© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CONTENTS

Preface XV
1 Lagrangians 1
1.1 Introduction 1
1.2 Examples of Simple Lagrangians 2
1.2.1 Scalars 3
1.2.2 Fermions 3
1.2.3 Fermions and Scalars 5
1.3 Symmetries 5
1.4 Model Building 6
Appendix 7
1.A Discrete Spacetime Symmetries: C, P, and T 7
1.A. $1 \quad C$ and P 7
1.A. $2 \quad C P$ Violation and Complex Couplings 7
Problems 8
2 Abelian Symmetries 11
2.1 Global Symmetries 11
2.1.1 Global Discrete Symmetries 11
2.1.2 Global Continuous Symmetries 12
2.1.3 Charge 14
2.1.4 Product Groups and Accidental Symmetries 15
2.1.5 Symmetries and Fermion Masses 16
2.2 Local Symmetries 18
2.2.1 Introducing Local Symmetries 18
2.2.2 Charge 21
2.3 Summary 22
Problems 23
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
vi CONTENTS
3 QED 28
3.1 QED with One Fermion 28
3.1.1 Defining QED 28
3.1.2 The Lagrangian 28
3.1.3 The Spectrum 29
3.1.4 The Interactions 30
3.1.5 Parameter Counting 30
3.2 QED with More Fermions 30
3.2.1 Two Dirac Fermions 30
3.2.2 Accidental Symmetries 32
3.2.3 Even More Fields 33
3.3 Experimental Tests of QED 33
Problems 34
4 Non-Abelian Symmetries 39
4.1 Introduction 39
4.2 Global Symmetries 41
4.2.1 Scalars and $S O(N)$ 41
4.2.2 Vectorial Fermions and $U(N)$ 42
4.2.3 Chiral Fermions and $U(N) \times U(N)$ 43
4.3 Local Symmetries 43
4.4 Running Coupling Constants 45
4.5 Summary 47
Problems 47
5 QCD 51
5.1 Defining QCD 51
5.2 The Lagrangian 51
5.3 The Spectrum 52
5.4 The Interactions 53
5.5 The Parameters 53
5.6 Confinement 54
5.7 Accidental Symmetries 55
5.8 Combining QCD with QED 55
Problems 56
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CONTENTS vii
6 Spontaneous Symmetry Breaking 60
6.1 Introduction 60
6.2 Global Discrete Symmetries: Z_{2} 61
6.3 Global Abelian Continuous Symmetries: U(1) 63
6.4 Global Non-Abelian Continuous Symmetries: SO(3) 65
6.5 Fermion Masses 67
6.6 Local Symmetries: The Higgs Mechanism 68
6.7 Summary 71
Problems 72
7 The Leptonic Standard Model 77
7.1 Defining the LSM 77
7.2 The Lagrangian 78
7.2.1 $\quad \mathcal{L}_{\text {kin }}$ and the Gauge Symmetry 78
7.2.2 $\quad \mathcal{L}_{\psi}$ 79
7.2.3 $\mathcal{L}_{\text {Yuk }}$ 79
7.2.4 $\quad \mathcal{L}_{\phi}$ and SSB 79
7.2.5 Summary 81
7.3 The Spectrum 81
7.3.1 Scalars: Back to \mathcal{L}_{ϕ} 81
7.3.2 Vector Bosons: Back to $\mathcal{L}_{\text {kin }}(\phi)$ 81
7.3.3 Fermions: Back to $\mathcal{L}_{\text {Yuk }}$ 83
7.3.4 Summary 85
7.4 The Interactions 86
7.4.1 The Higgs Boson 86
7.4.2 QED: Electromagnetic Interactions 87
7.4.3 Neutral Current Weak Interactions 88
7.4.4 Charged Current Weak Interactions 91
7.4.5 The Fermi Constant 92
7.4.6 Gauge Boson Self-interactions 93
7.4.7 Summary 94
7.5 Global Symmetries and Parameters 94
7.5.1 Accidental Symmetries 94
7.5.2 The Interaction Basis and the Mass Basis 95
7.5.3 Parameter Counting 97
7.5.4 The LSM Parameters 98
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
viii CONTENTS
7.6 Low-Energy Tests 99
7.6.1 Charged Current Neutrino-Electron Scattering 101
7.6.2 Neutral Current Neutrino-Electron Scattering 101
Problems 102
8 The Standard Model 112
8.1 Defining the Standard Model 112
8.2 The Lagrangian 113
8.2.1 $\mathcal{L}_{\text {kin }}$ and the Gauge Symmetry 113
8.2.2 \mathcal{L}_{ψ} 114
8.2.3 \mathcal{L}_{ϕ} and SSB 114
8.2.4 $\mathcal{L}_{\text {Yuk }}$ 115
8.2.5 Summary 115
8.3 The Spectrum 115
8.3.1 Bosons 115
8.3.2 Fermions 116
8.3.3 The CKM Matrix 118
8.3.4 Summary 119
8.4 The Interactions 119
8.4.1 Electromagnetic (QED) and Strong (QCD) Interactions 119
8.4.2 The Higgs Boson Interactions 120
8.4.3 Neutral Current Weak Interactions 121
8.4.4 Charged Current Weak Interactions 122
8.4.5 Gauge Boson Self-interactions 123
8.4.6 Summary 124
8.5 Global Symmetries and Parameters 124
8.5.1 Accidental Symmetries 124
8.5.2 The Standard Model Parameters 125
8.5.3 "A Standard Model" versus "the Standard Model" 125
8.5.4 Discrete Symmetries: P, C, and $C P$ 126
Appendix 126
8.A Anomalies and Nonperturbative Effects 126
8.A. 1 The Strong CP Parameter 126
8.A. 2 Anomalies 127
Problems 128
9 Flavor Physics 132
9.1 Introduction 132
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CONTENTS ix
9.2 The CKM Matrix 133
9.2.1 The Standard Parameterization 133
9.2.2 The Wolfenstein Parameterization 134
9.2.3 CP Violation 135
9.2.4 Unitarity Triangles 136
9.3 Tree-Level Determination of the CKM Parameters 137
9.4 No FCNC at Tree Level 138
9.4.1 Photon- and Gluon-Mediated FCNC 139
9.4.2 Z-Mediated FCNC 139
9.4.3 Higgs-Mediated FCNC 140
Problems 141
10 QCD at Low Energies 148
10.1 Introduction 148
10.2 Hadronic Properties 149
10.2.1 General Properties 149
10.2.2 The Quark Model 149
10.2.3 Hadron Masses 150
10.2.4 Hadron Lifetimes 151
10.3 Combining QCD with Weak Interactions 152
10.3.1 Factorization 152
10.3.2 The Decay Constant 154
10.3.3 Form Factors 155
10.4 The Approximate Symmetries of $Q C D$ 156
10.4.1 Isospin Symmetry 156
10.4.2 Heavy Quark Symmetry 158
10.5 Hadrons in High-Energy QCD 159
10.5.1 Quark-Hadron Duality 160
10.5.2 Jets 161
10.5.3 Parton Distribution Functions 162
Appendix 164
10.A Names and Quantum Numbers for Hadrons 164
10.B Extracting $\left|V_{u d}\right|$ 165
10.C Extracting $\left|V_{c b}\right|$ 166
Problems 168
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

