Contents

Preface ix
PARTI THE FIELD THEORY REVOLUTION 1
1 How Can We Understand Living Matter? 3
1.1 The Vital Challenge of Living Matter 3
1.2 The Active Matter Landscape 7
2 The Power of the Field 15
2.1 Origins of the Field Concept 15
2.2 A Mathematical Partner to the Field Concept: The Infinity Principle 21
2.3 Turning Materials into Fields 27
2.4 Biological Fields and Defects 35
3 How to Build a Field Theory: The Example of Diffusion 43
3.1 What Is a Continuum Theory? 44
3.2 Defining Flux Vectors 46
3.3 Mass Flux and Conservation of Mass 48
3.4 The Theory of Diffusion as a Paradigm in the Field Theory of Matter 53
4 Using Field Theory: Adventures in Diffusion 60
4.1 What Do We Do with Field Equations Once We Have Them? 60
4.2 The All-Important Solution for a Point Source 62
4.3 Mass Conservation and Diffusion in Three Dimensions 76
4.4 Solving Field Equations for Unreal Biological Shapes: Cubes, Cylinders, and Spheres 82
4.5 Solving Field Equations for Real Biological Shapes: Beyond Cubes, Cylinders, and Spheres 86
PART II THE CLASSICAL FIELD THEORIES OF MATTER 93
5 Continuum Theory of Heat Flow 95
5.1 A Field Theory for Transfer of Heat 95
5.2 Two for the Price of One: Fourier's Law and Heat Transfer 96
5.3 Cooking and Cooling 99
5.4 The Heat Equation and Dissipation in Living Cells 106
5.5 The Cooling of the Earth and the Theory of Evolution 108
6 Adding Reaction to Diffusion 116
6.1 The Idea of Positional Information and Body Plans 116
6.2 Biological Nonconservation 118
6.3 Expanding the Field Theory Palette: Reaction-Diffusion Equations 118
6.4 Closing the Loop: Measuring Morphogens 123
6.5 Tackling Morphogen Dynamics 125
6.6 The Turing Mechanism and Spatial Patterning 129
6.7 Turing's Numbers: From Bits to Digits 140
7 Mathematics of Fields: From Notation to Calculation 151
7.1 Beyond Scalar Fields 151
7.2 New Ways of Writing Scalars, Vectors, and Tensors: Indicial Notation 152
7.3 Einstein's Labor-Saving and Intuition-Driving Notational Move 153
7.4 Multiplying Vectors and Tensors 155
7.5 Calculus with Fields: The Gradient, Divergence, and Laplacian Operators 157
7.6 Calculus on Fields Foreshadowed: Putting the Mathematics of Fields in Action 162
8 Accounting for Forces and Momentum 165
8.1 Force Is Tricky! 165
8.2 Conservation of Linear Momentum 166
8.3 The Stress Tensor: A First Look 169
8.4 Continuum Theory of Force Balance 172
8.5 The Key Governing Equation of Continuum Mechanics 176
8.6 Measuring Stress 177
9 Continuum Theory of Elastic Matter 182
9.1 The Springiness of Matter: Elasticity Revealed 182
9.2 Matter Is Tensorial: The Strain Tensor 186
9.3 The Theory of Linear Elasticity 191
9.4 From Point Forces to Any Forces: One Solution to Rule Them All 198
10 Continuum Theory of Fluid Matter 207
10.1 On the Friction of Fluids 207
10.2 Conservation of Mass All Over Again 207
10.3 Matter Is Tensorial: The Rate of Deformation Tensor 211
10.4 The Theory of a Newtonian Fluid 212
10.5 Different Limits of the Navier-Stokes Equations 217
10.6 A 250-Year-Long Case Study: Cytoplasmic Streaming in Chara 219
10.7 Pipe Flow in Urinating Animals 229
11 Putting Elasticity and Viscosity Together: Viscoelasticity 237
11.1 Damping Out Springiness: The Physics of Unaccounted-For Degrees of Freedom 237
11.2 A Toy Model of Springiness Coupled to Viscous Dissipation 239
11.3 Viscoelasticity: Experimental Protocols and Fundamental Models 240
11.4 Cell Junctions as Viscoelastic Objects 242
11.5 Measuring Stress: Springs in Unexpected Places 251
PART III THE RESTLESS AND TANGLED FIELDS OF BIOLOGY 257
12 The Secret of Life: Escaping Equilibrium 259
12.1 What Makes Living Materials So Different? 259
12.2 Entropy and Nonequilibrium Steady States 262
12.3 Who Pays? A Hierarchy of Biological Batteries 275
13 Making Flux Active: Motors, Pumps, and Enzymes 279
13.1 On Being Active 279
13.2 Adding Activity into the Continuum Theory Protocol: Motors on Microtubules 281
13.3 Pumping Sugars across a Membrane against a Concentration Difference 288
13.4 Active Fluxes in Chemical Cycles: Harnessing ATP for Phosphorylation-Dephosphorylation 297
14 Making Stress Active: Flows from Molecules to Tissues 304
14.1 Flow and Polarity Establishment in C. elegans Embryos 304
14.2 Constructing a Thin-Film Active Fluid Theory for Developing Embryos 305
14.3 Cortical Flows and Gastrulation in the Red Flour Beetle 311
15 Field Theory by Symmetry: Flocks, Herds, and Schools 316
15.1 Active Matter Goes Big: Collective Motions of Animals 316
15.2 A Minimal Toner-Tu Theory of Flocking and Herding 317
15.3 The Toner-Tu Flocking Theory by Symmetry 322
15.4 Toner-Tu Goes Dimensionless: Gaining Intuition 325
15.5 Scenes from The Lion King: Solving the Toner-Tu Equations in the Plane 329
16 Minimization by Competition: Gut Folding as a Problem in Living Elasticity 341
16.1 Buckling and Biological Form 341
16.2 The Mechanics of Beam Bending and Sheet Stretching 344
16.3 Gut Folding as an Elastic Energy Competition 348
17 Simplification through Superposition: Tissue Flows during Gastrulation 353
17.1 Gastrulation in Embryogenesis 353
17.2 Hydrodynamics of Gastrulation in Drosophila 353
17.3 Stokes Equations and One Solution to Rule Them All: The Stokeslet 355
18 Statistical Description of Structure: Organizing the Cytoskeleton 363
18.1 Entangled Fields as a Route to Self-Organization 363
18.2 Correlation Functions and Order Parameters 365
18.3 Self-Organization in Chara 368
18.4 Coupling Flow and Orientation 369
18.5 Using Active Matter Theory to Explore Self-Organization 376
19 Order and Singularities in Fields: Cell Alignment and Nematic Dynamics 379
19.1 Two-Dimensional Nematic Collectives 379
19.2 Hydrodynamic Theory of Tissues: Nematohydrodynamics. 392
19.3 Topological Defects in Active Nematics 400
20 Onward 407
20.1 The Sea Lion Green Function 407
20.2 Active Matter and the Frontiers of Physics and Biology 408
20.3 Wonder and Opportunity 409
Index 413

How Can We Understand Living Matter?

