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1

Lagrangians

In this chapter, we review the basic tools that we will use in this book. In particular,
we introduce the Lagrangian and present some simple Lagrangians involving scalar and
fermion fields.

1.1 Introduction

Modern physics encodes the basic laws of nature in the action, S, and postulates the prin-
ciple ofminimal action in its quantum interpretation. In quantumfield theory (QFT), the
action is an integral over spacetime of the Lagrangian density or Lagrangian, L, for short.
For most of our purposes, it is enough to consider the Lagrangian rather than the action.
In this chapter, we explain howLagrangians are constructed. Later in the book, we discuss
how the numerical values of the parameters that appear in the Lagrangian are determined
and how to test if a Lagrangian provides a viable description of nature.

The QFT equivalent of the generalized coordinates of classical mechanics are fields.
The action is given by

S=
∫

d4xL, (1.1)

where d4x= dx0dx1dx2dx3 is the integration measure in four-dimensional Minkowski
space. In general, we require the following properties for the Lagrangian:

1. It is a function of the fields and their derivatives only.
2. It depends on the fields taken at one spacetime point xμ only, leading to a local

field theory.
3. It is real, so the total probability is conserved.
4. It is invariant under the Poincaré group, which consists of spacetime translations

and Lorentz transformations.
5. It is an analytic function in the fields. This is not a general requirement, but it is

common to all field theories that are solved via perturbation theory. In these cases,
we expand around a minimum, which means that we consider a Lagrangian that is
a polynomial in the fields.

1



2 chapter 1

6. It is invariant under certain internal symmetry groups. The invariance of S (orL)
is in correspondence with conserved quantities and reflects basic symmetries of
the physical system.

7. Every term in the Lagrangian that is not forbidden by a symmetry should appear.

We often impose an additional requirement as well:

8. Renormalizability. A renormalizable Lagrangian contains only terms that have a
dimension less than or equal to four in the fields and their derivatives.

The renormalizability requirement ensures that the Lagrangian contains at most two
∂μ operations, and it leads to classical equations ofmotion that are no higher than second-
order derivatives. If the full theory of nature is described by a QFT, its Lagrangian should
indeed be renormalizable. The theories that we consider, however, and, in particular, the
Standard Model, are only low-energy-effective theories, that are valid up to some energy
scale 	. Therefore, we also must include nonrenormalizable terms, which have coeffi-
cients with inverse mass dimensions, 1/	n, n= 1, 2, . . . For most purposes, however,
renormalizable terms constitute the leading terms in an expansion in E/	, where E is the
energy scale of the physical processes under study. Therefore, the renormalizable part of
the Lagrangian is a good starting point for our study. Thus, in chapters 1–10, we consider
only renormalizable Lagrangians unless otherwise explicitly stated. In chapters 11–15,
where we describe searches for physics beyond the Standard Model, we also consider
nonrenormalizable Lagrangians.

Properties 1–5 are not the subject of this book. You should be familiar with them
from your QFT course work. We do, however, deal intensively with the other require-
ments.Actually, themost importantmessage thatwewould like to convey is the following:
(Almost) all experimental data for elementary particles and their interactions can be explained
by the Standard Model of a spontaneously broken SU(3)× SU(2)×U(1) gauge symmetry.1

Writing down a specific Lagrangian is the end point of the process known as model
building, and the starting point for a phenomenological interpretation and experimental
testing. In this book, we explain both aspects of this modern way of understanding high-
energy physics.

1.2 Examples of Simple Lagrangians

We next present a few examples of simple Lagrangians of scalar and fermion fields. They
are simple in the sense that we are not yet imposing any internal symmetry. We use φ(x)
for a scalar field andψ(x) for a fermion field.Whenwe consider vector fields, as first done
in section 2.2 of chapter 2, we use A(x) for a vector field. We do not consider higher spin
fields, as it is not simple to construct a QFT with them.

1. Actually, the great hope of the high-energy physics community is to prove this statementwrong and find
an even more fundamental theory.



l agrang ians 3

Two comments are in order:

• All fields that we consider here are functions of the spacetime coordinates
φ(x), ψ(x), and A(x). We leave this spacetime dependence implicit except in cases
where it is relevant.

