
CONTENTS

Acknowledgments vii

1 Challenges to the Evolution of Intelligence 1

2 Seven Hypotheses 12

3 Learning Behavioral Sequences 26

4 Genetic Guidance of Learning 51

5 Sources of Information 60

6 Social Learning 73

7 Can Animals Think? 86

8 The Nature of Animal Intelligence 113

9 Uniquely Human 124

10 The Transition 141

11 How and Why Does Thinking Work? 149

12 Acquisition and Transmission

of Sequential Information 167

13 Social Transmission of Mental Skills 177

14 Cooperation 191

v



vi contents

15 The Power of Cultural Evolution 198

16 Why Only Humans? 209

References 227

Index 275



1
Challenges to the Evolution of

Intelligence

• The world offers many resources to organisms, but it is also large and
complex.

• Obtaining resources is hard. Exploration takes time, behavior may have
delayed consequences, and informative stimuli are often mixed with
noninformative ones.

• Animals have evolved several solutions to these challenges, such as
learning by trial and error and learning from others.

• In humans, a new solution has emerged that couples cultural informa-
tion and the capacity to think.

• The transition from animal to human intelligence can be understood
by reasoning about sequences: sequences of behavior, sequences of
information-processing steps, and sequences of stimuli.

1.1 What Happened in Human Evolution?

Until three or four million years ago, our ancestors inhabited a small region
in Africa and were probably similar in intelligence to contemporary great
apes. Since then, our species has acquired many unique features and has col-
onized almost all terrestrial habitats. Figure 1.1 shows a coarse summary of
our species’ history. Characteristics that emerged in human evolution include
language, complex societies, material and nonmaterial culture, such as art and
science, and a rich inner world of thoughts, hopes, and fears. While it is clear
that our species’ ability to process and organize information has changed, it
is not easy to pinpoint what the changes were and what caused them. We
refer to these changes collectively as the human evolutionary transition, in
analogy with other momentuous evolutionary events, such as multicellular-
ity and sexual reproduction (Maynard Smith and Szathmáry 1995). In this
book, we put forward a theory of the content of the transition (how human
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figure 1.1. Some major developments in human history. The two panels
include the same events. On the left, a logarithmic time axis enables us to label
events clearly. On the right, a linear axis highlights the dramatic speed of cultural
evolution: all of twentieth-century science and art has been developed during a
mere 0.001% of the time depicted, or about 0.1% of the time since the appear-
ance of modern humans. Data sources: split from chimpanzees: 10–4million BP
(years before present; Dolhinow and Sarich 1971, White et al. 2009); bipedal-
ism: at least since Australopithecus afarensis, around 4 million BP (“Lucy”; Ward
2002); earliest stone tools: 3.3 million BP (Harmand et al. 2015); control of
fire: between 800k (Berna et al. 2012) and 125k BP (Karkanas et al. 2007); split
from Neanderthals: around 600k BP (Schlebusch et al. 2017); earliest modern
humans: around 300k BP, based on population genetics (Schlebusch et al. 2017)
and fossils (Hublin et al. 2017); brain size decrease: 50–30k BP (Henneberg
1988); cave art: at least 40k BP (Aubert et al. 2014, Brumm et al. 2021); pot-
tery: at least 20k BP (Wu et al. 2012); agriculture: around 10k BP (Vasey 2002);
writing: at lea1st 5k1 BP (cuneiform: Walker 1987); scientific method: conven-
tionally, from eleventh-century Arab scholars to seventeenth-century Europeans.

information processing differs from that of other animals) and of its causes
(the evolutionary events that caused the transition, including genetic and
cultural evolution).
In this chapter, as an introduction to a broader argument about the nature

of animal andhuman intelligence,we consider general challenges to the evolu-
tionof intelligence.Beforebeginning,wenote that ouruseof thewordanimals
typically excludes humans. Humans are animals, but this usage is convenient
to compare humans and other animals.

1.2 The World Is Full of Opportunities

The world is incredibly rich in resources that organisms can exploit, where
“resource” is broadly intended as anything that can aid survival and reproduc-
tion. Tropical habitats are spectacularly replete with life, but even in hostile
environments, such as deserts or the Arctic, organisms can extract enough
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energy from their surroundings to sustain their species. The behaviors that
animals use to obtain resources vary greatly in complexity, depending on
what resources they rely on. Filter feeders, for example, rely on resources that
are continuously available and floating in water, and therefore their feeding
behavior is limited to forcingwater through specialized structures that capture
nutrients. This simple strategy has evolved many times, such as in molluscs,
crabs, shrimp, sharks, and whales. Most animals, however, rely onmore com-
plex strategies. Predators may use stealth, speed, venom, or an artifact such as
a spider web. Animals that rely on seasonal resources must secure an energy
store for hard times, by accumulating fat, hoarding food, or decreasing energy
consumption. These are just a few examples of the astonishing diversity of
animal life.
Exploiting environmental resources requires organized sequences of