> There is something at work in my soul, which I do not understand.
> -Mary Shelley, Frankenstein

1.1 The Vital Challenge of Living Matter

The world around us is teeming with life. A lone traveler sits upon a cliff top, looking down upon the glassy waters that gave the Pacific Ocean its name. Our traveler notes a large brown patch of fish, undulating slowly under the curious eye of a sea lion swimming in their midst, as seen in figure 1.1. As the sea lion moves, the shape of the school of fish deforms, sometimes frothing as the predator speeds into the school. The traveler wonders, What are the rules that govern the shape of the fish school? How far within the school does the impinging sea lion's motion propagate? Science begins with curiosity about the mysteries of the world around us. Perhaps no mystery crowds in upon us as much as does the mystery of life itself.

Probably for as long as humans have been trying to understand the world around them, it has been clear that the living parts of the material world are qualitatively different from their inorganic counterparts. Ancient cave paintings already convey the dynamism of living beings with hunters in pursuit of their prey, illustrating a world vastly different from the rock upon which those images are painted. Alongside these commonplace observations have run a parallel scientific instinct to understand what they mean and how those phenomena work. What gives living matter its dynamic and malleable nature? Are biological materials truly governed by the same physical laws as lifeless, inorganic ones? A catchall concept that has been invoked and refuted over and over again is "vitalism," the idea that living matter is endowed with some special "force" that lies outside the purview of the laws of inanimate matter.

Though we skip over centuries of experimentation and scientific thinking on what makes living matter so different from its inorganic counterparts (such as the work of William Harvey on the active pumping of blood through the human body), our starting point is the microscopic observations of cytoplasmic streaming by the Italian priest and natural scientist Bonaventura Corti. Figure 1.2 shows the title page and a few surviving drawings from Corti's 1774 book on fluid flow within cells of the green alga Chara, a phenomenon we return to several times throughout the book as one of our principal case studies in the field theory of materials. The central mystery is very easily stated and parallels the questions that surrounded the nature of motion in nonliving matter that began with the thoughts of Aristotle on the relation between force and velocity. It led to the discredited idea that heavy objects fall faster than light objects. From there, our understanding of dynamics made major leaps forward with Galileo's

Figure 1.1
The wonder of a sea lion swimming through a huge collection of fish. The large brown blob that covers almost the entire field of view is a school of fish. To the left, a lone sea lion has "indented" the school by swimming into it. The fish have moved out of the way of the frolicking sea lion, and as it continues to swim, there is an everchanging zone of clearance in the vicinity of the graceful predator. From the video "Mesmerizing Moment Sea Lion Swims through Giant School of Fish." Photograph by Nick Holton.

Figure 1.2
Historical origins of the study of active matter. (A, B) The Italian natural scientist Bonaventura Corti is credited with the first observation of cytoplasmic streaming, or active intracellular flow, for his descriptions of flow within cells of the green alga Chara in 1774. (C) Streaming patterns in a Chara braunii cell. (A) and (B) from Osservazioni microscopiche sulla Tremella e sulla circolazione del fluido in una pianta acquajuola, by Bonaventura Corti (Apresso G. Rocchi, 1774). (C) from "Plasmolysis in Characeae" by T. Hayashi and E. Kamitsubo (Shokubutsugaku zasshi, 1959, vol. 72: 853-854) (C) The Botanical Society of Japan.
(A)

OSSERVAZIONI MICROSCOPICHE
SULLATREMELLA
e sulla circolazione
D E L F L U I D O
in UnA PiANTA ACQUAJUOLA
dellabate
BONAVENTURA C O R T I

Professore di Fisica nel Collego di Regcio.

IN LUCCA 1774.
 Appresso Giuseppe Rocemi Con Approvazione.
(B)

(C)

At nearly the same time as Corti's investigation of cytoplasmic streaming, another Italian, Luigi Galvani, puzzled over similar mechanistic questions in biological dynamism. In Galvani's case, it was the phenomenon of muscle action that focused his experiments, with one of the most famous insights being his ability to animate the muscles of dead frogs when in contact with an electrical source, as seen in figure 1.3. In his publication De viribus electricitatis in motu musculari commentarius, translated in English as Commentary on the Effect of Electricity on Muscular Motion, he dubbed this phenomenon "animal electricity," revealing the deep puzzles attending the inner workings of electricity that remained in the eighteenth and early nineteenth centuries. Indeed, another Italian, Alessandro Volta, adopted a view in which animal electricity should be viewed as just another manifestation of the broad phenomenon of "metallic electricity," foreshadowing centuries of debate about the extent to which a given phenomenon is uniquely lifelike. Some readers will recognize in the work of Galvani and Volta the seeds of an early classic of science fiction, Frankenstein by Mary Shelley. Muscles have been much more deeply understood as a molecular active matter phenomenon in which highly ordered molecular assemblies of motors and filaments can be made to spontaneously contract in the presence of ATP, as seen in figure 1.3(B, C).

In the nineteenth century, the study of metabolism unearthed deep insights into the way that living organisms perform chemical reactions to convert molecules from some raw form, such as a sugar, into usable substrates to provide both energy and building blocks for cells. Once again, the specter of vitalism reared its head, this time with Pasteur representing the perspective that fermentation, for example, was part of the life process revealing something special and different about the chemical transformations within living organisms, while the Buchner brothers argued that the fermentative process involved the ordinary goings-on of enzyme-mediated catalysis. As with the Galvani-Volta debate, viewed from the modern perspective, this debate seems now almost surprising since in a sense both parties to the debate had a correct but incomplete picture of what was really happening. Specifically, Pasteur was right that fermentation is indeed a key part of the story of how yeast cells make a living, harvesting energy from their environment to give rise to their apparent vitalistic qualities. On the other hand, the Buchner brothers were also correct in a sense that is played out over and over again in increasingly complex ways in the biochemist's lab to this day. Specifically, though the enzyme reactions that power the life of a yeast cell are part of what makes it lifelike, those same reactions can be carried out in a test tube with the only necessary living thing nearby being the human that pipetted in the relevant reagents.

These musings on vitalism have continued unabated in one form or another until the present day. Over 75 years ago, in a famed series of popular lectures that then became the inspiring book What Is Life?, Erwin Schrödinger formulated the active matter question as "How can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry?" More recently, a turn of the millennium opinion piece by Kirschner, Gerhart, and Mitchison on "molecular vitalism" asked the same questions, musing thus: "We do not question the importance of genetics, nor dispute the role of DNA as the blueprint for all the components of living systems, but we think it worth asking to what extent the postgenomic view of modern biology would convince a nineteenth century vitalist that the nature of

(C)

Figure 1.3
The development of understanding of muscle contraction. (A) The experiments of Luigi Galvani on the electrical stimulation of muscle twitching. Using a dead frog, Galvani discovered that he could use an electrical current to induce muscle twitching, lending credence to the idea that nervous impulses are electrical. Adapted from Galvani's book De viribus electricitatis in motu musculari (1792). (B) The work of Albert Szent-Györgyi showed that contraction of muscle fibers could be induced by ATP. The uncontracted fiber is shown here. (C) Muscle fiber after addition of ATP. Parts (B) and (C) adapted from "Discussion" in Studies from the Institute of Medical Chemistry University of Szeged, edited by A. Szent-Gyorgyi (vol. I, pp. 67-71), New York: Karger, 1941.

life was now understood. How close are we to understanding how a single cell functions or how an embryo develops? If the answer is not so close, will true understanding of living systems come from further annotating the database of genes, or must we explore the physicochemical nature of living systems?" In the same playful vein, figure 1.4 shows the motion of a keratocyte cell that has had its nucleus removed. At this point, the cell has become a physicochemical, active matter engine whose behavior raises precisely the kinds of questions that a field theory of living materials should be able to address.