• We use the notations φ,ψ , and A in the discussion of generic cases. When we refer
to specific cases, we use different notation. For example, for the electron field, we
use e instead of the genericψ .

1.2.1 Scalars

The most general renormalizable Lagrangian for a single real scalar field φ is given by

LS = 1
2
(∂μφ)(∂

μφ)− m2

2
φ2 − η

2
√
2
φ3 − λ

4
φ4 . (1.2)

We emphasize the following points:

• The term with derivatives is called the kinetic term. It is necessary if we want φ to be
a dynamical field (namely, to be able to describe propagation in spacetime).

• The terms without derivatives are collectively denoted by−Vφ . We then write
LS = 1

2(∂μφ)(∂
μφ)−Vφ , and Vφ is called the scalar potential.

• Wework in the canonically normalized basis where the coefficient of the kinetic
term is 1/2. (This is true for a real scalar field. For a complex scalar field, the
canonically normalized coefficient of the kinetic term is 1.)

• From here on, throughout the book, when we say “the most general Lagrangian,”
we are referring to a Lagrangian where the kinetic terms are canonically normal-
ized, but the other terms are written in a general basis. (Question 2.8 in chapter 2
shows that there is no loss of generality in working in the canonically normalized
basis.)

• We do not write a constant term since it does not enter the equation of motion
for φ.

• We do not write a linear term in φ because when expanding around a minimum,
the linear term vanishes.

• The quadratic term (φ2) is a mass-squared term. (From here on we call it simply a
mass term.)

• The trilinear (φ3) and quartic (φ4) terms describe interactions.
• Terms with five or more scalar fields (φn, n≥ 5) are nonrenormalizable.

1.2.2 Fermions

The basic fermion fields are two-component Weyl fermions, ψL and ψR, where L and
R denote left-handed and right-handed chirality, respectively. Each of ψL and ψR has
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2 degrees of freedom (DoF) and is a complex field. ψL and ψR are related to the four-
component Dirac fieldψ via

ψR = PRψ ≡ 1+ γ5

2
ψ , ψL = PLψ ≡ 1− γ5

2
ψ . (1.3)

It is useful to define the related left-handed Weyl fermion ψ c
R and right-handed Weyl

fermionψ c
L via

ψ c
R =CψR

T , ψ c
L =CψL

T , (1.4)

where C is the charge conjugation matrix. (The reason for this name becomes clear once
we define charge in chapter 2.)

The most general renormalizable Lagrangian for a single left-handed fermion fieldψL
and a single right-handed fermion fieldψR is given by

LF = iψL∂/ψL + iψR∂/ψR −
(mMR

2
ψ c

R ψR + mML

2
ψ c

L ψL +mDψLψR + h.c.
)
. (1.5)

We emphasize the following points:

• The derivative terms are kinetic terms, and they are necessary if we want the field
ψL,R to be dynamical.

• Wework in the canonically normalized basis, where the coefficient of the kinetic
term is 1.

• Terms with an odd number of fermion fields violate Lorentz symmetry, and so they
are forbidden.

• The quadratic terms are mass terms. ThemM terms are calledMajorana masses, and
themD terms are calledDirac masses.

• The relative factor of 1/2 betweenMajorana and Dirac mass terms is the analog of
the similar factor between the mass terms for real and complex scalar fields.

• Terms with four or more fermion fields are nonrenormalizable.
• Given the fact that Majorana mass terms are made of a pair of identical fields, we
often write

mMR

2
ψ c

R ψR → mMR

2
ψT

R ψR. (1.6)

If the Majorana masses vanish, mML =mMR = 0, LF can be written in terms of the
Dirac fermion fieldψ :

LF(mM = 0)= iψ∂/ψ −mDψψ . (1.7)

SinceψL andψR are different fields, there are 4 DoFwith the samemass,mD. In contrast,
if the Majorana masses do not vanish, there are generally only 2 DoF that have the same
mass. In section 2.1.5 in chapter 2, we discuss these issues in more detail and explain why
oftenMajorana masses vanish.
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1.2.3 Fermions and Scalars

