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CHAPTER 2

and henceW is positive definite. ThatW (0) = 0 follows immediately from V (0) = 0
and α ∈ K∞. Note that if we have an upper bound as discussed in Remark 2.19,
the upper bound on W is trivial to derive.

An application of the chain rule allows us to see that, for all x ∈ Rn\{0},

〈∇W (x), f(x)〉 = α′(V (x))〈∇V (x), f(x)〉 ≤ −α′(V (x))ρ(x).

Since α′(s) > 0 for all s ∈ R>0, as a consequence of the bound α1(|x|) ≤ V (x),
for all x ∈ Rn\{0} we see that α′(V (x))ρ(x) > 0. Furthermore, since α′ and ρ are
both continuous, and since ρ(0) = 0, we see that α′(V (x))ρ(x) is positive definite.
Therefore, W satisfies the decrease condition

〈∇W (x), f(x)〉 ≤ −ρ̂(x)
.
= −α′(V (x))ρ(x), ∀x ∈ Rn

and, with the upper and lower bounds derived in (2.26), is hence a Lyapunov
function for (2.1). �

Recall that a continuously differentiable α ∈ K∞ does not necessarily satisfy
α′(s) > 0 for all s > 0. For example, α(s) = sin(s) + s is of class-K∞ but satisfies
α′(s) = 0 for infinitely many s > 0.

Theorem 2.21 (Exponentially decreasing Lyapunov functions). If there exists a
Lyapunov function for system (2.1) satisfying (2.17) and (2.19), then there exists
a continuously differentiable function W : Rn → R≥0 with W (0) = 0 and α̂1 ∈ K∞
so that, for all x ∈ Rn,

α̂1(|x|) ≤W (x) (2.27)

and

〈∇W (x), f(x)〉 ≤ −W (x). (2.28)

This theorem indicates that if we have one Lyapunov function, not only can we
find an infinite number of Lyapunov functions (via Theorem 2.20), but we can find
a Lyapunov function that decreases exponentially fast. To see this, applying the
comparison principle (Lemma 2.14) to (2.28), we consider

ẇ ≤ −w,

which yields w(t) ≤ w(0)e−t, and hence the Lyapunov function decreases exponen-
tially.

This exponential decrease can be a very useful property as it is relatively easy
to manipulate. However, exponential decrease of the Lyapunov function is not the
same as exponential decrease of the solution of (2.1). Indeed, (2.27) yields

α̂1(|x(t)|) ≤W (x(t)) ≤W (x(0))e−t,

which implies that |x(t)| ≤ α̂−1
1 (W (x(0))e−t). Since α̂1 ∈ K∞ is, in general, non-

linear, the exponential decrease of W does not translate to an exponential decrease
of |x|.
Proof of Theorem 2.21: As in the analytical proof of Theorem 2.16, there exists
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ρ̂ ∈ P so that

〈∇V (x), f(x)〉 ≤ −ρ̂(V (x)), ∀x ∈ Rn.

Lemma A.8 yields a continuously differentiable α ∈ K∞ satisfying α′(s) > 0 for all
s > 0 and

α(s) ≤ α′(s)ρ̂(s), ∀s ∈ R≥0.

Defining W (x) = α(V (x)) for all x ∈ Rn, Theorem 2.20 yields that W is a Lyapunov
function. We then calculate the decrease condition as

〈∇W (x), f(x)〉 = α′(V (x))〈∇V (x), f(x)〉
≤ −α′(V (x))ρ̂(V (x)) ≤ −α(V (x)) = −W (x)

for all x ∈ Rn. �

2.3.1 Time-Varying Systems

Lyapunov theory for time-varying systems is quite a bit more subtle than for time-
invariant systems. We limit ourselves to two of the most important sufficient con-
ditions, with an additional condition left to the exercises. Note that, in general,
when dealing with time-varying systems (2.9) we also need to allow the associated
Lyapunov functions to be time-varying as well.

Theorem 2.22 (Lyapunov uniform asymptotic stability [86, Theorem 4.8]). Given
the time-varying system (2.9) with f(t, 0) = 0 for all t ≥ t0 ≥ 0, if there exist a
continuously differentiable function V : R≥0 ×D → R≥0 and functions α1, α2 ∈ K
and ρ ∈ P such that, for all x ∈ D and t ≥ t0 ≥ 0,

α1(|x|) ≤V (t, x) ≤ α2(|x|) and (2.29)
d
dtV (t, x) = ∇tV (t, x) + 〈∇xV (t, x), f(t, x)〉 ≤ −ρ(|x|), (2.30)

then the origin is uniformly asymptotically stable. If additionally D = Rn and
α1, α2 ∈ K∞, then the origin is uniformly globally asymptotically stable.

Comparing the conditions in Theorem 2.22 and Theorem 2.16, other than the
function V being time-varying, the major difference is the upper bound in (2.29).
As we pointed out above (2.23), for time-invariant Lyapunov functions, this upper
bound always exists. However, for time-varying Lyapunov functions, it is necessary
to explicitly assume this upper bound to provide a bound that is independent of t.
The property captured by this upper bound is sometimes called decrescent.

Warning: A common error when considering time-varying Lyapunov functions
is to forget to take the partial derivative with respect to time; i.e., to leave out the
term ∇tV (t, x).

Having highlighted the importance of the upper bound in Theorem 2.22, we
might ask what happens when this bound is removed. A partial answer is given in
the following theorem and an interesting related case is discussed in [59, Chapter
VII, §53].

Theorem 2.23 (Lyapunov equiasymptotic stability theorem). Given the time-
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varying system (2.9) with f(t, 0) = 0 for all t ≥ t0 ≥ 0, if there exist a continuously
differentiable function V : R≥0 × D → R≥0, V (t, 0) = 0 for all t ≥ 0, a function
α ∈ K and λ > 0 such that, for all x ∈ D and t ≥ t0 ≥ 0,

α(|x|) ≤V (t, x), (2.31)

and

d
dtV (t, x) = ∇tV (t, x)+〈∇xV (t, x), f(t, x)〉 ≤ −λV (t, x), (2.32)

then the origin is asymptotically stable. If additionally D = Rn and α ∈ K∞, then
the origin is globally asymptotically stable.

Proof. The decrease condition (2.32) implies

V (t, x(t)) ≤ V (t0, x(t0))e−λ(t−t0).

The function α ∈ K (or K∞) is invertible on its range, which with the above
expression yields

|x(t)| ≤ α−1 (V (t, x(t))) ≤ α−1
(
V (t0, x(t0))e−λ(t−t0)

)
.

It is important to note that the bound achieved in the proof is dependent not
just on the elapsed time, t− t0, but also explicitly on the initial time as seen in the
first argument of the function V . The reader can verify that replacing (2.31) with
(2.29) allows a continuation of the final calculation in the above proof that yields
an upper bound that is independent of the initial time.

2.3.2 Instability

Based on our development of stability concepts and their relation to decreasing
energy, or a generalized energy in the form of a Lyapunov function, it is reasonable
to extend this same thinking to the definition of instability. One immediate form of
this is to simply change the sign of the decrease condition (2.18) in Theorem 2.15.

Theorem 2.24 (Lyapunov theorem for instability [59, Theorem 25.4]). Given (2.1)
with f(0) = 0, suppose there exist a continuously differentiable positive definite
function V : Rn → R≥0 and an ε > 0 such that

〈∇V (x), f(x)〉 > 0 (2.33)

for all x ∈ Bε\{0}. Then the origin is unstable.

This is not the most general instability theorem and, in fact, cannot be applied
in many cases of practical interest. Recall system (2.4),

ẋ1 = x1, ẋ2 = −x2. (2.34)

Changing the direction of the inequality in (2.25), we see that (2.33) implies that
the angle between the outward-facing normal ∇V (x) and f(x) must be less than
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π
2 . It is clear that this is not possible for all points on the axis x2 6= 0 and x1 = 0.
The phase portrait of (2.34) is shown in Figure 2.4.
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Figure 2.4: Phase portrait of the linear system (2.34) around the origin.

Unfortunately, it is not an unusual situation where a system may exhibit (asymp-
totically) stable behavior in some directions and unstable behavior in others. Equi-
libria satisfying Theorem 2.24 are usually called completely unstable to distinguish
them from unstable equilibria with stable behavior in some directions. Fortunately,
there is a more refined energy-like test for instability.

Theorem 2.25 (Chetaev’s theorem [86, Thm. 4.3]). Given (2.1) with f(0) = 0,
let V : Rn → R be a continuously differentiable function with V (0) = 0 and Or =
{x ∈ Br(0)| V (x) > 0} 6= ∅ for all r > 0. If for certain r > 0,

〈∇V (x), f(x)〉 > 0 ∀ x ∈ Or, (2.35)

then the origin is unstable.

The sets in Theorem 2.25 are indicated in Figure 2.5.

Example 2.26. Consider again system (2.4),

ẋ1 = x1, ẋ2 = −x2,

and take

V (x) = 1
2x

2
1 − 1

2x
2
2. (2.36)

We see that V (x) > 0 for all |x1| > |x2|. In particular, taking x0 = [x1, x2]T , we
see that as long as |x1| > |x2|, we have V (x0) > 0 even for |x0| arbitrarily small.

Then the expression (2.35) is

〈∇V (x), f(x)〉 = [x1 − x2]

[
x1

−x2

]
= x2

1 + x2
2 > 0 (2.37)
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0 x1

r

V (x) = 0
x2

V (x) > 0

Figure 2.5: The sets involved in Theorem 2.25.

for all x 6= 0 so that, in particular, this expression is strictly positive where V (x) >
0.

2.3.3 Partial Convergence and the LaSalle-Yoshizawa Theorem

Based on the results so far, there is a gap between Theorem 2.15 guaranteeing
stability, i.e., boundedness of solutions, and Theorem 2.16 guaranteeing asymptotic
stability, i.e., convergence of all state variables xi, i ∈ {1, . . . , n}, to an equilibrium.
In particular, if a subset of the states xi, i ∈ {1, . . . , n} is converging to a stable
equilibrium, neither Theorem 2.15 nor Theorem 2.16 can be used to capture this
asymptotic behavior. The gap between these two results is occupied by the LaSalle-
Yoshizawa theorem which we present in its general form for time-varying systems
(2.9) here.

