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1

I N T R O D U C T I O N

A Journey through  
Gravity

Gravity. Such a familiar concept, pre sent in  every language and 
culture, yet one that scientists have strug gled to understand for 
millennia. It is the overarching miracle connecting every thing, 
everywhere, forever in the Universe. Universal in  every sense. 
As  humans, we may think of it as the hidden force that keeps us 
firmly planted on Earth, the reason why the Earth orbits the 
Sun, or the interaction that allowed the Milky Way and its hun-
dreds of billions of stars to form. But that barely hints at its true 
significance. Gravity is the reason why the Universe itself can 
even exist and evolve. It elevates space and time from mere 
pieces of scenery into central actors in the unfolding drama of 
real ity. As we embrace gravity, we  can’t help but also pit our-
selves against it: leaping, floating, or flying as we pursue brief 
moments of freedom from its command. I, for one, have been 
chasing gravity my entire life— seeking, like so many scientists 
who have come before me, to unravel its deepest mysteries.

Imagine yourself alone in the cockpit of a small, single- engine 
aircraft, patiently waiting on the taxiway for the signal from air 
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traffic control. Four  simple words, “clear to take off,” resonate 
like a magical password, unlocking a precise series of events that 
 will achieve what would have been impossible just over 120 years 
ago: lifting and floating a one- ton object into midair. As the craft 
zooms down the runway, you are pressed back into the foam of 
your seat, accelerating horizontally to a speed of 100 to 200 km/h. 
Ironically, it is this horizontal speed that  will allow the pressure 
 under your wings to overcome the vertical pull of gravity and 
lift you skyward. As you rise to cruise altitude, even the slightest 
amount of turbulence shakes the small plane. For a moment, 
you feel like you are trapped inside a snow globe, existing at the 
mercy of some titanic, mischievous shaker— until you remem-
ber that a  little tweak of the rudder, a gentle push on the trims, 
or a subtle twist of your ailerons is all you need to take control 
and surf gracefully on the airflow, si mul ta neously pushed up-
ward by the pressure and pulled downward by gravity.

If soaring above the clouds is not for you, perhaps you would 
prefer to picture yourself submerged in the deep blue, mingling 
with thousands of coral reef fish a few dozen meters below the 
surface. As you contemplate the serenity of this underwater 
world, you are plunged into a silence broken only by the pop-
ping sounds of the vibrant coral reef and that of your own 
breath as you slowly inhale from your air tank and exhale small 
 bubbles that shoot to the surface. With each breath, your body 
 gently bobs up and down a few centimeters as the pressure of 
the air in your lungs tries to compensate for the force of gravity 
and the mass of the column of  water that is pressing against 
 every cell in your body.

Flying high in the air and diving deep  under the sea are two 
of the most thrilling ways to defy gravity, at least  here on Earth. 
But to achieve the ultimate feeling of weightlessness, nothing 
compares to floating in space, seemingly escaping gravity’s 
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clutches altogether. The feeling of freedom is no longer an 
illusion— there are no strings to pull or pressures to counteract. 
Observing Earth from orbit, you can savor the absolute freedom 
of  free fall, a concept deeply engrained in our understanding of 
gravity, even while it remains a luxury that few have had the op-
portunity to enjoy.

In my life, I have experienced the joy of flying and diving and 
came within a hair’s breadth of making it to outer space. But we 
 don’t need a fancy plane, scuba gear, or space shutt le to experi-
ment with gravity. In fact,  whether we are  doing something as 
 simple as dropping a ball, swinging in a hammock, or skipping 
a stone,  we’re all scientists conducting our own personal experi-
ments and drawing our own conclusions about this universal 
yet mysterious phenomenon.