Consider the case of a single left-handed fermion ψL, a single right-handed fermion
ψR, and a single real scalar field φ. The Lagrangian includes, in addition to terms that
involve only the scalar (equation (1.2)), and terms that involve only the fermions (equa-
tion (1.5)), terms that involve both the scalar and the fermions. They can be obtained
by replacing the mass parameters for the fermions with a coupling multiplied by the
scalar field:

−LYuk = Y√
2
φψLψR + YMR

2
φψ c

R ψR + YML

2
φψ c

L ψL + h.c. (1.8)

These terms are called Yukawa interactions. The Y parameters are dimensionless and are
called Yukawa couplings. Note that in equation (1.8), we use −L, which is a common
practice when we do not write the kinetic terms.

1.3 Symmetries

We always seek deeper reasons for the laws of nature that have been discovered. These
reasons are often closely related to symmetries. The term symmetry refers to an invariance
of the equations that describe a physical system. The fact that symmetry and invariance
are related concepts is obvious enough—a smooth ball has a spherical symmetry, and its
appearance is invariant under rotation.

Symmetries are built into physics as invariance properties of the Lagrangian. If we con-
struct our theories to encode various empirical facts (and, in particular, the observed
conservation laws), then the equations turn out to exhibit certain invariance proper-
ties. For example, if we want to incorporate energy conservation into the theory, then
the Lagrangian must be invariant under time translations (and therefore cannot depend
explicitly on time). From this point of view, the conservation law is the input and the
symmetry is the output.

Conversely, if we take the symmetries to be the fundamental rules, then various
observed features of particles and their interactions are a necessary consequence of the
symmetry principle. In this sense, symmetries provide an explanation of these features. In
modern particle physics (and in particular in this book), we often take the latter point of
view, in which symmetries are the input and conservation laws are the output.

In the following, we discuss the consequences of imposing symmetry on a Lagrangian.
This is the starting point of model building in particle physics: one defines the basic sym-
metries and the field content and then obtains the predictions that follow from these
imposed symmetries.

There are symmetries that are not imposed, however, which are called accidental
symmetries. They are outputs of the theory rather than external constraints. Accidental
symmetries arise because we truncate our Lagrangian. In particular, the renormalizable
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terms in the Lagrangian often have accidental symmetries that are broken by non-
renormalizable terms. Since we study mostly renormalizable Lagrangians, we will often
encounter accidental symmetries.

There are various types of symmetries. First, we distinguish between spacetime and
internal symmetries. Spacetime symmetries include the Poincaré group of translations,
rotations, and boosts. They give the energy-momentum and angular momentum con-
servation laws. As mentioned previously, we always impose this symmetry. The list of
possible spacetime symmetries includes, in addition, space inversion (also calledparity)P,
time-reversal T, and charge conjugation C. (While C is not truly a spacetime symmetry,
the way that it acts on fermions and the CPT theoremmake it simpler to include C in the
same class of operators.) The discrete spacetime symmetries are usually covered in QFT
courses, but for completeness, we discuss them briefly in Appendix 1.A.

Internal symmetries act on thefields, not directly on spacetime. In otherwords, they act
in internal spaces that are mathematical spaces generated by the fields. These are the kind
of symmetries that we discuss in detail. In chapter 2, we introduce Abelian symmetries; in
chapter 4, we introduce non-Abelian symmetries.

1.4 Model Building

As stated already, writing a Lagrangian is the end point of model building. Our procedure
of constructing Lagrangians goes as follows. We start by defining the following inputs:

1. The symmetry.
2. The transformation properties of the various scalar and fermion fields under the

symmetry operation.

Then we write the most general Lagrangian that depends on the fields and is invariant
under the symmetry.

A renormalizable Lagrangian (or a nonrenormalizable one truncated at a certain order)
has a finite number of parameters. For a theory withN parameters, we need to performN
appropriate measurements such that additional measurements, from the (N + 1)’th on,
test the theory. In principle, we do not really need to determine the values of the param-
eters, we can just use experimental inputs to make predictions. In practice, however, it is
usually convenient to use theN measurements to determine the values of the Lagrangian
parameters and then use these parameters to make further predictions. It is important to
remember that the values of the parameters are not inputs to model building.