Theorem 2.27 (LaSalle-Yoshizawa). Consider the time-varying system (2.9) with
f(t, 0) = 0 for all t ≥ t0 ≥ 0. Additionally, assume that f is locally Lipschitz in x
uniformly in t, i.e., for all D ⊂ Rn compact, there exists L > 0 such that

|f(t, x1)− f(t, x2)| ≤ L|x1 − x2| ∀ x ∈ D, ∀t ≥ t0.

If there exist a continuously differentiable function V : R≥0×Rn → R≥0, functions
α1, α2 ∈ K∞, and W : Rn → R≥0 continuous such that, for all x ∈ Rn and
t ≥ t0 ≥ 0,

α1(|x|) ≤V (t, x) ≤ α2(|x|) and
d
dtV (t, x) = ∇tV (t, x) + 〈∇xV (t, x), f(t, x)〉 ≤ −W (x), (2.38)

then all solutions of (2.9) are globally uniformly bounded and satisfy

lim
t→∞

W (x(t)) = 0. (2.39)

In the case that W : Rn → R≥0 is positive definite, there exists ρ ∈ P so
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that ρ(|x|) ≤ W (x) for all x ∈ Rn, i.e., Theorem 2.27 reduces to Theorem 2.22.
However, if W (x) is positive semidefinite but not positive definite, then convergence
to the set {x ∈ Rn| W (x) = 0} is guaranteed by (2.39), while Theorem 2.22 is not
applicable. Thus, for example, if the assumptions of Theorem 2.27 are satisfied for
a time-invariant system (2.1) and with

W (x) = xT
[

1 0
0 0

]
x ≥ 0 ∀ x ∈ R2,

then Theorem 2.15 only guarantees stability of the origin, while Theorem 2.27
additionally implies that x1(t)→ 0. In particular, it is guaranteed that a subset of
the states (i.e., x1) is converging to the origin while the remaining states (i.e., x2)
stay bounded.

For a proof of Theorem 2.27 we follow the exposition in [93, Theorem A.8].

Proof of Theorem 2.27: Since V̇ (t, x) ≤ −W (x) ≤ 0, the function V (·, x(·)) is
nonincreasing along solutions. Thus, it follows from |x(t)| ≤ α−1(V (t, x(t))) ≤
α−1(V (t0, x(t0))) for all t ≥ t0 and for all x(t0) ∈ Rn that x(·) is uniformly globally
bounded, i.e., |x(t)| ≤ r ∈ R for all t ≥ t0.

Since |x(t)| ≤ r and since V (t, x(t))) ≥ 0 is nonincreasing, we can conclude that
the limit V∞ = limt→∞ V (t, x(t)) ∈ R exists. Integrating the decrease condition
(2.38), it holds that

lim
t→∞

∫ t

t0

W (x(τ)) dτ ≤ − lim
t→∞

∫ t

t0

V̇ (τ, x(τ)))dτ ≤ − [V∞ − V (t0, x(t0)]

and thus the limit limt→∞
∫ t
t0
W (x(τ)) dτ exists and is finite. (The existence follows

from the monotonicity 0 ≤
∫ t1
t0
W (x(τ)) dτ ≤

∫ t2
t0
W (x(τ)) dτ for all t0 ≤ t1 ≤ t2.)

Since |x(t)| ≤ r and f is locally Lipschitz in x uniformly continuous in t, for all
t ≥ t0 ≥ 0, it holds that

|x(t)− x(t0)| =
∣∣∣∣∫ t

t0

f(x(τ), τ) dτ

∣∣∣∣ ≤ ∫ t

t0

|x(τ)| dτ ≤ Lr|t− t0|,

where L denotes the Lipschitz constant of f on the set x ∈ Br. Choosing δ(ε) = ε
Lr ,

it holds that

|x(t)− x(t0)| ≤ ε, ∀|t− t0| ≤ δ(ε),

which implies that x(·) is uniformly continuous. Moreover, since W is continuous,
it is uniformly continuous on compact sets. From the uniform continuity of x(·)
and W (·) we can thus conclude the uniform continuity of W (x(·)). We can thus
apply Barbalat’s lemma (see Lemma A.4) showing that W (x(t)) → 0 for t → ∞.

�

2.4 REGION OF ATTRACTION

We have seen in the previous sections that stability and attractivity are in general
local properties of equilibria xe of differential equation (2.1). Asymptotic stability
(defined through stability and attractivity) of an equilibrium requires the existence
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of a domain around the equilibrium such that all solutions of (2.1) starting in this
domain converge to the equilibrium. However, we have not addressed how large
the region of attraction (or domain or basin of attraction) of an equilibrium is.

Definition 2.28 (Region of attraction). Consider (2.1) with an asymptotically
stable equilibrium f(xe) = 0, xe ∈ Rn. The region of attraction of xe is defined as

Rf (xe) = {x ∈ Rn : x(t)→ xe as t→∞, x(0) = x} . (2.40)

For xe = 0, we will use the shorthand notation Rf = Rf (0). The region of
attraction is an open, connected, invariant set.

The computation of the region of attraction is far from trivial. We illustrate
two methods to estimate the region of attraction based on an example. Consider
the system

ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2

(2.41)

with a unique equilibrium at the origin. Note that the origin is locally asymptoti-
cally stable. Before proceeding, the reader should attempt to verify this using the
common quadratic Lyapunov function candidate V (x) = x2

1 + x2
2. Why does this

fail?

Example 2.29. We start by illustrating how Lyapunov’s second method (or direct
method) can be used to obtain an approximation of the region of attraction around
the origin.

Let λmin and λmax denote the minimum and maximum eigenvalues, respectively,
of the positive definite symmetric matrix P . We leave it to the reader to verify that
the function V (x) = xTPx defined through the matrix

P =

[
3
2 − 1

2
− 1

2 1

]
satisfies the inequality

λmin|x|2 ≤ V (x) ≤ λmax|x|2 (2.42)

for λmin = 0.69 and λmax = 1.81 and is a Lyapunov function for the system (2.41)
with respect to the origin.

The time derivative of V (x(t)) satisfies the equation

d
dtV (x) = −x2

1 − x2
2 − x3

1x2 + 2x2
2x

2
1.

Young’s inequality (Lemma A.4) provides the estimate

d
dtV (x) ≤ −x2

1 − x2
2 + x6

1 + 1
4x

2
2 + x4

1 + x4
2 = −x2

1

(
1− x2

1 − x4
1

)
− x2

2

(
3
4 − x

2
2

)
,

which implies that V̇ (x) < 0 whenever

1− x2
1 − x4

1 > 0 and 3
4 − x

2
2 > 0.
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These inequality constraints can be translated into the box constraints

C = {x ∈ R2 : −0.79 < x1 < 0.79, −0.89 < x2 < 0.89}, (2.43)

which are shown in Figure 2.6 as the black rectangle. Even though V is a Lyapunov

-1 -0.5 0 0.5 1 1.5 2
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Figure 2.6: Estimate of the region of attraction through level sets of Lyapunov
functions.

function with V̇ (x) < 0 in the set C defined in (2.43), C cannot be used as an
estimate of the region of attraction since it is not a forward-invariant set. To this
end, we need to define a sublevel set of the function V contained in C. Observe
that the inclusions

{x ∈ R2 : xTPx ≤ λmin} ⊂ {x ∈ R2 : xTx ≤ 1},
{x ∈ R2 : xTx ≤ 0.792} ⊂ C

are satisfied, which can be combined to obtain

{x ∈ R2 : xTPx ≤ 0.792λmin} ⊂ {x ∈ R2 : xTx ≤ 0.792} ⊂ C. (2.44)

Thus, the forward-invariant sublevel set {x ∈ R2 : V (x) ≤ 0.43} is contained in C
and hence can be used as an estimate for the region of attraction, i.e.,

{x ∈ R2 : V (x) ≤ 0.43} ⊂ Rf .

The corresponding sets are shown in Figure 2.6. As visualized through the dotted
line, in the two-dimensional setting, a better estimate of the region of attraction can
be obtained by increasing the level set V (x) = c, c > 0 until {x ∈ R2 : V (x) ≤ c}
is no longer contained in C. This is, however, in general only possible for systems
of dimension n ≤ 2, while the estimate (2.44) may be applicable regardless of the
dimension of the system.

Since the estimate of the region of attraction is based on a level set of a Lyapunov
function, the estimate automatically depends on the particular choice of V .

This example shows how an estimate of the region of attraction can be obtained
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from a quadratic Lyapunov function. If it is possible to visualize the Lyapunov
function and the decrease, the estimate can be improved in general. However, the
estimate derived in Example 2.29 is very conservative, as we will show in the next
example. Here we show how simulating the system in backward time can be used to
estimate the region of attraction. However, this approach will in general be limited
to systems in R2.

Example 2.30. We consider again the asymptotically stable origin of the system
(2.41) and look at the solution x(·) directly. However, rather than considering
t→∞, consider simulating backwards in time; i.e., take t→ −∞. To see the effect
of this, let τ = −t, which implies dτ = −dt and

d
dτ x(τ) = − d

dtx(−t) = −f(x(−t)) = −f(x(τ)). (2.45)

In other words, simulating the system backwards in time merely requires changing
the sign of the vector field. Choosing an initial condition close to the origin and
simulating backwards in time provides a continuum of initial conditions that con-
verge to the origin in forward time. In R2 when the region of attraction is bounded,
the backwards-in-time simulated trajectory converges to the boundary of the region
of attraction.
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Figure 2.7: Backward simulation to estimate the region of attraction. On the right,
additionally the level sets from Figure 2.6 are visualized for comparison.

In Figure 2.7 a solution of the system (2.41) in backward time, starting close to
the equilibrium, is visualized on the left. On the right only the tail of the solution
is shown, together with the level sets from Figure 2.6. In this example the tail of
the solution provides an arbitrarily good approximation of the region of attraction
of the origin Rf .

