6 Introduction

CONTENTS

- Sawflies and woodwasps
- Apocrita (Parasitica)
 Parasitoid wasps
- 171 Apocrita (Aculeata)
 Stinging predatory and provisioning wasps, bees, and ants
- 234 Glossary
- 235 Further reading
- 236 Index
- 240 Picture Credits and Acknowledgments

For general queries, contact webmaster@press.princeton.edu

WEB-SPINNING OR LEAF-ROLLING SAWFLIES

As in the Megalodontesidae these are large sawflies with wide, flattened bodies. Their antennae are long and thin, tapering to points.

Eggs are laid in slits in the plant tissue. The gregarious larvae often feed in groups clustered in silken webs or silk tents on coniferous and other plants, with other species feeding within leaf rolls. Many species are gregarious in early larval instars, living in silk tubes, then solitary in later instars,

although some species are gregarious under silken webbing throughout their development. Many Pamphiliinae live within leaf rolls in later instars.

Pupation is in the soil and the winter is spent as a prepupa. Larvae of most species feed on trees, either conifers or angiosperms, while species that feed on herbaceous plants are restricted to Rosaceae.

DISTRIBUTION

Widely distributed across the temperate areas of Asia, Europe, and North America

Acantholyda, Caenolyda, Cephalcia, Kelidoptera, Neurotoma, Onycholyda, Pamphilius, Pseudocephaleia

HARITATS

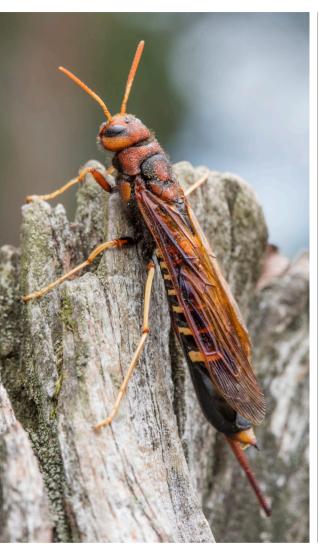
Woodland

 $\frac{5}{16}-\frac{11}{16}$ in (8–18 mm) body length

Diurnal

REPRODUCTION

Males approach females and mating lasts several minutes. Females can be aggressive, resisting further mating


attempts and at least in some species exhibiting aggressive egg-guarding behavior

DIET

Phytophagous. Larvae feed on trees or herbaceous plants. Adults do not feed The subfamily Cephalciinae are pine feeders while Pamphiliinae feed on angiosperms. Adults do not feed, in contrast to Megalodontesidae.

Some species are considered to be pests of the forestry industry, such as *Cephalcia lariciphila*, which can defoliate stands of larch (*Larix*), and the Pine False Webworm (*Acantholyda erythrocephala*), which attacks pines.

HORNTAILS AND WOODWASPS

his family is most common in the temperate northern hemisphere, but *Afrotremex* is an African genus and Sirex noctilio has spread to Africa, Australia, and South America. It comprises 2 extant subfamilies, Tremicinae (horntails) and Siricinae (woodwasps), containing 10 genera and 108 species. An additional nine genera and three subfamilies are only known by fossils, an ancient group of wasps that was more diverse during the Paleogene and Mesozoic eras.

Woodwasps develop within conifers and horntails feed on broad-leafed deciduous tree species. Horntails are so named for the hard spine-like projection at the end of the abdomen, which facilitates penetration of plant tissue in the process of egg-laying. They need toughened cuticle to oviposit into and emerge from wood, and have zinc-enriched ovipositor tips and mandibles to aid this. The Pigeon Horntail (Tremex columba) is a massive North American wasp reaching up to $1^{15}/_{16}$ in (50 mm) in body length.

Woodwasps carry symbiotic fungi in specialized "pouches," mycangia, on the abdomen. Adult woodwasp females lay eggs and fungal spores into stressed trees, providing rotten wood for larval feeding. Xeris species lack mycangia, taking advantage of wood pre-infested by woodwasps.

DISTRIBUTION

Species richness is centered in the northern hemisphere, but Afrotremex is present in the African tropics and Sirex noctilio has been introduced to several countries in the southern hemisphere

Afrotremex, Eriotremex, Sirex, Siricosoma, Sirotremex, Teredon, Tremex, Urocerus, Xeris, Xoanon

HABITATS

Temperate and tropical forests

3/8-115/16 in (10-50 mm) body length

Diurnal. Some species are reported to have mating swarms at the tops of trees or hills ("hilltopping")

REPRODUCTION


Females lay several eggs directly into the wood of dead or stressed trees.

ABOVE Female of the European Giant Woodwasp (*Unocerus gigas*), a fearsome-looking but harmless species that is a mimic of stinging wasps.

OPPOSITE | Pigeon Horntail (*Tremex columba*), a North American woodwasp, larvae of which eat the wood of deciduous trees with females dying soon after they have finished ovipositing.

RIGHT | Male of the European (and widely introduced) Sirex Woodwasp (Sirex noctilio). A notorious pest of conifers, a large body of research has built up around Sirex noctilio and its parasitoids.

DIET

Larvae are wood-borers, phytophagous or mycophagous, feeding on dead wood being broken down by commensal fungi

Sirex noctilio has become a major forestry pest and has been accidentally introduced to several countries in the southern hemisphere. Several other species are invasive, mainly in the Americas, where they are frequently intercepted in wood imports. Sirex noctilio is successfully controlled by a combination of parasitoid wasps (Ibalia leucospoides and species of Rhyssinae, Ichneumonidae) and parasitic nematodes (Deladenus siricidicola).

ARGID SAWFLIES

rgids are nearly worldwide in distribution, but most prevalent in tropical regions. They are absent only from Antarctica, Madagascar, and New Zealand. They comprise 2 subfamilies, Arginae and Sterictiphorinae, containing 59 living genera, with over 900 species. One fossil genus has been described (two extant genera also have fossil species). The Zenarginae was recently raised to family status, and the other four subfamilies absorbed into the two current subfamilies based on phylogenetic analyses.

Argid sawflies are frequently brightly colored and conspicuous. A characteristic feature of Argidae (and a very few other sawflies) is that the antenna is reduced to three segments. Males of Sterictiphorinae have bifurcate (resembling tuning forks) antennae, whereas Arginae all have simple antennae.

This abundant family represents an important herbivory component in tropical ecosystems. Larvae may be gregarious, and a few exposed feeders are different colors on each side of their body, as camouflage for feeding on the edges of

DISTRIBUTION

Worldwide, with species richness centered in tropical and subtropical regions, although the huge genus Arge is well represented in temperate regions

59 extant genera classified in 2 subfamilies: Arginae and Sterictiphorinae

HABITATS

Wide range, from arid desert environments to tropical forests. Most abundant in tropical areas

1/8-1/2 in (3-12 mm) body length

Diurnal. Many argids are rather slow-moving, "bumbling" along

LEFT An argid sawfly, *Arge ochropus*, with a typical bright color pattern for an argid, although the distantly related *Athalia* sawflies can look similar. Adult argids are often rather slow-moving.

RIGHT | The Poison Ivy Sawfly (*Arge humeralis*) with black-and-red warning colors. Note the antennal flagellum, reduced to one long segment.

BELOW Larvae of the Large Rose Sawfly (*Arge pagana*), conspicuous and distasteful to many predators, although some specialized wasps are parasitoids of argid larvae.

