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Birds, Bees, 
and Butterflies

“Did you know that monarch butterflies use drugs?” I ask.
It is October 2022, and I am sitting at an outdoor  table at the 

St. Marks National Wildlife Refuge located on the southern 
side of Florida’s Big Bend, right on the  water of the Gulf of 
Mexico.  Behind me is a white light house. To my left I can look 
out over Goose Creek Bay, where I saw dolphins  earlier. In 
front of me is a lagoon with alligators. Standing around the 
 table are twenty  people, varying in age from about three years 
old to seventy years old. We are at the St. Marks Monarch But-
terfly Festival, held  every year on the fourth Saturday of Octo-
ber. It is one of my favorite weekends of the year. For more 
than a  decade, my students and I have made the six- hour drive 
from Emory University in Atlanta, where I am a professor, 
to attend the cele bration of monarch butterflies. We come 
 here to tell  people about monarchs, and the research we do 
on them.

“Just like us, monarchs get germs,” I say to a  little girl wearing 
a tutu and dress-up butterfly wings. Holding the butterfly for 
her to see, I explain that  these germs make the monarchs very 
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sick. “They cannot go to the doctor like you or me, but luckily 
they can find medicines in the plants they eat.”

Most  people who know about monarchs are aware of their 
amazing migration.1 As temperatures drop and the days get 
shorter, monarch butterflies from the United States and Canada 
embark on an amazing autumn journey. Flying as many as 
forty- five hundred kilo meters, they travel to oyamel fir forests 
in the Transvere Neovolcanic  Belt in Central Mexico. From late 
October to late November, and coinciding with the Mexican 
cele bration of Day of the Dead, hundreds of millions of mon-
archs make their way into the high- altitude forests. They form 
clusters on the trees. Although each monarch weighs about as 
 little as a medium- sized paperclip, some branches break  under 
the weight of the thousands of monarchs that huddle together. 
Monarchs overwinter at  these sites  until February and March, 
when they mate and fly back north. On their way south, many 
monarchs follow the coast of the Gulf of Mexico to reach their 
overwintering sites. And lots of  these monarchs stop in the ref-
uge at St.  Marks. On a good day, we see thousands flying 
through the refuge, feasting on the nectar of the abundant salt 
bushes and other flowering plants.

Amazing as monarch migration is, though, it is not the rea-
son I started studying monarchs. I like to tell  people that I study 
monarchs  because they get sick. This takes many  people by 
 surprise. Accustomed as we are to becoming sick ourselves, and 
taking our pets to the vet, few of us think of wild animals becom-
ing ill. But they do. Just as  humans encounter a  whole collection 
of disease- causing viruses, bacteria, worms, and protozoans 
throughout our lifetime, so do birds, bees, and butterflies. The 
most common disease in monarchs is caused by a one- celled 
parasite called Ophryocystis elektroscirrha.2  Because its name is 
difficult to pronounce, many  people refer to the parasite simply 
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as “OE.” This parasite is somewhat related to the parasites that 
cause malaria in  humans, and it is no joke for monarchs. The 
parasite forms millions of spores on the skin of the monarch 
and pokes  little holes in the monarch body. If the parasite does 
not kill the monarch, it  causes dehydration and weight loss. In-
fected monarchs cannot fly well. So, instead of completing their 
journey to the overwintering sites in Mexico, they die along the 
way.3

Sitting at the  table in St. Marks, I show  people how we figure 
out  whether monarchs are infected. My students and I like to 
call it the monarch health check. Like nurses and doctors, 
we wear examination gloves as we stick a clear plastic sticker to 
the abdomen of the butterfly (it does not hurt them), then place 
the sticker on a paper index card. We use a microscope and 
check for  little black parasite spores. I show the festival visitors 
the parasites when we find them.

Then I tell them something truly remarkable. Monarch butter-
flies are expert doctors. Just as  humans use drugs to treat parasitic 
infections, so do monarchs. As it turns out, I tell my audience, 
when faced by this horrendous OE parasite, monarchs are not 
helpless. They can seek out medicinal plants that reduce infec-
tion and relieve disease symptoms.