All told, we hold that these questions about what makes living organisms life-like that have persisted across the generations remain fascinating and critical. Further, as we argue in this book, we believe that the fledgling field of active matter provides one route to better answering these questions.

1.2 The Active Matter Landscape

In recent decades, broad efforts to understand the mathematical and physical basis of living matter, reconciling theory and experimental data, have come together under the modern moniker active matter. These efforts ask how complex biological structures and phenomena emerge from rules governing individual energy-consuming agents, and seek to answer that question in firm mathematical and predictive language. For example, the 1995 work of Vicsek and then Toner and Tu on collective motions of animals sought to understand the emergence of two-dimensional ordered structures (flocks) by active agents (birds) and is considered by some the modern birth of active matter theory. At a million-fold smaller length scale, the work of Leibler, Nédélec, Surrey, and others in the late 1990s on self-organizing systems of molecular motors and filaments, like those shown in figure 1.5, illustrated the wondrous complexity of structure that emerges even from minimal, well-characterized active agents, where a mixture of microtubules, motors, and ATP suffice to drive the rich and beautiful structures seen in the figure. These kinds of clever in vitro experiments have been carried to an ever-increasing level of sophistication to the present day.

Figure 1.4

Keratocyte motion without a nucleus. (A) Image of keratocytes as they appear during motion. (B) Cellular fragments from keratocytes. The cell fragment at the top is nonpolarized and sessile. The cell fragment at the bottom is polarized and moving. (C) Distribution of myosin (red) and actin (cyan) in a motile fragment. Adapted from Verkhovsky, Svitkina, and Borisy (1999).
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Figure 1.5

Motors orient and move microtubules to build different structures. As motor complexes walk on microtubules, they can reorient, slide, and cluster microtubules. The same molecular components (motors, microtubules, and ATP) can build different macroscopic structures. In the example shown, the microtubule structure that emerges is isotropic and uniform in density when few motors are present. As the ratio of motors to microtubules increases, the system self-organizes into vortices. At an even higher ratio of motors to microtubules, the system self-organizes into a different steady-state structure: asters. Adapted from Nédélec and Surrey (2001) (top) and Surrey, Nédélec, Leibler, and Karsenti (2001) (bottom).

Such simplified active systems with defined, microscopic energy-consuming agents, such as molecular motors or swimming bacteria, have proved a fertile testing ground for the development of active matter theories. These theories can explain the emergence of a very diverse set of phenomena, including topological defects, turbulent states, and intricate flows. While it can be tempting to confuse the study of these fertile active matter systems with the subject of active matter itself, we note that insights gained in these microscopic models have implications across much broader swathes of biology. Analogously, the subject of genetics is broader than the study of Drosophila, despite that system's utility in deciphering general genetic principles. The same active matter spirit and tools used in the microscopic context have been applied to understand the behavior of wildebeest herds crossing the Serengeti, the collective movement of cells in tissues, the contraction of cytoskeletal nets in starfish oocytes, and how flows across worm embryos contribute to developmental patterning, as shown in figure 1.6.

At this point, the subject of active matter has a vast and exciting literature, showcasing beautiful phenomena, incredibly clever experimental approaches, puzzling observations and measurements, and a variety of interesting models and theoretical principles. As such, as is noted by many authors attempting to survey a field, we cannot hope to even scratch the surface of this vast literature.

Here we provide a feeling for the different kinds of theoretical ideas that have been set forth in broad-brush strokes and point the reader to the Further Reading section at the end of the chapter.

Theoretical approaches to active matter often fall within two categories: discrete "agent-based" approaches and field-theoretic continuum approaches, as illustrated with a cytoskeletal example in figure 1.7. Discrete theories keep track of individual agents as they move or act over time. At each step forward in time, the properties of an individual agent (speed, position, state) update according to governing rules or equations. Continuum theories, on the other hand, zoom out to describe the system's properties of interest (speeds, concentrations, states) and their time evolution at a coarse-grained level. A continuum theory may keep track of a field of velocity vectors, each of which is a summary of the velocity of many individual agents. At each step forward in time, these velocity vectors update according to governing field equations, which are derived from fundamental physical laws and from a knowledge of the system's material properties. For example, as shown in figure 1.7, the changing organization of microtubules can be described either as a continuum of orientations (headless vectors) or at finer-grained resolution, tracking the movement of each individual microtubule. Readers are invited to explore a number of excellent reviews to get contrasting perspectives on the many achievements of the active matter field in the Further Reading section at chapter's end.

In the mid-1990s, the field of active matter can be said to have been actively born as a result of the surprising results of a discrete simulation model of moving active entities such as shown in figure 1.7, but this time in the context of large-scale animal motions. Though this work has now seen action in many different contexts, we are excited about its interpretation in the context of animal herding or bird flocking. The idea of these pioneering numerical studies was to construct an array of active agents that live within a square domain of dimension L and move at constant speed at all times. However, as a result of measuring the orientations of their neighbors, there is an update rule for figuring out the orientation of the flocking animal at the next time step that is of the form

$$
\begin{equation*}
\theta(t+\Delta t)=\langle\theta(t)\rangle_{r}+\Delta \theta . \tag{1.1}
\end{equation*}
$$

The symbol $\langle\theta(t)\rangle_{r}$ means taking the average of the orientations of all the other agents within a radius of interaction r. We discuss these dynamics more deeply in chapter 15, (p. 316) where we will see that this update rule reflects a kind of

Figure 1.6
Active matter in context. Two classic examples of active actin networks. (Left) A contractile actin network in a starfish oocyte collects chromosomes scattered around this large cell, positioning them for efficient spindle assembly. (Right) Directional flows of actin and myosin at the cortex of a one-cell C. elegans embryo asymmetrically distribute PAR proteins, which break the embryo's anteriorposterior symmetry.

Figure 1.7
Inside the time machine. The dynamics of active matter can be thought of from either the continuum or discrete perspective. (A) Time steps in the evolution of the vector field describing orientation of filaments. (B) Time steps in the evolution of individual filaments. Adapted from Surrey, Nédélec, Leibler, and Karsenti (2001).
angular democracy, but for now we content ourselves with the simple concept highlighted above. Once the angle has been determined, the new position of each agent can be calculated using the time machine by recourse to the simple dynamical law

$$
\begin{equation*}
\mathbf{x}_{i}(t+\Delta t)=\mathbf{x}_{i}(t)+\mathbf{v}_{i}(t) \Delta t . \tag{1.2}
\end{equation*}
$$

This simply tells each agent to go to a new position, which is gotten by adding the displacement $\mathbf{v}_{i}(t) \Delta t$ to its previous position. The term $\Delta \theta$ is a "noise" term that means that the angular democracy, like all democracies, is imperfect. Though the rule is to reorient precisely based on averaging over neighbors, the noise term perturbs that precise angular reorientation. The results of these kinds of simulations are shown in figure 1.8. As is often the case in statistical physics, we characterize the state of the system by evaluating key averages. The absolute value of the normalized velocity is given as

$$
\begin{equation*}
v_{a}=\frac{1}{N v}\left|\sum_{i=1}^{N} \mathbf{v}_{i}\right| \tag{1.3}
\end{equation*}
$$

and serves as a readout of herding behavior since, as is clear from the equation, when each animal points in a random direction, the parameter v_{a} is nearly zero, while for the case in which there is coherent motion, it has a nonzero value. Some of our readers might immediately think of the behavior of magnets, where the magnetic state is revealed by the presence of a nonzero magnetization corresponding to the sympathetic alignment of the different spins. That analogy holds here as well, though we must part with that analogy in recognizing that this is a dynamical effect and not an equilibrium phenomenon.

