CONTENTS

Foreword by Bernie Krause xi
Note to the reader xv

1 Animal chatters: Tinbergen's four questions 1
2 Making circles in water: A short vademecum of physical acoustics 8
3 The warbler's eyebrows: Why do birds sing? 15
4 Cocktails between birds: Noise and communication theory 32
5 Family dinner: Parent-offspring communication 46
6 Submarine ears: Underwater bioacoustics 65
7 The tango of the elephant seals: Vocal signals and conflict ritualization 78
8 The caiman's tears: Acoustic communication in crocodiles 88
9 Hear, at all costs: Mechanisms of audition 99
10 Tell me what you look like: Production of sound signals 113

For general queries, contact webmaster@press.princeton.edu
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Networking addiction: Acoustic communication networks</td>
<td>139</td>
</tr>
<tr>
<td>12</td>
<td>Learning to talk: Vocal learning in birds and mammals</td>
<td>158</td>
</tr>
<tr>
<td>13</td>
<td>Inaudible speech: Ultrasounds, infrasounds, and vibrations</td>
<td>183</td>
</tr>
<tr>
<td>14</td>
<td>The laughing hyena: Communications and complex social systems</td>
<td>203</td>
</tr>
<tr>
<td>15</td>
<td>Ancestral fears: The acoustic expression of emotions</td>
<td>229</td>
</tr>
<tr>
<td>16</td>
<td>The booby’s foot: Acoustic communications and sex roles</td>
<td>244</td>
</tr>
<tr>
<td>17</td>
<td>Listening to the living: Ecoacoustics and biodiversity</td>
<td>260</td>
</tr>
<tr>
<td>18</td>
<td>Words . . . words: Do animals have a language?</td>
<td>280</td>
</tr>
</tbody>
</table>

Acknowledgments 297
Glossary 305
Notes 309
Index 355
Animal chatters

TINBERGEN’S FOUR QUESTIONS

Calanques National Park, near Marseille. It is noontime under the sun of Provence. The heat is intense, the light bright. The garigue smells of thyme, rosemary, and lavender. The background music (“tchik-tchik-tchik”) is provided by the cicadas, pressing against the bark of the pine trees, their rostra stuck into the trunk to pump out the beneficial sap. In the deep blue sky, swifts glide like arrows: “Weer!! . . . Weer!!!” A large locust spreads its colorful wings and flies in front of me, then lands a few meters away. Its long hind legs oscillate rapidly as they rub against its wings, producing a strange chirping sound, like rustling sheets of paper. When the legs freeze, the sound stops. On its branch, a subalpine warbler emits its cheerful ritornello, briskly playing sometimes fluted, sometimes squeaky notes. Suddenly, the warbler falls silent and dives into a bush. It soon comes out to sing again. In the background, far away, some sheep bleat. A dog barks. Later, when the sun has waned and it is getting cooler, the cicadas will stop their relentless concert. Others will take their place, and the entire night will rustle with the song of locusts, grasshoppers, toads, and other nocturnal creatures, in an apparent cacophony. Just before daybreak, the dawn chorus of birds will come alive. The cicadas will remain silent, waiting for the heat to start vibrating their cymbals, those small membranes hidden under their wings, which rattle several hundred times a second. “Tchik-tchik-tchik . . . tchik-tchik-tchik . . . tchik-tchik-tchik. . . .” This is the great concert of life!
The soundscape of the Mediterranean scrubland is unique. There is this multitude of sounds produced by animals, to which are sometimes added the breath of wind in the trees and the sound of waves crashing on the shore. For me, they are associated with all the times I’ve spent in this region of France. Have you ever wondered why animals make these sounds? Not simply to charm our senses, of course: They are not intended for us. In fact, their purpose is to communicate. To communicate—that’s a big word! And yet . . . these songs, cries, and other shrill sounds are signals that, like our human words, allow them to converse with other animals. What do they say to each other, you may ask? This is what I propose to discover in this book. You are about to enter worlds of sound, some of which are familiar but most of which are completely unknown to you and which you never even knew existed. How could you, since some of them are not even accessible to our ears?

Many animals exploit the sound-transmitting properties of water or air to communicate: to find a partner, to defend a territory, to signal the presence of a predator or food source, to collaborate in hunting, to recognize and interact with members of the group. These communications are essential for many species, including our own. We know this well—we whose articulated language demonstrates an incredible complexity, commensurate with that of our social interactions; we whose simple cries, from the moment we are born, signal our emotions and needs to other humans. The fact that animals are comparable to humans has been demonstrated by a great deal of scientific work over the last forty years. We can no longer set our species apart from other animals: each species has its own biological, ecological, social, and sometimes cultural characteristics that define its own world. Acoustic communication systems are therefore diverse, but all are worthy of interest. They are evidence of the diversity of life.1

How are animal vocalizations produced? What information do they contain? Can we understand animal languages? For a long time, the diversity of these sound worlds was difficult to access, but technical advances—such as the tape recorder and then the computer—have changed this. In recent decades, scientists have begun to read the scores of animal concerts and decipher their meaning.
I’m involved in the science that studies animal acoustic communications, called bioacoustics. Bioacousticians are working to decipher how animals make and hear sounds, what information is encoded in their sound signals, what this information is used for in their daily lives, and also how their acoustic communication systems have developed over the history of life. We will see that studying the richness and complexity of animal acoustic communication can help us understand how our own communication system works—our words, our laughter, our cries. Bioacousticians are a bit like Champollion, the French historian who deciphered Egyptian hieroglyphics using the Rosetta Stone, a fragment of a stele where the same text is written in several languages. To decode animal languages, many other methods must be used, but the goal remains the same: to decipher their meaning. The sounds produced by animals are signals carrying information whose meaning we are trying to decipher.

Bioacoustics is a discipline rooted in ethology, the science of animal and human behavior. The development of this branch of biology is relatively recent, dating back to the 1960s. In 1973, the Nobel Prize in Physiology and Medicine was awarded to three ethologists. The first was Konrad Lorenz. You may have already heard of this Austrian researcher, who became famous for his experiments on imprinting, in which memory of certain events or individuals is built up very quickly and very early in life. Lorenz discovered imprinting in his observations of geese. If goslings hatch in the presence of a human being, they consider that person to be their mother and follow him wherever he goes. The second Nobel laureate was Karl von Frisch. He discovered the dance of the bees, this unique communication system through which the worker bee, on her return to the hive, can inform her sisters of the whereabouts of new flowers. It is impressively precise: the angle formed between the axis of the bee’s walk along one of the honeycombs and the vertical axis corresponds to the angle formed between the direction of the sun and the direction of the flowers when exiting the hive. Simply incredible! But there is more: the frequency of the vibrations of the insect’s body and wings contains information about the amount of food provided by the flowers. It is by vibrating that the bee signals it is worthwhile to go on a shopping spree. The third researcher was Nikolaas Tinbergen. Of the three, he is my favorite. Tinbergen

For general queries, contact webmaster@press.princeton.edu
spent most of his career studying animal behavior using the experimental method. He invented ways of questioning animals in order to understand the causes and consequences of their behavior. For example, in order to test whether it was the red spot on the herring gull’s beak that caused the chicks to beg for food, he offered them various objects (sometimes simple sticks) more or less faithfully reproducing an adult’s head and bearing a bigger or smaller spot, and in different colors. He then measured the intensity of the chick’s behavioral response—its speed in beating the lure with its beak. Tinbergen thus highlighted the importance of the “red spot” signal in the parent-chick relationship in this seabird species. In addition to being a remarkable experimenter, he sought to formalize scientific research in ethology. He explained that in order to fully understand animal behavior, four questions had to be answered. This method is still valid today, and every bioacoustician keeps Tinbergen’s four questions in mind when studying sound communication:

1. What are the mechanisms of the behavior I observe?
2. What are the evolutionary causes that explain the existence of this behavior?
3. How did this behavior develop over the course of the individual’s life?
4. What has the evolutionary history of this behavior been over geological time?

Let’s look at these four fundamental points in more detail. Let’s imagine, for example, that you want to understand why American robins, *Turdus migratorius*, sing in the spring and what the drivers of this communication are.

You first need to understand the mechanisms of both the production and reception of signals, i.e., the processes that lead an animal to produce a sound and those that explain a behavioral response to what it perceives—for example, to understand why, when a male robin hears another male robin singing, it responds by singing in turn and sometimes by attacking the intruder. What is it about the song that causes this reaction? First and foremost, there must be particular acoustic characteristics identifying the American robin, which ensure that its song is
not confused with that of another animal species, especially another bird species. Second, why is the reaction aggressive? Is it, for example, because the robin is ready to reproduce, and the high level of sex hormones circulating in its blood increases its reactivity? If we want to study these proximal causes of the behavior, we need to describe the properties of the stimuli that provoke the robin's reaction, both external (the intruder's song) and internal (hormonal balances). We also want to understand all the physiological processes, from the reception of the stimulus (How does hearing work?) to the expression of the behavioral response (Why all this agitation? To defend one’s territory?). To explore these questions, you can set up experiments in acoustic playback with a loudspeaker placed near where the robin sings, and question it directly: “Is this song a territorial signal for you?”