REPRODUCTION

Females use the saw-like ovipositor to cut slits into host plant to lay eggs. Maternal care may occur with egg guarding. Larvae may be gregarious; Sterictiphorinae pupate in dense cocoon masses

DIET

Phytophagous, larvae feed externally on angiosperms. Some are leaf-miners with *Aproceros* and *Sterictiphora* leaving a distinct zig-zag pattern leaves. Adults are flower visitors feeding on pollen and nectar, and consequently play a role in pollination services.

The family contains several pest species and a couple of beneficial species used as biocontrol agents. The Sumatran species Cibdela janthina has been successfully used to control the invasive Giant Bramble (Rubus alceifolius, Rosaceae) on the island of Réunion and is now also present in Mauritius. Aproceros leucopoda is a pest of elms (Ulmus), having invaded Europe from East Asia, and can completely defoliate the trees. The rose sawflies Arge ochropus, Arge rosae, and Arge xanthogaster are serious pests of both ornamental and wild roses, the gregarious larvae feeding on both flowers and leaves. Larvae of Arge pullata, a widespread species that can defoliate birch, are toxic to livestock, which frequently eat the larvae as they move to the ground to pupate.

FERN SAWFLIES

lasticotomidae are restricted to Eurasia, occurring in temperate areas. This small family of sawflies comprises 2 living genera represented by only 12 species, and has 1 fossil genus.

As in Argidae and Zenargidae, most of the antenna is one enlarged flagellar segment, but this is followed by a tiny fourth antennal segment in Blasticotomidae.

> **BELOW** | Female of a Fern Sawfly (Blasticotoma filiceti). Adults can be hard to find but the presence of larvae is often indicated by froth around a hole in a fern rachis, with ants attending.

The young larva chews out a cavity in the rachis of the fern foodplant, where it feeds on sap leaking into the hollow cell. The larva chews a hole at each end of the cavity it develops in, the bottom one for defecation and the other for breathing. The excrement is sugar-rich and attracts ants, their presence likely providing indirect protection for the larvae from parasitoids and predators. Pupation is within the stem, without a cocoon.

The most widespread species, *Blasticotoma filiceti*, is thelytokous (reproduces parthenogenetically); occasional introductions outside its native range, and in gardens, mean it can easily spread, as only one female needs to be transported.

DISTRIBUTION

Species are confined to temperate areas of Asia, with one species in Europe, and are rarely found in numbers

GENERA

Blasticotoma, Runaria

Boreal forests and wetlands, where ferns occur

1/4-3/8 in (7–9 mm) body length

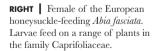
ACTIVITY

Diurnal

REPRODUCTION

Females lay eggs directly into the stem of a fern

DIFT


Phytophagous. Larvae are stem-borers of ferns and can sometimes be detected by accumulations of froth outside their feeding hole

GIANT SAWFLIES

he family Cimbicidae is mostly a northern . hemisphere family with one subfamily occurring in South America. It comprises 16 living genera represented by 182 species, and 5 extinct genera, in 4 subfamilies: Abiinae, Cimbicinae, Corynidinae, and Pachylostictinae.

Giant sawflies are a family of mostly large, fast-flying sawflies with characteristic clubbed antennae. Male fighting is known in some species and they can be highly territorial, using their massive mandibles and enlarged hind legs as weapons. This might be an evolutionary driver behind the very large body size of many species, as might mimicry, as some species mimic bumblebees (Bombus) or vespid wasps.

Cimbicinae feed mainly on trees, other subfamilies mainly on shrubs and herbs, although the biology of Pachylostictinae is very poorly known. Although the larvae are large and striking, cimbicids are usually found at low density. Larvae feed externally on foliage and pupate in cocoons constructed on the foodplant or in the soil.

DISTRIBUTION

Species richness is centered in the northern hemisphere with Pachylostictinae restricted to South America

GENERA

16 genera

Wide range, from grassland to forests

 $\frac{1}{4}$ 13/16 in (6–30 mm) body length

ACTIVITY

Diurnal. Adults often buzz when caught and have a strong defensive bite. Males aggregate at the top of hills

REPRODUCTION

Eggs are laid in incisions on foodplants

Phytophagous. Larvae are plantfeeders, all on angiosperms

CONIFER SAWFLIES

he family Diprionidae is restricted to the northern hemisphere, with species richness centered in the boreal regions of Asia, Europe, and North America, but some species extend south to the Oriental region and to North Africa.

Conifer sawflies comprise 11 living genera represented by 136 species, and 2 extinct genera in 2 subfamilies. Some species have gregarious larvae and can be serious forestry pests, such as the White Pine Sawfly (Neodiprion pinetum), which attacks the Eastern White Pine (*Pinus strobus*). Population explosions under favorable conditions can result in complete defoliation of forest trees resulting in the death of the tree, an impact attributing a major economic pest status to these species. *Neodiprion sertifer* is a notorious pest in North America, introduced from Europe, where massive defoliation of pines occurred before some control was achieved using parasitoid wasps.

Males of many species have extravagantly pectinate antennae, and these are attracted to pheromones produced by females. Larvae of solitary species are cryptically colored

> while gregarious larvae can be conspicuous and display synchronized movements when threatened. The very well-studied Neodiprion sertifer overwinters as an egg, unusual for Diprionidae; most species overwinter as prepupae in cocoons either in the ground or on the food tree.

LEFT | Female of the pine-feeding Diprion similis. In hot, dry years, there can be increased defoliation of pines as Diprion species can then manage two generations in a year.

DISTRIBUTION

Species richness is centered in Eurasia and North America

Augomonoctenus, Diprion, Gilpinia, Macrodiprion, Microdiprion, Monoctenus, Neodiprion, Nesodiprion, Prionomein, Rhipidoctnus, Zadiprion

Temperate conifer forests

3/16-9/16 in (5–14 mm) body length

Diurnal. Slow-flying, with males ranging much further than females

Eggs are laid in slits on conifer needles

DIFT

Phytophagous. Larvae feed on conifers. Diprioninge on Pinaceae and Monocteninae on Cupressaceae

means without prior written permission of the publisher. TENTHREDINOIDEA: HEPTAMELIDAE

FERN-TIP SAWFLY WASPS

BELOW Female *Heptamelus* dahlbomi; males are unknown. Classified as tenthredinid sawflies until recently, this is a difficult family to recognize.

The family Heptamelidae, only recently split from Tenthredinidae, is restricted in its native range to Eurasia. It comprises 2 living genera represented by 38 species, with no known extinct genera.

The larvae of *Heptamelus* are stem-borers whereas those of *Pseudoheptamelus* feed mostly externally. Eggs of both genera are laid at tips of the fern rachis, entirely within the plant tissue. Larvae of *Heptamelus* feed by boring downwards toward the base of the stem. Larvae of

Pseudoheptamelus prefer to feed externally on freshly dead fern. The foodplants are known for very few species; European heptamelids seem to prefer Lady Fern (Athyrium filix-femina). The ovipositing

females of *Pseudoheptamelus runari* make additional cuts with their ovipositors above the egg, which might help kill the fern frond, to the advantage of the larva. As with most other fern-feeding sawflies, larvae do not pupate in the soil nor form cocoons, but burrow into lower, dead sections of fern stem, or nearby dead wood to pupate.

DISTRIBUTION

Species are most diverse in the Eastern Palearctic and Oriental regions, with a few species in Europe. Heptamelus dahlbomi has been accidentally introduced to North America

GENERA

Heptamelus, Pseudoheptamelus

HARITATS

Forests, wetlands (including dune slacks), gardens

SIZE

 $\frac{3}{16-1}$ in (4–6 mm) body length

ACTIVITY

Diurnal

REPRODUCTION

One widespread species, Heptamelus dahlbomi, is thelytokous

DIET

Phytophagous on ferns

SPITFIRE SAWFLIES

he family Pergidae, with 60 living genera represented by 442 species, is the third-largest sawfly wasp family after the argids and torpedo sawflies (Tenthredinidae), being most species-rich in South America, followed by Australia. The family also occurs in eastern North America (the genus Acordulecera) and the Indonesian region (New Britain, Papua New Guinea, and Sulawesi). One species has been introduced to New Zealand.

