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Animal chatters
t inbergen’s four questions

Calanques National Park, near Marseille. It is noontime  under the sun of 
Provence. The heat is intense, the light bright. The garigue smells of thyme, 
rosemary, and lavender. The background  music (“tchik- tchik- tchik”) is 
provided by the cicadas, pressing against the bark of the pine trees, their 
rostra stuck into the trunk to pump out the beneficial sap. In the deep 
blue sky, swifts glide like arrows: “Weer!! . . .  Weer!!!” A large locust 
spreads its colorful wings and flies in front of me, then lands a few me-
ters away. Its long hind legs oscillate rapidly as they rub against its wings, 
producing a strange chirping sound, like rustling sheets of paper. When 
the legs freeze, the sound stops. On its branch, a subalpine warbler emits 
its cheerful ritornello, briskly playing sometimes fluted, sometimes 
squeaky notes. Suddenly, the warbler falls  silent and dives into a bush. 
It soon comes out to sing again. In the background, far away, some sheep 
bleat. A dog barks.  Later, when the sun has waned and it is getting cooler, 
the cicadas  will stop their relentless concert.  Others  will take their place, 
and the entire night  will rustle with the song of locusts, grasshoppers, 
toads, and other nocturnal creatures, in an apparent cacophony. Just 
before daybreak, the dawn chorus of birds  will come alive. The cicadas 
 will remain  silent, waiting for the heat to start vibrating their cymbals, 
 those small membranes hidden  under their wings, which rattle several 
hundred times a second. “Tchik- tchik- tchik . . .  tchik- tchik- tchik . . .  
tchik- tchik- tchik. . . .” This is the  great concert of life!
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The soundscape of the Mediterranean scrubland is unique.  There is 
this multitude of sounds produced by animals, to which are sometimes 
added the breath of wind in the trees and the sound of waves crashing 
on the shore. For me, they are associated with all the times I’ve spent in 
this region of France. Have you ever wondered why animals make  these 
sounds? Not simply to charm our senses, of course: They are not in-
tended for us. In fact, their purpose is to communicate. To communicate— 
that’s a big word! And yet . . .   these songs, cries, and other shrill sounds 
are signals that, like our  human words, allow them to converse with 
other animals. What do they say to each other, you may ask? This is what 
I propose to discover in this book. You are about to enter worlds of 
sound, some of which are familiar but most of which are completely 
unknown to you and which you never even knew existed. How could 
you, since some of them are not even accessible to our ears?

Many animals exploit the sound- transmitting properties of  water or 
air to communicate: to find a partner, to defend a territory, to signal the 
presence of a predator or food source, to collaborate in hunting, to rec-
ognize and interact with members of the group.  These communications 
are essential for many species, including our own. We know this well—
we whose articulated language demonstrates an incredible complexity, 
commensurate with that of our social interactions; we whose  simple 
cries, from the moment we are born, signal our emotions and needs to 
other  humans. The fact that animals are comparable to  humans has been 
demonstrated by a  great deal of scientific work over the last forty years. 
We can no longer set our species apart from other animals: each species 
has its own biological, ecological, social, and sometimes cultural char-
acteristics that define its own world. Acoustic communication systems 
are therefore diverse, but all are worthy of interest. They are evidence of 
the diversity of life.1

How are animal vocalizations produced? What information do they 
contain? Can we understand animal languages? For a long time, the 
diversity of  these sound worlds was difficult to access, but technical 
advances— such as the tape recorder and then the computer— have 
changed this. In recent de cades, scientists have begun to read the scores 
of animal concerts and decipher their meaning.
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I’m involved in the science that studies animal acoustic communica-
tions, called bioacoustics. Bioacousticians are working to decipher how 
animals make and hear sounds, what information is encoded in their 
sound signals, what this information is used for in their daily lives, and 
also how their acoustic communication systems have developed over the 
history of life. We  will see that studying the richness and complexity of 
animal acoustic communication can help us understand how our own 
communication system works— our words, our laughter, our cries. Bio-
acousticians are a bit like Champollion, the French historian who deci-
phered Egyptian hieroglyphics using the Rosetta Stone, a fragment of a 
stele where the same text is written in several languages. To decode animal 
languages, many other methods must be used, but the goal remains the 
same: to decipher their meaning. The sounds produced by animals are 
signals carry ing information whose meaning we are trying to decipher.