2.5 CONVERSE THEOREMS

We have indicated that once we have one Lyapunov function we can construct
infinitely many more Lyapunov functions (Theorem 2.20) and even Lyapunov func-
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tions which decrease exponentially (Theorem 2.21). However, the question remains:
how do we find a first Lyapunov function that then leads us to all these others?

Unfortunately, this is a difficult problem. While there are some frequently used
functions, such as quadratic forms, looking for a Lyapunov function remains some-
thing of a mysterious art. We can, though, assert that if a stability property holds,
then we are guaranteed the existence of a Lyapunov function. Such theorems are
referred to as Converse Lyapunov Theorems.

Theorem 2.31 (Converse Lyapunov theorem [59, Theorem 49.4]). If the origin
is uniformly globally asymptotically stable for (2.9), then there exist a (smooth)
function V : R≥0 × Rn → R≥0, functions α1, α2 ∈ K∞, and a function ρ ∈ P such
that, for all x ∈ Rn and all t ≥ t0 ≥ 0,

α1(|x|) ≤ V (t, x) ≤ α2(|x|) (2.46)

and

∇tV (t, x) + 〈∇xV (t, x), f(t, x)〉 ≤ −ρ(|x|). (2.47)

If f(t, x) is periodic in t, then there exists V (t, x) periodic in t. If f(t, x) is time-
invariant, then there exists V (t, x) independent of t.

A similar result can be given with respect to local uniform asymptotic stability
for a function V defined on a neighborhood around the origin.

While the above theorem does not tell us how to construct a Lyapunov function,
it is nonetheless reassuring that the search for a Lyapunov function is not futile.
Additionally, the above result allows us to pursue a certain form of modular feed-
back design whereby we assume a stabilizing feedback is available for some portion
of the system of interest. Theorem 2.31 then guarantees that a Lyapunov function
is available that can be used for subsequent design.

It is beyond the scope of our discussions here to prove Theorem 2.31, but it is
reasonable to wonder how one proves Theorem 2.31 and yet does not end up with
a usable Lyapunov function. The reason for this is that the constructed Lyapunov
function relies on solutions of the system (2.1). For example, a building block in a
standard converse Lyapunov theorem for exponential stability is the function

V (x) =

∫ ∞
0

|x(τ)|eτdτ, x = x(0) ∈ Rn,

which requires knowledge of the solutions of (2.1) from every initial condition x ∈
Rn. However, solving (2.1) is precisely what we are trying to avoid by using a
Lyapunov function. Hence, we see that the proof of Theorem 2.31 does not really
provide a starting point for construction of a Lyapunov function.

The assumption of exponential stability, along with an assumption on the vector
field, allows us to derive a Lyapunov function with a few extra properties.

Theorem 2.32 (Converse Lyapunov theorem [86, Theorem 4.14]). Suppose the
origin is globally exponentially stable for (2.1). Furthermore, assume f(·) is contin-
uously differentiable and the Jacobian matrix [∂f/∂x] is bounded. Then there exist
constants a1, a2, a3, a4 > 0 and a continuously differentiable function V : Rn → R≥0
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such that, for all x ∈ Rn,

a1|x|2 ≤ V (x) ≤ a2|x|2, (2.48)

〈∇V (x), f(x)〉 ≤ −a3|x|2, (2.49)

and

|∇V (x)| ≤ a4|x|. (2.50)

2.5.1 Stability

Converse theorems are also available for Theorem 2.15 (stability) and Theorem 2.25
(instability). Interestingly, in contrast to Theorem 2.31, where time-invariant sys-
tems with an asymptotically stable origin always admit time-invariant Lyapunov
functions, this is not the case for time-invariant systems with merely a stable origin.

Consider the second-order system

ẋ1 = x2, ẋ2 = sin2

(
π

x2
1 + x2

2

)
x2 − x1 (2.51)

which has periodic orbits given by

Γn =
{
x ∈ R2| x2

1 + x2
2 = 1

n

}
, n = 1, 2, . . .

To see this, note that (2.51) reduces to the oscillator

ẋ1 = x2, ẋ2 = −x1

on Γn. Furthermore, trajectories spiral outward between periodic orbits; i.e., for
initial conditions between periodic orbits Γn and Γn+1, solutions converge to the
outer periodic orbit Γn.

Suppose there exists a continuous function V (x) that decreases on any periodic
orbit. For any initial condition on a periodic orbit Γn, call it xn(0), there exists a
time T > 0 so that xn(0) = xn(T ). The fact that V (x) is decreasing then implies

V (xn(T )) < V (xn(0)) = V (xn(T ))

yielding a contradiction. Hence, V (x) must be constant on any periodic orbit.
Since V (x) is nonincreasing along trajectories and satisfies V (0) = 0, we have

V |Γ1
≤ V |Γ2

≤ · · · ≤ V |Γn ≤ · · · ≤ V (0) = 0,

which contradicts the requirement that V (x) be positive definite. Consequently,
despite the fact that the origin is a stable equilibrium point and (2.51) is time-
invariant, the system does not admit a time-invariant Lyapunov function.

2.6 INVARIANCE THEOREMS

In our original, energy-based analysis of the mass-spring system (Example 1.2)
and the pendulum (Example 1.4), we were unable to definitively prove that the
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system came to rest at the origin. Recast in the theory of Lyapunov functions from
Section 2.3, the problem was that the time derivative of the Lyapunov function was
only negative semidefinite rather than negative definite. Our intuition, though, is
that these systems do come to rest at the origin. Invariance theorems provide a
tool that allows us to draw conclusions about asymptotic stability from Lyapunov
functions that have a negative semidefinite time derivative.

2.6.1 Krasovskii-LaSalle Invariance Theorem

The following theorem was developed independently in the Soviet Union by Krasov-
skii and in the West by LaSalle. Hence, in the English language literature it is
sometimes referred to as LaSalle’s Invariance Theorem.

Theorem 2.33 (Krasovskii-LaSalle invariance theorem [158, Thm. 5.3.77]). Sup-
pose there exists a positive definite and continuously differentiable function V :
Rn → R≥0 such that, in an open domain containing the origin 0 ∈ D ⊂ Rn, it
holds that

〈∇V (x), f(x)〉 ≤ 0. (2.52)

Choose a constant c > 0 such that the level set Ωc = {x ∈ Rn : V (x) ≤ c} is bounded
and contained in D. Let S = {x ∈ Ωc : 〈∇V (x), f(x)〉 = 0} and suppose no solution
other than the origin can stay identically in S. Then the origin is asymptotically
stable.

We illustrate the use of Theorem 2.33 on the pendulum and a mass-spring-
damper example.

Example 2.34. Recall the pendulum system given by

ẋ1 = x2

ẋ2 = − g` sinx1 − k
mx2

and defined on the domain D = (−π, π)× R. The total energy of the pendulum is
given by

V (x) = mg`(1− cosx1) + 1
2m`

2x2
2,

which satisfies

〈∇V (x), f(x)〉 = −k`2x2
2.

Observe that this expression is only negative semidefinite since the right-hand side
is equal to zero for x2 = 0 regardless of the value of x1.

We see that 〈∇V (x), f(x)〉 = 0 implies x2 = 0, so in Theorem 2.33,

S = {x ∈ D : x2 = 0}.

In order for x2 to remain at 0, ẋ2 also needs to be zero, which implies x1 = 0.
Also, x2 = 0 implies ẋ1 = 0. Therefore, the only solution that can remain in S
is x1(t) = 0, x2(t) = 0. Hence, consistent with our intuition, in the presence of
friction (k > 0), the downward equilibrium is asymptotically stable.
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Example 2.35. Consider the mass-spring-damper system, shown in Figure 2.8, with
a nonlinear spring

mÿ + bẏ|ẏ|+ k0y + k1y
3 = 0.

With x1 = y and x2 = ẏ we obtain the state space model

m

y

Figure 2.8: Mass-spring-damper system.

ẋ1 = x2

ẋ2 = 1
m

(
−k0x1 − k1x

3
1 − bx2|x2|

)
.

Consider the candidate Lyapunov function

V (x) = k0

2mx
2
1 + k1

4mx
4
1 + 1

2x
2
2. (2.53)

Then

〈∇V (x), f(x)〉 = k0

m x1x2 + k1

m x
3
1x2 − k0

m x1x2 − k1

m x
3
1x2 − b

mx
2
2|x2|

= − b
mx

2
2|x2| ≤ 0.

As in the pendulum example, 〈∇V (x), f(x)〉 = 0 implies x2 = 0 and hence

S = {x ∈ R2 : x2 = 0}.

In S, ẋ1 = 0 and in order to stay at x2 = 0, we require ẋ2 = 0. This implies

0 = − 1
m (k0x1 + k1x

3
1) ⇒

[
x1 = 0 or x1 = ±j

√
k0

k1

]
.

Therefore, x = 0 is asymptotically stable.

2.6.2 Matrosov’s Theorem

Theorem 2.33 only applies to time-invariant systems and does not appear to be
directly generalizable to time-varying systems. However, with the use of a second
function, the following result was provided by Matrosov. Similarly to what is done
in Theorem 2.33, denote the set where the time derivative of the time-varying
Lyapunov function V is zero by

S = {x ∈ Rn : ∇tV (t, x) + 〈∇xV (t, x), f(t, x)〉 = 0}. (2.54)
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Theorem 2.36 (Matrosov invariance theorem [59, Theorem 55.3]). Given contin-
uously differentiable functions V,W : R≥0 × Rn → R, suppose that

1. V is positive definite and decrescent; that is, there exist α1, α2 ∈ K∞ so that for
all x ∈ Rn and all t ≥ 0,

α1(|x|) ≤ V (t, x) ≤ α2(|x|);

2. the time derivative of V along solutions of (2.9) is negative semidefinite; that is,

∇tV (t, x) + 〈∇xV (t, x), f(t, x)〉 ≤ 0;

3. W is bounded; that is, there exists h ≥ 0 so that for all x ∈ Rn and all t ≥ 0

|W (t, x)| ≤ h;

4. the time derivative of W along solutions of (2.9) is bounded away from zero on
S in the following sense: for every a > 0 there exist r, b > 0 so that

|∇tW (t, x) + 〈∇xW (t, x), f(t, x)〉| > b

for all t ≥ 0 and all x in the set

{x ∈ Rn : |x| > a and |x|S < r}.