P O I S O N O U S  P L A N T S

I started studying the parasites of monarchs in 2005 when I 
moved to the United States for a research position. While I was 
initially interested in studying the basic biology of  these para-
sites, I quickly became interested in the interactions between 
the parasites, the monarchs, and the caterpillars’ sole food 
source, milkweeds. Like many other butterflies, monarchs are 
specialist herbivores, meaning they eat only specific plants as 
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caterpillars. For monarchs, their specialized diet consists only 
of milkweeds.  There are actually many kinds of milkweed, in 
many forms and sizes, but most are in the same genus, Asclepias. 
When we rip off their leaves, they ooze white latex that looks 
like milk— hence the name.

In addition to producing latex, milkweeds produce a class of 
chemicals known as cardenolides.  These  steroid chemicals are 
toxic to most animals, and the plants use them to deter herbi-
vores.4 Monarchs can tolerate them, though. What’s more, the 
caterpillars, while feeding on the plants, store the toxic  chemicals 
in their own tissues.5 This is what makes monarchs poisonous 
to their predators. Monarchs have bright orange wings, lined 
with black lines and white spots, which they use to tell birds and 
other predators they taste bad.6

When I started studying monarchs, it was a well- known fact 
that monarchs use cardenolides to protect themselves against 
predators. But with my interest in parasites, a question soon 
started forming in my brain. I knew of studies that had shown 
that other types of toxic chemicals, found in other plants, 
can kill disease- causing viruses of insects.7 And that made my 
colleagues and me won der: Could the cardenolides found in 
milkweeds be toxic to OE parasites?  Were the monarchs using 
plants not just as food, but as medicine?

To answer that question, I set up an experiment with two 
groups of monarch caterpillars— one group fed on only tropi-
cal milkweed and the other fed on only swamp milkweed. All 
caterpillars (a total of 240)  were exposed to OE by feeding 
them milkweed with parasite spores. I knew from published 
studies that tropical milkweed (Asclepias curassavica) has more 
cardenolides than swamp milkweed (Asclepias incarnata).  After 
the caterpillars became butterflies, we tested how many of the 
monarchs had become infected and how sick they  were. If 
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cardenolides could protect against parasites, we would expect 
the monarchs who had fed on tropical milkweed as caterpillars 
to experience less illness. The result was exciting: in the group 
of monarchs that had fed on tropical milkweed as caterpillars, 
20  percent fewer monarchs became infected than  those that had 
fed on swamp milkweed. And the tropical milkweed– fed cater-
pillars that did become infected had less than half the number 
of parasites and  were a lot less sick, living up to twice as long.8 
All in all, our experiment suggested that highly toxic milkweed 
not only wards off predators but also acts as a potent antipara-
sitic drug.

The next question was as logical as it was unlikely. Was it 
pos si ble that monarchs could intentionally take advantage of 
 these medicinal milkweeds? Would sick monarchs be able to 
specifically use highly toxic milkweeds as a form of medicine? 
In 2008, I had taken a position as assistant professor at Emory 
University.  There, my team and I carried out a series of experi-
ments in which we offered infected and uninfected female but-
terflies medicinal tropical milkweed and nonmedicinal swamp 
milkweed in big flight cages. We counted the numbers of eggs 
that  these females laid on each species. What we found is that 
infected butterflies laid way more eggs on medicinal plants than 
on nonmedicinal plants.9 Uninfected butterflies did not. In 
other words: when monarch  mothers are infected, they prefer 
to lay their eggs on medicinal milkweed.

That infected monarchs prefer to lay their eggs on medicinal 
plants is remarkable. It is even more remarkable when we 
think about who they are actually protecting. Diseased mon-
archs do not benefit from the medicinal plants themselves. 
They are already infected and have suffered the consequences. 
They cannot cure themselves. What they also cannot do is avoid 
the spread of parasites to their offspring. The parasites form 



Figure 1.1. A female monarch butterfly lays eggs on a medicinal 
milkweed, which  will reduce infection and disease symptoms in her 
offspring caterpillars. Photo by Jaap de Roode.
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millions of spores on the butterflies’ abdomens, and  every time 
the butterfly lays an egg on a milkweed plant, some of  these  will 
inevitably get stuck to her eggs and the milkweed leaves.10 But 
what the  mother butterfly can do is choose to lay her eggs on 
medicinal plants. When her babies hatch from their eggs, they 
 will ingest the parasites. But they  will also ingest the medicinal 
milkweed. And this reduces the chance that the parasites take 
hold. Should the caterpillar still become infected, the plant re-
duces the growth of the parasites, and thereby relieves disease 
symptoms. Thus, rather than medicating herself, a monarch 
 mother medicates her offspring— and she does so even before 
 those offspring are born. A wonderful case of “ mother knows 
best.”