X CONTENTS
11 Beyond the Standard Model 172
11.1 Introduction 172
11.2 Experimental and Observational Problems 173
11.3 Theoretical Considerations 174
11.4 The BSM Scale 175
11.5 The SMEFT 176
11.6 Examples of SMEFT Operators 177
11.6.1 Baryon Number Violation 178
11.6.2 Higgs Decays 179
Problems 180
12 Electroweak Precision Measurements 184
12.1 Introduction 184
12.2 The Weak Mixing Angle 185
12.2.1 The Weak Mixing Angle at One Loop 185
12.2.2 The Weak Mixing Angle within the Standard Model 187
12.3 Custodial Symmetry 189
12.4 Probing BSM 190
12.4.1 Nonrenormalizable Operators and the q^{2} Expansion 190
12.4.2 The S, T, and U Parameters 192
12.4.3 The Four-Generation Standard Model 194
Problems 195
13 Flavor-Changing Neutral Currents 199
13.1 Introduction 199
13.2 CKM and GIM Suppression in FCNC Decays 200
13.2.1 Examples: $K \rightarrow \pi \nu \bar{\nu}$ and $B \rightarrow \pi \nu \bar{\nu}$ 202
13.3 CKM and GIM Suppression in Neutral Meson Mixing 203
13.3.1 Examples: $\Delta m_{K}, \Delta m_{B}$, and $\Delta m_{B_{s}}$ 205
13.3.2 CP Suppression 206
13.3.3 Summary 207
13.4 Testing the CKM Sector 207
13.5 Probing BSM 208
13.5.1 New Physics Contributions to $B^{0}-\bar{B}^{0}$ Mixing 209
13.5.2 Probing the SMEFT 210
Appendix 211
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CONTENTS xi
13.A Neutral Meson Mixing and Oscillation 211
13.A. 1 Introduction 211
13.A. 2 Flavor Mixing 212
13.A. 3 Flavor Oscillation 214
13.A. 4 Standard Model Calculations of the Mixing Amplitude 216
13.B CP Violation 218
13.B.1 Notations and Formalism 218
13.B. $2 C P$ Violation in Decay 220
13.B. $3 C P$ Violation in Mixing 221
13.B.4 $C P$ Violation in Interference of Decays with and without Mixing 221
13.C Standard Model Calculations of CP Violation 222
13.C. 1 Extracting γ from $B \rightarrow D K$ 222
13.C. 2 Extracting β from $B \rightarrow D^{+} D^{-}$ 224
13.C.3 CP Violation from K Decays 225
Problems 226
14 Neutrinos 232
14.1 Introduction 232
14.2 The vSM 233
14.2.1 Defining the $\nu \mathrm{SM}$ and the Lagrangian 233
14.2.2 The Neutrino Spectrum 233
14.2.3 The Neutrino Interactions 235
14.2.4 Global Symmetries and Parameters 236
14.2.5 The PMNS Matrix 237
14.2.6 Testing the $\nu S M$ 238
14.2.7 The Scale Λ 239
14.3 The NSM: The Standard Model with Singlet Fermions 240
14.3.1 Defining the NSM 240
14.3.2 The NSM Lagrangian 241
14.3.3 The NSM Spectrum 241
14.3.4 The NSM Interactions 243
14.3.5 The Low-Energy Limit of the NSM 245
14.3.6 The Case of $m_{N} \ll v$: Sterile Neutrinos 246
14.4 Open Questions 247
Appendix 247
14.A Neutrino Oscillations 247
14.A. 1 Neutrino Oscillations in a Vacuum 247
14.A. 2 The MSW Effect 250
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
xii CONTENTS
14.B Direct Probes of Neutrino Masses 252
14.B. 1 Kinematic Tests 252
14.B. 2 Neutrinoless Double-Beta ($0 \nu 2 \beta$) Decay 253
Problems 254
15 Cosmological Tests 260
15.1 The Interplay of Particle Physics and Cosmology 260
15.2 Dark Matter 261
15.2.1 The Observational Evidence 261
15.2.2 Neutrinos Cannot Be the Dark Matter 262
15.2.3 The χ SM 263
15.3 Baryogenesis 265
15.3.1 The Observational Evidence 266
15.3.2 Sakharov Conditions 266
15.3.3 Leptogenesis 268
15.4 Open Questions 270
Appendix 271
15.A Introduction to Cosmology 271
15.A. 1 The Dynamical Metric 272
15.A. 2 Thermodynamics in the Universe 273
15.A. 3 Observables 276
Problems 277
What's Next? 281
Appendix: Lie Groups 283
A. 1 Groups 283
A. 2 Representations 284
A. 3 Lie Groups and Lie Algebras 285
A. 4 Roots and Weights 288
A. 5 SU(2) 289
A. 6 SU (3) 290
A. 7 Classification and Dynkin Diagrams 292
A. 8 Naming Representations 293
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CONTENTS xiii
A. 9 Combining Representations 296
Problems 298
Bibliography 305
Index 309