actions, in all but the simplest cases. This concept is crucial to the thesis of
our book. Weaving a web, hunting prey, or escaping a predator requires exe-
cuting a sequence of behavior, often with great precision. A mistake results
frequently in a lost opportunity, or even in serious harm. Animals have dis-
covered a staggering number of productive sequences of behavior, among
many potential alternatives that do not work or that work less well. Humans,
however, have developed productive sequences of incredible length. To bet-
ter appreciate the gap between human and nonhuman sequences, consider a
sophisticated nonhuman tool, such as a twig used by chimpanzees to extract
termites from their nest, and an outwardly unsophisticated human tool, such
as a coat hanger. We are fascinated by chimpanzees’ abilities for tool manu-
facture, but we are typically indifferent to coat hangers. Chimpanzee tools,
however, can be built by a single individual with a few actions, such as locating
an appropriate twig, detaching it from the branch, and stripping it of its leaves
(Nishihara et al. 1995, Sanz et al. 2009). In contrast, the sequence of actions
that goes into building a coat hanger is so long as to be untraceable. The coat
hanger is made bymachines with thousands of parts (figure 1.2), using metal
that has ultimately been obtained through an organized mining operation
involving thousands of people. The same holds for all but perhaps the sim-
plest objects of daily life in industrial societies (Jordan 2014). To understand
why only humans have been able to discover such long sequences, we must
first examine why finding productive sequences is difficult at all.

1.3 Sequences and Combinatorial Dilemmas

The design of a behavior system determines what resources it can exploit.
For example, an organism whose behavior is completely hardwired is unable
to adjust to new food sources or new threats. Likewise, an organism with
poor senses might fail to distinguish edible from inedible food. Accordingly,
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figure 1.2. Left: Twigs used by chimpanzees to perforate termite mounds
(redrawn based on Nishihara et al. 1995). Right: One of 32 diagrams describ-
ing a machine to manufacture coat hangers (US patent 2,041,805, November 23,
1935).

behavior systems face many challenges. Sense organs must be good enough
to perceive relevant information, memory good enough to store such
information, and information processing sophisticated enough to drive effi-
cient behavior while also being sufficiently fast. The challenges that are most
important for this book are several kinds of combinatorial dilemmas involving
sequences. These are difficulties that derive from the exponential increase in
possibilitieswhen a task grows in complexity (Bellman 1961,Dall andCuthill
1997, Keogh and Mueen 2010). In our case, the dilemmas arise when going
from shorter sequences to longer sequences. The three combinatorial dilem-
mas that play a fundamental role in this book involve sequences of behavior,
sequences of information-processing steps, and sequences of stimuli.

1.3.1 Behavioral Sequences

In principle, it is possible to find productive sequences of behavior through
brute-force exploration, that is, by simply trying out all possible sequences.
This, however, is too time consuming to be generally practical. It’s like trying
tophone someonebydialing all possible phonenumbers.More formally, con-
sider an animal exploring sequences of l actions, and assume that each action
is chosen randomly out of a repertoire ofm. There are thenml sequences that
the animal can try out. If r of these sequences are rewarding, the expected
number of attempts before finding a rewarding sequence is

ml

r
(1.1)
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This number increases for longer sequences and more actions. Finding
longer sequences is exponentially harder than finding shorter ones. Finding a
sequence that is just 3 actions long, with a behavioral repertoire of 10 actions,
would take 103= 1000 attempts. Finding a sequence of 10 actions would
take 1010= 10 billion attempts. Furthermore, time spent learning detracts
from time spent using what has been learned (the exploration-exploitation
dilemma, considered in sections 3.2 and 4.3).
Equation (1.1) also highlights a difficulty with increasingmotor flexibility.

Most animals have a rather constrained repertoire of possible actions, which
is strongly determined genetically (Tinbergen 1951, Eibl Eibesfeldt 1975).
Humans and other primates are remarkable for their flexibility, and humans
in particular for their ability to learn a diversity of complex skills, such as gym-
nastics, surgery, or playing the piano. Motor flexibility appears advantageous
because it increases the animal’s capacity to act on its environment, but it also
leads to learning costs that compound with sequence length. For example,
an animal that can perform 10 actions can try out 102= 100 sequences of 2
actions, but this number increases to 502= 2500 for an animal that can per-
form 50 actions, yielding a 25-fold increase in the time to try out all possible
actions.Thusmotorflexibility isnotnecessarily advantageous, andwecanadd
it to the list of human features whose evolution we would like to understand.