A series of results of this Vicsek model are shown in figure 1.8. From one frame to the next, the governing parameters that are being tuned are the density of agents, $\rho=N / L^{2}$, and the magnitude of the noise term introduced above $\Delta \theta$. Intuitively, we suspect that as the density gets sufficiently high without too much noise to perturb it, the ordered state will emerge as seen in figure 1.8(D). Though the coming chapters almost exclusively focus on the continuum field theory approach to problems in active matter, it is critical to remember that often the kinds of discrete approaches described briefly here provide mechanistic, numerical experiments that help us see how systems work in ways that the largely phenomenological field theory approaches may not.

Examples like those given above and the series of case studies from across scales that occupy center stage later in the book together demonstrate how the rise of the subject of active matter and its corresponding theories have served as a source rich in biological insights. We focus the opening chapters of our book on a pedagogical introduction to the continuum theory approach and its application to living systems. We hope to (1) convince our readers of the power of field theories, such as elasticity and fluid mechanics, which emerged shortly after Newton showed the world how to study dynamics; (2) provide the tools, building from the ground up, for life scientists to use field theory approaches to study their living systems; and (3) take the reader on a tour of the wonder of living matter, glimpsed through the natural language of mathematics.

Figure 1.8
Simulation results from the Vicsek model. The arrowheads characterize the current direction of motion, and the squiggly lines behind each arrowhead show the agent's trajectory over the last 20 time steps. Adapted from Vicsek, Czirók, Ben-Jacob, and Choen (1995) © 1995 The American Physical Society.

Chapter Summary

This, our first chapter, sets the stage for all that follows. At the most fundamental level, the questions addressed here focus on what gives living organisms their lifelike properties and what kind of theoretical machinery is required to describe those properties. In this chapter, we began with a caricature of the way that the scientific perception of active matter has emerged over the millennia, with questions ranging from the apparent perpetual motion of flows within single cells to the twitching of frog legs in the presence of an electric potential. The point of view adopted here is that we are living through a wonderful and exciting period of discovery in which categories of matter that have traditionally fallen outside the purview of physics are now beginning to be considered in earnest. As the book unfolds, certain themes and principles appear over and over-ideas such as the coarse graining of discrete agents to yield field variables, the continuum theory protocol that shows us how to formulate field theories of matter both inanimate and living, and the ways in which symmetry can help us understand the terms that appear in those field theories. The chapters that follow aim to give our readers the tools to turn their imaginations loose in response to the mystery and wonder of the living world.

Further Reading

This list gives only a smattering of the many important and interesting places our readers can turn to learn more about the topic of our book.

Barnett, JA (2000). A history of research on yeasts 2: Louis Pasteur and his contemporaries, 1850-1880. Yeast 16: 755-771. Barnett wrote a wonderful series of articles on the place of yeast in our understanding of biochemistry, genetics, and cell biology, only two of which are highlighted here. This article examines the contributions of Pasteur, who argued that the metabolic reactions of cells were a critical part of maintaining the state we call alive.

Barnett, JA (2001). A history of research on yeasts 3: Emil Fischer, Eduard Buchner and their contemporaries, 1880-1900, Yeast 18: 363-388. This article takes the point of view of those scientists studying metabolism who rejected the vitalistic perspective and instead argued that the reactions of metabolism are just that-ordinary chemical reactions between different molecules.

Gross, P, Kumar, KV, Grill, SW (2017). How active mechanics and regulatory biochemistry combine to form patterns in development. Annu. Rev. Biophys. 46: 337-356. This excellent article shows how ideas from active matter physics can be used specifically in the context of developmental patterning.

Keener, JP (2021). Biology in Time and Space: A Partial Differential Equation Modeling Approach. American Mathematical Society, Providence, RI. This great book complements what we have done here.

Kirschner, M, Gerhart, J, and Mitchison, T (2000). Molecular "vitalism." Cell 100: 79-88. This inspiring article is full of interesting ideas and perspectives. As
the quote in the chapter illustrates, these authors believe that there is something more to explaining the apparently vitalistic aspects of living organisms than appealing to the genome sequence.

Marchetti, MC, Joanny, JF, Ramaswamy, S, Liverpool, TB, Prost, JM, Rao, M, and Simha, RA (2013). Hydrodynamics of soft active matter. Rev. Mod. Phys. 85: 1143-1189. This article is in many ways the definitive statement of the various problems and approaches in the field of active matter. The level is very high and thus the article is a difficult read. Our hope is that, after reading our book, much of this great article will be accessible to our readers.

Mukherjee, S (2022). The Song of the Cell: An Exploration of Medicine and the New Human. Scribner, New York. This book, while not explicitly about active matter, gives an excellent overview of the wide and varied lives of cells. Amusingly, we discovered after submission of our own book that Mukherjee also found the notion of the restless cell a fitting one, since that is the title of one of his chapters.
Phillips, R (2000). Crystals, Defects and Microstructures. Cambridge University Press, Cambridge, UK. This book, written by Rob long ago, represents the power of continuum thinking in the context of nonliving materials. Specifically for the purposes of the present book, ideas from the continuum theory of solids might help our readers see how the same approaches work in biological contexts.

Pismen, L (2021). Active Matter within and around Us: From Self-Propelled Particles to Flocks and Living Forms. Springer, Cham, Switzerland. This thoughtful book is full of insights into active matter phenomenology and how to think about it. The author turns his back on his natural inclination to talk about the subject quantitatively, giving a captivating narrative reflecting his very worthwhile take on the subject.

Prost, J, Jülicher, F, and Joanny, JF (2015). Active gel physics, Nat. Phys. 11: 111-117. This article is another interesting commentary by some of the most thoughtful creators and practitioners of the active matter art.

Rall, JA (2018). Generation of life in a test tube: Albert Szent-Györgyi, Bruno Straub, and the discovery of actin. Adv. Physiol. Educ. 42: 277-288. This article gives a compelling story of the work of Albert Szent-Györgyi in working out the molecular basis of muscle action, revealing the "active matter" character of the process.

Ramaswamy, S (2010). The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1:323-345. This excellent article gives the perspective of one of the founders and masters of the field. We consider it mandatory reading.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

References

Nédélec, F, and Surrey, T (2001). Dynamics of microtubule aster formation by motor complexes. C. R. Acad. Sci. 2: 841-847.

Surrey, T, Nédélec, F, Leibler, S, and Karsenti, E (2001). Physical properties determining self-organization of motors and microtubules. Science 292: 1167-1171.

Verkhovsky, AB, Svitkina, TM, and Borisy, GG (1999). Self-polarization and directional motility of cytoplasm. Curr. Biol. 9: 11-20.

Vicsek, T, Czirók, A, Ben-Jacob, E, and Choen, I (1995). Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75: 1226-1229.