Once you have addressed the first of Tinbergen’s questions, you can turn your interest to the second question: the evolutionary causes of the communication. Why has this singing behavior rather than another been favored during the evolution of the species? In other words, how does singing confer advantages that might explain why, once it appeared, it has been retained over time? Does singing increase a male robin's likelihood of being noticed by a female? Will an aggressive individual, singing louder, more often, and for longer than others, be more effective in defending its territory and food resources? These two aspects would increase his reproductive success, i.e., the number of young he fathers and who survives into adulthood. Singing behavior would then be favored by the two facets of sexual selection: intersexual selection—females prefer some singers to others—and intrasexual selection—males drive off insufficiently aggressive colleagues more easily. But beware of the other side of the coin: Doesn’t singing like a madman increase the probability of being spotted and captured by a predator such as a hawk or any other bird of prey? You could hypothesize that natural selection may have limited this behavior and favored individuals inclined to sing less loudly. Thus, sexual selection, like natural selection—the two major evolutionary mechanisms identified by Charles Darwin—probably participates in the evolution of communication behavior. You can see that things are complicated and that establishing the evolutionary causes of
sound communication is not easy: all behavior is the result of a balance between constraints that sometimes have the opposite effect. You should not forget that evolution is also very much subject to chance (so-called stochastic processes). Your task as an evolutionary biologist will certainly be very difficult.

Let’s see if it’s easier to answer the third question formulated by Tinbergen: How was this communication behavior acquired during the life of our American robin? At birth, the robin chick cannot sing. It simply makes short calls to beg its parents for food. In the weeks following hatching, its brain develops and the chick gradually acquires the ability to produce more complex vocalizations. It is then essential that the young chick be able to hear adult songs, which it will learn by imitating. How are the two types of processes articulated? There are the innate processes (a robin will never sing like a wren; it has a genetic predisposition to sing “American robin”) and the acquired processes (the young robin learns to sing by imitating an adult). This is a vast field of investigation. We discuss it in detail in chapter 12.

The fourth question remains, which is by far the most difficult to address: What is the evolutionary history of the communication that you are studying? To put it plainly, what are the stages that gradually led from the ancestor of birds—a kind of dinosaur, perhaps emitting dinosaur vocalizations—to a robin singing a song? Quite a story, isn’t it? All animal species, including humans, are rooted in the depths of time and share common ancestors. While we are beginning to understand the evolutionary mechanisms of diversification of living species rather well, particularly with regard to their genetic heritage, anatomy, physiology, and morphology, reconstructing the evolution of behavior remains a challenge. How and when did birdsong emerge over the course of evolution? Why in some species is it only the males that sing, whereas in many other species females also vocalize? Is song an ancestral trait in both sexes? Were dinosaurs, the ancestors of today’s birds, capable of producing sounds? Did they use them to communicate? Can we imagine a tyrannosaurus “singing” to call his or her partner? Did young tyrannosaurs learn their vocalizations by imitating an adult? When and how did this learning happen? Answering all these questions is difficult, if not
impossible, because behavior leaves few fossil traces. My great frustration as a bioacoustician is not being able to listen to and record extinct species. I dream of being able to record baby tyrannosaurs and then have their parents listen to these vocalizations. And to see their reactions! It’s obviously unlikely that we’ll ever be able to achieve this kind of thing—but who knows? Maybe one day we’ll be able to reconstruct “real” dinosaurs from fossil genomes, like in *Jurassic Park*. A Japanese team is trying to revive the woolly mammoth in this way. However, there are scientific methods that make it possible to establish solid hypotheses about the evolution of communications. We’ll talk about that too.

Most bioacousticians focus their research on only one of Tinbergen’s four questions and therefore do not aim to understand all aspects of the sound communication being studied. But keeping all of these questions in mind provides a fertile framework for thinking. Even when one is interested in relatively simple mechanisms, such as how a sound stimulates the robin’s eardrum and is then transformed into nerve potentials that can be interpreted by the bird’s brain, it is useful to consider that these mechanisms have a history.

Therefore, to conduct research in bioacoustics, a solid knowledge of biology is required. Most of my PhD students and postdocs have years of study in zoology, anatomy, physiology, neurobiology, ecology, ethology, and evolution. But bioacoustics requires, like many other disciplines in the life sciences, proficiency in scientific fields other than biology. In bioacoustics, there is certainly the prefix *bio* (living), but there is above all the root *acoustic*. Studying animal sound communications requires an understanding of what a sound is. Follow me and hang on tight: we’re going on a detour through the physics of acoustic waves. Don’t worry; it’s not that complicated, and it’s important for our journey into the world of animal sound. If, however, physics gives you a serious headache, and after trying to read the following chapter (science does require some effort, after all) you have trouble understanding what I have written, I’ll take you straight to chapter 3. There, we start our journey by venturing into the Brazilian rainforest. For now, let’s try bravely—a little courage! I first explain what a sound is, how it propagates, and how it can be described.
INDEX

Académie des Sciences, 37
acoustic, 7
acoustic adaptation, 270
acoustic adaptation hypothesis, 24, 272–73
acoustic avoidance hypothesis, 30–31
acoustic communication, 2; bioacoustics, 3;
deer family, 120; emitter, 32; finch species,
137–38; fish, 129–32; forest environment
and, 30–31; information exchange, 30;
noise, 32; processes, 128; receiver, 33,
127; sender, 32, 127
acoustic communication networks: audience
effect in, 153–54; blue-capped cordon-
bleu (Uraeginthus cyanoccephalus), 152–53;
characterization of signatures, 144–45;
eavesdropping on conversations, 155–57;
Lipaugus project and, 147; Lipaugus vocifer-
ans (piha), 139–42; social intelligence,
154–55; sound triangulation, 143–44;
zebra finches, 147–52. See also Lipaugus
vociferans (piha)
acoustic complexity index (ACI), 350n628
acoustic indices, coral reefs, 276–77
acoustic indices of biodiversity, Sueur and
development of, 275–76
acoustic niche, 270; nuance of hypothesis,
272
acoustic niche hypothesis, 30, 270; sound
frequencies, 270–71
acoustic signals: amphibians, 106–8; bats,
103; categorical perception, 109–10;
courtship, 104–5; crocodiles, 111–12;
ecological selection and, 134; evolution
of ears, 100; far sound field, 101, 105;
frogs, 107–8, 111–12; inner ear, 105–6;
insects, 102; long-distance ears, 101,
103; near sound field, 101, 105; physics
of, 100–101; precedence effect, 112;
pressure-differential ears, 107; produc-
ing, 99; resonator, 108; short-distance
ears, 101, 104; Sphingidae family, 102;
transduction, 100; use of, 99; verte-
brates, 105–9
Acrocephalus scirpaceus (Eurasian reed war-
bler), begging calls of chicks, 54–55
Adam, Olivier: mother–offspring communi-
cation, 73; whale acoustic communications, 69
Adam’s apple, 42, 116, 120, 323n227
Adélie penguin (Pygoscelis adeliae), 44. See
also penguins
African elephant (Loxodonta africana), 117;
vocal learning, 176
African penguin (Spheniscus demersus):
calls of, 283–84; illustration of, 285
Agami herons, research program on, 91
Agrégation, French exam, 149
air pressure variations, sound waves and,
11–12
Amazonian rainforest, Brazil, 139
American alligator (Alligator mississippiensis),
recordings of, 114
American robin (Turdus migratorius), 4, 6,
17
Amolops tormotos, frog, 196–97
Amorim, Clara, fish sound signals, 131