Then the origin is uniformly globally asymptotically stable.

Here, |x|S = infy∈S |x − y| denotes the distance to the set S. The intuition
behind Theorem 2.36 is as follows. The negative semidefinite time derivative of V
indicates that solutions of (2.9) converge toward the set S where the time derivative
is zero. In a neighborhood of the set S\{0} as well as in S, however, the function
W necessarily grows (either positive or negative) because its time derivative is
bounded away from zero. Furthermore, W is bounded, which implies that W
cannot grow indefinitely. The conclusion, then, is that eventually every solution
needs to approach the origin, where the time derivative of both V and W are zero.

2.7 EXERCISES

Exercise 2.1. Prove that stability as phrased in Definition 2.1 is equivalent to the
existence of α ∈ K satisfying (2.3).

Hint: The fact that for any continuous and positive function ρ ∈ P there exists
a function α ∈ K such that ρ(s) ≤ α(s) for all s ∈ R≥0 might be useful, [81, Lemma
1]. Moreover, you can assume that δ in Definition 2.1 depends continuously on ε.

Exercise 2.2. Consider the differential equation (2.6) with unique equilibrium at
the origin. In this exercise we numerically investigate attractivity and stability of
the origin.

1. Write a MATLAB function

dx = odeVinograd(t,x)
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capturing the dynamics of the ordinary differential equation (2.6).
2. Solve the ordinary differential equation (2.6) for different initial values x0 using

ode45.m and visualize the solutions (x1(t), x2(t)) in the x1-x2-plane. For the
numerical solutions, select the time span long enough so that the behavior x(t)→
[0, 0]T can be observed.

3. Visualize the phase portrait of the ordinary differential equation (2.6) in a neigh-
borhood around the origin by using the function quiver.m.

4. Explain based on your visualizations and based on the ε-δ-stability criterion
(Definition 2.1) why the origin of the ordinary differential equation is unstable.

Exercise 2.3. Modify the analytical proof of Theorem 2.16 to obtain the proof of
Theorem 2.17.

Exercise 2.4. Consider the dynamics of the pendulum (1.11) together with the
Lyapunov function

V (x) = 1
2x

T

[
1
2

(
k
m

)2 1
2
k
m

1
2
k
m 1

]
x+ g

` (1− cos(x1)) (2.55)

derived in Example 2.18.
Construct the sets in the geometric proof of asymptotic stability visualized in

Figure 2.3 for the Lyapunov function (2.55). In particular, using the parameters
g = 9.81, m = 1, ` = 4, and k = 0.1, for ε = 3 numerically find c > 0 and δ > 0
such that

Bδ(0) ⊂ {x ∈ [−π, π]× R : V (x) ≤ c} ⊂ Bε(0)

is satisfied. Visualize the sets (as in Figure 2.3) together with the phase portrait of
the ordinary differential equation (1.11).

Exercise 2.5. Consider the one-dimensional differential equations

v̇ = v, ẇ = 0, ẋ = −x3, ẏ = −y,

which all have the origin as unique equilibrium.
Investigate the stability properties of the origin of the differential equations

through Lyapunov or Lyapunov-like functions. In particular, what is the difference
between instability, stability, asymptotic stability and exponential stability?

Exercise 2.6. Consider the ordinary differential equation

ẋ1 = x1 − x1x2, ẋ2 = −x2 + x1x2. (2.56)

Use Theorem 2.25 and the function V (x) = 1
2x

2
1 − 1

2x
2
2 to show that the origin of

the differential equation is unstable (2.56).

Exercise 2.7. Consider the functions

V1(t, x) = x2
1(1 + sin2(t)) + x2

2(1 + cos2(t))

V2(t, x) = x2
1 + x2

2(1 + t).

Show that V1 is decrescent while V2 is not decrescent.
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Exercise 2.8. Consider the differential equation

ẋ1 = x3
2, ẋ2 = −x3

1 − x2. (2.57)

Use Theorem 2.33 together with the function V (x) = 1
4x

4
1 + 1

4x
4
2 to show that the

origin of (2.57) is asymptotically stable.

Exercise 2.9. In Example 2.18 we have derived the Lyapunov function

V (x) =
1

2
xTPx+

g

`
(1− cos(x1)), P =

[
1
2

(
k
m

)2 1
2
k
m

1
2
k
m 1

]
,

with parameters g, `, k,m ∈ R>0, with respect to the origin xe = 0 of the differential
equation

ẋ1 = x2, ẋ2 = −g
`

sin(x1)− k

m
x2. (2.58)

1. Write MATLAB functions

dx = odePendulum(t,x,parameters)

and

Vx = LyapunovPendulum(x,parameters)

capturing the dynamics. The Lyapunov function and the parameters g, `, k,m
are stored in parameters.

2. Visualize the Lyapunov function on the domain [−π, π]2 by using the command
surf.m. Solve the differential equation with respect to the initial condition
x(0) = [1, 1]T and the parameters g = 9.81, k = 0.1, and ` = m = 1. Visu-
alize the solution (x1(t), x2(t), V (x(t))) using plot3.m in the same figure as the
Lyapunov function.
Hint: The additional option ’linestyle’,’none’ in surf.m might improve the
plot. To ensure that the solution is visible, use the option ’linewidth’,2 and
’color’,’red’ in plot3.m.

3. Use plot.m to visualize (t, (x1(t)) and (t, x2(t)) (for x(0) = [1, 1]T , t ∈ [0, 50],
and the parameters g = 9.81, k = 0.1, and ` = m = 1).

4. Use plot.m to visualize (t, V (x(t))) and (t, |x(t)|2) (for x(0) = [1, 1]T , t ∈ [0, 50],
and the parameters g = 9.81, k = 0.1, and ` = m = 1). Is Ṽ (x) = |x|2 a
Lyapunov function for the pendulum?

2.8 BIBLIOGRAPHICAL NOTES AND FURTHER READING

Aleksandr Mikhailovich Lyapunov published both his first and second methods for
stability analysis in his doctoral dissertation in 1892 [102]. We have focused on his
second method (also sometimes referred to as the direct method) in this chapter.

This chapter has largely focused on the analysis of nonlinear systems as op-
posed to the synthesis or design of feedback systems. Standard texts with a more
comprehensive coverage of analysis topics include [86] and [158]. Despite its age,
[59] remains an excellent text for topics in stability theory.
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The short monograph [31] uses the same notation as this book and covers Lya-
punov and control Lyapunov results for differential inclusions, a more general class
of systems than the ones discussed here. Control Lyapunov functions are introduced
later in this book in Chapter 9.

The time-invariant system in Section 2.5.1 with a stable origin that requires a
time-varying Lyapunov function is from [22, Example 4.11]. The system of Exer-
cise 2.2 possessing an attractive but unstable origin is from [59, Sec. 40], where
attribution is given to a 1957 paper (in Russian) by R. E. Vinograd.

In the context of time-varying systems, we have used the term asymptotic sta-
bility to implicitly include uniformity in the initial state and uniform asymptotic
stability to cover uniformity in both the initial state and initial time. We have
done so because non-uniformity in the initial state appears to be extremely rare.
However, what we have termed asymptotic stability is sometimes referred to as
equiasymptotic or non-uniform in time stability in order to reserve the term asymp-
totic stability for a stability and convergence property that is uniform neither in
time nor in the initial state (see [59]). Additional texts on nonlinear systems anal-
ysis with a significant coverage of time-varying systems include [131] and [167].

The history of converse theorems (Section 2.5) captures much of the history of
state space methods, particularly in relation to initial developments in the Soviet
Union and the West trying to rapidly catch up following the launch of Sputnik. See
[82].

More general versions of Theorem 2.33 are possible whereby V need not be
positive definite. Furthermore, rather than requiring the negative semidefinite de-
crease on all of Rn, attention can be restricted to an invariant set and convergence
is guaranteed to a (smaller) invariant set. See [86, Theorem 4.4].
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Linear Systems and Linearization

All real-world systems are nonlinear. The clearest example of this is that con-
straints are inherently nonlinear. However, a linear model in many cases provides a
very good approximation, particularly when restricted to some region of the state
space. This is advantageous because linear systems provide a significant amount of
structure that can be exploited in both analysis and design. For example, we can
derive closed-form solutions for linear ordinary differential equations and there are
several constructive and algebraic methods for analysis and design.

Indeed, many books have been written on linear systems theory, and some
references are provided in the bibliographical notes in Section 3.7. Here, we present
only those results necessary for our subsequent development of nonlinear topics.

In addition to linear systems, Lyapunov functions for polynomial systems ob-
tained through sum of squares programming are discussed in Section 3.4.

3.1 LINEAR SYSTEMS REVIEW

As the simplest possible example, consider a one-dimensional system

ẋ = ax,

with initial state x(0) ∈ R and constant a ∈ R. It is easy to verify that the solution
is given by

x(t) = x(0)eat, t ≥ 0,

since d
dtx(t) = ax(0)eat = ax(t). Furthermore, the origin is:

• (uniformly) globally exponentially stable if and only if a < 0;
• globally stable but not exponentially stable if and only if a = 0; and
• unstable if and only if a > 0.

Finally, it is trivial to see that, when a < 0, V (x) = x2 is a Lyapunov function
that guarantees global exponential stability (recall Theorem 2.17). While quite
simple, this example contains many of the core elements of linear systems theory,
particularly in terms of stability theory and Lyapunov functions.

Consider now the linear system

ẋ = Ax (3.1)

with initial condition x(0) ∈ Rn and A ∈ Rn×n (that is, A is an n× n matrix con-
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sisting of real elements). The solution of (3.1) depends on the matrix exponential

x(t) = eAtx(0) =

( ∞∑
k=0

1

k!
(At)k

)
x(0).

3.1.1 Stability Properties for Linear Systems

Suppose that the matrix A ∈ Rn×n is diagonalizable. Then there exists an invertible
matrix T ∈ Cn×n so that Λ = T−1AT , where Λ ∈ Cn×n is a diagonal matrix with
the eigenvalues of A, denoted by λi, on the diagonal and the columns of T contain
the corresponding eigenvectors of the matrix A.