But what exactly is  going on in  those moments? What is 
gravity? It seems like such an innocent question, yet the answer 
always seems to be hidden  behind abstruse laws of physics. 
Physical phenomena are often portrayed as a set of obscure fun-
damental rules— Archimedes’ princi ple, Newton’s inverse 
square law, Bernoulli’s princi ple, and the like— that nature must 
unquestionably and rigidly obey.  These laws are, of course, cen-
tral to our understanding of the world and the structure of our 
real ity. They have revealed how buoyancy allows boats to float, 
and how the difference in pressure caused by the motion of the 
air beneath their wings allows birds and planes to navigate 
the skies. They have enabled us to send a man, and hopefully 
soon a  woman, to the Moon. Yet the  presentation of  these laws 
as being set in stone belies our scientific history. Far from being 
immutable and unchanging, our understanding and appre-
ciation of  these laws— what they mean, where they come 
from, and what lies  behind them—is continuously unfolding 
before us.
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Galileo Galilei, Johannes Kepler, Sir Isaac Newton, Albert 
Einstein, Stephen Hawking, Sir Roger Penrose, Andrea Ghez, 
and countless other brilliant scientists have each brought a new 
perspective to our understanding of gravity, but our journey is 
far from finished. Think of this book, then, as an invitation to 
join me in the quest to uncover the meaning of gravity, to grasp 
its connection with the structure of real ity. Fortunately, for the 
most part we  will not be undertaking this adventure alone. In-
stead, we  will be guided by some of the greatest scientific minds 
of the past several centuries— that is, at least,  until we reach the 
edge of the map, where we  will take some exploratory steps into 
the unknown. Our journey  will begin, however, in well- charted 
territory with a few trustworthy companions.

With their realization that gravity must be a universal force, act-
ing on every thing and accelerating every one in the same way, 
regardless of their mass, Galileo, Kepler, and Newton provided 
the first crucial piece of the puzzle. This insight was made pos si ble 
by a new perspective on what it means to be  free, a perspective 
that discarded centuries of Aristotelian dogma and radically 
transformed the concept of inertia.

This new perspective was brought to light in 1632, with the 
publication of Italian astronomer and physicist Galileo Galilei’s 
Dialogue Concerning the Two Chief World Systems (Dialogo sopra 
i due massimi sistemi del mondo). In the dialogue, Galileo cham-
pioned a new Copernican revolution, one that went beyond 
merely denying that the Earth occupied a special place in the 
solar system, by further dismissing the idea that any person or 
object could ever hold a privileged position with re spect to the 
laws of nature.

To make this argument, Galileo considered the world through 
the eyes of a sailor confined to the main cabin below the decks 
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of a moving ship. Unable to see the world outside, the sailor was 
entertained by watching the motion of “some flies and butter-
flies” with whom she shared the cabin. Galileo realized that the 
sailor would not be able to tell  whether the ship was at rest or in 
motion at constant speed, at least not from observing  these small 
flying animals. Why?  Because if the ship moves at constant 
speed, so does every thing on board, including the air in which 
the flies and butterflies flutter about. The sailor, trapped below 
deck, can only observe the motion of the flying creatures relative 
to the inside of the ship’s cabin. Galileo used this thought experi-
ment, which highlighted the importance of relative motion, to 
explain how the Earth could rotate without us being able to feel 
it. Moreover, once we recognize that we cannot tell the differ-
ence between the lower deck of a ship at rest and that of one in 
uniform motion, we can infer that the laws of physics should be 
the same for any observer moving at constant velocity, no 
 matter the speed.

It is precisely this notion of “Galilean relativity”— the real-
ization that the laws of nature are the same regardless of who 
describes them— that is enshrined in Newton’s first law of 
motion, which holds that  every object  will remain at rest or in 
uniform motion in a straight line  unless compelled to change 
its state by the action of an external force.1 Newton realized that 
being  free is the privilege to carry on undisturbed, pursuing our 
journey at the same velocity, uniformly. Building on the work 

1. This idea replaced the Aristotelian notion of inertia— the desire to slow down 
and come to a state of absolute rest. In contrast to Aristotle, who thought that forces 
 were necessary to maintain velocity, Newton realized that forces lead to acceleration 
(change in velocity). In our everyday lives, friction with the air and the ground acts 
as a force, naturally slowing us down (deceleration or negative acceleration). However, 
in outer space, where  there is no air and no friction, objects can be  free and maintain 
a uniform velocity.
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of Kepler, who developed the laws of planetary motion, this 
insight would  later lead to Newton’s 1687 law of universal gravi-
tation, also known as Newton’s inverse square law. According 
to this law, the force of gravity exerted between any two massive 
particles (that is, particles having mass) is a universal and instan-
taneous force, whose intensity decays as the square of the dis-
tance between the two particles.