For general queries, contact webmaster@press.princeton.edu
amphibians: inner ear, 105–6; relationship between ears and lungs, 107–8
Amphiprion clarkii (clownfish), sonic ligament of, 130
amplitude, intensity of sound, 12–13
Amsterdam fur seal (*Arctocephalus tropicalis*), 52. See also seals
Animal Behaviour (journal), 248
animal language, external observers of, 282
animals: communication, 2; expressing emotions in calls, 287; language in, 280–81; mimicking cries of, 294; rules for encoding emotions, 236–37
animals’ communication, noise of human activities, 264–65
animal sound, categories of information, 19
animal species, definition, 127
Anomaloglossus beebei (golden rocket frog), 197
Año Nuevo Reserve. See elephant seals
Anthochaera chrysoptera (waterbird), 173; regent honeyeater singing song of, 173
Anthochaera phrygia (regent honeyeater), songs of, 173
anthropogenic noise: acoustic complexity index (ACI), 350n628; animal comfort with, 265–66; assessment of stress, 351n634; birds and, 266; sound environment change, 269
anthropogenic sound, 265
anthropophonic cacophony, 266
anthropophony, 276; ecological balance, 269; soundscape, 270; term, 263, 264
ants, social insects, 198–99
apes, attempts teaching, to talk, 287–89
A phrases, 125
Aptenodytes patagonicus (king penguins), 38–39, 40, 43, 44
aquariums, noise and fish behavior, 268
Arctocephalus galapagoensis (Galápagos baby fur seal), 52. See also seals
Arctocephalus tropicalis (Amsterdam fur seal), 52. See also seals
arms race, 314n85; between emitter and receiver, 61; between honesty and cheating, 124; between parasites and their hosts, 63; between parents and young, 123; between superb fairy wren and Horsfield cuckoo, 64; definition, 305
arousal, dimension of emotions, 231, 233
Asian elephants, vocal learning, 176–77
Astaire, Fred, 153
Astyanax mexicanus (astyanax fish), 135
atmospheric pressure, 10, 11
Attia, Joël: acoustic signals by astyanax, 135; acoustic signals by fish, 130
Aubin, Thierry, 91, 114, 231, 244; acoustics course, 8; bioacoustics of frogs, 108; bird recordings, 24; blue-footed booby, 247; calls of fairy wren, 220–22; on distress calls of young of other species, 230; distress information, 242–43; fairy wren, 219; on feeling for sound, 9; interest in Lipaugus, 139; Nile crocodile vocalizations, 113; penguins, 38, 40, 149; scorpion in shoe, 143; spectacled caimans, 95; walrus mothers and young, 50–51; warblers’ territories, 15, 16, 20
audience effect, 218; acoustic communication networks, 153–54
audition, hearing, 99, 100
Australian sea lion (*Neophoca cinerea*), 51
Balaena mysticetus (bowhead whale), 70. See also baleen whales
Balaenoptera acutorostrata (minke whale), 74
Balaenoptera physalus (fin whale), 70. See also baleen whales
Balaenoptera physalus (fin whale), 70. See also baleen whales
baleen whales, 68–69; blue whale (*Balaenoptera musculus*), 70; bowhead (*Balaena mysticetus*), 49, 70; fin whale (*Balaenoptera physalus*), 70; humpback, 71–72, 73; humpback (*Megaptera novaehollandiae*), 70;
blue-footed booby (Sula nebouxii): illustration of, 246; Isabel Island, 245; male and female calls, 246–47; role of females and males in acoustic communication, 250; sexual dimorphism, 245, 247–48
blue whale (Balaenoptera musculus), 70. See also baleen whales
Bonjour les morses (film), 51
bonobos (Pan paniscus): cries of human babies, 237; illustration of, 182; vocal cords, 122; voice of, 182
booby. See blue-footed booby (Sula nebouxii)
Bora Bora lagoon, coral reefs of, 276
Borneo Island, Indonesia, 280
Botswana, 113, 203
bottle dolphin (Tursiops truncatus), 64
Bouchet, Hélène, identifying babies by their cry, 256
Bourquinn, Sven, 114–15
bowhead whale (Balaena mysticetus), 49, 70. See also baleen whales
Boyer, Nicolas: emotions in vocalizations, 229; striped mice, 186
Brainard, Michael, learning to sing, 163–64
Brazilian Atlantic Forest, 273
Brémond, Jean-Claude: bioacoustics, 26; CNRS director, 8; distress information, 242–43; European wren (Troglodytes troglodytes), 271–72
Briefer, Elodie: dimensions of emotions, 231; horse vocalizations, 231–33
brown-headed cowbird (Molothrus ater): eggs of, 62; vocal learning, 174
brown thrasher (Toxostoma rufum), learning to sing, 165
brown tinamou: illustration of, 25; propagation experiments, 24, 26

Campbell’s monkey (Cercopithecus campbelli), referential communication system, 217; syntactic complexity, 218
Campo Dora, 97
Campos, Zilca, on caiman, 88–89, 95–98
canary (Serinus canaria): song of invitation, 125; vocal control, 169
Canberra Botanical Garden, 219
cannibalism, 91
Cantais, Aurélie, identifying babies by their cry, 256
Cape penguin (Spheniscus demersus), calls of, 283–84
Cardinalis (northern cardinal), notes of song, 169
Carduelis (goldfinches), learning, 159
Casey, Caroline, sound world of elephant seals, 81, 83, 84
categorical perception, sounds, 109–10
cats, large, vocal cords, 122
cell theory, 33
Centre de recherches insulaires et observatoire de l’environnement (CRIOBE), 262, 345n566
Centre national de la recherche scientifique (CNRS), 8, 37, 89, 135, 181
Cercopithecinae, monkeys of Old World, 205
Cercopithecus campbelli. See Campbell’s monkey (Cercopithecus campbelli)
Cercopithecus diana (Diana monkeys), alarm calls, 215–17
Cervus elaphus (deer), acoustic communications, 120
cetaceans, 68–69; dolphins, 68, 70, 73, 75, 77; playback experiments, 347n587. See also whales
chacma baboons (Papio ursinus): communication system, 226–28; emotions through vocalizations, 238–39; referential communication system, 217; social intelligence, 154
Champollion, hieroglyphics study, 3
Chaoborus fly, 268
character displacement, evolutionary biology, 137
Charlton, Ben, larynx of koala, 121–22
Charpentier, Marie, vocal plasticity, 181
Charrier, Isabelle: acoustic communications work, 45; baby fur seal and mother, 53; baby fur seals, 253; bearded seals underwater, 65–66; begging behavior of gull chicks, 57; field work with pinnipeds, 81; mother-offspring communication, 73; parent-offspring recognition, 37, 46, 47; walrus mothers and young, 50–51
Chatter, 174
chemical pollution, 264
Cheney, Dorothy: communication systems of baboons, 226–28; primate study, 154; vervet monkeys, 214, 215, 226
chestnut-crowned babbler (Pomatostomus ruficeps), vocal repertoire of, 224–25
chimpanzee (Pan troglodytes): audience effect, 154; cries of human babies, 237; illustration of, 237; language, 180; research, 288; vocal cords, 122
Chinese Academy of Sciences, 196
Choi, Noori, spider communication, 200
chopi blackbird (Gnorimopsar chopi), learning to sing, 160
Cistothorus palustris (marsh wren), song learning, 166
Cistothorus stellaris (sedge wren), song learning, 166–67
clownfish (Amphiprion clarkii), sonic ligament of, 130
CNRS. See Centre national de la recherche scientifique (CNRS)
Colobus guereza (monkey), leopard alarm call of, 217
Colombelli-Négrel, Diane, parent and off-spring password, 63
Columbia University, 288
communication: brain basis of networks, 329n323; elephants and vibration, 201–2; mathematical theory of, 33–34, 284, 286; parent-offspring, 59–60; semantic, 214; signals, 2; zebra finches, 60–61. See also acoustic communication networks
communication signals: drumming behavior of woodpeckers, 135–37; sender and receiver, 123
control stimulus, wren experiment, 27
coral reefs: acoustic indices, 276–77; biodiversity of, 262–63; fish on, 67–68; shrimp, 67, 68
Corvin, Siloé, identifying familiar babies, 257
coupled oscillators, crickets, 129
Coureau, Gérard, emotions in vocalizations, 229
courtship, Drosophila fly, 104
Cousteau, Jacques, 67
COVID-19 crisis, 266
crested pigeon (Ocyphaps lophotes), communication signals in danger, 128
crickets: coupled oscillators, 129; ears of bush, 321n190
CRIOBE. See Centre de recherches insulaires et observatoire de l’environnement (CRIOBE)
crocodile(s): acoustic communication, 90–95; acoustic signals of frogs and, 111–12; black caiman (Melanosuchus niger), 91–94, 96; experiment in nests, 90–91; gharial (Gavialis gangeticus), 90; habituation, 92–93; jacaré caiman (Caiman yacare), 89; Nhumirim Ranch, 88–89; Nile crocodiles (Crocodylus niloticus), 90–91, 95, 96; Orinoco crocodile (Crocodylus intermedius), 95; quality index, 119; signals and, 111–12; spectacled caiman (Caiman crocodilus), 89
Crocoparc, 110, 229, 230.
Crocuta crocuta. See spotted hyena (Crocuta)
cuckoo (Cuculus canorus), begging calls in parent-offspring interactions, 54
culture, oscine bird song transmission, 172–74
cumulative selection, 127
curé, Charlotte: acoustic communications of shearwaters, 248–49; humpback and killer whale vocalizations, 74–75
Current Anthropology (journal), 293
Current Biology (journal), 162
cynomys gunnisoni. See Gunnison’s prairie dog (Cynomys gunnisoni)
Dabelsteen, Torben: communication network concept, 147; Eurasian blackcap study, 29
dance of bees, von Frisch, 3
darwin, Charles, 214, 234; adaptive radiation, 137; bill morphology, 138; expressing emotions, 230–31; finches on Galápagos Islands, 137; on primitive sounds, 233; on role of female birds, 251; on sexual selection, 5
Dawkins, Richard, manipulative signal, 61, 62
Deakin University, 60
dear-enemy effect, 22; black redstart as model, 166
decibels, 12
deer (Cervus elaphus): acoustic communications, 120; stable evolutionary equilibrium, 121
dendrobatidae family, 197
dendrocopos major (great spotted woodpecker), drumming behavior, 136–37
Dentressangle, Sébastien: song system, 170–71; using birdlike robots, 163
Derryberry, Elizabeth, vocal activity of white-crowned sparrow, 266
désert de Plate, 260
developmental stress hypothesis, 125
Diana monkeys (Cercopithecus diana): alarm calls, 215–17; eagle alarm calls, 215, 216; playback experiments, 218
distress calls, research on, 242–43
diversity, 262
dog-directed speech, humans and, 240–42
dogs, 1; communication of humans and, 240; illustration of, 241
dolphins, 68; bottlenose (Tursiops truncatus), 64; echolocation, 335n426; language of, 75, 77; monkey lips of, 70, 75, 76; tympanic bone, 109; vocalizations of, 70, 73; vocal learning, 175
Doppler effect, 193–94
Doppler effect compensation, phenomenon, 192
doutrelant, Claire, Siamese fighting fish (Betta splendens), 155
Draganoiu, Tudor: on black redstart (Phoenicurus ochruros), 21; black redstart as model, 166; songs of black redstart males, 59
dreiss, Amélie, sibling negotiation hypothesis, 58
drosophila fly: FOXP2 gene, 290; Johnston’s organ in, 104
Duke University, 214
dunbar, Robin, social grooming, 292
dunnock (Prunella modularis), 272
dynamic, information in sound, 19
ears: evolution of, 100; mechanoreceptors, 320n181. See also acoustic sounds
Earth, gravity on, 10–11
eastern phoebe (Sayornis phoebe), learning to sing, 160
eavesdropping: acoustic communication networks, 155–57; assessing risk, 329n321
echolocation: bats, 191–92, 335n426; dolphins, 335n426; Doppler effect compensation, 192; pulse, 191; pulse-echo delays, 192
ecoacoustics, 262, 349n621; dealing with big data of recordings, 278; definition of, 263; Krause on, 275; natural soundscapes, 270; technological developments, 278
École normale supérieure de Lyon, 149
École pratique des hautes études (EPHE), 258, 345n566
ecological niche, concept of, 270
ecosystem(s): coral reefs of Puerto Rico
during Hurricane Maria, 278; ecoacoustic approach, 351n639; food webs, 269;
functions, 277–78
Egyptian fruit bat (Rousettus aegyptiacus),
vocal learning, 177
Egyptian hieroglyphics, Champollion on, 3
elephants: impedance adapter, 201; near
sound field of, 322n200; vibrational
communication, 201; vocalizations, 200–202; vocal learning, 176–77
elephant seals: Año Nuevo Reserve, 78–79, 81, 84, 85; behavioral development,
85–86; breeding season, 79, 82–83; Elo
rating score, 83; hierarchy of dominance,
86–87; illustration of, 82; Mirounga
angustirostris, 78; rhythmic sounds,
318n150; sound world of, 81; vocaliza-
tions of, 81–85
Elie, Julie: individual signatures of hyenas,
210–11; vocal repertoire of zebra finch,
148, 152, 208; zebra finch calls, 178
Elise, Simon, coral reefs of Europa Island, 277
Elsey, Ruth, reproductive biology of Ameri-
can alligator, 114
emitter, signal, 32
emotions: animals expressing, 287; arousal
and valence, 231, 233; coding into vocal-
izations, 234–35; dimensions of, 231, 233;
distress calls research, 242–43; horses
vocalizations and, 232–33; human babies
vocalizations, 234–36; humans and dog
communication, 240–41; stress hor-
mones and, 239–40; vocalizations and,
229–30, 233–36
emperor penguins (Aptenodytes forsteri), 39,
41, 43. See also penguins
ENES Bioacoustics Research Laboratory,
Saint-Etienne, France, 123, 130, 185
Engesser, Sabrina, calls of babblers, 224–25
Engystomops pustulosus (túngara frog),
110
EPHE. See École pratique des hautes études
(EPHE)
Erignathus barbatus: bearded seal, 51. See
also bearded seal (Erignathus barbatus);
seals
Erithacus rubecula (European robin), sing-
ing, 252
Eubalaena glacialis. See North Atlantic right
whales (Eubalaena glacialis)
Eurasian blackbird (Turdus merula), 264
Eurasian blackcap (Sylvia atricapilla), 271;
acoustics, 26; illustration of, 29; sound
propagation of, 29–30
Eurasian reed warbler (Acrocephalus sirm-
ipes): begging calls of chicks, 54–55;
intensity of begging behavior, 55–56
Eurasian wren (Troglodytes troglodytes), 17;
bioacoustics, 26; Brémond and song of,
271–72; illustration of, 27
Europa Islands, coral reefs of, 277
European minnows (Phoxinus phoxinus),
267–68; larvae of Chaoborus fly and,
268–69
European robin (Erithacus rubecula), sing-
ing, 252
evolution: animal communication, 61–62;
biological systems, 127–28; Darwin, 214;
exaptation, 129; human language, 167;
theory, 33
evolutionary biology, character displace-
ment, 157
evolutionary convergence, phenomenon,
168
evolutionary history, communication, 6–7
exaptation, change of feather shape, 129;
fish, 129–30
experimental stimulus, wren experiment,
27–28
Expression of Emotions in Man and Animals,
The (Darwin), 230, 329n327
Faillenot, Isabelle, brain perception of cries, 258–59