1.3.2 Mental Sequences

Most animals need fast decision making. A foraging bird, for example, is con-
stantly decidingwhere to hop next, whether to look up to check for predators,
whether to switch to a different activity, whether to attack a bug it has spot-
ted, and so on. A more complex information-processing mechanism can be
useful if it makes better decisions, but not if this takes too much time. To
see how combinatorial dilemmas can arise in information processing, con-
sider planning a sequence of actions. If there are m= 10 available actions,
planning a single action requires considering 10 alternatives, but planning an
action sequence incurs exponentially increasing costs, similar to brute-force
exploration. Planning 2 actionsmay require considering up tom2= 100 alter-
natives, andplanning3 actionsup tom3= 1000.Even if imagining actions can
be faster (and less risky) than actually performing them, planning sequences
can still be prohibitively time consuming. We consider the costs of planning
in chapter 11.

1.3.3 Stimulus Sequences

To behave efficiently, organisms typically require information from the envi-
ronment. Locating food, finding mates, and avoiding predators are some of
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the activities in which environmental information is essential. Extracting and
using information from the stream of sensory experiences poses many chal-
lenges. One is stimulus recognition. For example, an organism can only learn
to eat a particular fruit if it can recognize sensory states that indicate the
presence of that fruit. These sensory states are numerous, arising from differ-
ences between individual pieces of fruit as well as differences in background,
viewpoint, distance, and lighting conditions. This problem is typically solved
through stimulus generalization, that is, by evaluating the current stimulus
based on its similarity to familiar stimuli (stimuli to which a response has
already been established). The rules of stimulus generalization appear similar
regardless of whether knowledge of the familiar stimuli is inborn or learned
(Ghirlanda and Enquist 2003).
Stimulus recognition and generalization are very difficult computational

problems, aswitnessed by the fact that computer systems are just nowbecom-
ing competent at recognizing objects in the real world (Klette 2014). How-
ever, we believe that there are no major differences between humans and
animals in this domain, and for this reasonwedonotdevotemuch space to the
topic, with two important exceptions. The first is the recognition of sequences
of stimuli, for which animals’ abilities do appear more limited than humans’
(chapter 5). The second is the possibility of learning new representations of
stimuli, such as symbolic representations or representations that emphasize
meaningful features,whichwealso think ismuchmore limited in animals than
in humans (chapter 13). We believe that these differences between animals
and humans are rooted in the following combinatorial dilemma.
Organisms experience a continuous stream of stimuli, and have to strike a

balance between the potential advantages of remembering more information
to use for learning and decision making and the costs that stem from remem-
bering more information. One cost is that more information requires a larger
memory.Themain cost, however,maybe that rememberingmoremight actu-
ally make learning and decision making more difficult, rather than easier. To
appreciate this fact, suppose that an animal can perceive s different stimuli,
and that it decides what to do based on the last n stimuli perceived. If n= 1,
the animal uses the current stimulus only. It thus needs to knowwhat to do in
s different situations. If n= 2, the animal remembers the current stimulus and
the previous one. This may reveal more information about the environment,
but it alsomeans that there are now s2 situations (s2 pairs of stimuli) in which
the animal must know what to do. With increasing n, the number of poten-
tial situations increases exponentially as sn. Even if not all stimulus sequences
actually occur, the animal is still faced with an increased number of possibili-
ties that require a decision. With a realistic number of stimuli, the problem
is daunting, and the only solution is to focus on a subset of the incoming



challenges to the evolution of intelligence 7

200

0

400

600

800

1000

Sequence length

D
is

co
ve

ra
bl

e 
se

qu
en

ce
s

1 2 3 4

50 3 0

figure 1.3. The number of productive sequences that can be discovered within
a given time by brute-force exploration, as a function of sequence length. We
assume that each action takes one time unit, so that discovering a sequence of
length l takes on average lml time units, wherem is the number of actions that can
be performed. Thus the number of sequences that can be discovered in T time
units is n= ⌊

T/
(
lml)⌋, with �x� indicating the integer part of x. In the figure,

T= 10, 000 andm= 10.

information. The dilemma facing the animal is then what to remember and
what to discard. We cover this important topic in chapter 5, where we argue
that the dilemma lies behind many limitations in animal memory. Addition-
ally, chapter 13discusses howhumansmitigate the problemby learning useful
stimulus representations that are transmitted culturally.