Newton’s law, as many of us have been taught, describes how 
an object, when dropped, is inexorably attracted by the mass of 
the Earth. But the universal nature of gravity extends far be-
yond this  simple phenomenon. It applies to every thing and 
every one, no  matter the object, no  matter the separation. In 
1798, Henry Cavendish was among the first to test it formally 
in a laboratory, and more than three centuries  after its discovery, 
Newton’s inverse square law has been scrutinized with impec-
cable precision, from distances smaller than a tenth of the width 
of  human hair to separations that extend billions of kilo meters. 
In fact, Newton’s law of universal gravitation is so fundamental 
that it can still be used to predict how gravity has governed 
most of the evolution of our Universe, from the gravitational 
collapse of dark  matter to the formation of clusters of galaxies 
and the creation of the solar system.

Centuries passed before observational evidence began to 
cast a sliver of doubt on Newton’s law of gravity. However, in 
retrospect, the idea that gravitational attraction between any 
two objects happens instantaneously should have raised a red 
flag. According to Newton’s  simple law, if two particles  were to 
appear, they would be immediately attracted to one another 
without any delay. No  matter what your views on attraction may 
be, we all know that this phenomenon cannot be immediate. 
Even when it comes to love at first sight, you first need to 
“see” the other person (that is, to “communicate,” even if not 
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verbally) for attraction to take place. Newton himself, in a letter 
to Richard Bentley, expressed his discomfort with the concept of 
an instantaneous law: “Tis unconceivable that inanimate brute 
 matter should (without the mediation of something  else which 
is not material) operate upon & affect other  matter without mu-
tual contact; as it must if gravitation in the sense of Epicurus be 
essential & inherent in it. And this is the reason why I desired you 
would not ascribe {innate} gravity to me” [1].

Our own journey  will begin two centuries  later, when American 
scientists Albert Michelson and Edward Morley revealed the 
results of their infamous “failed experiment,” ushering in a new 
scientific revolution. Shortly thereafter, Einstein introduced 
new ideas of relativity into our understanding of gravity: first 
putting forward the notion of special relativity, which sup-
planted the kinematics of Galileo, and then unveiling gravity as 
we understand it  today through the theory of general relativity. 
Guided by  these theories, we  will uncover an entirely new 
structure of physics and understanding of our Universe in 
which gravity is fundamentally identified with the very fabric 
of space and time, entwined and unified.

 Today, more than a  century has passed since Einstein’s break-
throughs, and general relativity stands stronger than ever. Grav-
ity has been exhaustively tested, including in some of the most 
extreme environments, and the evidence unfailingly accords 
with Einstein’s predictions. The very force within gravity has 
been detected thanks to gravitational waves. At the same time, 
we have also learned much more about the quantum nature of 
our world through atomic, nuclear, and particle physics, quan-
tum chemistry, and the numerous technological advances of the 
electronic and computer age. With  these advances, new ideas 
and theories constantly  bubble up in our effort to make sense of 
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the world in which we live. And yet, to date, none has surpassed 
Einstein’s theory of general relativity, despite the obvious need 
for new physics. For  there is one  thing that, from the very begin-
ning, general relativity itself has been forthright about:  there is 
a point where the theory must fail, where a brand- new layer of 
physics waits to be unveiled. From this failure comes the oppor-
tunity to probe and appreciate nature on an even deeper level.