fairy wren (Malurus cyaneus): acoustic alarm system, 219; Aubin studying calls of, 220–22; Horsfield cuckoo (Chrysococcyx basalis) and, 62–63; illustration of, 220; incubation calls, 64; shining bronze cuckoo (Chrysococcyx lucidus), 62; study in Canberra Botanical Garden, 219–20; study model of Magrath, 219

far sound field, pressure variations, 105

Fauchon, Camille, brain perception of cries, 258–59

Favaro, Livio, calls of African penguin, 284

fazenda, Nhumirim, 88, 89

field cricket (Gryllus bimaculatus): illustration of, 267; noise by human activity and, 267

field cricket (Teleogryllus oceanicus), acoustic communication, 132

finches: Darwin’s, 137–38; goldfinches (Carduelis carduelis). See also zebra finches

fin whale (Balaenoptera physalus), 70. See baleen whales

Fischer, Julia, chacma baboons’ response to alarms, 238–39

fish: acoustic communication, 129–32; inner ear, 106

Fitch, Tecumseh, evolution of language, 291

FitzPatrick Institute of African Ornithology, 294

Fonseca, Paulo, fish sound signals, 131

food webs, ecosystem, 269

forest experiment: control stimulus, 27; experimental stimulus, 27–28; wrens, 27–28

formant(s): frequency of, 119; sound frequencies, 118; voice frequency, 119

Formosan macaque (Macaca cyclopis), 284

Fortune, Eric, plain-tailed wren as study model, 252–53

Fougeirol, Luc, 114; Crocoparc, 229; zoo founder, 90, 110

Foxe Basin, 65

FOXP1, little brother of FOXP2, 353n678

FOXP2 gene (Forkhead box P2), 290

French Alps, 260

French Guiana, 139, 142, 144

frequency, sound, 14

frequency selectivity, mosquitoes, 105

freshwater fish, noise and behavior of, 267–69

frogs: acoustic adaptation hypothesis, 274–75; Amolops tormotus, 196–97; bioacoustics of, 108; eardrums, 107; golden rocket frog (Anomaloglossus beebei), 197; inner ear, 105; North African green frog (Pelophylax saharica), 111; relationship between ears and lungs, 107–8; signal recreation for crocodiles, 111–12; ultrasound by, 196–97

fruit bats, genus Rousettus, 191

functional information, 277

functional magnetic resonance imaging (fMRI), 259

functions, ecosystems, 277–78

fundamental frequencies, value of, 117

Gahr, Manfred, cordon-bleu’s dance, 153

Gain, Philippe, interest in babies’ crying, 253

Galambos, Robert, bats emitting ultrasound, 187

Galápagos baby sea lion (Zalophus wollebaeki), 51–52

Galápagos Islands: blue-footed booby (Sula nebouxii), 245; Darwin’s finches, 137–38

Gallego-Abenza, Mario: dog-directed speech, 241–42; field crickets and noise, 267

Garcia, Maxime, 327n294; great spotted woodpecker, 136

Gardner, Allen, chimpanzee work, 288

Gardner, Beatrix, chimpanzee work, 288

Gavialis gangeticus (gharial), 90. See also crocodiles

gelada (Theropithecus gelada), 284
gendered traits, identifying babies, 258
Gennes, Pierre-Gilles de, physics of soft matter, 279
geophony, 276; term, 263
gharial (Gavialis gangeticus), 90. See also crocodiles
giant antshrike: illustration of, 25; propagation experiments, 24
gibbons, Nomascus nasutus and N. concolor, 284
Glickman, Stephen, hyenas’ social organization, 205–6
Globicephala melas (pilot whales), 75
glossary, 305–308
Gnorimopsar chopi (chopi blackbird), learning to sing, 160
Goegap Nature Reserve, 183–85, 187
golden rocket frog (Anomaloglossus beebei), 197
goldfinches (Carduelis carduelis), learning, 159
gorillas: playback experiments with, 286–87; vocalizations of mountain, 325n252
Gouette, Sandra: acoustic adaptation hypothesis, 274–75; working with frogs, 274
Gracula religiosa (hill myna), song imitation, 165
graded vocalizations, spotted hyenas, 206
grasshoppers, 1
gravity, Earth, 10–11
gray seals (Halichoerus grypus), vocal learning, 176
great animal orchestra, Krause on, 270
Great Barrier Reef, 269
greater honeyguide (Indicator indicator), 293–94
greater mouse-eared bat (Myotis myotis), ultrasound, 195
great spotted woodpecker (Dendrocopos major): drumming behavior, 136–37; illustration of, 136
great tit (Parus major): learning to sing, 164
Great Wall of China, 199
Greenfield, Michael: communication by ultrasound, 186–87; night flying for insects, 102–3
green frog, communication signals, 123
greenish warbler (Phylloscopus trochiloides), song of, 172
Griffin, Donald: bats emitting ultrasound, 187; spatial orientation of birds and bats, 190–91
Grimault, Nicolas: crocodilian study, 89, 95, 96; emotions in vocalizations, 229
Gryllus bimaculatus. See field crickets (Gryllus bimaculatus)
gulls, 32; begging behavior of chicks, 57–58; black-headed gull, 36; illustration, 33. See also black-headed gull (Larus ridibundus)
Gunnison’s prairie dog (Cynomys gunnisoni), referential communication system, 218
Gustafsson, Erik, new “baby cries” team, 254
habituation, phenomenon, 92
Halichoerus grypus (gray seals), vocal learning, 176
hammer-headed fruit bat (Hypsignathus monstrosus), fundamental frequencies, 122
handicap theory, 121
harbor seal (Phoca vitulina), 51. See also seals
harmonic frequencies, vocalization, 117–18
Harvard University, 190
Hauber, Mark: imitation of vocal repertoire, 174; parent and offspring password, 63
Hawaiian monk seal (Monachus schauinslandi), 51. See also seals
Hayes, Cathy, chimpanzee project, 288
Hayes, Keith, chimpanzee project, 288
hearing: audition, 99, 100; birds and humans, 169–70. See also acoustic signals
hearing machinery, 289
heat call, zebra finches, 60
Hebets, Eileen, spider communication, 200