RIGHT | Larval Australian pergid sawfly (Trichorhachus species) feeding on Common Smokebush (Conospermum stoechadis), and well disguised on its white fluffy foodplant.

BELOW | Adult Australian pergid sawfly (Perga species). Perga adults have extremely short antennae and the larvae are highly gregarious.

DISTRIBUTION

Species richness is centered in the southern hemisphere; it is the best-represented sawfly family in Australia and is well represented in South America

60 genera contained in 12 subfamilies: Acordulecerinae, Conocoxinae, Loboceratinae, Parasyzygoniinae, Perginae, Pergulinae, Perreyiinae,

Philomastiginae, Pterygophorinae, Pteryperginae, Styracotechyinae, Syzygoniinae

Wide range, from grassland to forests

1/8-3/8 in (3–10 mm) body length

ACTIVITY

Most are diurnal, but some species are crepuscular or nocturnal

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

Males home in on receptive females by detecting pheromones released by the females. Pergids exhibit several unusual traits. Unusually within sawflies, some species exhibit maternal care, aggressively looking after their eggs and young larvae by making a buzzing sound. Sawfly adults are frequently carnivorous, so this is not an empty threat, and some pergids are known to be highly toxic. Another unusual feature, found in *Perreyia flavipes*, is thanatosis—that is to say, they "play dead."

REPRODUCTION

Fertilized females usually lay their eggs by inserting them directly into the host plant tissue, but sometimes lay eggs on or in the soil

DIET

Extremely varied, most are phytophagous (plant-feeders) although some specialize on aquatic ferns, and others on fungi

Larvae feed mostly on leaves (commonly eucalypts in Australia) or are borers attacking new shoots or mining within the leaves themselves. Others only feed on decomposing plant matter. Several species are of economic significance, as the gregarious larvae can completely devour all the leaves on the host plant, which can be crops such as guavas or potatoes in South America, or forest trees. The South American Perreyia flavipes has gregarious and highly toxic larvae that are sometimes known as "pig killers," responsible for many livestock deaths in Brazil. Others are beneficial, helping to control invasive plant species such as the Brazilian Peppertree (Schinus terebinthifolia) and the Peruvian Peppertree (Schinus molle).

SAWFLIES

ABOVE | Rhogogaster viridis; as with many other bright green insects, the green pigment fades after death.

OPPOSITE | *Tenthredo* species, either T. arcuata or a close relative; another mimic of stinging wasps. Tenthredo species are active, relatively large, and eat other insects.

he Tenthredinidae are by far the largest ▲ family of sawflies, with 400 genera. Torpedo sawflies occur worldwide but are a particularly conspicuous part of the northern temperate fauna. The number of subfamilies recognized in Tenthredinidae has been unsettled but we follow recent phylogenetic studies that agree on six subfamilies: Allantinae, Athaliinae, Blennocampinae, Nematinae, Selandriinae, and Tenthredininae.

DISTRIBUTION

Species richness is centered in the temperate areas of North America and Eurasia, but members of most subfamilies range far south into Africa and South America, and Selandriinae is more diverse in the tropics

400 genera in 6 subfamilies: Allantinae, Athaliinae, Blennocampinae, Nematinae, Selandriinae, Tenthredininae

HABITATS

Wide range, from more arid environments to tropical forests, but most species-rich in temperate areas

3/16-3/4 in (5–20 mm) body length

Diurnal, although some species appear in light traps and might be partly crepuscular

REPRODUCTION

Females use their saw-like ovipositor to cut slits into plants for egg-laying

DIET

Phytophagous, mainly on angiosperms but with significant numbers of species feeding on ferns and monocots, and a few on conifers In line with the majority of recent phylogenetic studies, we recognize Athaliinae as a separate subfamily, as it has usually been found to be the sister to the rest of Tenthredinidae, or could even be a separate family within Tenthredinoidea. The former subfamily Heterarthrinae has recently been split, with its genera reassigned to Blennocampinae.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

While many of the smaller species tend to be monochromatic and difficult to identify on external features, larger species of Tenthredininae can be very colorful, with some vivid green and orange species. Athaliinae species have distinctive black- and yellow-striped legs and a mainly orange abdomen.

In sub-Arctic and Arctic areas, species in the Tenthredinidae family are particularly important components of the plant-feeding insect community. Tenthredinids are very important hosts for several groups of Ichneumonidae and a few other groups of parasitoids.

Quite a few species bring attention to themselves as agricultural and ornamental plant pests, such as the Pear Slug (*Caliroa cerasi*), which feeds on ornamentals such as roses and deciduous fruit trees, or the Solomon's Seal Sawfly (*Phymatocera aterrima*), which defoliates Polygonatum ornamentals. The European Turnip Sawfly (*Athalia rosae*) has caused

ABOVE Mating pair of the Turnip Sawfly (*Athalia rosae*). Very recently, the Athaliidae have been recognized as a family, separate from Tenthredinidae.

BELOW The strange-looking "slugworm" larva of *Caliroa cerasi* are covered in mucous and feed on the leaves of various trees and shrubs.

RIGHT Female *Strongylogaster multifasciata* ovipositing in a frond of bracken; the larvae feed externally on the foliage.

extensive damage to crops in Northern Europe but has become much less common. However, *Athalia rosae* and sometimes other *Athalia* have regular population explosions, when they can arrive in swarms in coastal areas.

Larvae of most species feed externally on leaves, but some are gall-formers, stem-borers, or leaf-miners. Larvae of Allantinae and Athaliinae are external feeders, the former on a variety of trees and shrubs (with a preference for Rosaceae), the latter on herbaceous plants and particularly Brassicaceae. Blennocampinae is a diverse subfamily containing leaf-miners (fenusines, heterarthrines), leaf skeletonizers (caliroines), borers in roots and twigs, and many external feeders. While angiosperms are preferred by most, with many larvae on trees, a few species eat monocots. The more than 1,000 species of Nematinae feed mainly on angiosperm trees, but with radiations onto various other plants.

Gall-forming and leaf-rolling are particularly prevalent in species feeding on *Salix*, and many of the nematines that feed on willows will only feed on one

or very few species. With willows being species-rich in the far north, this has resulted in huge numbers of nematine species, particularly in the genera *Euura* and *Pristiphora*. Selandriinae are largely fern feeders, including *Strongylogaster*, which has been used to try and control Bracken (*Pteridium aquilinum*). Some species eat monocots, including the tribe Dolerini, often common in grassland. Adults of many tenthredinids feed on nectar and pollen, and larger tenthredinids, such as the genus *Tenthredo*, which are predators of other insects, often hunt on flowers.

Most temperate species only have a single generation every year and adults are most conspicuous in spring and early summer, but some (e.g., *Athalia*) produce multiple generations in a year. Larvae of solitary species tend to be cryptic, but gregarious species can have strikingly conspicuous larvae. The larvae pupate in the ground or in a protected situation such as in their galls, stems, leaf-mines, etc., and survive adverse cold season conditions in this phase of their life cycle.

CYPRESS PINE SAWFLIES

he family Zenargidae was only recognized as distinct in 2021. The single included species, Zenarge turneri, is endemic to Eastern Australia and had previously been classified in the family Argidae.