Abbott, Edwin
Flatland, 101
action at a distance
Newton's opinion, 18
active fluid theory
for red flour beetle, 312 f
active flux
constitutive model, 287 f
and nonequilibrium, 280 f
active stress, 403
in cytoskeleton, 280f
relation to $Q_{i j}, 391$
activity
in active matter systems, 279-281
through boundary conditions, 229
coming from differential growth, 342
how to introduce in field theory, 280f
of myosin motors in changing junction lengths, 243f
of myosin motors and streaming in Chara, 222
actomyosin contractility
energy cost in ATP units, 309
and gastrulation, 260 f
actomyosin cortex
and active stresses, 304
and cell-cell junction dynamics, 244f
and cell-cell junctions, 240f
defined, 305 f
number of motors, 311f
actomyosin flow, 9 f
in Chara, 370f
actomyosin network, 16 f
ADP
reservoir, 298 f
advection-reaction equation
for motors on microtubules, 286
age of the Earth, 108-113
amazing
GI Taylor mixing experiment, $219 f$

AND logic
and constraint on coupled
dynamics, 289
symporter, 289 f
Anderson, Philip
"More Is Different", 27
animal electricity, 5
antenna model
for microtubule depolymerization, 287f
for motors on microtubules, 285 f
approximation
one of the slickest tricks in physics, 217
Archimedes
and the area of the circle, 22 f
and the infinity principle, 22
areal moment of inertia
and animal legs, 343 f
aster
microtubules and motors, 8 f
ATP
as biological battery, 276 f
chemical potential, 300
and phosphorylation reaction, 297
reservoir, 298f
ATP hydrolysis
and active stress, 307
and being alive, 259-302
converted into concentration jump, 269
cost of protein synthesis, 274
and dissipation in cortical flows in
C. elegans, 311
and emergence of structure at larger scales, 261f
and fluid motion in Chara, 229
and hidden degrees of freedom, 238
and local heating, 107
and maintaining homeostasis, 99
and maintenance of membrane potential, 296 f
and microtubule-motor systems, 8 f and muscle contraction, $6 f$
and posttranslational
modifications, 297
roughly $20 \mathrm{k}_{B}$ T worth of free energy, 269, 277
and temperature change, 107 f
ATP synthase
as active agent, 261
bacteria
colony growth, 399 f
Myxococcus xanthus, 400-404
nematic order, 380 f
bacterial flagellar motor, 261
balance laws
for activator and inhibitor in Turing reaction-diffusion system, 131f
conservation of energy and heat equation, 97 f
conservation of linear momentum and force balance, 172
and conservation of "stuff" and relation to divergence, 159
and continuum theory protocol, 45 f
and derivation of Navier equations, 185f
and derivation of Navier-Stokes equations, 213
and derivation of Turing reaction-diffusion equations, 132
force balance in C. elegans embryo, 306
introduced as a kind of accounting, 51
linked to constitutive equation, 57
bar-tailed godwit
Reynolds number, 218
battery
biological, 276f
beam bending
energy, 346
geometry, $345 \mathrm{f}, 346$
microscopic interpretation of energy, $346 f$
neutral axis, 345 f
beam theory, 344-351
as performed by Galileo, 183f
work of Galileo, 182
bell curve
solution to diffusion equation, 198
bending energy, 347f
circular hoop of radius $R, 348$
of gut tube, 349f
bending stiffness
and membrane elasticity, 185f
Bessel functions
avoided, unfortunately, 82
as basis functions for cylindrical geometries, 86
and FRAP of circular cell, 61f
Bicoid
diffusion in embryo, 48
number of molecules per cell, 124
and positional information, 116-129
Bicoid gradient
computed using finite element method, 130f
estimate of flux, 54
introduced, 116
measured in fly embryo, 123f
big data
and need for conceptual
knowledge, 363
bladder
and urination, 231f
blastocoel
pressure within, 178
blastula
defined, 165
blood flow
Reynolds number, 218
blue whale
and heat transfer, 99
Bmp
and Turing patterns, 141
Boltzmann constant
defined, 268
and entropy equation, 262
introduced, 267
Boltzmann distribution
introduced, 267-268
and $\mathrm{k}_{B} \mathrm{~T}, 267$
Boltzmann law
equation for, 268
fundamental law of statistical mechanics, 268
boundary conditions
defined, 60
for velocity as way to introduce activity, 279
boundary layer
defined, 231
Prandtl treatment of, 233f
thickness, 334f
Toner-Tu theory compared to Newtonian fluid, 332
and Toner-Tu theory of pipe flow, 332, 333f, 333-335
urethra, 232
Brown, Robert
the motion that bears his name, 43
Browne, Ethel
experiments on grafting in hydra, 36
Brownian motion, 43
relevant to heat flow, 96
buckling
of animal legs, 343f
of elastic tube, 344f
of gut tube, 344f
bulk modulus
defined, 195
and volume change, 185 f
C. elegans
and active matter, 9 f
active stresses and gradients, 157
actomyosin cortex, 305 f
phase separation in the embryo, 101
symmetry breaking in embryo, 304-311
calculus
on fields, 159 f
ordinary and partial derivatives, 51-52
calibration
of force measurements, 202
caloric
hypothesis of heat as a fluid, 363
Carnot cycle, 300
cascade
of energy in active matter systems, 261f
catshark
fins to limbs, 146 f
cell-cell junction
dynamics of, 242-251
Chara
actin self-organization recovery after drug treatment, 368 f
comparison of theory and
experiment for flows, 229 f
and cytoplasmic streaming, 3 , 4 f , 364f
and self-organization hypothesis for actin ordering, 368-377
terms in equation for fluid orientation coupling, 374
theory of cytoplasmic streaming, 219-229
velocity measured using magnetic resonance velocimetry, 224f, 229f
what it looks like, 220f
charge
topological, 400
chemical potential
ATP, 300
defined, 269f, 269
and equilibrium with respect to mass transport, 262
as free energy difference, 269
for sugar and ions, 290
used to examine ATP hydrolysis, 300
chemoattractant gradient
and solution to diffusion equation, 83
Chlamydomonas reinhardtii
flagellar amputation experiments, 281, 282 f
circle
area using the infinity principle, 22
circulation
and Maxwell's equations, 21
circulation of vector field
defined visually, 21f
coarse graining
chemical potential as a coarse-grained particle reservoir, 300
defined informally, 15
to obtain director field, 382 f
competition
between elastic energy and adhesion energy in nucleosomes, 341
in dimensionless parameters, 215
free energy, 343
gut tube bending and mesentery stretching, 349f
completing the square
classic trick, 67
concentration
rule of thumb for cells and embryos, 85
concentration field
defined, 46
defined pictorially, 46 f
concentration gradient, 84 f
bacterium near a pipette, 84-85
computed from diffusion equation, 84
concepts
new ones needed, 363
conservation law
and continuum theory protocol, 45
deepest principles in all of physics, 51
equation for conservation of "stuff", 50
equation for energy conservation in one dimension, 97
equation for mass conservation in one dimension, 50
linear momentum, 166-169