We first observe that

Ak = (TΛT−1)(TΛT−1) · · · (TΛT−1) = TΛkT−1.

Furthermore, since Λ is diagonal, raising it to a power is the same as raising each
diagonal element of Λ to the same power. Therefore,

eAt =

∞∑
k=0

tk

k!
Ak = T

( ∞∑
k=0

tk

k!
Λk

)
T−1

= T


eλ1t 0 · · · 0

0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt

T−1. (3.2)

It is immediate that in this case (i.e., A diagonalizable) stability properties
of the origin can be characterized based on the location of the eigenvalues in the
complex plane. For example, if all the eigenvalues have strictly negative real parts,
then the matrix-vector product eAtx(0) converges to the zero vector exponentially
quickly.

Before stating a general result, we must consider what happens when matrices
are not completely diagonalizable. In this case, we rely on the Jordan normal form
and, for discussion purposes, we restrict attention to the 2× 2 Jordan block

J =

[
λ 1
0 λ

]
and examine the matrix exponential eJt. It is not difficult to see that

Jk =

[
λk kλk−1

0 λk

]
and therefore, in the infinite sum defining the matrix exponential, the diagonal
elements sum to eλt as in (3.2). A little manipulation of the upper diagonal element
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yields

∞∑
k=0

ktk

k!
λk−1 = t

∞∑
k=1

tk−1

(k − 1)!
λk−1 = t

∞∑
`=0

t`

`!
λ` = teλt.

Therefore, the matrix exponential of the Jordan block J yields

eJt = eλt
[

1 t
0 1

]
.

Here, we see that if the real part of λ is strictly negative, we would still obtain
convergence to the origin since eλt will converge faster than t will diverge. However,
if λ has zero real part (i.e., is purely imaginary), then eλt is oscillatory, rather than
converging, and hence teλt will grow to infinity.

Higher order Jordan blocks yield a similar structure (see Exercise 3.2) and lead
us to the following result.

Theorem 3.1 (Stability of linear systems [63, Theorem 8.1]). For the linear system
(3.1), the origin is

1. stable if and only if the eigenvalues of A have negative or zero real parts and all
the Jordan blocks corresponding to eigenvalues with zero real parts are 1× 1;

2. unstable if and only if at least one eigenvalue of A has a positive real part or zero
real part with the corresponding Jordan block larger than 1× 1;

3. exponentially stable if and only if all the eigenvalues of A have strictly negative
real parts.

Note that stability is a property of an equilibrium point. This is particularly
important to keep in mind for nonlinear systems, which may well have multiple
equilibrium points, some of which may be asymptotically stable or unstable or any
combination of stability properties. By contrast, linear systems cannot have isolated
equilibrium points other than the origin. Consequently, in an abuse of terminology,
it is not uncommon for the system itself to be referred to as “exponentially stable”
or “unstable.”

A matrix A is said to be Hurwitz if all the eigenvalues of A have strictly negative
real parts. Therefore, based on Theorem 3.1 item 3, referring to the exponentially
stable origin of a linear system (3.1) is often done by simply referring to a Hurwitz
matrix A.

Moreover, note that Theorem 3.1 does not mention asymptotic stability and does
not distinguish between local and global stability properties. The reason for this
is that for linear systems asymptotic stability is equivalent to exponential stability
and local (exponential) stability implies global (exponential) stability of the origin
of the linear system (3.1). The former statement follows from the fact that solutions
are combinations of exponential functions and hence the obtained bounds for an
asymptotically stable origin will be exponential. The latter statement follows from
the fact that a linear system with a locally exponentially stable origin can only
have an isolated equilibrium point at the origin and hence if the origin is locally
exponentially stable it is also globally exponentially stable.
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3.1.2 Quadratic Lyapunov Functions

To analyze the stability properties of linear systems (3.1) through Lyapunov meth-
ods, we can rely on a special class of Lyapunov functions given by

V (x) = xTPx,

i.e., quadratic Lyapunov functions described through symmetric positive definite
matrices P ∈ Sn. Here

Sn = {P ∈ Rn×n : P = PT }

denotes the vector space of real symmetric matrices.
A symmetric matrix P ∈ Sn is positive definite if

xTPx > 0, ∀x 6= 0.

Similarly, the matrix P is positive semidefinite if xTPx ≥ 0, negative definite if
xTPx < 0, or negative semidefinite if xTPx ≤ 0. The set of positive definite
matrices is denoted by Sn>0. The validation that a symmetric matrix is positive
definite can be checked through different criteria (see, for example, [64, Sections
7.1–7.2]).

Lemma 3.2. The following are equivalent:

1. P ∈ Sn is positive definite;
2. All the eigenvalues of P are positive;
3. The determinants of all the upper left submatrices (the so-called leading principal

minors) of P are positive;
4. There exists a nonsingular matrix H ∈ Rn×n such that P = HTH.

In addition to Lemma 3.2 item 2, a positive definite matrix P ∈ Sn>0 satisfies

0 < λminx
Tx ≤ xTPx ≤ λmaxx

Tx, ∀ x 6= 0, (3.3)

where λmin and λmax denote the minimum and maximum eigenvalues of P , respec-
tively. Note that the eigenvalues of symmetric matrices are real valued and thus
the minimum and maximum eigenvalue are well defined. Also, particularly with
reference to the notation in Theorem 2.17, note that xTx = |x|2.

Recall from the previous chapter that a characterization of positive definite
functions is the existence of a lower bound given by a K function of the norm of
the state (see (2.16)). We see that a positive definite matrix P corresponds to the
quadratic function xTPx being a positive definite function where the desired lower
bound α ∈ K is α(s) = λmins

2 for s ≥ 0.

Theorem 3.3. For the linear system (3.1), the following are equivalent:

1. The origin is exponentially stable;
2. All eigenvalues of A have strictly negative real parts;
3. For every symmetric positive definite Q ∈ Sn>0 there exists a unique symmetric

positive definite P ∈ Sn>0, satisfying

ATP + PA = −Q. (3.4)
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Proof. The equivalence of items 1 and 2 is simply part of Theorem 3.1, which leaves
us to prove the equivalence of items 1 and 3.

‘3 ⇒ 1’: For simplicity take Q = I (the interested reader may consider the
changes needed below for an arbitrary symmetric positive definite Q) and the Lya-
punov function candidate V (x) = xTPx. Then

xTPx ≤ λmaxx
Tx ⇒ −xTx ≤ − 1

λmax
xTPx

and, applying the chain rule,

d
dtV (x) = ẋTPx+ xTPẋ = xTATPx+ xTPAx

= xT (ATP + PA)x = −xTx ≤ − 1
λmax

xTPx

= − 1
λmax

V (x). (3.5)

An alternate derivation using the previous (equivalent) gradient notation, keeping

in mind that P = PT , uses ∇V (x) =
(
xTP

)T
+ Px = 2Px, which gives

〈∇V (x), Ax〉 = 2xTPAx = xTPAx+
(
xTPAx

)T
= xTPAx+ xTATPx.

Continuing from (3.5), the comparison principle (Lemma 2.14) yields

V (x(t)) ≤ V (x(0)) exp
(
− 1
λmax

t
)
,

from which we can compute

λmin|x(t)|2 ≤ V (x(t)) ≤ V (x(0)) exp
(
− 1
λmax

t
)
≤ λmax|x(0)|2 exp

(
− 1
λmax

t
)
,

and hence

|x(t)| ≤
√

λmax

λmin
|x(0)| exp

(
− 1

2λmax
t
)
.

Referring to Definition 2.7 we see that with M =
√

λmax

λmin
and λ = 1/(2λmax), the

origin is exponentially stable.
‘1 ⇒ 3’: Given the symmetric positive definite matrix Q ∈ Sn>0, let

P =

∫ ∞
0

eA
T τQeAτdτ. (3.6)

Note that the integral in (3.6) is well defined since ‖eAT tQeAt‖ converges to zero
exponentially fast.

To see that P solves the Lyapunov equation, first note that

d
dt

(
eA

T tQeAt
)

= AT eA
T tQeAt + eA

T tQeAtA.
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Then we can directly compute

ATP + PA =

∫ ∞
0

(
AT eA

T τQeAτ + eA
T τQeAτA

)
dτ =

∫ ∞
0

d
dτ

(
eA

T τQeAτ
)
dτ

= eA
T tQeAt

∣∣∣∞
0

=
(

lim
t→∞

eA
T tQeAt

)
− eA

T 0QeA0 = −Q.

It remains to show that P defined by (3.6) is symmetric, positive definite, and
unique. That P is symmetric follows from the fact that Q = QT since

PT =

∫ ∞
0

(
eA

T τQeAτ
)T

dτ =

∫ ∞
0

eA
T τQT eAτdτ

=

∫ ∞
0

eA
T τQeAτdτ = P.

To show that P is positive definite, let z ∈ Rn and consider

zTPz =

∫ ∞
0

zT eA
T τQeAτz dτ.

Note that if z 6= 0 then x(τ) = eAτz 6= 0 and, since Q is positive definite,

zTPz =

∫ ∞
0

x(τ)TQx(τ)dτ > 0.

Additionally, if z = 0 then x(τ) = 0, and so P is indeed positive definite.
Finally, that P is unique can be proved by contradiction and is left to the

interested reader.

Recognizing that the matrices P and Q in (3.4) are used in constructing a
Lyapunov function as seen in the proof above, (3.4) is referred to as the Lyapunov
equation. Note that this provides a constructive method to find a Lyapunov function
for linear systems. In fact, there is a MATLAB command that computes P given
a positive definite symmetric matrix Q. See Exercise 3.3.

3.2 LINEARIZATION

We now return to the nonlinear system (1.1) given by

ẋ = f(x) (3.7)

with f(0) = 0 and assume that f is continuously differentiable. Recall that, as
argued for (1.9), we can shift any equilibrium point of interest to the origin so that,
for the translated system, f(0) = 0.