Large areas of Callitris and Cupressus have been defoliated by *Z. turneri*, with younger trees preferred.

Emergence of adults requires a certain amount of winter rainfall and moderate temperatures at other times. As a consequence, Zenarge can spend

up to six years as a prepupa in the cocoon, waiting for the right conditions.

Larvae of *Z. turneri* feed on gymnosperms, including cypress pine, native to Australia, as well as introduced conifers, which contrasts with the closely related families Argidae and Pergidae, mostly angiosperm feeders.

DISTRIBUTION

Eastern Australia

GENUS

Zenarge

Coastal areas and highlands of eastern Australia, where Callitris (cypress pine) and introduced Cupressus (cypress) occur

 $\frac{5}{16-3}$ /8 in (8–10 mm) body length

ACTIVITY

Adults are diurnal and emerge at various times of the year, but particularly the fall. Little is known about their behavior

REPRODUCTION

Eggs are laid singly on shoots of gymnosperms and larvae are not gregarious

Phytophagous

LONG-NECKED WOODWASPS

The family Xiphydriidae is represented worldwide on most continents, except for sub-Saharan Africa. It comprises 27 living genera represented by 153 species contained in 2 subfamilies, Derecyrtinae and Xiphydriinae, and 2 extinct genera.

Long-necked woodwasps are rarely collected but some species can be found to be reasonably common when their feeding habits are known.

BELOW | Female Alder Woodwasp (Xiphydria camelus). The natural history of this species and its parasitoids was documented in a groundbreaking 1961 film by Gerald Thompson.

Females inject fungal spores during the process of egg-laying. The larvae require the presence of these symbiotic fungi that subsequently grow in the tunnel they bore in the host trees for their development. Females oviposit in wood using their conspicuously exserted ovipositors.

Several eggs are laid in one drill hole and the larvae then bore fairly shallow tunnels in the wood. As in siricid woodwasps, larvae have a stiff structure at the rear end that might be used by the larva as a prop while rasping at hard substrate. Larvae are wood-borers in dead or decaying branches of deciduous trees in the families Aceraceae, Betulaceae, Salicaceae, and Ulmaceae. Feeding is essentially on the fungal hyphae breaking down the wood.

DISTRIBUTION

Xiphydriinae are worldwide in distribution with the exception of sub-Saharan Africa

GENERA

27 genera

HABITATS

Forests and woodland

 $\frac{1}{2}$ - $\frac{3}{4}$ in (12–20 mm) body length

ACTIVITY

Diurnal. As with some siricids and cimbicids, males have been found in swarms at the tops of hills, where presumably females find them

REPRODUCTION

Females drill holes in wood with their ovipositor and lay eggs in the hole

Phytophagous/mycophagous

WEIRD-ANTENNAE SAWFLIES

hemisphere, mostly occurring in temperate areas. It comprises 5 living genera represented by 63 species, classed in 2 subfamilies: Macroxyelinae and Xyelinae. There are also 53 extinct genera.

The family Xyelidae is restricted to the northern

This is an ancient radiation of sawflies, with species richness best represented in the fossil record (120 species). Some of the oldest Hymenoptera fossils dating back to the Triassic (245–208 MYA) belong to this family.

Although they attack tree species of economic importance, most species are not major pests. One species, Megaxyela major, is regarded as a pest of Pecan plantations in the USA.

OPPOSITE A North American Xyela species. Xyela are relatively diverse in North America but species are difficult to identify.

BELOW Female *Xyela* species. The long ovipositor is used to lay eggs between the scales of pine cones.

DISTRIBUTION

Species richness is centered in the boreal temperate regions, but some species extend to the Oriental region

Macroxyelinae: Macroxyela, Megaxyela, Xyelecia; Xyelinae: Pleroneura, Xyela

HABITATS

Temperate forests

 $\frac{1}{16} - \frac{9}{16}$ in (2–15 mm) body length

Diurnal. Adults can sometimes be swept in numbers, especially around pines

REPRODUCTION

Females lay eggs in pinecones or pine leaf buds

DIET

Phytophagous. Larvae of species in the subfamily Macroxyelinae feed on leaves of deciduous trees, commonly species in the walnut family (Juglandaceae), or on elms. Those in the subfamily Xyelinae feed on pollen (or within the developing buds) of conifers, commonly firs, pines, or spruces

The large maxillary palps present in species of Xyelinae have evolved to facilitate extracting pollen from flowers.

Reproductive strategies differ markedly between genera. Females of *Xyela* oviposit in staminate (pollen-producing) pinecones. *Xyelecia* and *Pleroneura* oviposit in buds and young shoots of pines. *Macroxyela* stick their eggs to the leaf surface after folding the leaf using their long hind legs. Larvae of xyelids burrow into the ground to pupate within a silk cocoon spun within an earthen cell.

Most species are small, but Megaxyela are around $^9/_{16}$ in (14–15 mm) long and with very long hind legs.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

For general queries, contact webmaster@press.princeton.edu

APOCRITA (PARASITOID WASPS

NARROW-WAISTED WASPS (APOCRITA)

Historically this group of wasps was ranked at suborder level as a sister group (Apocrita) to the Symphyta, but the apocritan lineages have evolved from within the Symphyta, so the two groups cannot be considered as monophyletic suborders. The narrow-waisted wasps contain two groups, Aculeata and Parasitica, which were each historically regarded as infraorders in the classification, but the Aculeata have evolved from within the Parasitica, which means that they also cannot be considered to be sister groups at the same level of classification (see the phylogenetic tree on page 30).

The Apocrita are defined by the possession of a "wasp waist" that is absent in the symphytans. The waist is formed by a constriction between the first and second abdominal segments. The first abdominal segment is named the propodeum and is fused to, and effectively functions as part of the thorax. Consequently, these two body parts are referred to as the mesosoma (functional thorax) and the metasoma (functional abdomen).

The second, or second and third abdominal segments (therefore first or first and second metasomal segments), often form a petiole, which is a thinner segment than the remaining metasoma.

LEFT A female parasitoid fig wasp, *Apocrypta guineensis* (Pteromalidae) ovipositing through the fig wall to reach the host fig wasp larvae already developing in the galled florets within the central fig cavity of *Ficus sur*.

Many ants have two petiolar segments. The evolution of this narrowed waist section, often with a distinct petiole, was an adaptive morphological response to enable improved mobility of the metasoma and more accurate positioning of the ovipositor for the parasitoid way of life.

We here maintain these two informal groupings Parasitica and Aculeata for ease of reference to historical classifications.

PARASITOID WASPS (PARASITICA)

The Parasitica have historically been classified as an infraorder of the Apocrita, but the Aculeata lineage evolved from parasitoid wasp ancestors, so the Parasitica cannot be a monophyletic group classified at the same level (infraorder) as the Aculeata. The Aculeata also contain many species, including several families, that are parasitoids, negating the circumscription of a Parasitica group based on their lifestyle strategy. This assemblage (the Hymenoptera, which are not sawflies or woodwasps, and not aculeates) comprises 12 superfamilies, of very different morphologies.

The majority of wasp species belong here, with their elevated species richness and diversity probably having been driven by their parasitoid existence. Most species of insects and spiders (plus a few other arachnids) are attacked by one—but often more than one—species of parasitoid wasp. Although parasitoid wasps are often assumed to be frequently host-specific, this is not usually the case. Instead, a range of hosts is usually attacked by any given parasitoid species, although this range is tightly circumscribed by factors such as host taxonomy, host niche, seasonality, etc. Some are, of course, absolutely host-specific. The females lay their eggs on or inside the host, with the larvae consuming the host.