T E E N Y - T I N Y  B R A I N S

As I was studying monarch medi cation, I realized that many 
other animals use drugs as protection against disease. (I fully 
realize that  humans are animals. But for the sake of simplicity, 
I  will use the term “animals” specifically for nonhuman animals 
throughout this book). In the 1980s, primatologists had discov-
ered that chimpanzees can use the toxins and hairy leaves of 
plants to treat intestinal worm infections. I found other studies 
that showed that goats and sheep are their own medical doctors 
too. And while many scientists traditionally believed that ani-
mals needed big brains to be able to medicate themselves— a 
bias mostly driven by the fact that chimpanzees are our closest 
living relatives— this idea did not jibe with the data.

I learned that woolly bear caterpillars and wood ants can use 
medicine too. Thus, animals with brains smaller than a pinhead 
can be just as good at medicating as  those with brains like our 
own. What this suggested to me is that animal medi cation is 



8 C h a p t e r  1

common across the animal kingdom. I became fascinated 
with this idea, and that fascination eventually grew into this 
book. In the coming chapters,  we’ll explore all of  these exam-
ples, and more.

Over the last four  decades, scientists have discovered that ani-
mals do in fact seem to seek out medi cation (though, as  we’ll see, 
defining exactly what this means is a tricky task): animals of all 
shapes and sizes use a vast array of plants, fungi, toxic animals, 
chemicals, and other natu ral products to fight infections and 
 alleviate disease. And they can do so in four diff er ent ways. First, 
animals can use “prophylaxis,” which is when healthy animals 
choose to eat foods and antiparasitic compounds before they get 
sick to stay healthy and prevent disease.  Japanese monkeys that 
live in areas with more parasites eat more antiparasitic plants 
than monkeys that live in areas with fewer parasites.11 In Ethio-
pia, baboons that are at greater risk of schistosome infection 
 increase their worm  resistance by eating more toxic berries.12 
Second, animals may use “therapeutic medi cation.” This is the 
use of medicinal compounds when the animal is already in-
fected: chimpanzees suck the toxic juice out of  bitter plants 
when sick with parasitic worms, and woolly bear caterpillars use 
toxic alkaloids to kill parasitic fly maggots. A third form of medi-
cation is “body anointing,” where animals as diverse as lemurs, 
cats, and coatis rub antiparasitic substances into their fur to deter 
parasites such as mites, lice, and mosquitoes. Fi nally, animals 
may use “fumigation,” by which they add antiparasitic substances 
to their living or sleeping quarters. Fumigation is used widely by 
birds, who line their nests with aromatic plants that kill mites, 
ticks, and lice. It is also used by ants and bees, which fill their 
nests with antimicrobial tree secretions to prevent disease.

Some scientists have described all  these diff er ent be hav iors 
with the word “zoopharmacognosy.”13 The term derives from 
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the root words “zoo” (animal), “pharma” (drug), and “gnosy” 
(knowing). Other scientists prefer to describe the diff er ent be-
hav iors as “animal self- medication.” I do not particularly like 
 either term. To me, the word “zoopharmacognosy” suggests 
that animals know that they are medicating themselves (they 
may not: the be hav iors they display could be fully innate, as we 
 will see in chapter 8). And the term “animal self- medication” 
suggests that animals exclusively medicate themselves (they do 
not—as we already saw, monarch butterflies medicate their off-
spring). I believe a more inclusive term to describe all  these 
diff er ent be hav iors is “animal medi cation,” and that is what I 
 will use throughout this book.

