρ ×Xd
X k

d,red, where k runs over the Serre weights. While
Theorem 1.7.1 is a purely local statement, we do not know how to prove it
without using the stacks Xd.

The full geometric Breuil–Mézard conjecture of [EG14] makes precise predic-

tions about the multiplicities of the cycles of the special fibres of SpecR
crys,λ
ρ /p;

passing from cycles to Hilbert–Samuel multiplicities then recovers the origi-
nal Breuil–Mézard conjecture [BM02] (or rather a natural generalization of it
to GLd), which we refer to as the “numerical Breuil–Mézard conjecture”. In
particular, the multiplicities are expected to be computed in terms of quanti-
ties ncrys

k (λ) that are defined as follows: one associates an irreducible algebraic

representation σcrys(λ) of GLd /K to λ, defined to have highest weight (a cer-
tain shift of) λ. The semisimplification of the reduction mod p of σcrys(λ) can
be written as a direct sum of irreducible representations of GLd(k), and ncrys

k (λ)
is defined to be the multiplicity with which the Serre weight k occurs.

In Chapter 8 we explain that as we run over all ρ, the geometric Breuil–
Mézard conjecture is equivalent to the following analogous conjecture for the
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special fibres of our crystalline and semistable stacks. Here by a “cycle” in Xd,red

we mean a formal Z-linear combination of its irreducible components X k
d .

1.7.2 Conjecture (Conjecture 8.2.2). There are cycles Zk in Xd,red with the prop-
erty that for each regular tuple of labeled Hodge–Tate weights λ, the underlying

cycle of the special fiber of X crys,λ
d is

∑
k n

crys
k (λ) ·Zk.

In fact we expect that the cycles Zk are effective, i.e., that they are a linear

combination of the irreducible components X k′

d with non-negative integer coef-
ficients. Since there are infinitely many possible λ, the cycles Zk, if they exist,
are hugely overdetermined by Conjecture 1.7.2.

As first explained in [Kis09a], the (numerical) Breuil–Mézard conjecture has
important consequences for automorphy lifting theorems; indeed, proving the
conjecture is closely related to proving automorphy lifting theorems in situations
with arbitrarily high weight or ramification at the places dividing p. Conversely,
following [Kis10], one can use automorphy lifting theorems to deduce cases of
the Breuil–Mézard conjecture. Automorphy lifting theorems involve a fixed ρ,
and in fact we can deduce Conjecture 1.7.2 from the Breuil–Mézard conjecture
for a finite set of suitably generic ρ.

In particular, we are able to combine results in the literature to show that
for GL2 the cycles Zk in Conjecture 1.7.2 must have a particularly simple form:

we necessarily have Zk =X k
d,red unless k is a so-called “Steinberg” weight, in

which case Zk is the sum of X k
d,red and one other irreducible component. (More

precisely, what we show, following [CEGS19, GK14], is that with these cycles Zk,
Conjecture 1.7.2 holds for all “potentially Barsotti–Tate” representations.)

The weight part of Serre’s conjecture predicts the weights in which particular
Galois representations contribute to the mod p cohomology of locally symmetric
spaces. Following [GK14], this conjecture is closely related to the Breuil–Mézard
conjecture; indeed, if Conjecture 1.7.2 holds, then the set of Serre weights asso-
ciated to a representation ρ : GK→GLd(Fp) should be precisely the weights k
for which Zk is supported at ρ. In other words, if we refine our labelling of the
irreducible components of Xd,red by labelling each component by the union of
the weights k for which that component contributes to Zk, then we expect the
set of Serre weights for ρ to be the union of the sets of weights labelling the irre-
ducible components containing ρ. This expectation holds for GL2 by the main
results of [CEGS19].

1.8 FURTHER QUESTIONS

There are many other questions one could ask about the stacks Xd, which we
hope to return to in future papers. For example, we show in Proposition 6.5.2
that Xd is not a p-adic formal algebraic stack. Indeed, if it were p-adic formal
algebraic, then its special fiber would be an algebraic stack, whose dimension
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would be equal to the dimension of its underlying reduced substack. In turn,
this would imply that the versal rings R�

ρ would have dimension equal to the

dimensions of the crystalline deformation rings R
crys,λ
ρ , and this is known not to

be true. In fact, it is a folklore conjecture, recently proved by Böckle–Iyengar–
Paškūnas [BIP21], that the lifting rings R�

ρ are Zp-flat local complete intersec-

tions of dimension 1+ d2 + [K :Qp]d
2, which should imply that the stacks Xd

are Zp-flat local complete intersections of dimension 1+ [K :Qp]d
2 (a notion

that we do not attempt to make precise for formal algebraic stacks).
It is natural to ask about the rigid analytic generic fiber of Xd; this should

exist as a rigid analytic stack in an appropriate sense. The generic fibres of
the substacks X k

d should admit morphisms to the stacks of Hartl and Hell-
mann [HH20] (although these morphisms won’t be isomorphisms, since for any

finite extension E of Qp, the OE-points of X k
d , which would coincide with the

E-points of its generic fiber, correspond to lattices in crystalline representations,
whereas the stacks of [HH20] parameterize crystalline or semistable representa-
tions themselves).

We expect that the Xd will have a role to play in generalizations of the p-adic
local Langlands correspondence. For example, we expect that when K =Qp the
p-adic local Langlands correspondence for GL2(Qp) can be extended to give
rise to sheaves of GL2(Qp)-representations on X2. More generally, we expect
that there will be a p-adic analogue of the work of Fargues–Scholze on the local
Langlands correspondence [FS21] involving the stacks Xd.

1.9 PREVIOUS WORK

The description of local Galois representations in terms of étale (ϕ,Γ)-modules
is due to Fontaine [Fon90]. The importance of “height” as an aspect of the
theory was already emphasized in [Fon90], and was further developed by
Wach [Wac96], who explored the relationship between the finite height condi-
tion and crystallinity of Galois representations in the absolutely unramified
context.

The use of what are now called Breuil–Kisin modules as a tool for studying
crystalline and semistable representations for general (i.e., not necessarily abso-
lutely unramified) p-adic fields (a study which, apart from its intrinsic impor-
tance, is crucial for treating potentially crystalline or semistable representations,
even in the absolutely unramified context) was due originally to Breuil [Bre98]
and was extensively developed by Kisin [Kis09b, Kis08], who used them to study
Galois deformation rings.

The algebro-geometric and moduli-theoretic perspectives that already played
key roles in Kisin’s work were further developed by Pappas and Rapoport
[PR09], who introduced moduli stacks of Breuil–Kisin modules and of étale
ϕ-modules; it is this work of Pappas and Rapoport, which can be very roughly
thought of as constructing moduli stacks of representations of the absolute Galois
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groups of certain perfectoid fields, which is the immediate launching point for
our work in this book, as well as for our paper [EG21]. (We should also mention
Drinfeld’s work [Dri06], which underpins the verification of the stack property
for the constructions of [PR09], as well as for those of the present book.) Our
use of moduli stacks of Breuil–Kisin–Fargues modules (in the construction of
the potentially crystalline and semistable substacks) was in part inspired by the
work of Fargues and Bhatt–Morrow–Scholze (see in particular [BMS18, §4]),
which taught us not to be afraid of Ainf .

Moduli stacks parameterizing crystalline and semistable representations have
already been constructed by Hartl and Hellmann [HH20]; as remarked upon

above, these stacks should have a relationship to the stacks X k
d that we construct.

See also the related papers of Hellmann [Hel16, Hel13].
As far as we are aware, the first construction of moduli stacks of representa-

tions of GK in which the residual representation ρ can vary is the work of Carl
Wang-Erickson [WE18] mentioned above, which constructs and studies such
stacks in the case that ρ has fixed semisimplification. These are literally moduli
stacks of representations of GK ; they are isomorphic to certain substacks of
our stacks Xd, as we explain in Section 6.7.

1.10 AN OUTLINE OF THE BOOK

We finish this introduction with a brief overview of the contents of this book.
The reader may also wish to refer to the introductions to each chapter, as well
as to the overview of this book provided by the notes [EG20].

In Chapter 2 we recall several of the coefficient rings used in the theories
of (ϕ,Γ)-modules and Breuil–Kisin modules, and introduce versions of these
rings with coefficients in a p-adically complete Zp-algebra. We also prove almost
Galois descent results for projective modules, and deduce Theorem 1.6.1.

In Chapter 3 we recall the results of [EG21] on moduli stacks of ϕ-modules,
and use them to define our stacks Xd of étale (ϕ,Γ)-modules. With some effort,
we prove that Xd is an Ind-algebraic stack. Chapter 4 defines various moduli
stacks of Breuil–Kisin and Breuil–Kisin–Fargues modules, and uses them to
construct our moduli stacks of potentially semistable and potentially crystalline
representations, and in particular to prove Theorem 1.2.4.