As we continue on our journey, we  shall see how gravity, 
viewed from a more modern perspective, can also be thought 
of as the manifestation of a fundamental particle— the 
graviton— much like electromagnetism is the manifestation of 
the photon, the fundamental particle of light. In the very same 
way that we can “see” light as electromagnetic waves propagate 
through space and time, we can now “hear” gravitational waves 
(or glight, as we  shall call it  here) as they disturb the very fabric 
of spacetime. We have now observed gravitational waves through 
many different instruments, and the reality of glight has be-
come unquestionable. Their detection offers an unparalleled 
opportunity to decipher the many mysteries that our Universe 
is still hiding. What is the origin of the Universe? What are the 
dark components of the Universe that explain its structure and 
evolution but cannot be directly detected with our instru-
ments? What is our fate?  These profound questions are begging 
for answers. And who  wouldn’t want to follow that trail?

Eventually our journey  will take us to the edge of the map. 
While Einstein’s theory of general relativity has provided natu ral 
and elegant answers to some of the most perplexing questions 
about the nature of gravity, it also has raised several puzzles 
with which we continue to grapple. How is it that the contribu-
tions of known particles that we understand so well in our 
under ground particle accelerators affect the Universe in ways 
we cannot even start to comprehend?
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As we attempt to reconcile the evolution of our Universe 
with the fundamental quantum nature of the world, we  will be 
forced to reconsider gravity on an even deeper level. What if, 
on large cosmological scales, gravity behaves differently than 
predicted by general relativity? What if gravity, long assumed 
to be massless, in fact has mass? This idea is almost as old as 
general relativity itself and has been explored by some of the 
greatest scientists of the past  century.  Until recently, all attempts 
to make sense of this idea have failed dramatically. Yet far from 
being the end, this is where the most exciting part of our jour-
ney  will begin as I guide you through new pathways that my 
colleagues and I have recently uncovered in our quest to grap-
ple with gravity.

 These paths previously looked so unpromising that their ex-
ploration was considered not only impractical or dangerous but 
simply unthinkable.  Today, however, it seems that they may 
lead us to an entirely new way to think about gravity. And while 
 these new theories may not provide final answers to all of our 
questions, by exploring gravity as it might be, even if not in 
our own real ity, we may come to appreciate nature for all that 
it has to offer.

Gravity is one of the first physical phenomena of which we are 
aware, and we possess a near universal desire to probe its limits. 
As babies, we repeatedly push toys off the  table, watching them 
tumble to the ground (and watching our exasperated parents 
retrieve them). As  children, we jump tirelessly on the trampo-
line, seeing how high we can soar before being pulled back 
down to our terrestrial home. As old friends, we skip stones at 
the beach, observing the beauty of the cascading  ripples. In 
 every instance, we both play with and try to counteract this 
tenacious phenomenon. Its constant pull is the source of so 
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much stress in our lives, but rather than hiding from it we all 
learn to embrace it.

As we fall through the curvature of spacetime as freely as we 
fall through our lives, we soon realize that, while being  free and 
straight, our journey through space and time is far from straight-
forward. Certainly, our journey would not be complete without 
its share of obstacles and falls. Embracing them and appreciating 
the beauty of falling is essential if we are to make pro gress in our 
never- ending quest. All theories of gravity developed so far have 
experienced the virtue of failure. Daring to fail means appreciat-
ing each fall not as an embarrassing epilogue but rather as an 
opportunity for a more fundamental understanding of nature.

Think of this journey, then, as a cele bration of gravity’s mys-
teries and of science itself— complete with its doubts and failures, 
yes, but also with the incredible thrill of discovery. This is not 
just my quest, nor that of my colleagues. It is not the discovery 
of Einstein or Newton alone. It is our shared adventure, yours 
as much as that of the  great scientists who paved the way. It is a 
journey that began thousands of years ago, and one that may 
never end. Along the way, however, we hope to gain knowledge 
that  will enrich the lives of  future generations and civilizations, 
allowing them to pursue their own destiny, to surf between new 
layers of real ity, and to interact with the all- encompassing fabric 
of the Universe.
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