1.4 How Can Combinatorial Dilemmas Be Managed?

Given the combinatorial dilemmas just highlighted, finding productive
sequences of behavior appears prohibitively hard. With countless possibili-
ties for experienced stimulus sequences and potential behavioral and mental
sequences, animals and humans could accomplish very little without sound
ways ofmanaging the dilemmas (Zador 2019). Consider, for example, an ani-
mal that learns entirely by brute-force exploration, without any genetic or
social information to help in the search for productive behavior. Suppose that
the animal can performm= 10 different actions and that it has time to try out
T= 10, 000 actions. Such an animal would have time to learn the best action
in 1000 stimulus situations; but it could learn the best 2-action sequence in
only 50 situations and the best 3-action sequence in only 3 situations, with
no guarantee of learning the best 4-action sequence in even a single situation
(figure 1.3). These discouraging numbers, moreover, apply under idealized
conditions; for example, that the animal learns each correct sequence the first
time it performs it.
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We think that the evolution of both animal and human intelligence can
be seen profitably as the discovery of strategies to manage combinatorial
dilemmas (Zador 2019, Quiroga 2020). Animals and humans can survive
and reproduce, hence they must have found viable strategies. For example,
a generalist strategy might focus on learning many different short sequences,
while a specialist strategy could focus on a few longoneswhose learning could
be supported by genetic predispositions. Only humans, it seems, have found
a way to discover very many, very long sequences. This difference between
humans and animals is the underlying theme of the book. As we will start to
see in detail in chapter 2, our conclusion is that human and animal intelligence
rely on two very different strategies for managing combinatorial dilemmas.

1.5 Our Approach

In this book,weaim toput forth a strong theory about thedifferencesbetween
human and animal intelligence. By “strong,” we mean a theory that is formal-
ized mathematically, from which clear empirical predictions can be derived.
We believe that much of the disagreement and fragmentation that exist today
in the fields of learning and cognition stem from a lack of formal theory.
Human and animal behavior is often describedwithwords that are inherently
slippery: intelligence, cognition, understanding, planning, reasoning, insight,
mental time travel, theory ofmind, andothers. Thesewords describe abilities,
but not how these abilities are achieved. In this book, we ask what organ-
isms can do, what information their behavior is based upon, and how such
information is acquired and used. This approach is not new. Formal models
of human and animal behavior have been advanced in psychology, biology,
and computer science. As detailed in chapter 2, we are greatly indebted to
these traditions, as well as to the deep empirical and conceptual knowledge of
behavior accumulated by ethologists and psychologists.
We do not expect all of our ideas to be correct, but we are convinced that

our approach can refocus current debate in a direction with a more concrete
promise of progress. The rest of this section elaborates our methodology.

1.5.1 What Is in a Mental Mechanism?

In this book, we try to understand how animals and humans arrive at pro-
ductive behavior by focusing on the information-processingmechanisms that
underlie behavior. We call any such mechanismmental mechanism. The term
mental refers simply to the fact that these mechanisms operate within the
brain, possibly disjointed from ongoing stimulation, and we do not attach
to it any particular significance. We could have used equally well the terms
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figure 1.4. A trap tube. A food item (black oval) can be pushed out by inserting
a stick from one end of the tube. Pushing from the other end causes the food to
fall into the trap.

behavior mechanism (common in ethology) or cognitive mechanism (common
in psychology), but the first may suggest a disregard for internal information
processing, which is not our aim, and the second often excludes associative
learning, which instead we include as a mental mechanism (see chapter 2).
We base our arguments on explicit models of mental mechanisms, by

which we mean formal descriptions of how information is acquired, repre-
sented, updated, and used to make behavioral decisions. It is also important
to consider which aspects of mental mechanisms develop rigidly (based pri-
marily on genetic information) and which are instead flexible, that is, open to
influence from experience. Ideally, all mechanisms should be mathematically
defined in enough detail that they can be simulated on computers and imple-
mented in robots. The advantage of this approach is to leave no doubt about
how amechanism is supposed towork, so that it is possible to determinewhat
it can and cannot do.
We focus on behavior without addressing its neural basis. Neuroscience

has made tremendous progress in relating behavior to nervous system oper-
ation, yet we are still far from understanding how differences in neural
processes across species translate into different behavioral abilities. In other
words, we start from behavior because we knowwhat animals domuch better
thanwhat their brains do.At the same time, themodelswepresent in the book
canbe formulated readily as neural networkmodels (Arbib 2003, Enquist and
Ghirlanda 2005, Enquist et al. 2016), whichmay go someway toward closing
the gap between brain and behavior.