For general queries, contact webmaster@press.princeton.edu
Heterocephalus glaber (naked mole rat), vocalizations, 178
hierarchy of dominance, elephant seals, 86–87
hieroglyphics, Champollion on, 3
hill myna (Gracula religiosa), song imitation, 165
hippos, 113
Holekamp, Kay, hyenas' social organization, 205, 206–7
Holocentridae family, 263
Homo sapiens, 327n288; social groups, 292
honest communication, hypothesis of, 54, 116
honesty principle, 324n249
honey badgers, 203
hooded berryeater: illustration of, 25; propagation experiments, 24, 26
hormones, learning process of birds, 170
Hornsya Island, 32
horses: biphonation, 233; vocalizations and emotions, 232–33
Horsfield cuckoo (Chrysococcyx basalis): fairy wren (Malurus cyaneus) and, 62–63; incubation calls, 64
Howard Hughes Medical Institute, 290
How Monkeys See the World (Seyfarth and Cheney), 215
Huangshan Hot Springs, 196
Huetz, Chloe, computer program for piha data, 144
human(s): acquisition of spoken language, 291–93; birds as model for understanding voice of, 174; communication with dogs, 240–41; convergence between brains of songbirds and, 168–69; dog-directed speech, 240–42; echolocation, 335n426; emotions and vocalizations of babies, 234–36; evolution of language, 167; fundamental frequency of voice, 118–19; hearing side, 169–70; identifying babies by their cry, 255–56; language, 180; laws characterizing language, 286; mothers caring for babies, 255; perception of cries by gender stereotype, 257–58; pragmatics of language, 225–26; vocal exaggeration, 123–24
hummingbirds, 160; vocal control, 168
humpback whale: anthropogenic noise and, 265–66. See also baleen whales
Hunter College, 63, 170
Hurricane Maria, coral reefs of Puerto Rico, 278
Hyacinthe, Carole, acoustic signals by astyanax, 135
hyena, 203–4; illustration of, 204. See also spotted hyena (Crocuta crocuta)
Hypsignathus monstrosus (hammer-headed fruit bat), 122
IBAC. See International Bioacoustics Society (IBAC)
Igloolik, 46, 47, 65; Igloolik Research Center, 47
impedance adapter, 201
imprinting experiments, Lorenz, 3
incubation call, superb fairy wren and Horsfield cuckoo, 63, 63–64
indicator bird (Indicator indicator), 293–94
indri lemur (Indri indri), 284
Industrial Revolution, 264
information, species identity in song, 20–22
information redundancy, 35
information theory, mathematical theory of communication, 33, 284
information transmission, penguins, 40–41
infrasound, 14; importance of, 338n456
inner ear, anatomical structure, 105–6
insects: acoustic sounds, 99, 102; anthropogenic noise and, 267; bodies of, 320n182; courtship and acoustic signals, 104–5; eardrum development, 102; Johnston's organ, 104; respiratory system of, 321n184; short-distance ears, 104; Sphingidae family, 102
intelligence, cognitive abilities, 79–80
intensity, sound, 12–13
INDEX 365

International Bioacoustics Conference, 142, 197
International Bioacoustics Society (IBAC), 275, 350n622
intrasexual selection, 5, 120; blue-footed booby, 248
Iqaluit, 46
Isabel Island, blue-footed booby, 245
jacaré caiman (Caiman yacare), 89, 96, 230; illustration of, 97. See also crocodiles
jaguar (Panthera onca), vocal cords, 122
Japanese great tit (Parus major minor), alarm calls of, 223–24
Japanese macaque (Macaca fuscata), 110
Jarvis, Eric, gene activity, 290
Johnston’s organ: frequency selectivity, 105; sensor in insects, 104
Jouen, François, brain perception of cries, 258–59
Jurassic Park, 7
Kgalagadi Transfrontier Park, 212
killer whale (Orcinus orca): vocalizations, 73–75. See also toothed whales
Kilner, Rebecca, begging calls of Eurasian reed warbler chicks, 54–55
king penguins (Aptenodytes patagonicus), 38–39, 40, 43, 44, 311n43. See also penguins
kinship selection, 167
Kleindorfer, Sonia, parent and offspring password, 63
Knight, Chris, origins of spoken language, 292–93
koala (Phascolarctos cinereus), 324n240; call of, 121–22
Koralek, Aaron, recording hyenas, 208
Koutseff, Alexis, recording babies, 235
Krause, Bernie: acoustic niche hypothesis, 270–71; changing habitats, 279; ecoacoustics, 275; great animal orchestra, 270; recording of orca, 333n385; recording
soundscape, 263; separating anthropophony, 264
Krebs, John, manipulative signal, 61, 62
Kreutzer, Michel: acoustics of wren population, 26; A phrase by, 125
Kroodsma, Don, on birdsong, 166
Kruuk, Hans, spotted hyenas, 204–5
Kyoto University, 223
La Ferme aux Crocodiles, zoo, 90, 110
La Fontaine, Jean de, frog, 120
Lagopus mutus. See black-headed gull (Larus ridibundus)
laryngeal hypertrophy, 122
laryngeal sac, whales, 69–70
larynx, 42, 120, 289; hammer-headed fruit bat, 122; male koala, 121–22
law of brevity, 284
learning. See vocal learning
Lévi-Strauss, Claude, 345n566
Le bourgeois gentilhomme (Molière), 341n504
Lebreton, Jean-Dominique, floating blind for black-headed gull study, 37
Lecchini, David: coralline algae and noise, 269; coral reef fish, 262
Lemasson, Alban, suffix in monkey calls, 217–18
leopard (Panthera pardus), vocal cords, 122
Leptonychotes weddellii (Weddell seal), 51. See also seals
Lévi-Strauss, Claude, 345n566

For general queries, contact webmaster@press.princeton.edu
INDEX

Levréro, Florence: interest in baby crying, 253–54; playback experiments with gorillas, 286–87; recording babies, 235; striped mice, 186, 187; vocal plasticity, 181

Lewis, Jerome, origins of spoken language, 292–93

light, speed of, 10

lightning, thunder and, 10

Lingle, Susan, deer mothers and mammalian baby cries, 236–37

lion (Panthera leo), vocal cords, 122

Lipaugus vociferans (piha): analysis of, 145–47; characterization of signatures, 144–45; communication networks, 147; illustration of screaming pihā, 141; project, 139–42; recording vocalizations of, 140–42

locusts, 1, 102

Lombard effect, 265

Lonchura striata domestica (Bengalese finch), learning to sing, 163–64

London Zoological Gardens, 214

long-distance ears, 101, 103, 320n173

Lorenz, Konrad: goose imprinting, 153; imprinting experiments, 3

Luscinia megarhynchos (nightingale), learning to sing, 164–65

Macaca fuscata (Japanese macaque), 110

Macaca mulatta (rhesus macaque), audience effect, 154

Macrotermes natalensis (termites), 198

Magrath, Robert: botanical garden detail, 220; fairy wren study model, 219

mamba, 115

mammals: mothers’ gift of caring for babies, 254–55; vocalizations, 116–17; wind instruments of, 42

mandrill (Mandrillus sphinx): biology of, 181; voice of, 181

manipulative signal, concept of, 61

Manser, Marta, meerkats, 211–12

Mariette, Mylene, adult zebra finches, 60

Marin County, California, 158

Marin-Cudraz, Thibaut, automatic counting by bioacoustic method, 261

Marler, Peter, 159, 160; bioacoustics, 151; songbirds learning to sing, 161; vervet monkeys, 214; white-crowned sparrow, 158, 266

marmosets, 254; food and, 218; vocal exchanges, 181, 328n314

Mars (planet): Martian identifying flow of human speech, 282; recording sound on, 10

marsh wren (Cistothorus palustris), song learning, 166

Mata Atlântica, 14, 15, 16, 24. See also white-browed warbler (Basileuterus leucoblepharus)

Max Planck Institute of Ornithology, Germany, 153

Max Planck Research Institute, 153

McComb, Karen, female elephant vocalizations, 201

McGregor, Peter: communication network concept, 147; Siamese fighting fish (Betta splendens), 155

McVay, Scott, humpback whale, 71

mechanoreceptor, 100

Médoc, Vincent, boat noise and freshwater fish behavior, 267–69

meerkats (Suricata suricata): alarm calls, 212–13; recruiting call, 213; referential communication, 213; vocal repertoire of, 211–13