local form, 50
mass, 46-51
conservation of linear momentum equation in local form, 169
equations in full generality, 177
and stress tensor, 166-170
conservation of mass
equation for reaction-diffusion system, 120
equations for Turing activator-inhibitor system, 132
and Toner-Tu theory, 318
conservation of stuff, 50
constitutive law
for active flux, 286, 287f
for active stress, 307
contractility and active stress, 306f
defined, 53
for different kinds of flux, 56 f
for diffusion, the equation, 54
equation for Fourier's law of heat conduction, 98
equation for a Newtonian fluid, 213
Fick's law for diffusion, 53f
Fourier's law of heat conduction, 97f
Hooke's law for elasticity, 185f
introduced, continuum theory protocol, 24f, 46
introduced, continuum theory protocol for active flux, 285 f
introduced, heat equation, 97 f
for isotropic linear elastic material, 192f
for linear elastic material, 195
for Newtonian fluid, 213f
for Newtonian fluid and C. elegans, 310
and partial differential equations of field theory, 45f
and partial differential equations of mathematical physics, 25
phenomenological, 53
simplest version of Hooke's law, 192
stress-strain, 196
three-dimensional version of Fick's law, 78
continuity equation, 211
and incompressibility, 211
and incompressible fluid, 225
interpretation, 210 f
the mathematics, 210
and nematohydrodynamics of epithelium, 393
continuum theory protocol
applied to active flux of motors on microtubules, 285 f
applied to diffusion equation, 46-58
applied to heat equation, 97 f
applied to linear elasicity, 191-198
applied to reaction-diffusion equation, 119 f
applied to thin-film active fluid, $306 f$
applied to Turing
reaction-diffusion system, 131f
introduced, 24f
linear elasticity, 185f
Newtonian fluiid, 208f
contractility
and active stress, 307
actomyosin driven by RhoA, 246
and gastrulation, 260 f
and myosin density, 307
correlation function
defined, 365-391
and ordering in active matter, 365
for surface normals, 367f, 367
tangent-tangent, 366f, 367
cortex
actomyosin, defined, 305f
Corti, Bonaventura
cytoplasmic streaming, 3
$\cosh x$
defined, 122
Coulomb's law
and action at a distance, 18
creep test
strain over time, 241f
and viscoelasticity, 241
Crick, Francis
and theory of diffusion, 44f
cross product, See vector product
curvature
of a beam, 345 f, 346
Cuvier, Georges
the organism as a furnace, 409
cylindrical coordinates
and divergence, 225
and Laplacian, 225
cytoplasmic streaming
in Chara, 364f
discovery, 3
seems like perpetual motion, 279
theory of, 219-229
D. melanogaster
gastrulation, 166
Darwin, Charles
controversy on the age of the Earth, 108-113
defect
in active nematics, 400-404
in hydra, 37-39
visualized through microscopy in hydra, 38f, 40 f
degree of disequilibrium
and constitutive laws, 55
density field
across scales, 16 f
depolymerization
of microtubules, 284f
derivative
generalized to vector and tensor fields, 157-160
and "infinitely fine subtraction", 23
introduced pictorially, 52f
detailed balance
broken, consequences for rate constants, 296
broken in flows of Chara, 229
broken in sugar transport up a gradient, 295
defined, 279-281
schematic of rate constants, 280 f
diffusion constant
defined in terms of Fick's law, 54
units of, 54
diffusion equation
and continuum theory protocol, 24 f
derivation, 53-58
diffusion equation (cont.)
Green function, 64
introduced, 25
one-dimensional equation, 57
same as heat equation, 97 f
solution for FRAP problem, 82
solution for initial concentration distribution, 67-70
solution for point source, 62-67
steady-state solutions for spherical geometries, 82-85
diffusivity
thermal, 98, 100
dimensionless variables
comparing elastic bending and stretching energies, 350
competing energies in gut folding, 348
flows in C. elegans cortex, 308
and Navier-Stokes equations, 215-217
position in active nematic, 392
relaxation time and cell junctions, 245
and Toner-Tu theory, 325-329
Dirac delta function
defined, 62
spike of concentration, 66
director
as average, 382 f
defined, 380
distribution function, 382 f
in microtubule-motor systems, 401f
simple examples, 388 f
disequilibrium
free energy difference to measure, 297
dislocation
as topological defect, 401
dissipation
and biological organization, 260 f
concentration gradient, 266f
and drag force, 172
from fluid flow, 309
free energy, 266 f
and missing degrees of freedom, 246
distribution function
for nematic order, 381, 382f, 392f
divergence
cylindrical coordinates, 225
defined, 77
example, 159 f
indicial notation, 160
introduced, 78f, 80
and local form of conservation laws, 77
of stress tensor, 163
of stress tensor for Newtonian fluid, 215
of vectors and tensors, 161f
of velocity vector, 162
divergence operator
defined, 77
divergence of tensor, 163
dot product, See scalar product
drag force
on falling sphere, 170-172
Drosophila embryo
and morphogen gradient, 121-129
drug treatment
of Chara to disrupt subcortical actin, 368 f
dry active matter, 322
dummy variable
and Green function, 69
dynein
and intraflagellar transport, 281
E. coli
colony growth, 399
Earth
as a half space, 110 f
measured temperature vs. depth, 112 f
Eaton, Suzanne
in honor of her clever measurement of stress, 167 f
eigenvalues
defined, 138
of a matrix, 138-140
eigenvectors
defined, 138
of a matrix, 138-140
Einstein, Albert
and work on A and B coefficients, 179
elastic modulus
of membrane, 350
elastic modulus tensor isotropic material, 195
elasticity
theory of, 182-351
in zero, one, two, and three dimensions, 185f
electricity
animal, 5
embryogenesis
and thin-film active matter theory, 304-311
emergence defined, 28
entropy
as central concept, 262
conceptual rather than factual knowledge, 363
defined, 262
as a function of number of molecules in system, 264f
increase and the second law of thermodynamics, 260
lattice model, 263-269
and nonequilibrium steady states, 262-275
entropy production
diffusion down a gradient, 266f, 271f, 272
entry length
pipe flow, 231
equation of continuity, 210
and Toner-Tu theory, 318
equilibrium
as maximizer of entropy, 262
error function
defined, 111
estimate
collisions per second of sugar molecules, 293-294
cooking time of turkey, 99-101
of cost to bend a beam, 346
dissipation in embryonic flows, 309-311
energy of a photon, 277
flux in morphogen gradient, 54-55
free energy associated with a concentration gradient, 269
molecules per cell in morphogen gradient, 124
Reynolds number in gastrulation process, 355
spacing between molecules in a continuum, 29-30
thermal energy scale, 267-268
time for fluorescence recovery after photobleaching, 88
urine flow in the urethra, 234
Euler, Leonhard
"Discovery of a New Principle of Mechanics", 17f
and origins of continuum mechanics, 15