Bioacoustics is a discipline rooted in ethology, the science of animal 
and  human be hav ior. The development of this branch of biology is rela-
tively recent, dating back to the 1960s. In 1973, the Nobel Prize in Physiol-
ogy and Medicine was awarded to three ethologists. The first was Konrad 
Lorenz. You may have already heard of this Austrian researcher, who be-
came famous for his experiments on imprinting, in which memory of 
certain events or individuals is built up very quickly and very early in life. 
Lorenz discovered imprinting in his observations of geese. If goslings 
hatch in the presence of a  human being, they consider that person to be 
their  mother and follow him wherever he goes.2 The second Nobel laure-
ate was Karl von Frisch. He discovered the dance of the bees, this unique 
communication system through which the worker bee, on her return to 
the hive, can inform her  sisters of the whereabouts of new flowers.3 It is 
impressively precise: the  angle formed between the axis of the bee’s walk 
along one of the honeycombs and the vertical axis corresponds to the  angle 
formed between the direction of the sun and the direction of the flowers 
when exiting the hive. Simply incredible! But  there is more: the frequency 
of the vibrations of the insect’s body and wings contains information 
about the amount of food provided by the flowers. It is by vibrating that 
the bee signals it is worthwhile to go on a shopping spree. The third re-
searcher was Nikolaas Tinbergen. Of the three, he is my favorite. Tinbergen 
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spent most of his  career studying animal be hav ior using the experimental 
method.4 He in ven ted ways of questioning animals in order to understand 
the  causes and consequences of their be hav ior. For example, in order to 
test  whether it was the red spot on the herring gull’s beak that caused the 
chicks to beg for food, he offered them vari ous objects (sometimes  simple 
sticks) more or less faithfully reproducing an adult’s head and bearing a 
bigger or smaller spot, and in diff er ent colors. He then mea sured the in-
tensity of the chick’s behavioral response— its speed in beating the lure 
with its beak. Tinbergen thus highlighted the importance of the “red spot” 
signal in the parent- chick relationship in this seabird species. In addition 
to being a remarkable experimenter, he sought to formalize scientific re-
search in ethology. He explained that in order to fully understand animal 
be hav ior, four questions had to be answered. This method is still valid 
 today,5 and  every bioacoustician keeps Tinbergen’s four questions in mind 
when studying sound communication:

(1) What are the mechanisms of the be hav ior I observe?
(2)  What are the evolutionary  causes that explain the existence  

of this be hav ior?
(3)  How did this be hav ior develop over the course of the  

individual’s life?
(4)  What has the evolutionary history of this be hav ior  

been over geological time?

Let’s look at  these four fundamental points in more detail. Let’s imagine, 
for example, that you want to understand why American robins, Turdus 
migratorius, sing in the spring and what the  drivers of this communica-
tion are.

You first need to understand the mechanisms of both the production 
and reception of signals, i.e., the pro cesses that lead an animal to pro-
duce a sound and  those that explain a behavioral response to what it 
perceives— for example, to understand why, when a male robin hears 
another male robin singing, it responds by singing in turn and some-
times by attacking the intruder. What is it about the song that  causes 
this reaction? First and foremost,  there must be par tic u lar acoustic char-
acteristics identifying the American robin, which ensure that its song is 
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not confused with that of another animal species, especially another 
bird species. Second, why is the reaction aggressive? Is it, for example, 
 because the robin is ready to reproduce, and the high level of sex hor-
mones circulating in its blood increases its reactivity? If we want to 
study  these proximal  causes of the be hav ior, we need to describe the 
properties of the stimuli that provoke the robin’s reaction, both external 
(the intruder’s song) and internal (hormonal balances). We also want 
to understand all the physiological pro cesses, from the reception of the 
stimulus (How does hearing work?) to the expression of the behavioral 
response (Why all this agitation? To defend one’s territory?). To ex-
plore  these questions, you can set up experiments in acoustic playback 
with a loudspeaker placed near where the robin sings, and question it 
directly: “Is this song a territorial signal for you?”