1

Lagrangians

In this chapter, we review the basic tools that we will use in this book. In particular, we introduce the Lagrangian and present some simple Lagrangians involving scalar and fermion fields.

1.1 Introduction

Modern physics encodes the basic laws of nature in the action, S, and postulates the principle of minimal action in its quantum interpretation. In quantum field theory (QFT), the action is an integral over spacetime of the Lagrangian density or Lagrangian, \mathcal{L}, for short. For most of our purposes, it is enough to consider the Lagrangian rather than the action. In this chapter, we explain how Lagrangians are constructed. Later in the book, we discuss how the numerical values of the parameters that appear in the Lagrangian are determined and how to test if a Lagrangian provides a viable description of nature.

The QFT equivalent of the generalized coordinates of classical mechanics are fields. The action is given by

$$
\begin{equation*}
S=\int d^{4} x \mathcal{L} \tag{1.1}
\end{equation*}
$$

where $d^{4} x=d x^{0} d x^{1} d x^{2} d x^{3}$ is the integration measure in four-dimensional Minkowski space. In general, we require the following properties for the Lagrangian:

1. It is a function of the fields and their derivatives only.
2. It depends on the fields taken at one spacetime point x^{μ} only, leading to a local field theory.
3. It is real, so the total probability is conserved.
4. It is invariant under the Poincaré group, which consists of spacetime translations and Lorentz transformations.
5. It is an analytic function in the fields. This is not a general requirement, but it is common to all field theories that are solved via perturbation theory. In these cases, we expand around a minimum, which means that we consider a Lagrangian that is a polynomial in the fields.
6. It is invariant under certain internal symmetry groups. The invariance of S (or \mathcal{L}) is in correspondence with conserved quantities and reflects basic symmetries of the physical system.
7. Every term in the Lagrangian that is not forbidden by a symmetry should appear.

We often impose an additional requirement as well:
8. Renormalizability. A renormalizable Lagrangian contains only terms that have a dimension less than or equal to four in the fields and their derivatives.

The renormalizability requirement ensures that the Lagrangian contains at most two ∂_{μ} operations, and it leads to classical equations of motion that are no higher than secondorder derivatives. If the full theory of nature is described by a QFT, its Lagrangian should indeed be renormalizable. The theories that we consider, however, and, in particular, the Standard Model, are only low-energy-effective theories, that are valid up to some energy scale Λ. Therefore, we also must include nonrenormalizable terms, which have coefficients with inverse mass dimensions, $1 / \Lambda^{n}, n=1,2, \ldots$ For most purposes, however, renormalizable terms constitute the leading terms in an expansion in E / Λ, where E is the energy scale of the physical processes under study. Therefore, the renormalizable part of the Lagrangian is a good starting point for our study. Thus, in chapters $1-10$, we consider only renormalizable Lagrangians unless otherwise explicitly stated. In chapters 11-15, where we describe searches for physics beyond the Standard Model, we also consider nonrenormalizable Lagrangians.