Euler formula

relating exponentials, cosines, and sines, 64, 134

$F=m a$

role in all of mechanics, 96
Faraday, Michael
discovery of electromagnetic induction, 363
and origins of field concept, 18
fatigue test
of viscoelastic materials, 242
Fermi function
to create a step forcing function, 249
ferrofluid droplets
and measurement of stress, 253
as tool for measuring stress, 252-254
Feynman, Richard
field concept, 43
and Maxwell's theory as greatest achievement of nineteenth century, 363
sameness of disparate phenomena, 95
Fick's law, 53-54
applied to reaction-diffusion problems, 120
applied to Turing reaction-diffusion equations, 132
compared to Fourier's law, 97f
equation, 54
intuition for, 53 f
as motivation for constitutive law for Newtonian fluid, 214
relation between flux and driving force, $56 f$
as special case of free energy relaxation dynamics, 291
three-dimensional generalization, 78
field equations
of continuum mechanics, 176-177
by intuition, 319 f
from symmetry, 323f
field lines
Michael Faraday figures, 19f
field theory
quantum, 21
field variables, 60
fingers
and Turing patterns, 143f
finite element mesh
for keratocyte, 87 f
for photobleached keratocyte with $x^{2}=2 D t, 88 f$
shape functions, 87 f
for Toxoplasma gondii, 87f
finite element method
3D simulation of dynamics of Bicoid gradient, 130f
applied to gastrulation in the fly, 361f
applied to Toner-Tu theory of flocking, 329
Bicoid gradient, 128-129
solving diffusion equation, 86-90
fins to limbs
catshark, 146 f
evolutionary transition, 145
flagella
amputation experiments in Chlamydomonas reinhardtii, 282
in Chlamydomonas reinhardtii, 283f
Flatland
Edwin Abbott, 101
flexural rigidity, 348
flocking
starlings in Rome, 317f
Flory-Huggins theory
and phase separation in living organisms, 101
flow
in gastrulation, 361f
in red flour beetle, 313 f
fluid orientation coupling
in Chara, 374f
fluorescence recovery after photobleaching, 58
and connection to diffusion equation, 60
experiment explained, 82
of keratocyte with equation, 88 f
solution for circular cell, 61f
flux
defined, 46-48
equation in case of linear momentum, 167
fluid, 209 f
of heat, $47 \mathrm{f}, 56 \mathrm{f}$
of linear momentum, 47f, 56f
of mass, $47 \mathrm{f}, 56 \mathrm{f}$
and Maxwell's equations, 20
of stuff, 50, 169
flux of vector field
defined visually, 21f
flux vector
indicial notation, 152
Fokker-Planck equation regret, 410
force
balance of, 174f
Formula 1
for cells, 202 f
Fourier, Joseph
establishing the heat equation, 64
Newtonian moment for the study of heat, 96
Théorie Analytique de la Chaleur, 67f, 107
Fourier coefficients
finding, 74
Fourier series
applied to Stokes equations, 225
applied to diffusion equation, 72-75
applied to dynamics of morphogen gradient, 125-128
applied to Stokes equations, 228
basis functions, 86f
introduced, 73
Fourier transform
and Fourier's book, 67f
inverse, 65
and solution of diffusion equation, 64-67
and solution of Navier equations, 198-200
and solution of Stokes equations, 356-359
Fourier's law
equation, 98
of heat conduction, 96-98
introduced, 97 f
as motivation for constitutive law for Newtonian fluid, 214
relation between heat flux and temperature gradient, 56f
Frankenstein
making life, 5
FRAP, See fluorescence recovery after photobleaching
free energy
of ATP hydrolysis, 269, 277
and Bicoid gradient, 273
and chemical potential, 269
competition between two strain energies in gut, 343
of concentration gradient, 266
free energy (cont.)
cost to maintain ATP and ADP reservoirs, 298 f
cost of phosphorylation reaction, 301
cost of protein degradation in fly embryo, 273 f
cost of protein production in fly embryo, 273f
cost for symporter, 296f
defined, 263
defining equation, 262
difference as measure of degree of disequilibrium, 297
dissipation rate in fly embryo, 274
as driving force for symporter, 292 f
elastic and nematohydrodynamics, 394
energy-entropy competition, 343
Flory-Huggins theory for phase separation, 101
Gibbs, 263
Gibbs and calculus of equilibrium, 263f
going uphill, 297
Helmholtz, 263
of ideal gas, 263
justification for use in nonequilibrium problems, 293
ligands in solution, 269
and maintenance of morphogen gradient, 121
minimization as alternative to force picture, 197
minimization by relaxation dynamics, 291
minimization and second law of thermodynamics, 263 f
minimization and sugar transport, 289
of molecular partitioning, 265 f
and moving a molecule, 262
nematohydrodynamics, 394
phosphorylation cycles, 302
rate of change, 266f, 271f
rate of protein production in fly embryo, 275
relaxation, 397f
for tensor order parameter, 396
and transport down a gradient, 289f
two-dimensional version for nematohydrodynamics, 396

French flag model
and positional information, 116
FRET
used to measure signaling during chemotaxis, 83
friction
in active matter theory of
Myxococcus xanthus, 404

Galileo
beam theory, 182, 183 f
and buckling of animal legs, 343 f
inclined plane, 252
observations of heavenly bodies, 43
Galvani, Luigi
animal electricity, 5
gastrulation
and actomyosin contractility, 260 f
defined, 165
in embryogenesis, 353
flows during, 354f
hydrodynamics, 353-361
of red flour beetle, 312f, 312
in urchins, frogs, and flies, $166 f$
Gaussian
as solution to diffusion problems, 63f
Gaussian integral, 67
favorite trick, 71
geometric moment, 347
Gibbs, Josiah Willard
and chemical potential, 300
law of entropy maximization, 262, $263 f$
Gibbs free energy, 263
Ginzburg-Landau theory
and Toner-Tu theory, 318
gliding motility assay, 321f
gradient
defined graphically, 57f
and deformations, 211
example of pressure in atmosphere, 159f
as a new kind of derivative, 158
operator introduced, 55
of scalars and vectors, 160 f
velocity, 211
gradient vector
indicial notation, 158
Green function
for 2D Stokes equations, 359
for diffusion equation, 62-75
for diffusion equation in one dimension, 63 f
for diffusion problem, 61f
for elastic half space, 201-205
for heat equation, 107-108
for heat equation and age of the Earth, 110
humpback, 407
intimidating, 60
for Navier equations of linear elasticity, 198-205
sea lion indentation school of fish, 407-408
solution for diffusion equation by integration, 70f
for Stokes equation, 355-359
growth
differential between gut tube and mesentery, 342
Grzimek, Bernhard
and wildebeests, 339
Gunawardena, Jeremy
and pathetic thinking, 113
gut folding
analysis using elasticity theory, 348-351
in the chick, 344 f
comparison between theory and experiment, 351f

Harold, Franklin
living things are strange, 279
Harvey, William
flow of blood as active phenomenon, 3
heat
concept to distinguish from temperature, 363
flux, 47f
heat equation, 98
applied to internal heating of animals, 101-106
applied to internal heating of cells, 106-108
derivation, 96-99
same as diffusion equation, 97 f
for a spherical mouse with internal heat source, 105
in three dimensions, 99
heat source
mathematics of, 99
Heifetz, Jascha
discipline of practice, 60
Helmholtz free energy, 263
herd
of wildebeests, 317 f

Hertz, Heinrich
and contact mechanics, 407
hidden variables
dissipation and missing degrees of freedom, 238
Hilbert, David
great problems in mathematics, 410
Hooke's law, 345
apparatus used to discover it, 184f
for cell junction, 243
and indicial notation, 155
and mass-spring system, 239-240
and springiness of matter, 182-186
and stretching of mesentery sheet, 349
hydra
nematic order fields and defects, 35-39
hydrodynamics
for tensor order parameter, 393f
hydrogen atom
of a subject, 220
idealization
of the Earth as an infinite half space, 110 f
key material, 207
identity matrix
and stress tensor, 178
Ig Nobel Prize
urination duration, 230
image charge
analogy with fictitious Earth half space, 111
incompressibility
and divergence of velocity, 225
and equation of continuity, 211
expressed in Fourier space, 357
and gastrulation, 356
and hydrodynamics, 215
intuition, 212
nematohydrodynamics of epithelium, 393
and summation convention, 162
indicial notation
example of position vector, 152 f , 152
summation convention, 152-155
infinity principle
and curved beam, 344
importance in mathematics, 21-27
initial conditions
defined, 60
integral
and "infinitely fine addition", 23
integration by parts
and Fourier transform of diffusion equation, 65
integrin
and anchoring blastoderm and viteline envelope, 313
interpolation
finite elements, 86
intraflagellar transport
introduced, 281
schematic, 283f
isotropy
defined, 196