Define the matrix A by the Jacobian of f evaluated at the origin,

A =

[
∂f(x)

∂x

]
x=0

,
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and let f1(x) = f(x)−Ax. Note that

lim
|x|→0

|f1(x)|
|x|

= lim
|x|→0

|f(x)−Ax|
|x|

= 0, (3.8)

where the last equality follows from an application of L’Hôpital’s rule.
A slightly different point of view is to take the Taylor expansion of f at 0,

f(x) = Ax+ f1(x), where all the higher order terms are collapsed into f1.
The system

ż(t) = Az(t) (3.9)

is called the linearization of (3.7) at the origin. Note that, in an abuse of notation,
(3.9) is almost always written as ẋ(t) = Ax(t), blurring the distinction between the
actual state x of the nonlinear system (3.7) and its linear approximation (3.9).

Theorem 3.4. Consider the nonlinear system (3.7) with continuously differentiable
right-hand side f and its linearization (3.9). If the origin of the linear system (3.9)
is globally exponentially stable then the origin of (3.7) is locally exponentially stable.

Proof. Let the origin of (3.9) be globally exponentially stable and define Q = I.
Since the origin is exponentially stable for (3.9), Theorem 3.3 provides a symmetric
and positive definite P satisfying (3.4). Take V (x) = xTPx. Then

〈∇V (x), f(x)〉 = −xTx+ 2xTPf1(x). (3.10)

As before, denote the maximum eigenvalue of P by λmax. Choose r > 0 and ρ < 1
2

such that, for all x satisfying |x| ≤ r,

|f1(x)| ≤ ρ
λmax
|x|. (3.11)

That this can be done follows from (3.8). Then

|2xTPf1(x)| ≤ 2|Px| |f1(x)| ≤ 2 (λmax|x|)
(

ρ

λmax
|x|
)

= 2ρxTx.

Therefore, for |x| ≤ r,

〈∇V (x), f(x)〉 ≤ −xTx+ 2ρxTx = −(1− 2ρ)xTx

≤ −1− 2ρ

λmax
V (x) = −cV (x),

where c = 1−2ρ
λmax

> 0 since ρ < 1
2 . We see that V satisfies all the assumptions of

Theorem 2.17 and so the origin of (3.7) is locally exponentially stable.

We can also use the linearization to ascertain if the origin is unstable.

Theorem 3.5. Consider the nonlinear system (3.7) with continuously differentiable
right-hand side f and its linearization (3.9) and assume that the eigenvalues of A
satisfy λi + λj 6= 0 for all i, j. The equilibrium 0 is unstable for (3.7) if A has at
least one eigenvalue with positive real part.

Here, we only prove a special case of the theorem which relies on the two fol-
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lowing lemmas presented without a proof. For a proof of the general statement of
Theorem 3.5 we refer to [86, Theorem 3.7].

Lemma 3.6 ([158, Lemma 5.4.35]). The Lyapunov equation (3.4) has a unique
(real symmetric) solution P for each (real symmetric) Q if and only if the eigen-
values of A satisfy λi + λj 6= 0 for all i, j.

Lemma 3.7 ([158, Lemma 5.4.52]). Suppose the eigenvalues of A satisfy λi+λj 6= 0
for all i, j. If Q is positive definite, and P solves the Lyapunov equation (3.4), then
P has as many negative eigenvalues as there are eigenvalues of A with positive real
part.

Sketch of the proof of Theorem 3.5: Let f(x) = Ax + f1(x) satisfy (3.8). Take

Q = I, P̂ = −P , and V (x) = xT P̂ x. If A has at least one eigenvalue with positive

real part then P has at least one negative eigenvalue and P̂ has at least one positive
eigenvalue. Therefore, there exists an x0 arbitrarily close to the origin such that
V (x0) > 0.

In order to apply Theorem 2.25 (Chetaev’s theorem), it remains to show that
there is a neighborhood of the origin where 〈∇V (x), f(x)〉 > 0. This can be done
using arguments similar to those of the proof of Theorem 3.4, where (3.10) can be
shown to satisfy

〈∇V (x), f(x)〉 = xTx+ 2xT P̂ f1(x) ≥ cV (x)

on some neighborhood of the origin and for some c > 0. The details are left to
Exercise 3.4. �

Note that if all eigenvalues of A have non-positive real part but A has any
eigenvalues with zero real part, then the linearization is inconclusive.

Example 3.8. Consider the nonlinear system

ẋ = cx3 (3.12)

with parameter c ∈ R. The function V (x) = 1
2x

2 satisfies (2.17) and

V̇ (x) = 〈∇V (x), cx2〉 = cx4.

Thus, for c < 0, the origin of (3.12) is asymptotically stable according to Theorem
2.16 and for c > 0 the origin of (3.12) is unstable according to Theorem 2.24.

However, independently of the parameter c, the linearization of the system (3.12)
around the origin is given by ż = Az = 0 · z. Hence, it is impossible to conclude
stability properties of the origin for the nonlinear system based on its linearization
if the matrix A contains eigenvalues with zero real part.

Example 3.9. Consider the mass-spring system of Example 1.2 with a hardening
spring given by Fsp = k0y + k1y

3 = k0x1 + k1x
3
1 with k0, k1 > 0, which yields the

state space system

ẋ1 = x2

ẋ2 = 1
m

(
−k0x1 − k1x

3
1 − cx2

)
.

(3.13)
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The origin is an equilibrium and the matrix defining the linear system is given by

A =

[
∂f(x)

∂x

]
x=0

=

[
0 1

−k0

m − 3k1

m x
2
1 − c

m

]
x=0

=

[
0 1

−k0

m − c
m

]
.

We can compute the eigenvalues for A as

0 = det(λI −A) = λ
(
λ+ c

m

)
+ k0

m = λ2 + λ c
m + k0

m ,

from which we have λ = − c
2m±

√
c2

4m2 − k0

m . We can identify three distinct cases for

the eigenvalues (k0 = c2

4 , k0 <
c2

4 , and k0 >
c2

4 ), all of which yield eigenvalues with
negative real parts. Therefore, Theorem 3.3 tells us that the origin is exponentially
stable for ż = Az and Theorem 3.4 yields that the origin is exponentially stable for
(3.13).

Example 3.10. Consider the pendulum of Example 1.4 with the origin shifted to
the upright equilibrium:

ẋ1 = x2

ẋ2 = − g` sin(x1 + π)− k
mx2.

(3.14)

We compute the matrix describing the linearized system by

A =

[
∂f(x)

∂x

]
x=0

=

[
0 1

− g` cos(x1 + π) − k
m

]
x=0

=

[
0 1
g
` − k

m

]
.

The eigenvalues of A are given by

0 = det(λI −A) = λ
(
λ+ k

m

)
− g

` = λ2 + λ k
m −

g
`

so that

λ = − k
2m ±

√(
k

2m

)2
+ g

` ,

which yields two real eigenvalues, where one eigenvalue is negative and the other is
positive. Therefore, from Theorem 3.5, the origin, which is the upright equilibrium,
is unstable.

Example 3.11. Consider the mass-spring-damper from Example 2.35:

ẋ1 = x2

ẋ2 = 1
m

(
−k0x1 − k1x

3
1 − bx2|x2|

)
.

(3.15)

The linearized system is described by

A =

[
∂f(x)

∂x

]
x=0

=

[
0 1

−k0

m − 3k1

m x
2
1 −2 b

mx2

]
x=0

=

[
0 1

−k0

m 0

]
.

The eigenvalues are given by

0 = det(λI −A) = λ2 + k0

m ,
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which implies λ = ±j
√
k0/m. Since the eigenvalues of A have zero real parts, the

linearization tells us nothing about stability of the origin for (3.15).

In addition to being used to study stability properties of equilibria, the lineariza-
tion of a nonlinear system can also be used to construct local Lyapunov functions.
In particular, Theorem 3.4 and its proof imply the following result.

Corollary 3.12. Consider the nonlinear system (3.7) with continuously differen-
tiable right-hand side f and its linearization (3.9) with a locally and globally expo-
nentially stable origin for (3.7) and (3.9), respectively. Let P ∈ Sn be the unique
solution of the Lyapunov equation (3.4) for an arbitrary positive definite matrix
Q ∈ Sn>0. Then V (x) = xTPx is a local Lyapunov function of the nonlinear system
(3.7).

This corollary shows that it is straighforward to compute local Lyapunov func-
tions for nonlinear systems (3.7) with continuously differentiable right-hand side
and with respect to an exponentially stable equilibrium. However, recalling The-
orem 2.17, it is in general nontrivial to obtain the domain D ⊂ Rn where the
Lyapunov function satisfies the conditions of Theorem 2.17. Corollary 3.12 only
guarantees the existence of a c > 0 such that the forward-invariant sublevel set
{x ∈ Rn : V (x) ≤ c} is contained in the region of attraction Rf (0). Note that V
and c depend on the selection of the positive definite matrix Q ∈ Sn>0. The calcu-
lation of c is again far from being trivial as outlined in Section 2.4. In Section 3.4
we will present a numerical method to compute Lyapunov functions and estimate
the region of attraction for a special class of systems.

3.3 TIME-VARYING SYSTEMS

Linear time-varying systems

ẋ(t) = A(t)x(t) (3.16)

represent a special class of time-varying systems (1.2). It is important to note
that if the matrix A(t) is time-dependent and not constant, then Theorem 3.1 and
Theorem 3.3 are not applicable. Even if all the eigenvalues of A(t) have a negative
real part for all t ∈ R≥0, (exponential) stability of the origin cannot be concluded.

Example 3.13. The matrix

A(t) =

[
−1 + 1.5 cos2(t) 1− 1.5 sin(t) cos(t)

−1− 1.5 sin(t) cos(t) −1 + 1.5 sin2(t)

]
(3.17)

has eigenvalues at λ1,2 = −0.25±j0.25
√

7. However, the solution of ẋ(t) = A(t)x(t)
is given by

x(t) =

[
e0.5t cos(t) e−t sin(t)
−e0.5t sin(t) e−t cos(t)

]
x(0), (3.18)

which clearly has a component that exponentially diverges from zero.