Properties 1-5 are not the subject of this book. You should be familiar with them from your QFT course work. We do, however, deal intensively with the other requirements. Actually, the most important message that we would like to convey is the following: (Almost) all experimental data for elementary particles and their interactions can be explained by the Standard Model of a spontaneously broken $\operatorname{SU}(3) \times S U(2) \times U(1)$ gauge symmetry. ${ }^{1}$

Writing down a specific Lagrangian is the end point of the process known as model building, and the starting point for a phenomenological interpretation and experimental testing. In this book, we explain both aspects of this modern way of understanding highenergy physics.

1.2 Examples of Simple Lagrangians

We next present a few examples of simple Lagrangians of scalar and fermion fields. They are simple in the sense that we are not yet imposing any internal symmetry. We use $\phi(x)$ for a scalar field and $\psi(x)$ for a fermion field. When we consider vector fields, as first done in section 2.2 of chapter 2, we use $A(x)$ for a vector field. We do not consider higher spin fields, as it is not simple to construct a QFT with them.

[^0]Two comments are in order:

- All fields that we consider here are functions of the spacetime coordinates $\phi(x), \psi(x)$, and $A(x)$. We leave this spacetime dependence implicit except in cases where it is relevant.
- We use the notations ϕ, ψ, and A in the discussion of generic cases. When we refer to specific cases, we use different notation. For example, for the electron field, we use e instead of the generic ψ.

1.2.1 Scalars

The most general renormalizable Lagrangian for a single real scalar field ϕ is given by

$$
\begin{equation*}
\mathcal{L}_{S}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{m^{2}}{2} \phi^{2}-\frac{\eta}{2 \sqrt{2}} \phi^{3}-\frac{\lambda}{4} \phi^{4} . \tag{1.2}
\end{equation*}
$$

We emphasize the following points:

- The term with derivatives is called the kinetic term. It is necessary if we want ϕ to be a dynamical field (namely, to be able to describe propagation in spacetime).
- The terms without derivatives are collectively denoted by $-V_{\phi}$. We then write $\mathcal{L}_{S}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-V_{\phi}$, and V_{ϕ} is called the scalar potential.
- We work in the canonically normalized basis where the coefficient of the kinetic term is $1 / 2$. (This is true for a real scalar field. For a complex scalar field, the canonically normalized coefficient of the kinetic term is 1.)
- From here on, throughout the book, when we say "the most general Lagrangian," we are referring to a Lagrangian where the kinetic terms are canonically normalized, but the other terms are written in a general basis. (Question 2.8 in chapter 2 shows that there is no loss of generality in working in the canonically normalized basis.)
- We do not write a constant term since it does not enter the equation of motion for ϕ.
- We do not write a linear term in ϕ because when expanding around a minimum, the linear term vanishes.
- The quadratic term $\left(\phi^{2}\right)$ is a mass-squared term. (From here on we call it simply a mass term.)
- The trilinear $\left(\phi^{3}\right)$ and quartic $\left(\phi^{4}\right)$ terms describe interactions.
- Terms with five or more scalar fields ($\phi^{n}, n \geq 5$) are nonrenormalizable.

1.2.2 Fermions

The basic fermion fields are two-component Weyl fermions, ψ_{L} and ψ_{R}, where L and R denote left-handed and right-handed chirality, respectively. Each of ψ_{L} and ψ_{R} has

2 degrees of freedom (DoF) and is a complex field. ψ_{L} and ψ_{R} are related to the fourcomponent Dirac field ψ via

$$
\begin{equation*}
\psi_{R}=P_{R} \psi \equiv \frac{1+\gamma_{5}}{2} \psi, \quad \psi_{L}=P_{L} \psi \equiv \frac{1-\gamma_{5}}{2} \psi \tag{1.3}
\end{equation*}
$$

It is useful to define the related left-handed Weyl fermion ψ_{R}^{c} and right-handed Weyl fermion ψ_{L}^{c} via

$$
\begin{equation*}
\psi_{R}^{c}=C{\overline{\psi_{R}}}^{T}, \quad \psi_{L}^{c}=C{\overline{\psi_{L}}}^{T} \tag{1.4}
\end{equation*}
$$

where C is the charge conjugation matrix. (The reason for this name becomes clear once we define charge in chapter 2.)

The most general renormalizable Lagrangian for a single left-handed fermion field ψ_{L} and a single right-handed fermion field ψ_{R} is given by

$$
\begin{equation*}
\mathcal{L}_{F}=\overline{i \psi_{L}} \not \partial \psi_{L}+i \overline{\psi_{R}} \not \partial \psi_{R}-\left(\frac{m_{M R}}{2} \overline{\psi_{R}^{c}} \psi_{R}+\frac{m_{M L}}{2} \overline{\psi_{L}^{c}} \psi_{L}+m_{D} \overline{\psi_{L}} \psi_{R}+\text { h.c. }\right) \tag{1.5}
\end{equation*}
$$

We emphasize the following points:

- The derivative terms are kinetic terms, and they are necessary if we want the field $\psi_{L, R}$ to be dynamical.
- We work in the canonically normalized basis, where the coefficient of the kinetic term is 1 .
- Terms with an odd number of fermion fields violate Lorentz symmetry, and so they are forbidden.
- The quadratic terms are mass terms. The m_{M} terms are called Majorana masses, and the m_{D} terms are called Dirac masses.
- The relative factor of $1 / 2$ between Majorana and Dirac mass terms is the analog of the similar factor between the mass terms for real and complex scalar fields.
- Terms with four or more fermion fields are nonrenormalizable.
- Given the fact that Majorana mass terms are made of a pair of identical fields, we often write

$$
\begin{equation*}
\frac{m_{M R}}{2} \overline{\psi_{R}^{c}} \psi_{R} \rightarrow \frac{m_{M R}}{2} \psi_{R}^{T} \psi_{R} \tag{1.6}
\end{equation*}
$$

If the Majorana masses vanish, $m_{M L}=m_{M R}=0, \mathcal{L}_{F}$ can be written in terms of the Dirac fermion field ψ :

$$
\begin{equation*}
\mathcal{L}_{F}\left(m_{M}=0\right)=i \bar{\psi} \not \partial \psi-m_{D} \bar{\psi} \psi . \tag{1.7}
\end{equation*}
$$

Since ψ_{L} and ψ_{R} are different fields, there are 4 DoF with the same mass, m_{D}. In contrast, if the Majorana masses do not vanish, there are generally only 2 DoF that have the same mass. In section 2.1.5 in chapter 2, we discuss these issues in more detail and explain why often Majorana masses vanish.

1.2.3 Fermions and Scalars

Consider the case of a single left-handed fermion ψ_{L}, a single right-handed fermion ψ_{R}, and a single real scalar field ϕ. The Lagrangian includes, in addition to terms that involve only the scalar (equation (1.2)), and terms that involve only the fermions (equation (1.5)), terms that involve both the scalar and the fermions. They can be obtained by replacing the mass parameters for the fermions with a coupling multiplied by the scalar field:

$$
\begin{equation*}
-\mathcal{L}_{\text {Yuk }}=\frac{Y}{\sqrt{2}} \phi \overline{\psi_{L}} \psi_{R}+\frac{Y_{M R}}{2} \phi \overline{\psi_{R}^{c}} \psi_{R}+\frac{Y_{M L}}{2} \phi \overline{\psi_{L}^{c}} \psi_{L}+\text { h.c. } \tag{1.8}
\end{equation*}
$$

These terms are called Yukawa interactions. The Y parameters are dimensionless and are called Yukawa couplings. Note that in equation (1.8), we use $-\mathcal{L}$, which is a common practice when we do not write the kinetic terms.

1.3 Symmetries

We always seek deeper reasons for the laws of nature that have been discovered. These reasons are often closely related to symmetries. The term symmetry refers to an invariance of the equations that describe a physical system. The fact that symmetry and invariance are related concepts is obvious enough-a smooth ball has a spherical symmetry, and its appearance is invariant under rotation.

Symmetries are built into physics as invariance properties of the Lagrangian. If we construct our theories to encode various empirical facts (and, in particular, the observed conservation laws), then the equations turn out to exhibit certain invariance properties. For example, if we want to incorporate energy conservation into the theory, then the Lagrangian must be invariant under time translations (and therefore cannot depend explicitly on time). From this point of view, the conservation law is the input and the symmetry is the output.

Conversely, if we take the symmetries to be the fundamental rules, then various observed features of particles and their interactions are a necessary consequence of the symmetry principle. In this sense, symmetries provide an explanation of these features. In modern particle physics (and in particular in this book), we often take the latter point of view, in which symmetries are the input and conservation laws are the output.

In the following, we discuss the consequences of imposing symmetry on a Lagrangian. This is the starting point of model building in particle physics: one defines the basic symmetries and the field content and then obtains the predictions that follow from these imposed symmetries.

There are symmetries that are not imposed, however, which are called accidental symmetries. They are outputs of the theory rather than external constraints. Accidental symmetries arise because we truncate our Lagrangian. In particular, the renormalizable
terms in the Lagrangian often have accidental symmetries that are broken by nonrenormalizable terms. Since we study mostly renormalizable Lagrangians, we will often encounter accidental symmetries.

There are various types of symmetries. First, we distinguish between spacetime and internal symmetries. Spacetime symmetries include the Poincaré group of translations, rotations, and boosts. They give the energy-momentum and angular momentum conservation laws. As mentioned previously, we always impose this symmetry. The list of possible spacetime symmetries includes, in addition, space inversion (also called parity) P, time-reversal T, and charge conjugation C. (While C is not truly a spacetime symmetry, the way that it acts on fermions and the CPT theorem make it simpler to include C in the same class of operators.) The discrete spacetime symmetries are usually covered in QFT courses, but for completeness, we discuss them briefly in Appendix 1.A.

Internal symmetries act on the fields, not directly on spacetime. In other words, they act in internal spaces that are mathematical spaces generated by the fields. These are the kind of symmetries that we discuss in detail. In chapter 2, we introduce Abelian symmetries; in chapter 4, we introduce non-Abelian symmetries.