Parasitoids are differentiated from parasites as parasitoids kill their host, with each parasitoid consuming one (or part of one) host, so a mix of parasite and predator, whereas parasites (such as ticks feeding on vertebrates) do not usually kill their host, except sometimes indirectly via pathogen transmission.

Many parasitoid wasps are small, averaging ½32–½6 in (1–2 mm) in length, although some can be up to several centimeters long. The venoms of parasitoid wasps are often chemically and physiologically complex and some groups of Ichneumonoidea have co-opted viruses, all as adaptations to overcome hosts and their immune responses. Some of the larger Darwin wasps with short ovipositors (e.g., Ophioninae, some Ichneumoninae, Netelia) have fairly painful stings that can be used defensively. A few lineages of parasitoid wasps have lost their parasitoid lifestyle and are instead phytophagous (most notable in the gall wasps) or predatory, such as various Darwin wasps that consume spider egg sacs.

LEFT A female *Gasteruption jaculator* ovipositing into a solitary bee nest.

TRIGONALYID WASPS

The family Trigonalyidae has a worldwide distribution and includes 2 subfamilies, Orthogonalyinae and Trigonalyinae, with 16 extant genera represented by around 120 species, and 4 extinct genera. The Cretaceous fossil genus *Maimetsha* (Maimetshidae) was originally believed to have affinities with the Megalyridae but is now considered to be related to the Trigonalyidae, and Maimetshidae is included in the superfamily Trigonalyoidea.

The elongate species mimic Darwin wasps (Ichneumonidae) in appearance and the more robust species mimic social wasps. Trigonalyids can be overlooked as aculeate wasps with very complete wing venation, but the antennae have more segments (usually 18–28), the mandibles are large and usually asymmetrical, the tarsal segments have plantar lobes (otherwise not found in the Apocrita), and the female antennae have unique white, scale-like setae.

DISTRIBUTION

Worldwide, except for the Arctic regions and New Zealand. Most species occur in the tropics

GENERA

Afrigonalys, Bakeronymus, Bareogonalos, Ischnogonalos, Jezonogonalos, Lycogaster, Mimelogonalos, Nomadina, Orthogonalys, Pseudogonalos, Pseudonomadina, Seminota, Taeniogonalos, Teranishia, Trigonalys, Xanthogonalos

HABITATS

Forests, woodland, grassland

SIZE

1/8-9/16 in (3-15 mm) body length with much variation within species, depending on the size of the host; some elongate, others stout-bodied

ACTIVITY

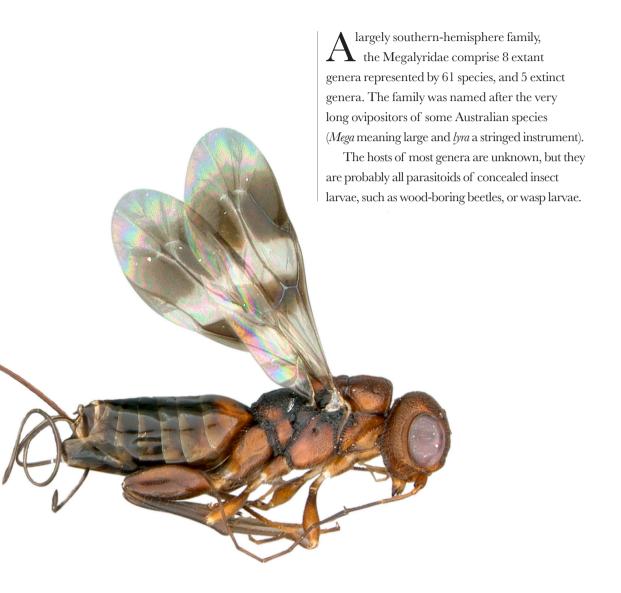
Diurnal. Adults are usually rarely encountered but can be more common at higher altitudes in Asia and can be

These wasps are usually highly specialized hyperparasitoids of ichneumonoid wasp or tachinid fly parasitoids in plant-feeding caterpillars, or sometimes parasitoids of social wasps (Vespidae) when fed on parasitized caterpillars. However, at least one Australian species is known to be a primary parasitoid of pergid sawflies. The biology of trigonalyids is unusual for parasitoid wasps, because egg-laying does not occur directly into, or onto, the host.

Trigonalyids have an unusual life history as indirect hyperparasitoids. Females lay huge numbers of tiny eggs on or in slits in leaves,

locally more numerous, such as in cacao plantations in Brazil. They are typically found in forests. Usually only a tiny proportion of reared caterpillars produce trigonalyids

REPRODUCTION


Females lay eggs on or in slits in leaves

DIET

Usually highly specialized hyperparasitoids of other parasitoid wasp or fly larvae which are then consumed by butterfly or moth caterpillars, or sawfly larvae. The eggs hatch within the caterpillar, and the larvae chew through the gut and into the body of the caterpillar, where they attack other parasitoid wasp larvae (Ichneumonidae or Braconidae) or parasitoid fly larvae (Tachinidae) already inside the host, thus developing as hyperparasitoids. If the plant-feeding caterpillar is fed to a social or potter wasp (Vespidae) larva, the trigonalyid then attacks the vespid larva developing inside the social wasp nest. Trigonalyids complete their development in the host pupa.

There are a few other groups of parasitoid wasps who lay eggs on foliage, such as the chalcidoid family Eucharitidae and the Darwin wasp genus *Euceros*, but in these cases the larvae hatch before contacting hosts (or carriers). Note that Trigonalidae and Trigonalyidae (and equivalent family-group names) are both in use, based on different interpretations of the derivations of the genus name *Trigonalys*.

MEGALYRID WASPS

DISTRIBUTION

Mostly southern hemisphere, highest species richness in Australia and Madagascar, one species in Japan. Baltic amber and Cretaceous fossils demonstrate formerly more widespread distribution

Carminator, Cryptalyra, Dinapsis, Ettchellsia, Megalyra, Megalyridea, Neodinapsis, Rigel

HABITATS

Tropical or temperate forests, woodland, dry scrub, fynbos

1/8 - 7/8 in (3–22 mm) body length, excluding the ovipositor, which can be as long as 31/8 in (80 mm)

Diurnal. Adults are rarely encountered

ABOVE | The Madagascan *Dinapsis albicoxa*.

LEFT The endemic South African genus and species *Megalyridia capensis*.

REPRODUCTION

Little is known about the biology. The female lays an egg on the host insect developing inside wood or mud nests using her long ovipositor

DIET

The parasitoid larva feeds on the host larvae of wood-boring beetles or wasps

The long ovipositors of the more conspicuous species are not used for drilling; instead, the ovipositor is inserted into pre-existing tunnels or holes to reach host larvae.

Little is known about the biology of most species, but a common Australian species, *Megalyra fascüpennis*, attacks large larvae of wood-boring beetles (Cerambycidae) and has been introduced to several countries to control pest longicorn beetle larvae (*Phoracantha*) developing in commercial Eucalyptus plantations. The female inserts her long ovipositor through the frass plug blocking the tunnel that the beetle larva has bored while feeding, laying an egg on the host beetle pupa. Another Australian species (*Megalyra troglodytes*) attacks the larvae of mud-nesting crabronid wasps.

Some distinctive characteristics of Megalyridae include the presence of subantennal grooves and highly reduced hindwing venation.

CROWN WASPS

he Stephanidae contain 11 extant genera represented by 345 species, and 4 extinct genera.

They are easy to recognize by the distinctive crown of teeth on top of the globular head, and hind legs with bulbous first two segments, the second with large teeth on the underside. The crown of teeth on the head is shared with only one other wasp family, the Orussidae, and probably evolved to facilitate emergence of the adult wasp from deep inside wood.