Megachirottera, fruit bats, 191

Megaptera novaeangliae: humpback whale, 70. See also baleen whales

Melanosuchus niger: black caiman, 91–94. See also crocodiles

melatonin, sleep hormone, 171

Melospiza georgiana (swamp sparrow), 110; learning to sing, 165; vocal learning, 171

Melospiza melodia (song sparrow), learning to sing, 165

For general queries, contact webmaster@press.princeton.edu
memory, learning and, 168
Mennill, Daniel, song learning environment, 162, 163
Menura novaehollandiae (superb lyrebird): song imitation, 165; vocalizations, 126
Menzerath-Altmann law, 284
Metriaclima zebra (cichlid family), 131; illustration of, 131; sound productions, 262
Mets, David, learning to sing, 163–64
mice. See striped mouse (Rhabdomys pumilio)
Microchiroptera, bats, 191
microphone, signal propagation in forest, 28
Miller Institute, 79
Mimus polyglottos (northern mockingbird), song imitation, 165
minke whale (Balaenoptera acutorostrata), killer whale preference, 74
minnows. See European minnows (Phoxinus phoxinus)
model of sensory bias, 132; communication, 128; Lebithini crickets, 133
mole rats, vocalization, 178–79
Molothrus ater (brown-headed cowbird), vocal learning, 174
Monachus schauinslandi (Hawaiian monk seal), 51. See also seals
monkeys, semantic communication, 214.
See also bonobos; chimpanzees; primates
Morelet’s crocodile (Crocodylus moreletii), recordings of, 114
Moremi Game Reserve, 203
Morro Grande Reserve, 15, 16, 17
Morton, Eugene, acoustic structure of signal, 234
Morton’s principle (motivation-structural rules), 234, 236, 307
mosquitoes, frequency selectivity, 105
moths: bats and, 194–96; Doppler effect, 194; tympanic ears, 195
mouse, ultrasound communication, 187–89
Mouterde, Solveig: propagation experiments, 250; testing female zebra finches, 250–51
Muséum national d’Histoire naturelle, Paris, 271, 271
mutualism, 294
Myotis (greater mouse-eared bat), ultrasound, 195
mysticetes, vocal cords of, 316n109
naked mole rat (Heterocephalus glaber), vocalizations, 178
Narins, Peter, 200; ultrasonic frog, 196–97
National Research Agency, 151
Natural History (Pliny the Elder), 159
natural selection, 127
Nature (magazine), 151, 168, 170
Nature Communications (journal), 124, 181, 251
near sound field, particle oscillations, 105
Neophoca cinerea (Australian sea lion), 51
networks. See acoustic communication networks
neurobiology, language, 169–70
neutral drift, 127
New Jersey Institute of Technology, 252
Nhumirim Ranch, 88–89, 97
nightingale (Luscinia megarhynchos), learning to sing, 164–65
Nile crocodiles (Crocodylus niloticus), 90–91, 92, 95; behavioral response of mother to offspring, 115–16; cries of human babies, 237–38; emotions in vocalizations, 229–30; recordings of, 114; vocalizations of baby, 113. See also crocodiles
Noad, Michael, humpback whale song, 71
noise: animal communications and human activities, 264–65; behavior of freshwater fish and, 267–69; gull colony, 38–39; penguin colony, 39–40; penguins, 43–44; signal, 32; signal-to-noise ratio, 35. See also penguins
noisy friarbird (*Philemon corniculatus*),
regent honeyeater singing song of,
173
Nomascus concolor (gibbon), 284
Nomascus nasutus (gibbon), 284
nonhuman primates, language and speaking,
179–80
North African green frog (*Pelophylax saharica*), 111
North Atlantic right whales (*Eubalaena glacialis*), 265
northern cardinal (*Cardinalis cardinalis*),
notes of song, 169
northern mockingbird (*Mimus polyglottos*),
song imitation, 165
Norway, 32
Nottebohm, Fernando, song nuclei, 168
Nouragues Nature Reserve, French Guiana,
271, 272
Nunavut, 46
Nyamsi, Ruben Mbu, sound analysis method,
279
ocean acidification, 264
Ochypaps lophotes (crested pigeon),
communication signals, 128
Odobenus rosmarus (walrus), 48
Oenothera drummondii (beach evening
primrose), 295
Okavango Delta, 113
Old World monkeys, *Cercopithecinae*, 205
operant conditioning, Pavlov on, 80
Ophiophagus hannah (royal cobra), whis-
tling sound, 319n167
orangutan, vocal personalities, 182
orb-weaving spider (*Larinioides sclopetari-
us*), 337n448
orcas, ecotypes of, 74
Orcinus orca: killer whales, 73–75; Krause
recording of, 333n385
Orinoco crocodile (*Crocodylus intermedius*),
95, 230; recordings of, 114. See also
crocodiles
oscine birds: song transmission forming
cultures, 172–74; vocal learning, 160–61,
171
Ota, Nao, cordon-bleu’s dance, 153
Oxford University, 61, 292
Pan paniscus (bonobos), vocal cords, 122
Panthera leo (lion), vocal cords, 122
Panthera onca (jaguar), vocal cords, 122
Panthera pardus (leopard), vocal cords, 122
Panthera tigris (tiger), vocal cords, 122
Pan troglodytes (chimpanzee), vocal cords,
122
Papet, Leo: crocodilian study, 89, 95, 96;
emotions in vocalizations, 229
Papio ursinus. See chacma baboons (*Papio
ursinus*)
parakeets, 160
parental cooperation, seabirds, 36
parent-offspring communication: barn
owls, 58–59; birds, 54–57; black-headed
gull, 37–38; black redstarts, 59; bottle-
nose dolphin, 64; cowbird, 62; cuckoos,
62–63, 64; evolution of communication,
61–62; fur seals, 53–54; gulls, 57–58;
parasites and hosts, 63; seals, 51–53; wal-
ruses, 48–51; work of Charrier, 37, 46,
47; wrens, 62–63, 64; zebra finches,
60–61
Parker, Brad, 47
Parmentier, Eric: fish sound productions,
130; piranha man, 262
parrots, 160
Parus major (great tit), learning to sing, 164
Parus major minor. See Japanese great tit
(*Parus major minor*)
Passerulus sandwichensis (Savannah spar-
row), learning to sing, 162–63
passerines, learning to sing, 160
Patural, Hugues, identifying babies by their
cry, 253, 256
Pavlov, Ivan, operant conditioning, 80
Payne, Roger, humpback whale, 71, 175

For general queries, contact webmaster@press.princeton.edu
INDEX

Pelophylax saharica (North African green frog), 111
pendulum, Doppler effect, 193–94
penguins: acoustics for recognition, 38–40; adaptations to noisy environments, 41–42; Adélie (Pygoscelis adeliae), 44; background noise and communication, 39–40; emission strategies, 43–44; emperor (Aptenodytes forsteri), 39, 41, 43; king (A. patagonicus), 38–39, 40, 43, 44; parents and offspring, 47; two-voice phenomenon, 42–43; vocalization by, 42–43
Pepperberg, Irene, parrot language training, 289
Pernau, Ferdinand, song learning, 159
Perrier, Leo, ultrasound and mice, 187
Perseverance rover, microphones of, 10
Peyron, Roland, brain perception of cries, 258–59
Phascolarctos cinereus (koala), call of, 121–22
Phaeupedius europry (plain-tailed wren), male and female singing, 252
Philemon corniculatus (noisy friarbird), regent honeyeater singing song of, 173
Phoca vitulina (harbor seal), 51. See also seals
Phoenicurus ochruros. See black redstart (Phoenicurus ochruros)
Phylloscopus trochiloides (greenish warbler), song of, 172
Phylloscopus trochilus. See willow warbler (Phylloscopus trochilus)
Phyllostomus discolor (spear-nosed bat), vocal learning, 177
phylogenetic reconstructions, 168
Pierce, George, ultrasound detector, 190–91
piha: sharing songs with neighbors, 166.
See also Lipoaugs vociferans (piha)
pilot whales (Globicephala melas), 75
Pinniped Cognition & Sensory Systems Laboratory, 79, 80
Pinniped Laboratory in Santa Cruz, 209
pinnipeds, 46–47; reproduction, 47; vocal learning, 176
piranha fish (Pygocentrus nattereri), repertoire of sounds, 130
Pisanski, Kasia, vocal exaggeration, 123–24
plain-tailed wren (Pheugopedius euphris), male and female singing, 252
Pliny the Elder, 159
PNAS (magazine), 224
Poecile atricapilla (black-capped chickadee): breeding decisions, 155–56. See also black-capped chickadee (Poecile atricapilla)
pollution, 264
Pomacentridae family, 263
Pomatomus rubicep. See chestnut-crowned babbler (Pomatomus rubicep)
porpoises, 68
Poulsen, Holger, learning vocalizations, 159
pragmatics, human language, 225–26
Prat, Yosef: acoustic analysis, 283; on spoken language, 282
precedence effect, acoustic signals, 112
precursor sender model: communication, 128; model of sensory bias and, 133
predation, chick begging behavior and, 56
predators, acoustic signals, 103
Premack, David: chimpanzee work, 288; emotions in communications, 215
Prebytis thomasi (Thomas’s langurs), audience effect, 154
pressure-differential ears, frogs, 107
primates: identifying babies by their cry, 256; sequence of calls, 340n489; social intelligence, 154–55; sound communications, 181
Procnias tricarunculatus (three-wattled bellbird), learning to sing, 160
propagation media, sound waves, 13
Prunella modularis (dunnock), 272
ptarmigan. See rock ptarmigan (Lagopus mutus)
Puerto Rico, Hurricane Maria and, 278