1.4 Model Building

As stated already, writing a Lagrangian is the end point of model building. Our procedure of constructing Lagrangians goes as follows. We start by defining the following inputs:

1. The symmetry.
2. The transformation properties of the various scalar and fermion fields under the symmetry operation.

Then we write the most general Lagrangian that depends on the fields and is invariant under the symmetry.

A renormalizable Lagrangian (or a nonrenormalizable one truncated at a certain order) has a finite number of parameters. For a theory with N parameters, we need to perform N appropriate measurements such that additional measurements, from the $(N+1)$ 'th on, test the theory. In principle, we do not really need to determine the values of the parameters, we can just use experimental inputs to make predictions. In practice, however, it is usually convenient to use the N measurements to determine the values of the Lagrangian parameters and then use these parameters to make further predictions. It is important to remember that the values of the parameters are not inputs to model building.

At this point, this procedure may seem abstract, but it becomes clear and concrete as we work on examples. Throughout this book, we repeat the process of model building several times. We see how Quantum ElectroDynamics (QED), the theory of electromagnetic interactions, Quantum ChromoDynamics (QCD), the theory of strong interactions, the Leptonic Standard Model (LSM), the theory of electroweak interactions among leptons, and the Standard Model itself can be understood in this way of thinking, starting from a postulate of symmetry principles.

Appendix

1.A Discrete Spacetime Symmetries: C, P, and T

The discrete spacetime symmetries, C, P, and T, play an important role in our understanding of nature. Each of these three symmetries has been experimentally shown to be violated in nature, as discussed in detail next. The CPT combination seems, however, to be an exact symmetry of nature. On the experimental side, no sign of $C P T$ violation has been observed. On the theoretical side, CPT must be conserved for any Lorentz-invariant local field theory. Since we only consider such theories, we assume that CPT holds. In this case, $C P$ and T are equivalent. Thus, we usually refer to $C P$.

1.A. $1 \quad C$ and P

We consider C and P only in theories that involve fermions. Under C, particles and antiparticles are interchanged by conjugating all internal quantum numbers (e.g., reversing the sign of the electromagnetic charge, $Q \rightarrow-Q$). Under P, the handedness of space is reversed $(\vec{x} \rightarrow-\vec{x})$, and the chirality of fermion fields is reversed ($\psi_{L} \leftrightarrow \psi_{R}$). For example, a left-handed (LH) electron e_{L}^{-}transforms under C into an left-handed positron e_{L}^{+}, and under P into a right-handed (RH) electron e_{R}^{-}.

1.A.2 CP Violation and Complex Couplings

The $C P$ transformation combines charge conjugation C with parity P. For example, a lefthanded electron e_{L}^{-}transforms under $C P$ into a right-handed positron, $e_{R}^{+} . C P$ is a good symmetry if there is a basis where all the parameters of the Lagrangian are real. We do not prove it here, but we do provide a simple, intuitive explanation of this statement.

Consider a theory with a single complex scalar, ϕ, and two sets of N fermions, ψ_{L}^{i} and $\psi_{R}^{i}(i=1,2, \ldots, N)$ (we define a complex scalar in chapter 2). The Yukawa interactions are given by

$$
\begin{equation*}
-\mathcal{L}_{\text {Yuk }}=Y_{i j} \overline{\psi_{L i}} \phi \psi_{R j}+Y_{i j}^{*} \overline{\psi_{R j}} \phi^{\dagger} \psi_{L i} \tag{1.9}
\end{equation*}
$$

where we write the two Hermitian conjugate terms explicitly. The $C P$ transformation of the fields is defined as follows:

$$
\begin{equation*}
\phi \rightarrow \phi^{\dagger}, \quad \psi_{L i} \rightarrow \overline{\psi_{L i}}, \quad \psi_{R i} \rightarrow \overline{\psi_{R i}} \tag{1.10}
\end{equation*}
$$

Therefore, a CP transformation exchanges the operators

$$
\begin{equation*}
\overline{\psi_{L i}} \phi \psi_{R j} \longleftrightarrow \overline{\psi_{R j}} \phi^{\dagger} \psi_{L i} \tag{1.11}
\end{equation*}
$$

but leaves their coefficients, $Y_{i j}$ and $Y_{i j}^{*}$, unchanged. This means that $C P$ is a symmetry of \mathcal{L} if $Y_{i j}=Y_{i j}^{*}$.

In practice, things are more subtle since one can define the $C P$ transformation in a more general way than equation (1.10), as follows

$$
\begin{equation*}
\phi \rightarrow e^{i \theta} \phi^{\dagger}, \quad \psi_{L}^{i} \rightarrow e^{i \theta_{L}} \overline{\psi_{L}^{i}}, \quad \psi_{R}^{i} \rightarrow e^{i \theta_{R i}} \overline{\psi_{R}^{i}} \tag{1.12}
\end{equation*}
$$

with $\theta, \theta_{L i}, \theta_{R i}$ convention-dependent phases. Then, there can be complex couplings, and yet $C P$ would be an exact symmetry. The correct statement is that $C P$ is violated if, using the freedom to redefine the phases of the fields, one cannot find any basis where all couplings are real.