For time-invariant systems, the linearization stability theorem (Theorem 3.4)



LINEAR SYSTEMS AND LINEARIZATION

nonlinear˙control˙final˙submission December 20, 2022 7x10

67

relied on

lim
|x|→0

|f(x)−Ax|
|x|

= 0,

which is always true when f(x) is continuously differentiable and A is defined as the
Jacobian of f at the origin. In particular, this property is used in equation (3.11)
to define the neighborhood of the origin where the linearization behaves similarly
to the original nonlinear system.

However, from (1.2) with

A(t) =

[
∂f(t, x)

∂x

]
x=0

,

it is not necessarily true that

lim
|x|→0

sup
t≥0

|f(t, x)−A(t)x|
|x|

= 0. (3.19)

Consequently, in order to obtain a result similar to Theorem 3.4 for time-varying
systems, it is necessary to assume that (3.19) holds.

Example 3.14. ([158, Chapter 5.5]) As an example we consider the nonlinear system

ẋ = f(t, x) =

[
−x1 + tx2

2

x1 − x2

]
(3.20)

with [
∂f(t, x)

∂x

]
x=0

x = A(t)x =

[
−1 0

1 −1

]
x.

We see that

lim
|x|→0

sup
t≥0

|f(t, x)−A(t)x|
|x|

≥ lim
|x2|→0

sup
t≥0

|tx2
2|

|x2|
≥ lim
x2→0

| 1
x2
x2

2|
|x2|

= 1,

and thus (3.20) is a time-varying system with continuously differentable right-hand
side which does not satisfy (3.19). Hence, to obtain a similar result to Theorem
3.4 for time-varying systems, condition (3.19) needs to be explicitly included in the
assumptions, in contrast to condition (3.8) for autonomous systems.

The utility of a linearization is that it provides a reasonable approximation of
the behavior of the original system. However, for this example the initial time plays
a critical role and, in fact, for initial times different from zero, the linearization is
not a good approximation of the nonlinear system, as can be seen in Figure 3.1 and
Figure 3.2.

Theorem 3.15 ([158, Theorem 5.5.15]). Consider the nonlinear time-varying sys-
tem (1.2) and suppose that f(t, 0) = 0 for all t ≥ t0 and that f is locally Lipschitz
continuous and continuously differentiable with respect to x. Assume that (3.19)
holds and that A(·) is bounded. If the origin is an exponentially stable equilibrium
for ż(t) = A(t)z(t), then it is also an exponentially stable equilibrium of (1.2).
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Figure 3.1: Solutions of the dynamics (3.20) and its linearization for t ∈ [0, 4] (left)
and t ∈ [10, 14] (right) and initial value x(t0) = [0.1, 0.1]T .
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Figure 3.2: Phase portrait of the dynamics (3.20) and its linearization for t0 = 0.1
(left) and t0 = 10 (right).

3.4 NUMERICAL CALCULATION OF LYAPUNOV FUNCTIONS

While we can use Lyapunov functions to establish stability properties of equilibria,
it is in general difficult to find a Lyapunov function for a given system. In this
section we present a method to construct Lyapunov functions for systems f : Rn →
Rn,

ẋ = f(x), (3.21)

where the right-hand side f is a polynomial function. In particular, we deviate from
the main focus of linear systems in this section and discuss a slightly more general
class of systems here. For linear systems, i.e., if f(x) is a polynomial of degree 1, the
solution of the Lyapunov equation (3.4) provides a quadratic Lyapunov function.
Here, we present a method which can be applied to polynomials of higher degree.
In particular we rewrite the conditions on V in Theorem 2.16 as a semidefinite
program, which is a special form of a convex optimization problem, The conditions
on V are phrased as linear matrix inequalities (LMIs), which can be solved through
semidefinite programming. To this end, candidate Lyapunov functions are defined



LINEAR SYSTEMS AND LINEARIZATION

nonlinear˙control˙final˙submission December 20, 2022 7x10

69

as sum of squares of polynomial functions.
In general it is difficult to validate if a function W : Rm → R satisfies W (z) ≥ 0

for all z ∈ Rm. However, if W is of the special form

W (z) = |Hz|2 = zTHTHz

for a matrix H ∈ Rm×m, then W (z) ≥ 0 for all z ∈ Rm follows from the positivity
of the norm. Note that for every symmetric positive semidefinite matrix P ∈ Sm≥0

there exists H ∈ Rm×m such that P = HTH. We thus focus on candidate Lyapunov
functions W (z) = zTPz with positive semidefinite matrix P ∈ Sm≥0.

Here z : Rn → Rm, m ∈ N, denotes monomial functions

zj(x) =
∏n
i=1 x

ji
i

for ji ∈ N, for all i ∈ {1, . . . , n} for all j ∈ {1, . . . ,m}. For example, z : R2 → R5,

z(x)
.
=
[
x1 x2 x2

1 x2
2 x1x2

]T
, (3.22)

captures the monomials of degree less than 3 of a two-dimensional system. Similarly,
y : R2 → R9,

y(x)
.
=
[
x1 x2 x2

1 x2
2 x1x2 x3

1 x3
2 x2

1x2 x1x
2
2

]T
, (3.23)

contains the monomials of degree less than 4.
This definition allows us to define candidate Lyapunov functions

V (x) = W (z(x)) = z(x)TPz(x)

of arbitrary polynomial degree. Note that such functions, being quadratic in z(x),
will have polynomials that are twice the degree of the monomials in z(x). For the
purposes of constructing Lyapunov functions, we will use a weaker formulation of
Theorem 2.16.

Theorem 3.16. Consider (3.21) with f(0) = 0, a domain D ⊂ Rn, and a function
κ : Rn → R such that κ(x) ≤ 0 for all x ∈ D and κ(x) > 0 for all x ∈ Rn\D.
Additionally, suppose we have a continuously differentiable function V : Rn → R,
V (0) = 0, α1, ρ ∈ K∞, and δ1, δ2 : Rn → R≥0 satisfying

α1(|x|)− δ1(x)κ(x) ≤ V (x) (3.24)

〈∇V (x), f(x)〉 ≤ −ρ(|x|) + δ2(x)κ(x) (3.25)

for all x ∈ Rn. Then the origin is locally asymptotically stable. If, additionally,
D = Rn, then the origin is globally asymptotically stable.

For all x ∈ D, conditions (3.24) and (3.25) satisfy

α1(|x|) ≤ α1(|x|)− δ1(x)κ(x) ≤ V (x)

〈∇V (x), f(x)〉 ≤ −ρ(|x|) + δ2(x)κ(x) ≤ −ρ(|x|),

and thus if the conditions of Theorem 3.16 are satisfied then so are the conditions of
Theorem 2.16. To illustrate how semidefinite programming can be used to compute
Lyapunov functions satisfying the assumptions of Theorem 3.16 we will focus on
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the dynamics

ẋ1 = x2

ẋ2 = −x1 − x2 + cx3
1

(3.26)

for c ∈ {0,− 1
4 ,

1
4}. In particular, we will show how the problem of finding a Lya-

punov function can be translated into a finite-dimensional convex optimization
problem.

Since the expressions become quite lengthy, we start with linear dynamics (c =
0), even though we have already seen how to construct Lyapunov functions for
linear systems. For c = − 1

4 , the origin is the unique equilibrium of (3.26) and thus
a global Lyapunov function will be constructed as a second example. For c = 1

4 ,
the dynamics (3.26) admit three equilibria x1 ∈ {0,−2, 2}, x2 = 0, and we will
construct a local Lyapunov function in a neighborhood of the origin.

3.4.1 Linear Matrix Inequalities and Semidefinite Programming

The linear system ẋ = Ax describing the dynamics (3.26) for c = 0 is given by[
ẋ1

ẋ2

]
=

[
0 1
−1 −1

] [
x1

x2

]
. (3.27)

In this case, solving the Lyapunov equation (3.4) with Q = I leads to the positive
definite matrix

P =

[
3
2

1
2

1
2 1

]
, (3.28)

which implies exponential stability of the origin according to Theorem 3.3. Positive
definiteness of P can be verified using Lemma 3.2, guaranteeing that V (x) = xTPx
is a Lyapunov function.

While this is a straightforward approach for linear systems to compute a Lya-
punov function, we will consider a different approach here to establish asymptotic
stability of the origin and to obtain a Lyapunov function which is also applicable
to a more general class of systems.

To this end, instead of solving the Lyapunov equation (3.4) we consider the
conditions in Theorem 3.16 directly, i.e., we focus on the inequalities

α1(|x|) ≤ V (x), (3.29a)

〈∇V (x), f(x)〉 ≤ −ρ(|x|). (3.29b)

Since we want to find a global Lyapunov function to show global asymptotic sta-
bility, we set κ(x) = 0 for all x ∈ R2.

We fix ε > 0, select α1(|x|) = ρ(|x|) = ε|x|2, and assume that the Lyapunov
function V as well as the left-hand side of (3.29b) can be written as quadratic
functions

V (x) = xTPx, 〈∇V (x), f(x)〉 = −xTQx,

for symmetric matrices P,Q ∈ S2 with unknown parameters (and in particular
assume that we do not know P in (3.28)). With these assumptions, rearranging

(continued...)
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0-GAS, 154, 178
1-norm, 478

absolute stability, 132, 135
accessibility, 295
acker.m, 494
actuator, 14
affine function, 483
Aizerman’s conjecture, 133
algebraic loop, 176
algebraic Riccati equation, 328, 404, 423

discrete time, 333
anonymous function, 489
approximate backstepping, 214
arctan2, 22, 102
Artstein’s circles, 224
asymptotic observability, see detectabil-

ity
asymptotic stability, 29, 35

discrete time, 120
asymptotic stabilizability, 223
attractive, see attractivity
attractivity, 29, 30

discrete time, 119
autonomous system, 3

backstepping, 207
backward recursion, 340
Barbalat’s lemma, 482
basin of attraction, see region of attrac-

tion
BIBO, see bounded-input, bounded-

output
Big O notation, 157
bilinear system, 154
Bode plot, 99, 102, 164
bode.m, 110
bounded-input, bounded-output stabil-

ity, 99
Brockett condition, 226

Brockett integrator, 24, 224, 227
Butcher tableau, 118

care.m, 148, 345, 497
cartesian coordinates, 22
CasADi, 381
cascade interconnection, 100, 157
Cauchy-Schwarz inequality, 478
chattering, 240
circle criterion, 135, 141
class-P functions, 11
class-K functions, 11
class-K∞ functions, 12
class-KL functions, 12
class-L functions, 12
CLF, see control Lyapunov function
comparison function, 11
compatibility assumption, 260
compatibility condition, 260
complete instability, 43
complex conjugate, 477
control affine systems, 204
control Lyapunov function, 203

nonsmooth, 228
control-affine system, 330
control-invariant set, 358
controllability, 82, 124, 295