OPPOSITE | A male of a Foenatopus species.

BELOW | The North American Megischus bicolor ovipositing into a host beetle larva developing inside a tree branch.

DISTRIBUTION

Worldwide, with most species occurring in tropical or subtropical

GENERA

Afromegischus, Comnatopus, Foenatopus, Hemistephanus, Madegafoenus, Megischus, Parastephanellus, Profoenatopus, Pseudomegischus, Schlettererius, Stephanus

HABITATS

Tropical or temperate forests, woodland, grassland, scrub

 $\frac{3}{16} - \frac{13}{8}$ in (3.5–35 mm) body length

Diurnal. Adults are rarely encountered

Females drill their ovipositor valves through wood to reach the targeted host larvae developing inside branches. They lay a single egg on the host larva. On hatching, the wasp larva develops as an external parasitoid. Species are parasitoids of mostly wood-boring beetle larvae (commonly Buprestidae and Cerambycidae), or occasionally sawflies or bees. Based on adaptations of the fore and hind tibiae, stephanids are presumed to have the ability to detect vibrations made by wood-boring larvae.

Adults live for three to four weeks. Individuals belonging to the same species can vary greatly in size, with the largest being twice the size of the smallest. This size variation is related to the size of the host insect larva that the crown wasp larva developed on.

Schlettererius cinctipes has been introduced to Tasmania from California as a biocontrol agent of the Sirex Woodwasp (Sirex noctilio, Siricidae).

REPRODUCTION

Females lay an egg directly onto host larvae developing inside branches

DIET

The parasitoid larvae feed on beetle, sawfly, or bee larvae

CERAPHRONID WASPS

OPPOSITE | Ceraphron searching for hosts to parasitize.

BELOW | A Ceraphron female the twin fore-tibial spurs are visible on the front leg.

The family contains 16 genera represented by 304 described species and is widespread throughout the world. Most species are still undescribed.

These wasps are mostly commonly found in leaf litter and soil, with many being wingless, an adaptation for living in this environment.

Uniquely within Apocrita, Ceraphronoidea have two fore tibial spurs. A curious structure that is only found in Ceraphronidae, called the Waterston's evaporatorium, is present on the last (sixth) segment of the metasoma. This is

DISTRIBUTION

Worldwide

Abacoceraphron, Aphanogmus, Ceraphron, Cyoceraphron, Donadiola, Ecitonetes, Elysoceraphron, Gnathoceraphron, Homaloceraphron, Kenitoceraphron, Masner, Microceraphron, Pteroceraphron, Retasus, Synarsis, Trassedia

HABITATS

Wide range of habitats, from forests to tundra

 $^{1}/_{64}-^{1}/_{16}$ in (0.5–2 mm) body length

Probably mostly diurnal

INDEX

abdomen 10, 61	aulacid wasps 73	Brazilian Peppertree Seed Chalcid 141
Ablerus 120	Aulacidae 73	Bruchophagus 136
Acantholyda 41	Aulacidea 107	
Acordulecera 50	Aulacus 73	Cales 118, 153
Aculeata 13, 15, 19, 21–2, 30–1, 61, 63,	Australcephus 37	Calesidae 153
170-233	Australian gall wasps 104	California Gall Wasp 106
Aenasius 127	Austrocynipidae 104	Calosota 135
Afrotremex 42	Austrocynips 104	carrot wasps 76-7
Aganaspis 111	Austronia 79	caterpillar-hunter wasps 230-1
Agaonidae 15, 116–17	austroniid wasps 79	caterpillars 13
Agriotypus 24, 168	Austroniidae 79	Cephalcia 41
Allotropa 99	azotid wasps 120	Cephalonomia 175
alternation of generations 107	Azotidae 120	Cephidae 33, 37
Amitus 99	Azoudae 120	Cephoidea 37
	haaamamhidama 191 152	•
ammoplanid wasps 214	baeomorphid wasps 121, 153	Cephus 37
Ammoplanidae 214	Baeomorphidae 121, 153	Ceranisus 133
Ammopsen 228	Bairamlia 150	ceraphronid wasps 70-1
Ampulex 212, 213	Baissobius 180	Ceraphronidae 70–1
Ampulicidae 212–13	bee wolf wasps 226–7	Ceraphronoidea 70–1, 72
Ampulicomorpha 180–1	bees 6, 8, 12, 15, 19, 21, 22, 31, 232–3	Cerceris 226–7
Anagrus 142	Bembicidae 216–17	chalcidid wasps 122-3
Anagyrus 128	Bembix 217	Chalcididae 122–3
Anaphes 142	Bethylidae 174–5	Chalcidoidea 12, 15, 30–1, 116–61
anatomy 10–13	biological control 20, 26, 45, 48, 51, 155	new families 152-4
Anaxyelidae 36	aphelinids 119	Chalinus 38
Anaxyeloidea 36	azotids 120	Chalybion 230-1
Andrenidae 232–3	braconids 165	Chestnut Gall Wasp 107
Andricus 106	cockroach wasps 213	Chiloe 121
antennae 12, 44	Crabronidae 219	chitin 23, 177
Anteon 178	crown wasps 69	Chlorion 231
Anthophila 232–3	Darwin wasps 168–9	Chrysididae 23, 176–7
ants 6-7, 15, 19, 21, 31, 63, 130, 185	diapriids 89	Chrysidoidea 174–84
Aperilampus 124	dryinids 179	chrysolampid wasps 124
Aphanogmus 71	encyrtids 127–8	Chrysolampidae 124
Aphanomerus 99	eriaporids 129	Chrysolampus 124
aphelinid wasps 118–19	eucharitids 130	Chyphotes 202
Aphelinidae 118–19	eulophids 132–3	chyphotid wasps 202
Aphelinus 118, 119	figitid wasps 111	Chyphotidae 202
aphid wasps 224–5	flat wasps 175	Cibdela 45
Aphidius 119	gall wasps 107	Cimbicidae 47
Apidae 232–3	ibaliids 113	classification 30–1
Apoanagyrus 128		Cleptes 177
Apocrita 16, 60–233	mammoth wasps 198 Megalyra 67	Closterocerus 133
•	0 2	club-horned cuckoo wasps 192–3
Apoidea 212–33	monomachids 93	•
Aproceros 45	platygastrids 99	Clypeadon 227
Aprostocetus 132	scelionids 100–1	Clytina 155
aquatic wasps 23–4	tanaostigmatids 156	co-evolution 116
Archaeoteleia 102	tetracampids 157	Coccophagus 119
Arge 45	Tiphia 201	cockroach wasps 212–13
argid sawflies 44–5	trichogrammatids 160	Codrus 85
Argidae 44–5	Biorhiza 106	Collessina 138
Asian Giant Hornet 211	Blasticotoma 46	Colletidae 232–3
Asian Northern Giant Hornet 27	Blasticotomidae 35, 46	Collyria 168
Asian Yellow-Legged Hornet 27	Bootanomyia 140	Common Wasp 211
Astata 215	Bortesia 141	Comperiella 128
astatid wasps 215	Bouceklytus 157	conifer sawflies 48
Astatidae 215	braconid wasps 11, 13, 15, 18, 21, 162-5	conservation 26-7
Athalia 54–5	Braconidae 11, 13, 15, 18, 21, 162-5	cooperative behavior 175
Athaliidae 54	bradynobaenid wasps 194-5	Copidosoma 19, 127
Athetocephus 37	Bradynobaenidae 194–5	Coptera 89