For general queries, contact webmaster@press.princeton.edu
pulse, echolocation, 191
pulse-echo delays, echolocation, 192
Pygocentrus nattereri (piranha fish), repertoire of sounds, 130
Pygoscelis adeliae. See Adélie penguin (Pygoscelis adeliae)
quality index, 119
Reby, David: acoustic communications of deer family, 120; communication with dogs, 240; interest in baby crying, 253; larynx of koala, 121–22; mammalian voice production, 234; vocal exaggeration, 123–24; vocal production, 179
receiver, signal, 33
recruiting calls, meerkats, 213
red-breasted nuthatch (Sitta canadensis), eavesdropping, 156–57
redstarts. See black redstart (Phoenicurus ochruros)
reef ecosystem, acoustics of, 277–78
referential communication: ground squirrels and marmots, 218–19; marmosets, chimpanzees, and bonobos, 218; primate species, 217; sophisticated system, 213
regent honeyeater (Anthochaera phrygia), songs of, 174
Reichmuth, Colleen, 80; hyenas and operant conditioning protocol, 209–10; sound world of pinnipeds, 81; training dogs, 80
Rendell, Luke, sperm whale acoustics, 76–77
reproduction, pinnipeds, 47
resonator, mouth as, 108
resource, term, 86
Rétaux, Sylvie, genetics and development, 135
Rhabdomys pumilio. See striped mouse (Rhabdomys pumilio)
rhesus macaque (Macaca mulatta), audience effect, 154
ringtailed lemur (Lemur catta), referential communication system, 217
ripples, throwing pebble into pond, 9–10
ritualization, precursor sender model, 128
robins. See American robin (Turdus migratorius)
Rochais, Céline, striped mice, 335n41
Rockefeller University, 168
Rockefeller Wildlife Refuge, Louisiana, 114
rock ptarmigan (Lagopus mutus), 261; estimating population size, 260, 261; illustration of, 261
Rogers, Ginger, 153
Rosetta Stone, 3
Roulin, Alexandre, sibling negotiation hypothesis, 58
Rousettus aegyptiacus (Egyptian fruit bat), vocal learning, 177
Rousettus genus, fruit bats, 191
Rowley Island, 65
royal cobra (Ophiophagus hannah), whistling sound, 319n167
rufous-and-white wrens (Thryophilus rufalbus), vocal behavior of, 343–344n547
Rumbaugh, Duane, chimpanzee work, 288
Rybak, Fanny, short-range communication in flies, 104–5
Saccopterys bilineata (bat species), vocal learning, 177
saiga antelope (Saiga tatarica), 122
Saiga tatarica (saiga antelope), 122
Saloma, Anjara, mother-offspring communication, 73
San Francisco Bay Area, 158
Santa Cruz, 78, 79, 209
Savannah sparrow (Passerculus sandwichensis), learning to sing, 162–63
Sayornis phoebe (eastern phoebe), learning to sing, 160
Schradin, Carsten: research at CNRS, 184; striped mouse study, 185–86

For general queries, contact webmaster@press.princeton.edu
Schusterman, Ron, exploring cognitive abilities, 79–80

Science (magazine), 158, 178, 214, 282

Scolopax rusticola (woodcock): illustration of, 173; song vocalization, 172

scolopidium, 321n185

screaming piha, 143, 160; illustration of, 141; Sèbe studying, 145–47, 260; sound triangulation for, 143–44. See also Lipaugus vociferans (piha)

seabirds: breeding of, in colonies, 35–36; breeding pairs, 36

seals, 45; bearded seal (Erignathus barbatus), 51, 65–66; Galápagos baby fur seal (Arctocephalus galapagoensis), 52; illustration of fur seal, 52; parent-offspring communication, 51–53; Weddell seal (Leptonychotes weddellii), 51. See also elephant seals

Sea of Barents, 32

Sèbe, Frédéric, 327n294: songs of neighboring warblers, 23; studying screaming pihas, 145–47, 260

Sechellophryne gardineri (Seychelles frog), 108

sedge warbler (Acrocephalus schoenobaenus), repertoire size, 126

sedge wren (Cistothorus stellaris), song learning, 166–67

semantics, language, 214

semisyringes, penguins and, 42–43

sender, signal, 32

Serranidae family, 263

sexual dimorphism, 117; blue-footed booby, 245, 247–48

sexual selection: blue-footed booby, 247–48; communication signals, 126–27; Darwin on, 5; driver of evolution, 167; signal evolution, 134

Seychelles frog (Sechellophryne gardineri), 108

Seyfarth, Robert: communication systems of baboons, 226–28; vervet monkeys, 214, 215; vervets, 226

Shacks, Vince, 113, 114–15

Shannon, Claude: information theory, 33, 226, 284; strategies for encoding information, 34–35; theory development and publishing, 311n27

shearwaters: acoustic communications of, 248–49; illustration of, 249; role of females and males in acoustic communication, 250

shining bronze cuckoo (Chrysococcyx lucidus), fairy wren (Malurus cyaneus) and, 62

short-distance ears, 101, 104, 320n172

shrimp, coral reefs, 67, 68

Siamese fighting fish (Betta splendens), visual signals, 155

sibling negotiation hypothesis, 58

signal: call of baby fur seal, 53–54; communication, 2; modifications, 34; propagation, 34

signal-to-noise ratio, 35; penguins and, 43–44

Silent World, The (documentary), 67

Sitta canadensis (red-breasted nuthatch), eavesdropping, 156–57

Smithsonian Institution, 234

snail, sound of, 320n169

snakes, 16, 56, 99, 106, 115; alarm calls, 214; black mambas, 115; ultrasonic signals, 189; whistling sound of royal cobra, 319n167

social amplification of information, 199

social flexibility, striped mouse, 185

social grooming, 292

social insects, ants and termites, 198–99

social intelligence, acoustic communication networks, 154–55

social systems, rodents, 184–85

Société linguistique de Paris, 292

Soma, Masayo, cordon-bleu’s dance, 153

songbirds, model for human language learning, 159–60

song nuclei, 168
INDEX

Songs of the Humpback Whale (recording), 175
song sparrow (Melospiza melodia), learning to sing, 165
song system, 168
Sonny and Cher, 153
Sorbonne University in Paris, 69
sound(s): frequency of, 14; intensity of, 12–13; physical nature of, 9; physics of, 100–101; producing, 99. See also acoustic sounds
sound frequencies, formants, 118
sound triangulation, principle of, 143–44
sound waves, 9–10; air pressure variations, 11–12; analogy of circles in water, 10; propagation media, 13; speed of, 10; variation in pressure, 13–14
source-filter theory, 116; vocalizations, 119–20
South Africa, Goegap Nature Reserve, 183–85, 187
southern pied-babbler (Turdoides bicolor), information encoded in call, 224
South Gate Campground, 203
sparrow, 147, 160; Savannah sparrow (Passerculus sandwichensis), 162–63; song sparrow (Melospiza melodia), 165
spoon-nosed bat (Phyllostomus discolor), vocal learning, 177
species recognition, 310n12
spectacled caiman (Caiman crocodilus), 89, 95, 230; recordings of, 114. See also crocodiles
speed of light, 10
speed of sound, 10
sperm whale (Physeter macrocephalus), 75; codas of, 76–77; echolocation, 335n426; nonclick sounds, 318n147; vocalization of, 76
Spheniscidae family, penguins, 39
Spheniscus demersus (Cape penguin/African penguin), calls of, 283–84
Sphingidae family, 102
spiders: communication, 200; vibrations and sounds, 337n448
spoken language, 281; acoustic space of humans, 283; acquisition of, 291–93; attempts to teach apes, 287–89. See also language
spotted hyena (Crocuta crocuta), 204; graded vocalizations of, 206; hunting and killing prey, 204–5; influence of pheromones, 207; operant conditioning protocol for voice recognition, 209–10; recording vocalizations of, 210–11; social organization of, 205–6; social system of, 207; vocalizations of, 207–8, 211
Spottiswoode, Claire, indicator bird, 294
squamate antbird: illustration of, 25; propagation experiment, 24
stable evolutionary equilibrium, deer, 121
static, information in sound, 19
stochastic processes, 6
striped mouse (Rhabdomys pumilio): illustration of, 185; social flexibility of, 185; social systems, 184–85; ultrasound communication, 189–90; vocalizations of, 185–87
Struhsaker, Thomas, vervet monkeys, 214
Succulent Karoo Research Station, Goegap Nature Reserve, 183–84
Sueur, Jérôme: acoustic indices of biodiversity, 275–76; automating recordings, 278; development of acoustic ecology, 279; recording soundscape at biological station, 271; studying songs of cicadas and birds, 275
Sula nebouxii. See blue-footed booby (Sula nebouxii)
superb lyrebird (Menura novaehollandiae): song imitation, 165; vocalizations, 126
surucu trogon: illustration of, 25; propagation experiments, 24
Suzuki, Toshitaka, Japanese great tit signals, 223
INDEX

swallow-tailed manakin: illustration of, 25; propagation experiments, 24, 26

swamp sparrow (*Melospiza georgiana*), 110; learning to sing, 165; vocal learning, 171