Once you have addressed the first of Tinbergen’s questions, you can 
turn your interest to the second question: the evolutionary  causes of the 
communication. Why has this singing be hav ior rather than another 
been favored during the evolution of the species? In other words, how 
does singing confer advantages that might explain why, once it ap-
peared, it has been retained over time? Does singing increase a male 
robin’s likelihood of being noticed by a female?  Will an aggressive indi-
vidual, singing louder, more often, and for longer than  others, be more 
effective in defending its territory and food resources?  These two as-
pects would increase his reproductive success, i.e., the number of young 
he  fathers and who survives into adulthood. Singing be hav ior would then 
be favored by the two facets of sexual se lection: intersexual se lection— 
females prefer some singers to  others— and intrasexual se lection— males 
drive off insufficiently aggressive colleagues more easily. But beware of 
the other side of the coin:  Doesn’t singing like a madman increase the 
probability of being spotted and captured by a predator such as a hawk 
or any other bird of prey? You could hypothesize that natu ral se lection 
may have  limited this be hav ior and favored individuals inclined to sing 
less loudly. Thus, sexual se lection, like natu ral se lection— the two major 
evolutionary mechanisms identified by Charles Darwin— prob ably par-
ticipates in the evolution of communication be hav ior. You can see that 
 things are complicated and that establishing the evolutionary  causes of 
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sound communication is not easy: all be hav ior is the result of a balance 
between constraints that sometimes have the opposite effect. You 
should not forget that evolution is also very much subject to chance 
(so- called stochastic pro cesses). Your task as an evolutionary biologist 
 will certainly be very difficult.

Let’s see if it’s easier to answer the third question formulated by Tin-
bergen: How was this communication be hav ior acquired during the life 
of our American robin? At birth, the robin chick cannot sing. It simply 
makes short calls to beg its parents for food. In the weeks following 
hatching, its brain develops and the chick gradually acquires the ability 
to produce more complex vocalizations. It is then essential that the 
young chick be able to hear adult songs, which it  will learn by imitating. 
How are the two types of pro cesses articulated?  There are the innate 
pro cesses (a robin  will never sing like a wren; it has a ge ne tic predisposi-
tion to sing “American robin”) and the acquired pro cesses (the young 
robin learns to sing by imitating an adult). This is a vast field of investiga-
tion. We discuss it in detail in chapter 12.

The fourth question remains, which is by far the most difficult to ad-
dress: What is the evolutionary history of the communication that you are 
studying? To put it plainly, what are the stages that gradually led from 
the ancestor of birds— a kind of dinosaur, perhaps emitting dinosaur 
vocalizations6—to a robin singing a song? Quite a story,  isn’t it? All ani-
mal species, including  humans, are rooted in the depths of time and share 
common ancestors. While we are beginning to understand the evolu-
tionary mechanisms of diversification of living species rather well, par-
ticularly with regard to their ge ne tic heritage, anatomy, physiology, and 
morphology, reconstructing the evolution of be hav ior remains a chal-
lenge. How and when did birdsong emerge over the course of evolution? 
Why in some species is it only the males that sing, whereas in many other 
species females also vocalize? Is song an ancestral trait in both sexes? 
 Were dinosaurs, the ancestors of  today’s birds, capable of producing 
sounds? Did they use them to communicate? Can we imagine a tyran-
nosaurus “singing” to call his or her partner? Did young tyrannosau-
ruses learn their vocalizations by imitating an adult? When and how 
did this learning happen? Answering all  these questions is difficult, if not 
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impossible,  because be hav ior leaves few fossil traces.7 My  great frustration 
as a bioacoustician is not being able to listen to and rec ord extinct 
species. I dream of being able to rec ord baby tyrannosauruses and then 
have their parents listen to  these vocalizations. And to see their reactions! 
It’s obviously unlikely that  we’ll ever be able to achieve this kind of 
 thing— but who knows? Maybe one day  we’ll be able to reconstruct 
“real” dinosaurs from fossil genomes, like in Jurassic Park. A Japa nese 
team is trying to revive the woolly mammoth in this way. However,  there 
are scientific methods that make it pos si ble to establish solid hypotheses 
about the evolution of communications.  We’ll talk about that too.