Cotesia 165	eriaporid wasps 129	Giant Scoliid Wasp 198
Cow Killer 187, 217	Eriaporidae 129	Gonatocerus 142
Crabro 219	Euceros 65	Gonatopus 178, 179
Crabronidae 11, 12, 218–19	eucharitid wasps 130-1	Gryon 100
crown wasps 68–9	Eucharitidae 65, 130-1	
cuckoo wasps 23, 176–7	eulophid wasps 132–3	Halictidae 232–3
cylostomes 163–4	Eulophidae 132–3	hamuli 7, 33
cynipencyrtid wasps 125	Eunotiscus 129	haplodiploidy 18, 22
Cynipencyrtidae 125	eupelmid wasps 134–5	Hartigia 37
Cynipencyrtus 125	Eupelmidae 134–5, 153	head 10, 11
Cynipidae 24, 105–7	Eupelmus 135	Heloridae 80
Cynipoidea 15, 104–15	Euperilampus 146	Helorus 80
cypress pine sawflies 56	European Paper Wasp 27	Hemipepsis 23, 191
	European Turnip Sawfly 54–5	Heptamelidae 49
Darwin wasps 11, 12, 18, 24, 25, 63, 65,	Euryischia 129	Heptamelus 49
166–9	Eurytoma 137	Heterogyna 222
Dasymutilla 187	eurytomid wasps 136–7	heterogynaid wasps 222
Dasyproctus 218	Eurytomidae 136–7	Heterogynaidae 222
Dendrocerus 72	eusociality 7, 18, 19, 20, 22, 171, 173, 185	Hieracium Gall Wasp 107
Diamma 203	Eutrichosoma 138	honey bees 22
diapriid 23–4	eutrichosomatid wasps 138	hornets 27, 211
Diapriidae 88–9	Eutrichosomatidae 138	horntails 16, 42–3
Diaprioidea 88–93	Euurobracon 164	hover wasps 210
Dicopomorpha 143	Evania 75	Hsiufuropronia 83
digger wasps 12, 230–1	Evaniidae 74–5	Huddlestonium 94
Dinocampus 164	Evanioidea 73, 74–7	hyperparasitoids 65, 71, 72, 89, 90, 111,
Dipriocampe 157	evolution 16–19	119, 129, 146, 155
Diprionidae 48	Exallonyx 85	" 1" 1 ' 1 110 19
Distylopus 157	eyes 12	ibaliid parasitoid wasps 112–13
Dolichurus 212	C-1 (1 140 - 2	Ibaliidae 112–13
Dryinidae 178–9	fairyfly wasps 142–3	Ichneumonidae 15, 35, 166–9
Dryinus 178	false fairy wasps 78	Ichneumonoidea 15, 31, 63, 162–9
Dryocosmus 107	False Mud-dauber 230–1	incense-cedar woodwasps 36
Dryudella 215	Fedtschenkia 192	Inostemma 98–9
E-Januar 150	fern sawflies 46	invasive species 20, 26–7, 43, 107, 113,
Ecdamua 159	fern-tip sawfly wasps 49	168–9, 211
Echthrodelphax 179 Echthrodesis 22 101	fig wasps 11–12, 15, 24, 116–17, 148	iridescence 23
Echthrodesis 23, 101 Ectemnius 218	figitid wasps 108–11	ismarid wasps 90 Ismaridae 90
eggs 21	Figitidae 108–11 flat wasps 12, 174–5	Ismarus 90
Eileenella 112	flower wasps 203–5	Isodontia 231
Elasmidae 132	Foersterella 157	150aonia 231
Elasmus 132	food 21	Janus 37
embolemid wasps 180–1	Formicidae 185	Janzenella 95
Embolemidae 180–1	Formicoidea 185	janzenellid wasps 95
Embolemus 180–1	fossils 14, 16, 33, 36, 40, 42, 44, 58, 82	Janzenellidae 95
emerald wasps see cuckoo wasps	aulacid wasps 73	jewel wasps 15, 19, 30–1
Encarsia 118	embolemids 180	jewer wasps 13, 13, 30 1
encyrtid wasps 126–8	janzenellid wasps 95	Khutelchalcididae 153
Encyrtidae 126–8	Maimetsha 64	Kiefferiella 115
ensign wasps 74–5	rhopalosomatids 207	Kikiki 143
Entedon 133	fungi 21, 25, 35, 42, 57, 181, 185	kleptoparasitoids 189, 190-1, 192, 217
entomosericid wasps 220	3 , , , , , ,	1 1 / / /
Entomosericidae 220	gall wasps 15, 20, 24, 63, 104-7	large-toothed sawflies 39
Entomosericus 220	Gasteruptiidae 76–7	Larra 218–19
Epitranus 123	Gasteruption 76, 77	larvae 13, 21, 35, 173
eremiaspheciid wasps 221	geoscelionid wasps 94	Lasiochalcidia 123
Eremiaspheciidae 221	Geoscelionidae 94	Lathromeroidea 160–1
Eremiasphecium 221	German Yellowjacket 26-7, 211	leaf-rolling sawflies 40-1
Eretmocerus 118	giant sawflies 47	legs 12–13

Leptomastix 128	mud-dauber wasps 230-1	Peckianus 138
Leptopilina 111	Mutillidae 186–7, 189	Pediobius 133
Leucospid wasps 139	Myiocnema 129	pelecinid wasps 81
Leucospidae 139	Mymaridae 142–3	Pelecinidae 81
Leucospis 139	Mymarilla 143	Pelecinus 81
liopterid parasitoid wasps 114–15	Mymarommatidae 78	Pemphredon 224
Liopteridae 114–15	Mymarommatoidea 78	Pemphredonidae 224
Liosphex 207	Myrmecopterinella 182	Pepsis 191
Liris 219	myrmosid wasps 188–9	Peradenia 82
Listron 102	Myrmosidae 188–9	Peradeniid wasps 82
living fossils 16		Peradeniidae 82
long-necked woodwasps 57	narrow-waisted wasps 16, 60–233	Pergidae 35, 50–1
	Nasonia 150	perilampid wasps 146–7
Maaminga 91	Nemeritis 168	Perilampidae 146–7
Maamingidae 91	Neochrysocharis 132	Perilampus 147
Macroxyela 59	Neodiprion 48	Perreyia 50, 51
Maimetsha 64	Neodryinus 179	pests 37, 192
mammoth wasps 196–8	Neomegastigmus 140	gall wasps 107
mandibles 11–12	Neuroscelio 96	Pamphilioidea 41
Mangostigmus 140	neuroscelionid wasps 96	sawflies 45, 48, 51, 54–5, 56,
Mantibaria 101	Neuroscelionidae 96	58
Maplurius 182	Nixonia 97	Sirex 43
Mapluroides 182	nixoniid wasps 97	see also biological control
Marietta 119	Nixoniidae 97	petiole 7, 61, 63
Marris, John 91	non-cyclostomes 163-4	Phaenoserphus 85
maternal care 51, 175	Nysson 217	Philanthidae 226-7
Megachilidae 232–3		Philanthus 227
Megalara 11	Obisiphaga 168	Philomides 124
Megalodontes 39	Odontosphex 228	phoresy 101
Megalodontesidae 39	oil-collecting bees 12–13	photography 28-9
Megalyra 66–7	Olixon 207	Phygadeuon 168
megalyrid wasps 66-7	oogenesis 21	Phymatocera 54
Megalyridae 66–7	Orasema 130	"pig killers" 51
Megalyroidea 66–7	ormyrid wasps 144-5	Pigeon Horntail 42
Megaphragma 160, 161	Ormyridae 144–5	Pimpla 168
Megarhyssa 25	Ormyrus 144	pincer wasps 178–9
Megascolia 198	Ornate Tailed Digger Wasp 227	Pine False Webworm 41
megaspilid wasps 72	Orussidae 16, 35, 38	Pison 218
Megaspilidae 72	Orussoidea 38	planidia 13, 124, 130, 138, 146
megastigmid wasps 140-1	ovipositors 7, 13, 18, 25, 33	plantulae 33
Megastigmidae 15, 140–1	Oxybelus 219	platygastrid wasps 98–9
Megastigmus 140–1		Platygastridae 98–9
Megaxyela 58, 59	Palachia 159	Platygastroidea 15, 94–103
Melittidae 232–3	Pamphiliidae 40-1	Plaumannion 94
Melittobia 133	Pamphilioidea 39, 40–1	Pleroneura 59
mellinid wasps 223	Panaulix 73	plumariid wasps 182
Mellinidae 223	Paniscomima 207	Plumariidae 182
Mellinus 223	paper wasps 15, 19, 27, 208-11	Plumarius 182
Mesochorus 168, 169	Paracyphononyx 190	Pluroides 182
mesosoma 10, 61	Paramblynotus 114–15	Pluto 228
metallic coloration 23, 38, 102, 111, 146,	Parapenesia 182	Podagrion 159
174, 177, 187, 205, 213	parasites 9, 63	Polemistus 225
Metapelma 135, 153	parasitic woodwasps 38	Polistes 27, 211
Metapelmatidae 135, 153	Parasitica 31, 60–169	pollen wasps 21, 208–11
Metaphycus 128	parasitoid wasps 9, 11, 13, 15, 16, 20,	pollination 13, 26, 39, 227, 233
metasoma 10, 61, 63	24–5, 26, 35, 60–169	fig wasps 116–17
Mexon 102	adaptations 18–19	mammoth wasps 198
Micromeriella 198	aquatic 23–4	Polochrum 192
Microstigmus 225	classification 31	polydnaviruses 18
Mimumesa 228	food 21	Polynema 142, 143
monomachid wasps 92–3	haplodiploidy 22	Pompilidae 190–1
Monomachidae 92–3	ovipositors 18	Pompiloidea 186–93
Monomachus 93	parthenogenesis 46, 81	potter wasps 11, 208–11
mouthparts 11–12	Pear Slug 54	Praestochrysis 176
r		