For Further Reading

There are many books that discuss in detail the QFT-related aspects relevant to this book. For example, some of the standard textbooks are by Peskin and Schroeder [2], Zee [13], Srednicki [14], and Schwartz [15]. Other textbooks that explain many of the relevant issues include Ramond [16], Dine [17], Nagashima [18, 19], and Petrov and Blechman [20].

With regard to some specific points, we mention the following sources:

- For a formal discussion of C and P, see section 3.6 of Peskin and Schroeder [2], or sections 11.4-11.6 of Schwartz [15].
- For a discussion of the issues about quantizing theories with higher-spin fields, see Peskin [21].
- For a discussion of Majorana fermions, see section 11.3 of Schwartz [15].
- For the CPT theorem, see Streater and Wightman [22].

Problems

Question 1.1: Algebra

1. Draw the Feynman diagrams for the interaction terms in the Lagrangian of equation (1.2).
2. Starting from equation (1.5) and using equation (1.3), derive equation (1.7).
3. Draw the Feynman diagrams for the Yukawa interaction terms in the Lagrangian of equation (1.8).

Question 1.2: Using natural units

In high-energy physics, since relativity and quantum mechanics are essential, it is convenient to use units where

$$
\begin{align*}
& \hbar \approx 6.58 \times 10^{-22} \mathrm{MeV} \mathrm{~s}=1, \quad c \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s}^{-1}=1 \\
& \hbar c \approx 2 \times 10^{-13} \mathrm{MeV} \mathrm{~m}=1 . \tag{1.13}
\end{align*}
$$

One can think of this convention as a choice of a unit system where the basis is $\{\hbar, c, \mathrm{eV}\}$ instead of, for example, the $\{\mathrm{cm}, \mathrm{g}, \mathrm{sec}\}$ of the cgs system. In addition, it is common to make the factors of \hbar and c implicit and measure everything in powers of eV . We reinstate the factors of \hbar and c only when converting to a different unit system. The aim of this exercise is that you gain some practice in using these natural units.

1. The width of a particle is defined as the inverse of its lifetime. The mean lifetime for the B^{+}meson is $\tau \approx 1.64 \times 10^{-12} \mathrm{~s}$. What is its width in eV ?
2. Consider a particle with a width of $\Gamma=2.3 \mathrm{eV}$. Recall that in the lab frame, $t=\gamma \tau$. What is the average distance that such a particle travels with $\gamma=100$ before decaying (since $\gamma \gg 1$, you can use $\beta \approx 1$)?
3. Quantum gravity effects cannot be neglected at very short distances. This happens when the energy scale is of the order of the Planck mass:

$$
\begin{equation*}
M_{\mathrm{Pl}} \equiv \sqrt{\frac{\hbar c}{G_{N}}} \tag{1.14}
\end{equation*}
$$

where G_{N} is the Newtonian gravitational constant. (The Planck scale constitutes an upper bound on the cutoff scale of all QFTs relevant to nature.) Express M_{Pl} in GeV , and the Planck length, $L_{\mathrm{Pl}} \equiv M_{\mathrm{Pl}}^{-1}$, in centimeters (cm).
4. In oscillation experiments for neutrinos, it is important to know the oscillation length, $L_{\text {osc }}=4 \pi E / \Delta m^{2}$, where Δm^{2} is the mass difference between the two neutrino states. For an experiment conducted with neutrinos of $E=1.3 \mathrm{GeV}$, find the value of Δm^{2} in units of eV^{2} that corresponds to $L_{\mathrm{osc}}=140$ meters.

Question 1.3: Dimensions of terms

It is useful to understand what we refer to as the dimension of operators or the dimension of Lagrangian terms. The action has dimensions of angular momentum. Therefore, in the natural unit system, the action is dimensionless and the Lagrangian has a mass dimension of four (or, more generally, of the number of spacetime dimensions).

1. Based on the Lagrangians of equations (1.2) and (1.5), show that canonical scalar fields have dimension $d=1$, and canonical fermion fields have dimension $d=3 / 2$.
2. Find the dimensions of the m^{2} parameter in equation (1.2) and of the $m_{M R}, m_{M L}$, and m_{D} parameters in equation (1.5).
3. What are the dimensions of η and λ in equation (1.2) and of Y in equation (1.8)?

Question 1.4: Accidental symmetries

In this question, we study a classical system to show examples of accidental symmetries. Consider a classical one-dimensional pendulum of length ℓ. The 1 DoF can be designated
as θ, the angle of the pendulum. Then the Lagrangian is given by

$$
\begin{equation*}
L=\frac{m \ell^{2} \dot{\theta}^{2}}{2}-m g \ell(1-\cos \theta) \tag{1.15}
\end{equation*}
$$

Assuming small oscillations $(\theta \ll 1)$, we can expand the potential. Keeping only terms up to the second order, we get

$$
\begin{equation*}
L=\frac{m \ell^{2} \dot{\theta}^{2}}{2}-\frac{m g \ell \theta^{2}}{2} \tag{1.16}
\end{equation*}
$$

which is the Lagrangian of a simple harmonic oscillator. It is well known that the frequency of a simple harmonic oscillator does not depend on its amplitude. Next, we aim to understand how this result is related to accidental symmetries.