1.5.2 What Does It Take to Solve a Problem?

Most conclusions about animal intelligence rest on experiments that chal-
lenge animals with various tasks or puzzles, and on inferring underlying
mental mechanisms from the results of these experiments. Typically, these
tasks can be described and analyzed in different ways. For example, a trap
tube experiment (figure 1.4; seeVisalberghi andLimongelli 1994, Limongelli
et al. 1995) can be described as probing physical cognition, causal inference,
or reasoning, or it can be seen simply as a choice between two actions (insert



10 chapter 1

a stick from either end) based on visual information (where the food item
lies). What matters, however, is what hypotheses about information process-
ing are required to reproduce how animals behave on the task. To ascertain
this conclusively, we see no alternative to formalizing the task and testing dif-
ferent mental mechanisms on it, comparing the behavior of models with that
of animals. This often produces surprising results. For example, a task may
turn out to be uninformative because it can be solved realistically by many
mechanisms (trap tube experiments are one example). Of note, we find that
associative learning—often deemed insufficient to reproduce certain aspects
of animal intelligence—can behave realistically when modeled formally (see
chapter 7).

1.5.3 What Are the Costs and Benefits of Mechanisms?

All mechanisms have costs in terms of time and energy needed to build and
operate them, and in terms of the time they require to find and execute pro-
ductive behavior. A mechanism that is more “intelligent” (can solve more
problems) may actually be selected against if it needs too much energy, if it
requires information that cannot be obtained easily, or if it takes too long a
time to operate. We find that cost-benefit analysis of mechanisms is rare in
current debate about animal cognition, yet such analysis is necessary tounder-
stand whether a mechanism is a viable evolutionary solution to a problem
or set of problems. For this reason, we endeavor to understand the costs and
requirements of the mechanisms we consider.

1.5.4 What Data Are Relevant?

Some readers may feel we have omitted studies or experimental paradigms
that they deem important, while perhaps focusing on findings that are less
central to current debate in animal cognition. Our selection of studies has
been guided by our focus on the learning of productive behavioral sequences.
For example, we have chosen not to discuss experiments on self-recognition
in mirrors. These experiments may be important for a number of questions,
but currently it is unclear what mechanisms are involved in self-recognition
and what evolutionary advantages they bring.
We also focus on data that can be interpreted with as little ambiguity as

possible. It is difficult, for example, to interpret the results of experiments
whose subjects have an unknown developmental history, because a given
behavior can often result from different mental mechanisms, given appro-
priate training. For this reason, observing a behavior without knowing the
animal’s experiences is often uninformative. Therefore, we favor experiments
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under controlled conditions and avoid, for the most part, observational stud-
ies or case studies of single individuals. One should also be aware that, even
if we label one part of the experiment as “training” and another as “testing,”
animals learn from each and every experience. The possibility that behavior is
influenced by learning during what we consider a mere test should always be
taken into account. We see in chapter 7 that this consideration can be crucial
in forming conclusions about mental mechanisms.

1.5.5 Learning Simulator and Online Script Repository

To achieve our goal of rigorous arguments, we have developed a simula-
tion environment that we use throughout the book to specify experimental
designs and mental mechanisms. The simulator is described in Jonsson et al.
(2021) and is available at https://www.learningsimulator.org. It offers a pro-
gramming language to specify environments in which learning agents can act
in pursuit of goals, such as securing resources and avoiding danger, as well
as a library of mental mechanisms that can be tested in any environment.
Our simulation scripts can be found at https://doi.org/10.17045/sthlmuni.
17082146.

1.6 Animal Rights and Human Responsibility

In this book, we conclude that nonhuman animals are less similar, cognitively,
to humans than is often claimed (especially innonacademicpublications).We
fear that this claimmaybe interpreted as detrimental to thehumane treatment
of animals, but this is not our intent.Rather,we stress that humans are theonly
specieswith the cognitive and technical capacity towillingly influence the fate
of other organisms. With this power comes a responsibility for stewardship,
which, to be effective, requires understanding the needs and capacities of ani-
mals (Stamp Dawkins 2008). Indeed, we suggest that species that are often
considered less cognitively competentmay actually be on the same footing as
“more advanced” species considered worthy of ethical concerns. We discuss
information-processing capacities only, rather than sentience or capacity to
suffer, but these are not irrelevant to ethical arguments. For example, we con-
clude that, based on available evidence, all vertebrates may be able to assign
positive or negative values to experiences (Macphail andBarlow1985).What
to make of this information is a complicated question subject to both ethical
and practical considerations (Herzog 2010).
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