Chapter 5 develops the theory of the Herr complex, proving in particular
that it is a perfect complex and is compatible with base change. We show how
to use the Herr complex to construct families of extensions of (ϕ,Γ)-modules,

and we use these families to define the irreducible substack X k
d,red correspond-

ing to a Serre weight k. By induction on d we prove that Xd is a Noetherian
formal algebraic stack, and establish a version of Proposition 1.5.1 (although as
discussed in Remark 1.5.4, we do not prove Proposition 1.5.1 as stated at this
point in the argument).

It may help the reader for us to point out that Chapters 4 and 5 are essentially
independent of one another, and are of rather different flavor. Chapter 4 involves
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an interleaving of stack-theoretic arguments with ideas from p-adic Hodge theory
and the theory of Breuil–Kisin modules, while in Chapter 5, once we complete
our analysis of the Herr complex, our perspective begins to shift: although at
a technical level we of course continue to work with (ϕ,Γ)-modules, we begin
to think in terms of Galois representations and Galois cohomology, and the
more foundational arguments of the preceding chapters recede somewhat into
the background.

In Chapter 6 we combine the results of Chapters 4 and 5 with a geometric
argument on the local deformation ring to prove Theorem 1.2.2. Having done
this, we are then able to improve on the results on Xd established in the earlier
chapters by proving Theorem 1.2.1. We also deduce Theorem 1.2.3, as well as
determining the closed points of Xd, and describing the relationship of our stacks
with Wang–Erickson’s stacks of Galois representations.

Chapter 7 gives explicit descriptions of various of our moduli stacks in the
case d = 1, relating them to moduli stacks of Weil group representations. Chap-
ter 8 explains our geometric version of the Breuil–Mézard conjecture, and proves
some results towards it, particularly in the case d=2.

Finally the appendices for the most part establish various technical results
used in the body of the book. We highlight in particular Appendix A, which sum-
marizes the theory of formal algebraic stacks developed in [Eme], and Appen-
dix F, which combines the theory of Breuil–Kisin–Fargues modules with Tong
Liu’s theory of (ϕ, Ĝ)-modules to give a new characterization of integral lat-
tices in potentially semistable representations, of which we make crucial use in
Chapter 4.
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1.12 NOTATION AND CONVENTIONS

p-adic Hodge theory

Let K/Qp be a finite extension. If ρ is a de Rham representation of GK on
a Qp-vector space W , then we will write WD(ρ) for the corresponding Weil–

Deligne representation of WK (see, e.g., [CDT99, App. B]), and if σ : K ↪→Qp

is a continuous embedding of fields then we will write HTσ(ρ) for the multiset
of Hodge–Tate numbers of ρ with respect to σ, which by definition contains i

with multiplicity dimQp
(W ⊗σ,K K̂(i))GK . Thus, for example, if ε denotes the

p-adic cyclotomic character, then HTσ(ε)= {−1}.
By a d-tuple of labeled Hodge–Tate weights λ, we mean a tuple of inte-

gers {λσ,i}σ : K↪→Qp,1≤i≤d with λσ,i≥λσ,i+1 for all σ and all 1≤ i≤ d− 1. We

will also refer to λ as a Hodge type. By an inertial type τ we mean a represen-
tation τ : IK→GLd(Qp) which extends to a representation of WK with open
kernel (so in particular, τ has finite image).

Then we say that ρ has Hodge type λ (or labeled Hodge–Tate weights λ)
if for each σ : K ↪→Qp we have HTσ(ρ)= {λσ,i}1≤i≤d, and we say that ρ has
inertial type τ if WD(ρ)|IK ∼= τ .

We often somewhat abusively write that a representation ρ : GK→GLd(Zp)
is crystalline (or potentially crystalline, or semistable, or . . .) if the corresponding
representation ρ : GK→GLd(Qp) is crystalline (or potentially crystalline, or
semistable, or . . .).

Serre weights and Hodge–Tate weights

By a Serre weight k we mean a tuple of integers {kσ,i}σ : k↪→Fp,1≤i≤d with the
properties that

• p− 1≥ kσ,i− kσ,i+1≥ 0 for each 1≤ i≤ d− 1, and
• p− 1≥ kσ,d≥ 0, and not every kσ,d is equal to p− 1.