Most bioacousticians focus their research on only one of Tinbergen’s 
four questions and therefore do not aim to understand all aspects of the 
sound communication being studied. But keeping all of  these questions 
in mind provides a fertile framework for thinking. Even when one is 
interested in relatively  simple mechanisms, such as how a sound stimu-
lates the robin’s ear drum and is then transformed into nerve potentials 
that can be interpreted by the bird’s brain, it is useful to consider that 
 these mechanisms have a history.

Therefore, to conduct research in bioacoustics, a solid knowledge of 
biology is required. Most of my PhD students and postdocs have years 
of study in zoology, anatomy, physiology, neurobiology, ecol ogy, ethol-
ogy, and evolution. But bioacoustics requires, like many other disciplines 
in the life sciences, proficiency in scientific fields other than biology. In 
bioacoustics,  there is certainly the prefix bio (living), but  there is above 
all the root acoustic. Studying animal sound communications requires 
an understanding of what a sound is. Follow me and hang on tight:  we’re 
 going on a detour through the physics of acoustic waves.  Don’t worry; 
it’s not that complicated, and it’s impor tant for our journey into the 
world of animal sound. If, however, physics gives you a serious head-
ache, and  after trying to read the following chapter (science does re-
quire some effort,  after all) you have trou ble understanding what I have 
written, I’ll take you straight to chapter 3.  There, we start our journey 
by venturing into the Brazilian rainforest. For now, let’s try bravely— a 
 little courage! I first explain what a sound is, how it propagates, and how 
it can be described.
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Weberian apparatus, ossicles transmitting 
oscillations, 106

Weddell seal (Leptonychotes weddellii), 51. 
See also seals

Weldele, Mary: injury of, 208; recording 
hyenas, 208–9

western barbastelle (Barbastella barbastel-
lus), ultrasound, 195

 whales: acoustic communications, 69–70; 
baleen  whales, 68–69; blowholes, 69; 
humpback recordings, 175; laryngeal sac, 
69–70; songs of humpback  whales, 71–73; 
sound vibrations, 109; toothed  whales, 
68; vocal cords of, 316n109; vocaliza-
tions, 72–73. See also baleen  whales; 
toothed  whales

Wheatcroft, David, field crickets and noise, 
267

whistling language, 289
white- browed warbler (Basileuterus leuco-

blepharus), 14, 16, 134, 273; illustration of, 
17, 25; information for managing social 
relationships, 24; males establishing ter-
ritories, 18, 20; most common at Morro 
Grande, 16–17; neighbor recognition, 
22–23; propagation of sound in forest, 
18; recognition of song over distance, 
19–20

white- shouldered fire- eye: illustration of, 
25; propagation experiment, 24

willow warbler (Phylloscopus trochilus), 272

wind instruments, birds and mammals, 42
woodcock (Scolopax rusticola): illustration 

of, 173; song vocalization, 172
woodpeckers: drumming be hav ior in,  

135–37; drumming of, 272; illustration 
of  great spotted woodpecker, 136

wrens: forest experiment for, 27–28; noise 
and Troglodytes aedon musculus (southern 
 house wrens), 346n581; signal propaga-
tion in forest, 28; video recordings of 
 house wren, 56; vocal be hav ior of 
rufous- and- white wrens, 343–344n547; 
vocal learning, 166–67. See also Eurasian 
wren (Troglodytes troglodytes)

Wright, Orville, 242

Xanthocephalus (yellow- headed blackbird), 
57

yellow- headed blackbird (Xanthocephalus 
xanthocephalus), 57

Zahavi, Amotz, handicap theory by,  
121

Zalophus wollebaeki (Galápagos baby sea 
lion), 51–52

zebra finches (Taeniopygia guttata), 160; 
analy sis of, 149–52; communication net-
work in nest, 60–61; communication 
network of, 147–48; females distinguish-
ing between male calls, 250–51; heat call 
of, 60; illustration of, 148; imitating song 
from loudspeaker, 170–71; learning to 
sing, 161–62, 164, 165; response to calls, 
281; stress hormones and, 239–40; 
Theunissen’s team, 338n465; vocal rep-
ertoire of, 148–49

Zipf ’s law, 284
Zuberbühler, Klaus, alarm calls of Diana 

monkey, 215–17