1. Show that the equation of motion (EoM) derived from the Lagrangian of equation (1.16) is invariant under dilation, $\theta \rightarrow \lambda \theta$, for any finite λ. (We are then saying that L of equation (1.16) has dilation symmetry, despite the fact that it is only the EoM that is invariant.)
2. Does the Lagrangian of equation (1.15) also have dilation symmetry?
3. Expand the Lagrangian of equation (1.15) up to $O\left(\theta^{4}\right)$. Show explicitly that the θ^{4} term breaks the dilation invariance. Explain why this implies that this symmetry is accidental.
4. Without a formal proof, argue that dilation symmetry implies that the frequency cannot depend on the amplitude.

What we have shown here is that the dilation symmetry is accidental and is broken by higher-order terms.

INDEX

Baryon asymmetry, 173, 265; baryogenesis, 173, 266; leptogenesis, 268
Baryon number, 124, 127, 150, 178, 236
Baryons, 150, 165
Beta function, 46, 54
Brout-Englert-Higgs (BEH) field, 70, 71
Cabibbo-Kobayashi-Maskawa (CKM) matrix, 118, 122, 133, 165, 166, 200, 203, 207, 222, 224
Charge, 14,21 ; neutral current weak interactions, 88, 121
Confinement, 54, 150
Coupling constant, 19, 21, 113; electromagnetic (EM), 30, 87; strong, 53; weak, 78, 88
CP violation, 7, 126, 135, 173, 179, 206, 218
Custodial symmetry, 189

Dark matter (DM), 174, 176, 261
Decay constants, 154
Deep inelastic scattering (DIS), 162
Dirac mass, 4, 17, 42, 68, 79, 84, 114

Electron, 29, 84
Electroweak precision measurements (EWPM), 178, 184

Factorization, 152, 162
Fermi constant $\left(G_{F}\right), 92$
Fields, 1, 2, 40; fermion, 3; gauge, 19, 44, 78; scalar, 3,12
Fine-tuning, 172, 174
Flavor, 53, 132, 175; flavor-changing neutral current (FCNC), 132, 138, 177, 199, 244
Form factors, $155,166,167$
Glashow-Iliopoulos-Maiani (GIM) mechanism, 200, 203
Gluon, 51, 115, 119, 139

Goldstone's theorem, 65
Grand unification, 175, 239

Hadrons, 149, 164
Heavy quark symmetry, 158, 166
Higgs boson, 70, 81, 86, 115, 140, 179
Higgs mechanism, 68

Isospin, 156, 165

Jets, 161

Lagrangian, 1 ; fermion, 4 ; scalar, 3
Lepton flavor, 89, 94, 124, 177, 232, 236, 238
Lepton number, $95,127,177,233,236,238$
Leptons, 77, 83, 112, 132
Lie groups, 283

Majorana mass, 4, 17, 29, 42, 68, 79, 114, 242
Mesons, 150, 164
Mikheyev-Smirnov-Wolfenstein (MSW)
effect, 250
Muon, 31, 84, 92

Neutral current weak interactions, 88, 121, 244
Neutral meson mixing, 203, 209, 211
Neutrino-electron scattering, 99
Neutrinos, $85,89,127,132,173,175$, 232, 262; neutrinoless double-beta decay, 253; oscillations, 234, 247; seesaw mechanism, 175, 240

Parity violation, 88, 91, 122, 126
Parton Distribution Function (PDF), 162
Photon, 29, 33, 81, 115, 119, 139
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, 235, 237
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Quantum ChromoDynamics (QCD), 51, 119, 148
Quantum ElectroDynamics (QED), 28, 55, 87, 119
Quarks, 51, 53, 54, 112, 116, 132, 149

Renormalizability, 2, 176
Representation, 40, 112, 284, 293, 296

Spontaneous symmetry breaking (SSB), 60, 68, 79, 114
Standard Model (SM), 112, 187, 207, 216, 222
Standard Model effective field theory (SMEFT), 176, 191, 210, 233
Strong CP problem, 126, 174
Symmetries, 5, 71; Abelian, 11, 63, 283;
accidental, $5,15,32,55,94,124$; chiral, 16,

43; discrete, 7, 11, 61, 126; global, 11, 41, 63; imposed, 5; local, 18, 43, 68; non-Abelian, 39, 65,283 ; vectorial, 16,42

Tau-lepton, 33, 84, 89

W-boson, 81, 115, 122
Weak interaction, 88; charged current, 91, $122,235,243$; neutral current, 88 , 121
Weak mixing angle $\left(\theta_{W}\right), 82,90,93,185,187$

Yukawa interactions, 5, 79, 120, 179, 236, 244

Z-boson, 81, 115, 121, 139

[^0]: 1. Actually, the great hope of the high-energy physics community is to prove this statement wrong and find an even more fundamental theory.