Sylvia atricapilla. See Eurasian blackcap (*Sylvia atricapilla*)
syntopic species, 270

syrinx, 42; voices of the, 42

Tachycineta bicolor (tree swallow), 58

Taeniopygia guttata (zebra finches), 60

Tanjung Puting National Park, Indonesia, 280

Taylor, Peter, 114; black caiman, 91–94; Caiman House, 93

Tchernichovski, Ofer, song system, 170–71

Tel Aviv University, 282

termites: drumming carrying information, 198–99; *Macrotermes natalensis*, 198; social insects, 198–99; vibrations by, 199

Terrace, Herbert, chimpanzee training, 288

Tettigoniidae family, 190

Theunissen, Frédéric, 158, 208, 327n294; auditory memory of zebra finches, 338n465; hyena communication, 79; hyenas’ giggle, 209; learning process of birds, 170; song learning, 159; testing female zebra finches, 250–51; vocalizations of hyenas, 206, 207

Thévenet, Julie, emotions in vocalizations, 229

Thomas’s langurs (*Presbytis thomasi*), audience effect, 154

Thorpe, William, learning vocalizations, 159

three-wattled bellbird (*Procnias tricarunculatus*), learning to sing, 160

thunder, lightning and, 10

Thryophillus rufalus (rufous-and-white wrens), vocal behavior of, 343–344n547
tiger (*Panthera tigris*), vocal cords, 122
timbre, 118, 119, 308, 323n231

Tinbergen, Nikolaas, 3; animal behavior, 3–4; behavioral development question, 85, 157; development over life, 4, 6; evolutionary causes, 4, 5–6; evolutionary history, 4, 6–7; mechanisms, 4–5; ontogeny of behavior, 160; question of origins, 127; questions for sound communication, 4
toads, 1, 196
toothed whales, 68; dolphins, 68, 70, 73, 75, 77; killer whale (*Orcinus Orca*), 73–75; sound vibrations, 109; sperm whale (*Physeter macrocephalus*), 75. See also whales

Torres, Roxana, blue-footed booby, 244

Townsend, Simon, calls of babblers, 224–25

Toxostoma rufum (brown thrasher), learning to sing, 165

transduction, hearing, 100

tree swallow (*Tachycineta bicolor*), chick competition, 58

Troglodytes. See Eurasian wren (*Troglodytes troglodytes*)

Troglodytes aedon musculus (southern house wrens), noise and, 346n581

túngara frog (*Engystomops pustulosus*), 110

Turdoides bicolor. See southern pied-babbler (*Turdoides bicolor*)

Turdus migratorius. See American robin (*Turdus migratorius*)
turn-taking, vocal exchange, 286

Tursiops truncatus (bottlenose dolphin), 64
two-voice phenomenon, penguins and, 42–43

tympanic ears, moths, 195

tympanic membrane, frogs, 107

tyrannosaurus, 6, 7

Tyto alba (barn owl), 58–59

ultrasound, 14; communication, 187; definition, 189; detector by Pierce, 190–91; locating source of sound, 187–89; mouse communication, 187–89; mouse producing, 186; sound intensity, 187–88

For general queries, contact webmaster@press.princeton.edu
underwater bioacoustics: bearded seal, 66–67; cetaceans, 68–69; dolphins, 68, 70, 73, 75, 77; fish on coral reefs, 67–68; killer whale (Orcinus Orca), 73–75; sperm whales (Physeter macrocephalus), 75, 76; whale vocalizations, 70–73. See also baleen whales; whales

University College London, 292
University of Aberdeen in Scotland, 204
University of Belém in Amazon, 142
University of Brisbane, 71
University of California: Berkeley, 79, 163, 196; Los Angeles, 196; San Francisco, 163
University of Campinas in Brazil, 15, 142
University of Canberra in Australia, 219
University of Cape Town, 294
University of Copenhagen, 29, 147
University of Hokkaido in Japan, 153
University of Illinois, 63, 174
University of Lausanne, 78
University of Liège in Belgium, 130
University of Lisbon in Portugal, 131
University of Marseille, 91
University of Massachusetts, 166
University of Michigan, 205
University of Nebraska, 105
University of Neuchâtel in Switzerland, 215
University of Orsay, 104
University of Paris Nanterre, 21, 26, 125, 163
University of Pennsylvania, 215
University of Saint-Etienne, 149, 258
University of St. Andrews in Scotland, 76
University of Sussex, 201
University of Tennessee, 266
University of Turin, Italy, 284
University of Vienna, 291
University of Windsor, Canada, 162
University of Winnipeg, Canada, 236
University of Zurich, 211, 224
Uraeginthus cyanocephalus (blue-capped cordon-bleu), courtship rituals, 152–53

valence, dimension of emotions, 231, 233
Vallet, Eric, A phrase by, 125
Vergne, Amélie, crocodiles, 90, 93–94
vertebrates: amphibians, 106–8; birds, 108; categorical perception, 109–10; frogs, 107–8; inner ear structure of, 105–6; mammalian eardrum, 108–9; marine mammals, 109
vervet monkeys (Chlorocebus pygerythrus), alarm calls, 214
Vidal, Eric, Agami heron program, 91
Vielliard, Jacques: birds of South America, 15; hummingbirds, 168; on Lipaugus recordings, 142–43; recording birds, 24; on white-browed warbler, 16
Vielliard, Malu, 142
Vignal, Clementine: zebra finches, 149–52; zebra finches and stress hormone, 239–40
vocal exchanges: rules characterizing, 285–86; turn-taking, 286
vocalizations, 2; body size and, 124–25; decoding emotions of, 234; elephants, 200–202; emotions in, 229–30; fundamental frequency, 117; harmonic frequencies, 117–18; mouse communication, 186–88; side of sender, 325n252; spotted hyenas, 206; ultrasound and striped mice, 189–90
vocal learning: closed-ended learners, 164; embryo of certain birds, 330n338; hormones, 170, 171; imitation of other species, 165–66; memory and, 168; open-ended learners, 164; oscine birds, 171; oscines, 160–61; process of, 167–69; Savannah sparrow (Passerculus sandwichensis), 162–63; sensitive (sensory) period, 161; sensorimotor phase, 162; songbird diversity, 164; wrens, 166–67; zebra finches, 161–62
vocal plasticity: animals, 179; study of, 181–82
voice recognition: dynamics of, 312n55; mother-pup, 312n55, 313n57
von Frisch, Karl, 3; dance of bees, 3
walrus (*Odobenus rosmarus*), 58; illustration of, 49; parent-offspring communication, 48–51; reproduction, 47
warbler, 1. See also white-browed warbler (*Basileuterus leucoblepharus*)
water: analogy of circles in, 10; throwing pebble into pond, 9–10
waterbird (*Anthochaera chrysoptera*), regent honeyeater singing song of, 173
Weberian apparatus, ossicles transmitting oscillations, 106
Weddell seal (*Leptonychotes weddellii*), 51. See also seals
Weldele, Mary: injury of, 208; recording hyenas, 208–9
western barbastelle (*Barbastella barbastellus*), ultrasound, 195
whales: acoustic communications, 69–70; baleen whales, 68–69; blowholes, 69; humpback recordings, 175; laryngeal sac, 69–70; songs of humpback whales, 71–73; sound vibrations, 109; toothed whales, 68; vocal cords of, 316n109; vocalizations, 72–73. See also baleen whales; toothed whales
Wheatcroft, David, field crickets and noise, 267
whistling language, 289
white-browed warbler (*Basileuterus leucoblepharus*), 14, 16, 134, 273; illustration of, 17, 25; information for managing social relationships, 24; males establishing territories, 18, 20; most common at Morro Grande, 16–17; neighbor recognition, 22–23; propagation of sound in forest, 18; recognition of song over distance, 19–20
white-shouldered fire-eye: illustration of, 25; propagation experiment, 24
willow warbler (*Phylloscopus trochilus*), 272
wind instruments, birds and mammals, 42
woodcock (*Scolopax rustica*): illustration of, 173; song vocalization, 172
woodpeckers: drumming behavior in, 135–37; drumming of, 272; illustration of great spotted woodpecker, 136
wrens: forest experiment for, 27–28; noise and *Trogloides aedon musculus* (southern house wrens), 346n581; signal propagation in forest, 28; video recordings of house wren, 56; vocal behavior of rufous-and-white wrens, 343–344n547; vocal learning, 166–67. See also Eurasian wren (*Trogloides troglodytes*)
Wright, Orville, 242
Xanthocephalus (yellow-headed blackbird), 57
yellow-headed blackbird (*Xanthocephalus xanthocephalus*), 57
Zahavi, Amotz, handicap theory by, 121
Zalophus wollebaeki (Galápagos baby sea lion), 51–52
zebra finches (*Taeniopygia guttata*), 160; analysis of, 149–52; communication network in nest, 60–61; communication network of, 147–48; females distinguishing between male calls, 250–51; heat call of, 60; illustration of, 148; imitating song from loudspeaker, 170–71; learning to sing, 161–62, 164, 165; response to calls, 281; stress hormones and, 239–40; Theunissen's team, 338n465; vocal repertoire of, 148–49
Zipf's law, 284
Zuberbühler, Klaus, alarm calls of Diana monkey, 215–17