At this point, this procedure may seem abstract, but it becomes clear and concrete as
wework on examples. Throughout this book,we repeat the process ofmodel building sev-
eral times.We see howQuantumElectroDynamics (QED), the theory of electromagnetic
interactions, Quantum ChromoDynamics (QCD), the theory of strong interactions, the
Leptonic Standard Model (LSM), the theory of electroweak interactions among leptons,
and the Standard Model itself can be understood in this way of thinking, starting from a
postulate of symmetry principles.
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Appendix

1.A Discrete Spacetime Symmetries: C, P, and T

The discrete spacetime symmetries, C, P, and T, play an important role in our under-
standing of nature. Each of these three symmetries has been experimentally shown to be
violated in nature, as discussed in detail next. The CPT combination seems, however, to
be an exact symmetry of nature. On the experimental side, no sign of CPT violation has
been observed.On the theoretical side,CPTmust be conserved for any Lorentz-invariant
local field theory. Since we only consider such theories, we assume thatCPT holds. In this
case, CP and T are equivalent. Thus, we usually refer to CP.

1.A.1 C and P

WeconsiderC andPonly in theories that involve fermions.UnderC, particles and antipar-
ticles are interchanged by conjugating all internal quantum numbers (e.g., reversing the
sign of the electromagnetic charge, Q →−Q). Under P, the handedness of space is
reversed (	x→ −	x), and the chirality of fermion fields is reversed (ψL ↔ψR). For exam-
ple, a left-handed (LH) electron e−L transforms under C into an left-handed positron e+L ,
and under P into a right-handed (RH) electron e−R .

1.A.2 CP Violation and Complex Couplings

TheCP transformation combines charge conjugationCwith parity P. For example, a left-
handed electron e−L transforms under CP into a right-handed positron, e+R . CP is a good
symmetry if there is a basis where all the parameters of the Lagrangian are real. We do not
prove it here, but we do provide a simple, intuitive explanation of this statement.

Consider a theory with a single complex scalar, φ, and two sets ofN fermions,ψ i
L and

ψ i
R (i= 1, 2, . . . ,N) (we define a complex scalar in chapter 2). The Yukawa interactions

are given by

−LYuk = YijψLiφψRj + Y∗
ijψRjφ

†ψLi, (1.9)

where we write the two Hermitian conjugate terms explicitly. The CP transformation of
the fields is defined as follows:

φ →φ†, ψLi →ψLi, ψRi →ψRi. (1.10)

Therefore, a CP transformation exchanges the operators

ψLiφψRj←→ψRjφ
†ψLi, (1.11)

but leaves their coefficients, Yij and Y∗
ij , unchanged. This means that CP is a symmetry of

L if Yij = Y∗
ij .
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In practice, things aremore subtle since one candefine theCP transformation in amore
general way than equation (1.10), as follows

φ → eiθφ†, ψ i
L → eiθLiψ i

L, ψ i
R → eiθRiψ i

R, (1.12)

with θ , θLi, θRi convention-dependent phases. Then, there can be complex couplings, and
yet CP would be an exact symmetry. The correct statement is that CP is violated if, using
the freedom to redefine the phases of the fields, one cannot find any basis where all
couplings are real.

For Further Reading

There are many books that discuss in detail the QFT-related aspects relevant to this
book. For example, some of the standard textbooks are by Peskin and Schroeder [2],
Zee [13], Srednicki [14], and Schwartz [15]. Other textbooks that explain many of the
relevant issues include Ramond [16], Dine [17], Nagashima [18, 19], and Petrov and
Blechman [20].

With regard to some specific points, we mention the following sources:

• For a formal discussion of C and P, see section 3.6 of Peskin and Schroeder [2], or
sections 11.4–11.6 of Schwartz [15].

• For a discussion of the issues about quantizing theories with higher-spin fields, see
Peskin [21].

• For a discussion of Majorana fermions, see section 11.3 of Schwartz [15].
• For the CPT theorem, see Streater andWightman [22].