Popov-Belevitch-Hautus (PBH)
test, 83

convex function, 483
convex optimization, 68, 177
convex optimization problem, 485
convex set, 483
cost function, 349
cost functional, 324

discrete time, 332
covariance, 487
ctrb.m, 88, 493
CVX, 72
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dare.m, 345
deadzone, 131, 184
decrescent, 41, 53
degree of a polynomial, 98
detectability, 85
diagonalizable matrix, 58
diff.m, 89, 284, 433, 492
diffeomorphism, 292
difference equation, 112
difference Lyapunov equation, 425
difference quotient, 113
differential inequality, 33
differential Lyapunov equation, 425
differential Riccati equation, 430
Dini derivative, 227
Dirac delta function, 409
direct feedthrough, 81, 95
dissipativity, 168
disturbance, 14
dlqr.m, 345
dlyap.m, 126
domain of attraction, see region of at-

traction
dsolve.m, 89
dual algebraic Riccati equation, 404
dynamic programming, 336, 340

economic MPC, 376
eig.m, 87, 493
equality constraints, 485
equilibrium, 6, 112
equivalent control, 244
equivalent output injection, 464
essential supremum, 98
essentially bounded, 98
Euclidean norm, 152, 477
Euler method, 113, 118
exact backstepping, 213
exosystem, 307, 311
exp.m, 497
expectation, 410, 487
expected value, 409, 440
explicit MPC, 370
expm.m, 125, 497
exponential stability, 30, 35

discrete time, 120
linear systems, 59

extended Kalman filter, 428
eye.m, 494

feasible set, 485
feedback form, 207
feedback interconnection, 101, 160
feedback invariant, 325, 403

discrete time, 332
feedback linearization, 286
feedforward form, 216
fimplicit.m, 249
finite escape time, 167, 205
forward completeness, 28
forwarding manifold, 221
Fourier-Motzkin elimination, 359

Gaussian probability density function,
440, 487

global minimum, 484

hard constraints, 363
Heun’s method, 117, 118
high-gain backstepping, 214
H∞-norm, 99, 477
Hurwitz

matrix, 59, 122
transfer function, 134

icare.m, 148, 345, 497
idare.m, 345
inequality constraints, 485
∞-norm, 478
input-to-output linearization, 286, 293
input-to-state linearization, 286, 293
input-to-state stability, 153, 204

Cascade theorem, 158
definition, 153
gain, 153
ISS-Lyapunov function, 154

dissipation-form, 155, 162
implication-form, 155

Lyapunov characterization, 154,
167

small-gain, 160
instability, 28, 42

discrete time, 119
linear systems, 59

integral input-to-state stability, 166
internal model, 312
internal model principle, 314
internal stability, 178
invariant, 38
inverse Laplace transform, 96
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inverse optimality, 331
involutive distribution, 298
ISS, see input-to-state stability

Jordan normal form, 58
Jurdjevic-Quinn controller, 206

K, see class-K functions
Kalman decomposition, 86
Kalman filter, 409
Kalman’s Conjecture, 133
Kalman-Yakubovich-Popov lemma, 134
K∞, see class-K∞ functions
KL, see class-KL functions
KL-stability, 29, 30, 35

time-varing systems, 32
KL-stable, see KL-stability
Krasovskii, 51, 52
Krasovskii-LaSalle invariance theorem,

51

L, see class-L functions
L’Hôpital’s rule, 63
L2-gain, 163, 177

nonlinear, 167
L2-norm, 98, 477
L2-stability, 163
Laplace transform, 96

inverse, 96
properties, 96

LaSalle, 51, 52
LaSalle invariance theorem, see

Krasovskii-LaSalle invariance theo-
rem

LaSalle-Yoshizawa theorem, 44
Lie bracket, 296
Lie derivative, 204, 289

repeated, 289
linear matrix inequality, 68, 71, 177
linear MPC, 366
linear quadratic regulator, 327

discrete time, 334
linearization

feedback, 286
input-to-output, 286, 293
input-to-state, 286, 293

L∞-norm, 99, 477
Lipschitz condition, 3
Lipschitz continuous feedback stabiliz-

ability, 223

LMI, see linear matrix inequality
local accessibility, 295
local minimum, 484
low-pass filter, 244
lqr.m, 345
Luenberger Observer, 398
Lur’e problem, 131
Lur’e system, 131
lyap.m, 88, 89, 494
Lyapunov equation, 60, 62, 177

discrete time, 122
Lyapunov function, 34, 120, 203

quadratic, 60
Lyapunov stable, see stability, see sta-

bility
Lyapunov theorem

asymptotic stability, 35
converse, 49
exponential stability, 35
finite-time stability, 236
instability, 42
linear systems, 60
stability, 34
time-varying systems, 41

Lyapunov, Aleksandr, 34, 55

m-step MPC, 388
mass-spring system, 5, 169, 260
mass-spring-damper system, 52
matched disturbance, 242
MATLAB, 72
matlabFunction.m, 284
matrix exponential, 58
matrix inversion lemma, 480
Matrosov, 52
maximum norm, 478
minimal realization, 98
minimum energy estimator, 403
minimum phase, 289
Minkowski difference, 385
Minkowski sum, 385
model predictive control, 347
Moore-Penrose inverse, 412
moving horizon estimation, 428
Multi-Parametric Toolbox 3, 373
multiparametric program, 370, 373

Newton’s second law of motion, 5
noise, 14
non-autonomous system, 3
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nonholonomic integrator, 24
nonlinear coordinate transformation,

292
nonlinear damping controller, 206
nonlinear MPC, 366
nonlinear separation principle, 460, 474
norm, 477
normal probability density function,

440, 487
null.m, 465
Nyquist criterion, 108
nyquist.m, 110

objective function, 485
observability, 82, 83, 124
obsv.m, 88, 493
ode23.m, 118
ode45.m, 54, 119, 490
optimal value function, 325

discrete time, 332
output feedback, 87
output regulation problem, 307
output tracking, 247
overparameterization, 269

P, see class-P functions
parametric strict-feedback form, 268
Parseval’s

relation, 99
theorem, 99

Parseval’s theorem, 164
partial differential equation, 318
passivity, 169
PD-controller, 15
pendulum, 7, 35, 51
pendulum on a cart, 17, 81, 369, 393,

507
performance criterion, 324
periodic orbit, 50
PI-controller, 314
PID-controller, 16
place.m, 87, 310, 494
plot.m, 490
polar coordinates, 22, 28
pole placement, 86
polyhedral set, 348
Popov criterion, 135, 145
Popov plot, 147
positive definite, 60
positive real, 134

prediction horizon, 349
principle of optimality, 336
probability density function, 440, 487
Probability distribution, 487
proper, 98

qr.m, 493
quiver.m, 54

Rademacher’s Theorem, 228
rank.m, 88, 493
reachable set, 295
reaching phase, 240
realization, 97

minimal, 98
receding horizon control, 348
receding horizon principle, 347
recursive feasibility, 362
reference signal, 366
region of attraction, 46, 66, 78
regular point, 298
regulator equations, 309
relative degree, 289
robust MPC, 382
rocket, 19
rolling horizon control, 348
roots.m, 493
Runge-Kutta method, 117
running cost, 324, 349

S-lemma, 185
S-procedure, 185
sample-and-hold, 113
sample-and-hold feedback, 350
sampling rate, 113
saturation, 129, 183, 240
Schur complement, 179
Schur matrix, 122, 334
sector condition, 131
segway, 20
semidefinite program, 68, 71
semiglobal stabilization, 214
sensor, 15
separation principle, 400
servo-valve, 130
set multiplication, 385
settling time, 234
sigma points, 439
sigmoid function, 240
sign function, 240
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sign-function, 132
slack variable, 364
sliding phase, 240
sliding surface, 240, 464
sliding variable, 239
small control property, 228
small-gain condition, 161
small-gain theorem, 161
smooth distribution, 298
soft constraints, 363
solution pair, 324
Sontag’s formula, 207
Sontag’s lemma, 482
spectral norm, 152, 477
ss2tf.m, 109, 492
stability, 27, 34

absolute, 132, 135
discrete time, 119
finite-time, 234
L2, 163
linear systems, 59
neutral, 317
time-varing systems, 32
uniform, 32

stabilizability, 84
Popov-Belevitch-Hautus (PBH)

test, 84
stable, see stability, see stability
standard deviation, 440
state feedback, 87
stiff ordinary differential equation, 123
storage function, 155, 168
strict feedback form, 207
strict feedforward form, 216
strictly positive real, 134
strictly positive real lemma, see

Kalman-Yakubovich-Popov lemma
strictly proper, 98
strong accessibility, 295
struct, 489
subs.m, 492
sum of squares, 69
supply pair, 155

supply rate, 168
surf.m, 495
svd.m, 88, 493
Sylvester equation, 308
syms, 284, 433
syms.m, 89

Taylor approximation, 116
Taylor expansion, 63
terminal constraint, 339, 349
terminal cost, 349
tf2ss.m, 109, 144, 492
time-invariant system, 3
time-varying system, 3
tower crane, 19
trace, 88
transfer function, 95, 97

gain, 102
phase, 102

triangle inequality, 477
tuning function, 269
turnpike property, 378

unconstrained MPC, 370
uniform stability, 32
universal formula, 207
unscented Kalman filter, 428, 439
unscented transformation, 439
unstable, see instability, see instability

value function, 325
variance, 410, 440, 487
viability, 358
Vinograd, 56

warm-start, 389
weak triangle inequality, 481
well-posed algebraic loop, 176

Young’s inequality, 46, 479

zero dynamics, 288
zero-order hold, 113