Thynnidae 203-5 predation 21-2, 26 Sierolomorpha 199 sierolomorphid wasps 199 Thynnoidea 194, 202, 203-5 predatory wasps 21, 31, 169 Prionyx 231 Sierolomorphidae 199 Tinkerbella 143 Pristapenesia 184 Sierolomorphoidea 199 Tiphia 201 Pristaulacus 73 Signiphora 155 tiphiid wasps 200-1 Pristocera 175 signiphorid wasps 155 Tiphiidae 200-1 Probethylus 183 Signiphoridae 155 Tiphioidea 200-1 proboscis 12 Signophora 155 Tiphodytes 101 Sirex 42, 43, 69, 113 Proctorenyxa 83 torpedo sawflies 52-5 proctorenyxid wasps 83 Sirex Ibaliid Wasp 113 torymid wasps 158-9 Proctorenyxidae 83 Siricidae 42-3, 69 Torvmidae 158-9 proctotrupid wasps 84-5 Siricoidea 42-3 Tremex 42 Proctotrupidae 84-5 solitary species 19, 190, 221, 228, 230-1 Trichogramma 160 Proctotrupoidea 79-87 Solomon's Seal Sawfly 54 trichogrammatid wasps 160-1 Promuscidea 129 Sparasion 102 Trichogrammatidae 160-1 Proscleroderma 199 sparasionid wasps 102-3 Trichopria 23-4, 89 Protelenomus 101 Sparasionidae 102-3 trickster wasps 91 provisioning wasps 31, 169 Sphecidae 12, 230-1 trigonalvid wasps 64-5 psenid wasps 228-9 Sphecius 217 Trigonalyidae 64-5 Psenidae 228-9 Sphex 231 Trigonalyoidea 64-5 spider-hunting wasps 23, 190-1 Psenulus 228 Trissolcus 100-1 Trogloembolemus 180 Pseudoheptamelus 49 Spilomena 225 spitfire sawflies 50-1 Trybliographa 111 Psilocharis 130 pteromalid wasps 148-51 square-headed wasps 218-19 Trypoxylon 218 Pteromalidae 15, 138, 148-52 stem sawflies 37 Typhoctes 202 Pulverro 214 Stenocephus 37 Pycnostigmus 111 Stenotritidae 232-3 Vanhornia 87 Vanhorniid wasps 87 Pygodasis 198 Stephanidae 68-9 Stephanoidea 68-9 Vanhorniidae 87 Rediviva 12-13 Stigmus 225 velvet ants 22-3, 186-7, 217 Renyxidae 83 venom 18, 19, 63, 171, 173, 187, 191 Stilbops 168 Rhoophilus 106 stinging wasps 13, 16, 18, 31, 171, 173, Vespa 27, 211 Rhopalosoma 207 187, 191 Vespidae 11, 208-11 see also Aculeata rhopalosomatid wasps 206-7 Vespoidea 206-11 Rhopalosomatidae 206-7 Stizoides 217 Vespula 26-7, 211 Ropronia 86 Stizus 217 viruses 18, 63 roproniid wasps 86 Strongylogaster 55 Roproniidae 86 Sulawesius 37 warning coloration 22-3, 139, 187 rose sawflies 45 Sycophila 136 wasp waist 33, 37, 38, 61 Rotoita 121 symbiosis 18 Waterston's evaporatorium 70-1 Rotoitidae 121, 153 see also fungi web-spinning sawflies 40-1 Symphyta 13, 15, 16, 31, 32-57 weird-antennae sawflies 16, 58-9 sand wasps 216-17 Wheat Stem Sawfly 37 Synagris 11 White Pine Sawfly 48 Sapyga 192 Syntexis 36 Systole 136 wings 7, 11 Sapygidae 192-3 sawflies 7, 13, 14-15, 16, 20-1, 31, 32-59 Wolbachia 19 Sceliocerda 101 Tachardiaephagus 128 woodwasps 7, 15, 16, 25, 31, 32-57 Sceliomorpha 102 Tachysphex 219 scelionid wasps 100-1 Tachytes 219 Xeris 42 Scelionidae 11, 23, 100-1 Tamarixia 133 Xiphydria 73 Sceliphron 230 tanaostigmatid wasps 156 Xiphydriidae 57 Schlettererius 69 Tanaostigmatidae 156 Xiphydrioidea 57 sclerogibbid wasps 183 Tanaostigmodes 156 Xiphyropronia 86 Sclerogibbidae 183 Telenomus 100, 101 Xyela 59 scolebythid wasps 184 Tenthredinidae 21, 35, 52-5 Xyelecia 59 Tenthredinoidea 44-5, 46-56 Scolebythidae 184 Xyelidae 16, 33, 58-9 Scoliidae 196-8 Tenthredo 55 Xyeloidea 58-9 Scolioidea 194-8 tetracampid wasps 157 seed chalcids 15, 141 Tetracampidae 157 Ycaploca 184 Tetramesa 136 Sepulcidae 37 Yellow-legged Hornet 211 thanatosis 50 Sericobracon 164 sexual dimorphism 88, 116, 174, 182, thorax 10, 61 Zaglyptogastra 13 183, 187, 189, 195, 196, 199, 200-1 Thoron 101 Zenarge 56 Zenargidae 56 shelf-faced wasps 88-9 thread-waisted wasps 230-1