The set of Serre weights is in bijection with the set of irreducible Fp-representa-
tions of GLd(k), via passage to highest weight vectors (see for example the
appendix to [Her09]).
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Each embedding σ : K ↪→Qp induces an embedding σ : k ↪→Fp; if K/Qp is
ramified, then each σ corresponds to multiple embeddings σ. We say that λ is a
lift of k if for each embedding σ : k ↪→Fp, we can choose an embedding σ : K ↪→
Qp lifting σ, with the properties that:

• λσ,i = kσ,i + d− i, and
• if σ′ : K ↪→Qp is any other lift of σ, then kσ′,i = d− i.

Lifting rings

Let K/Qp be a finite extension, and let ρ : GK→GLd(Fp) be a continuous rep-
resentation. Then the image of ρ is contained in GLd(F) for any sufficiently
large finite extension F/Fp. Let O be the ring of integers in some finite exten-

sion E/Qp, and suppose that the residue field of E is F. Let R�,O
ρ be the

universal lifting O-algebra of ρ; by definition, this (pro-)represents the functor
given by lifts of ρ to representations ρ : GK→GLd(A), for A an Artin local O-
algebra with residue field F. The precise choice of E is unimportant, in the sense
that if O′ is the ring of integers in a finite extension E′/E, then by [BLGGT14,

Lem. 1.2.1] we have R�,O′
ρ =R�,O

ρ ⊗OO′.
Fix some Hodge type λ and inertial type τ . If O is chosen large enough that

the inertial type τ is defined over E=O[1/p], and large enough that E contains
the images of all embeddings σ : K ↪→Qp, then we have the usual lifting O-

algebras R
crys,λ,τ,O
ρ and R

ss,λ,τ,O
ρ . By definition, these are the unique O-flat

quotients of R�,O
ρ with the property that if B is a finite flat E-algebra, then

an O-algebra homomorphism R�,O
ρ →B factors through R

crys,λ,τ,O
ρ (resp. thro-

ugh R
ss,λ,τ,O
ρ ) if and only if the corresponding representation ofGK is potentially

crystalline (resp. potentially semistable) of Hodge type λ and inertial type τ . If τ
is trivial, we will sometimes omit it from the notation. By the main theorems
of [Kis08], these rings are (when they are nonzero) equidimensional of dimension

1+ d2 +
∑
σ

#{1≤ i< j≤ d|λσ,i >λσ,j}.

Note that this quantity is at most 1+ d2 + [K :Qp]d(d− 1)/2, with equality if
and only if λ is regular, in the sense that λσ,i>λσ,i+1 for all σ and all 1≤ i≤d− 1.

As above, we have R
crys,λ,τ,O′

ρ =R
crys,λ,τ,O
ρ ⊗OO′, and similarly for R

ss,λ,τ,O′

ρ .

By [Kis08, Thm. 3.3.8] the localized rings R
crys,λ,τ,O
ρ [1/p] are regular, and thus

the rings R
crys,λ,τ,O
ρ (which embed into their localizations away from p, since

they are O-flat) are reduced.

Algebra

Our conventions typically follow [Sta]. In particular, if M is an abelian topolog-
ical group with a linear topology, then as in [Sta, Tag 07E7] we say that M is
complete if the natural morphism M→ lim←−i

M/Ui is an isomorphism, where
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{Ui}i∈I is some (equivalently any) fundamental system of neighborhoods of 0
consisting of subgroups. Note that in some other references this would be referred
to as being complete and separated.

If R is a ring, we write D(R) for the (unbounded) derived category of R-
modules. We say that a complex P • is good if it is a bounded complex of finite
projective R-modules; then an object C• of D(R) is called a perfect complex if
there is a quasi-isomorphism P •→C• where P • is good. In fact, C• is perfect
if and only if it is isomorphic in D(R) to a good complex P •: if we have another
complex D• and quasi-isomorphisms P •→D•, C•→D•, then there is a quasi-
isomorphism P •→C• ([Sta, Tag 064E]).

Stacks

Our conventions on algebraic stacks and formal algebraic stacks are those of [Sta]
and [Eme]. We recall some terminology and results in Appendix A. Throughout
the book, if A is a topological ring and C is a stack we write C(A) for C(Spf A);
if A has the discrete topology, this is equal to C(SpecA).
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