Demonstrating that animals use medi cation is difficult. I  will 
discuss this in the next few chapters, highlighting the use of ob-
servational studies and experiments. For now, I want to make two 
impor tant points. First, I  will spend most of this book discussing 
be hav iors that allow animals to fight against infection— that is, 
dealing with parasites and pathogens that make them sick. The 
reason for this focus is not only  because parasites and pathogens 
are extremely impor tant for animal evolution but also  because 
most of the well- described examples of animal medi cation in-
volve defenses against infections. That said, infectious diseases 
are not the only reason animals use medi cation. As this research 
continues, we are learning that animals may use medicine to treat 
wounds or relieve sore joints.14 Orangutans, for example, mix 
specific plants with saliva and rub the mixture  either into 
wounds,15 or onto diff er ent body parts, which reduces inflamma-
tion.16 Scientists have also suggested that pregnant animals may 
use par tic u lar plants to  induce  labor. Pregnant and lactating si-
faka females increase consumption of tannin- rich plants, which 
is associated with increased body weight and stimulation of 
milk secretion.17
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 There are also reports of animals using drugs for recreational 
use. The concept of drunken monkeys is quite  popular indeed. 
And reports of drunken elephants ransacking buildings can 
count on a wide readership.  After a herd of 50 elephants raided 
a shop that sold a fermented drink in 2012, local police spokes-
man Asish Samanat commented in an online news outlet: 
“They  were like any other drunk— aggressive and unreasonable 
but much, much bigger.”18 (Although it is entertaining to as-
sume that animals consume alcohol to get drunk, a recent 
analy sis suggests that primates actually eat fermented fruits 
 because the fermentation  process breaks down toxic chemicals 
that would other wise make the fruits inedible, and  because it 
provides a food source during times when fresh fruit is unavail-
able.19) Wound treatments, pregnancy care, and alcohol use fall 
outside the scope of this book, but if you are interested in learn-
ing more about  these fascinating be hav iors, I recommend the 
excellent book Wild Health by Cindy Engel.20

The second point I want to make is that it is not always obvi-
ous that a specific animal be hav ior is a form of medi cation. As 
I  will discuss in the next few chapters, the most impor tant cri-
terion for animal medi cation is that the be hav ior helps the ani-
mal:  either by reducing or avoiding infection, or by alleviating 
disease. But infection can also change be hav iors in ways that are 
not beneficial to animals. On the contrary: it turns out that 
parasites and pathogens are masters at manipulating animal be-
hav iors for their own benefit.21 This means that when we see an 
infected animal change its be hav ior, we cannot simply assume 
it is medicating. Instead, it may be the parasites and pathogens 
 doing the talking.

That animals can use medicine is now supported by many 
studies, and I chose to write this book to share the many fascinat-
ing stories of how animals use medi cation to protect themselves 
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against parasites and pathogens. I also wanted to introduce the 
 people who have provided us with  these stories, showcasing how 
scientists from many diff er ent backgrounds, and in diff er ent 
continents, have been driven by an innate interest in understand-
ing the natu ral world. As we  will see,  those scientists share a 
common belief: the study of animals is not only in ter est ing in 
itself but can also teach us about how we can tackle the many 
parasites and pathogens that continue to inflict death and suffer-
ing on  humans, domesticated animals, and pets.

The goal of this book is therefore twofold. First, I want to 
make the case that animals are highly evolved experts at medi-
cine. They may not speak Latin, be trained in bedside manners, 
or write prescriptions, but they have evolved a plethora of ways 
to keep infectious diseases at bay through rather sophisticated 
medicine.

The second goal of this book is to show that we can benefit 
from studying animal doctors. Yes, most researchers studying 
animal medi cation are driven by a basic curiosity to understand 
the natu ral world. But as we  will see, we can use insights into 
the medi cation be hav iors of goats and sheep to increase animal 
health and reduce antibiotic  resistance at farms and in the live-
stock industry. We can apply the antiparasitic be hav iors of bees 
to improve beekeeping. And work is underway to develop bug 
repellents from compounds discovered by cats. Many scientists 
studying animal medi cation believe that their research may ul-
timately lead to the discovery of drugs that we can use to treat 
our own diseases.

Some would argue that our modern chemistry and technol-
ogy equip us well enough to come up with new drugs from 
scratch.22 But consider this: over the last forty years, more than 
half of the new antibacterial drugs and 45  percent of the anti-
parasitic drugs that hit the market for  human use  were derived 
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from natu ral products.  These include compounds from plants, 
bacteria, and fungi.23 With the ongoing threat of infectious dis-
ease, and the ever- growing number of pathogens that evolve 
 resistance to the drugs we rely on, it is more impor tant than 
ever to study animal medi cation— and to apply the medical 
knowledge of animals to the health of  humans and domesti-
cated animals.

 We’ll explore all  these ideas in  future chapters. But before we 
get to  those exciting applications, let’s start by asking how a sick 
chimpanzee sparked the birth of a new scientific field.
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