Problems

Question 1.1: Algebra

1. Draw the Feynman diagrams for the interaction terms in the Lagrangian of
equation (1.2).

2. Starting from equation (1.5) and using equation (1.3), derive equation (1.7).
3. Draw the Feynman diagrams for the Yukawa interaction terms in the Lagrangian

of equation (1.8).

Question 1.2: Using natural units

In high-energy physics, since relativity and quantum mechanics are essential, it is conve-
nient to use units where

� ≈ 6.58× 10−22 MeV s= 1, c≈ 3× 108 m/s−1 = 1 ,
�c≈ 2× 10−13 MeVm= 1 . (1.13)
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One can think of this convention as a choice of a unit system where the basis is {�, c, eV}
instead of, for example, the {cm, g, sec} of the cgs system. In addition, it is common to
make the factors of � and c implicit and measure everything in powers of eV. We reinstate
the factors of � and c only when converting to a different unit system. The aim of this
exercise is that you gain some practice in using these natural units.

1. The width of a particle is defined as the inverse of its lifetime. The mean lifetime
for the B+ meson is τ ≈ 1.64× 10−12 s. What is its width in eV?

2. Consider a particle with a width of� = 2.3 eV. Recall that in the lab frame,
t = γ τ . What is the average distance that such a particle travels with γ = 100
before decaying (since γ � 1, you can use β ≈ 1)?

3. Quantum gravity effects cannot be neglected at very short distances. This happens
when the energy scale is of the order of the Planck mass:

MPl ≡
√

�c
GN

, (1.14)

whereGN is the Newtonian gravitational constant. (The Planck scale constitutes
an upper bound on the cutoff scale of all QFTs relevant to nature.) ExpressMPl in
GeV, and the Planck length, LPl ≡M−1

Pl , in centimeters (cm).
4. In oscillation experiments for neutrinos, it is important to know the oscillation

length, Losc = 4πE/�m2, where�m2 is the mass difference between the two
neutrino states. For an experiment conducted with neutrinos of E= 1.3 GeV, find
the value of�m2 in units of eV2 that corresponds to Losc = 140 meters.

Question 1.3: Dimensions of terms

It is useful to understand what we refer to as the dimension of operators or the dimension
of Lagrangian terms. The action has dimensions of angular momentum. Therefore, in the
natural unit system, the action is dimensionless and the Lagrangian has a mass dimension
of four (or, more generally, of the number of spacetime dimensions).

1. Based on the Lagrangians of equations (1.2) and (1.5), show that canonical
scalar fields have dimension d= 1, and canonical fermion fields have dimension
d= 3/2.

2. Find the dimensions of them2 parameter in equation (1.2) and of themMR,mML,
andmD parameters in equation (1.5).

3. What are the dimensions of η and λ in equation (1.2) and of Y in equation (1.8)?

Question 1.4: Accidental symmetries

In this question, we study a classical system to show examples of accidental symmetries.
Consider a classical one-dimensional pendulumof length �. The 1DoF can be designated
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as θ , the angle of the pendulum. Then the Lagrangian is given by

L= m�2θ̇2

2
−mg�(1− cos θ). (1.15)

Assuming small oscillations (θ � 1), we can expand the potential. Keeping only terms up
to the second order, we get

L= m�2θ̇2

2
− mg�θ2

2
, (1.16)

which is the Lagrangian of a simple harmonic oscillator. It is well known that the fre-
quency of a simple harmonic oscillator does not depend on its amplitude. Next, we aim
to understand how this result is related to accidental symmetries.

1. Show that the equation of motion (EoM) derived from the Lagrangian of equa-
tion (1.16) is invariant under dilation, θ → λθ , for any finite λ. (We are then
saying that L of equation (1.16) has dilation symmetry, despite the fact that it is
only the EoM that is invariant.)

2. Does the Lagrangian of equation (1.15) also have dilation symmetry?
3. Expand the Lagrangian of equation (1.15) up toO(θ4). Show explicitly that

the θ4 term breaks the dilation invariance. Explain why this implies that this
symmetry is accidental.

4. Without a formal proof, argue that dilation symmetry implies that the frequency
cannot depend on the amplitude.

What we have shown here is that the dilation symmetry is accidental and is broken by
higher-order terms.
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