Jacobian
defined, 133
junction
cell-cell, 242-251
dynamics due to myosin activity, 243f
$\mathrm{k}_{B} \mathrm{~T}$
calculated at room temperature, 267-268
as natural unit of physical biology, 267
thermal energy scale, 277
value in joules, 267
Kelvin, Lord
age of the Earth, 108-113
boldly idealizes the Earth as an infinite half space, 110 f
Kelvin-Voigt model
of viscoelastic response, 240 f
Kepler's equal areas law
proved using Newton's elementary geometry, 26 f
Kepler's laws of planetary motion
Newton's proof, 23, 25f
keratocyte
moving without a nucleus, 7f
realistic photobleaching problem, 86-90
kinesin
and intraflagellar transport, 281
and nematic ordering of microtubule-motor systems, 402f
kinesin-8
and depolymerization of microtubules, 284f

Kronecker delta
defined, 155
and elastic modulus tensor, 195
and Stokeslet, 357
and stress in Newtonian fluid, 215
kymograph
microtubule depolymerization, 284f
showing intensity of motors, 287f
Lamé constants
defined, 195
Laplace's equation, 82
spherical symmetry, 83
Laplacian
cylindrical coordinates, 225
defined, 161f
and diffusion, 80
introduced, 80
and three-dimensional heat equation, 99
and Toner-Tu theory, 322
and Turing reaction-diffusion equations, 132
velocity field, 221
laser
and curiosity-driven research, 179
laser ablation
fly wing, 167f
method to measure stress, 165
lattice model
defined, 265
diagram, 264f
entropy of ligands in solution, 269
length control
of cytoskeleton, 282 f
of microtubules by depolymerizers, 285f
Leonardo da Vinci
turbulent eddies, 213f, 261
Levi-Civita symbol
defined, 156
depicted pictorially, 157f
light
as biological battery, 276f
linear momentum
defined, 167
linear stability analysis
introduced, 132
for Turing reaction-diffusion system, 133-138
logarithms
multiplication rule, 265, 270
Taylor expansion for, 271
logarithms (cont.)
as a tool for mapping hard problem to easy problem, 64
macrostate
defined, 264 f
magic, 69
magnetic resonance velocimetry, 223
comparison to theory, 229 f
for measuring velocity in Chara cells, 224f
mass conservation
equation of continuity, 210f, 210
of incompressible fluids, 162
local form in three dimensions, 77
in Toner-Tu theory, 318
material time derivative
defined, 173f
explained, 176-177
for tensor order parameter, 393
material volume element
criteria, 31
defined, 25
and stress, 165
mathematics
strategy for problem solving, 64
matrix
$3 \times 3,155$
and dynamical system, 163
eigenvalues and eigenvectors, 138-140
Jacobian, 133
multiplication, 154 f
to represent state of material, 34
for stress tensor, 170
Maxwell, James Clerk
treatise on electricity and magnetism, 20 f
Maxwell viscoelastic model, 240f
for cell junction length, 245
Maxwell's equations relevance to natural world, 18
Mayer, Julius Robert
and discovery of conservation of energy, 118
McClintock, Barbara
a feeling for the organism, 355
mean free path
and collisions of sugar molecules, 293
defined and calculated, 30
illustrated for sugar molecules, 294f
membrane potential
as biological battery, 276f
memory
of tangent vector direction, 365
Mermin-Wagner theorem
and Vicsek model, 316
Messy Math
divergence, 80
Fourier series, 72
Fourier transform, 64
Fourier transform to solve Navier equations, 199
gradient, 80
Laplacian, 80
ordinary and partial derivatives, 51
separation of variables, 72
solution of diffusion equation, 64
solving the Stokes equation in
cylindrical coordinates, 225
solving the Stokes equation for a point source, 356
variance in diffusive processes, 70
method of images
analogy with Kelvin solution for cooling of earth, 111
microstate
defined, 264 f
missing degrees of freedom and dissipation, 238
molecular spacing, 29
moment
geometric, 347
moments of probability distribution defined, 383
momentum
defined, 167
momentum flux
and stress tensor, 168 f
morphogen gradient 3D using finite elements, 130 f
Bicoid protein in the fly embryo, 123f
and Drosophila embryo, 121-129
dynamics using finite elements, 129f
and Fick's law, 120
steady-state solution, 122
time to create steady state, 125-129
morphogenesis
defined, 242
murmuration
of starlings, 316
muscle
and ATP consumption, 6 f
myosin
and contractility in C. elegans embryo, 309f
and fluid motions in Chara, 222
number of motors in actomyosin cortex, 311f
myosin density
in E. elegans embryo, 305f
Myxococcus xanthus
and nematohydrodynamics, 402
nabla
gradient operator, 55
Navier equations
and continuum theory protocol, 185f
derivation, 192f, 194-198
direct notation, 197
introduced, 44, 191
Navier-Stokes equations, 215
and continuum theory protocol, 24f, 208f
derivation of, 212-215
from force balance and Newtonian fluid constitutive equation, 213 f
introduced, 44
nematic epithelium
hydrodynamic theory, 393f
nematic order
bacteria, 380f
in growing bacterial colony, 403f
of microtubule-motor system, 402f
NIH 3 T3 cells, 380f
polar vs. nematic, 381 f
nematohydrodynamics
applied to microdomains in bacteria, 400f
described mathematically, 392-400
neutral axis, 345 f
defined, 344
Newton, Isaac
on the absurdity of action at a distance, 18
Newton's law of viscosity, 56f
Newton's second law of motion, 96, 171
for mass-spring system, 239
Newtonian fluid
as idealized fluid response, 207
Newton's experiments, 214
theory of, 212-215
NIH 3T3 cells
nematic order, 380 f
no-slip boundary condition
and boundary layer theory, 231
and pipe flow using Navier-Stokes equations, 221
and Toner-Tu theory, 332
nonequilibrium
defined, 275
nonequilibrium steady state (NESS)
introduced, 120
normal-normal correlation function, 367
notation
and the path to intuition and creativity, 164
remembering context, 226
nucleosome
and beam bending, 341
ommatidia
in the fly, 341
oocyte
starfish, 8
optical trap
and measuring force, 202f
optogenetics
and cell-cell junction length, 250f
control of actomyosin contractility, 247f
order parameter
for Chara, 363
dynamics of, 395f
introduced, 363-383
scalar, 387
simple examples for tensor order parameter, 388 f
tensor describing active nematics, 381-391
three-state disorder model, 391f
organizer
Spemann-Mangold, 37
orientation field
across scales, 16 f
orthogonality
of basis functions in Fourier series, 73
orthonormal vectors, 154
outer product, See tensor product
P granule, 101
PAR proteins
and anterior-posterior patterning in C. elegans, 304
parameters
in Toner-Tu theory, 330-331
partial derivative
introduced pictorially, 52f
partial differential equation
Arnold Sommerfeld and centrality in physics, 95
as an update rule, 26
particle imaging velocimetry, 34
in Drosophila embryos, 354 f
and fly embryo during gastrulation, 354
pathetic thinking
and Kelvin on age of the Earth, 113
perpetual motion
apparent, 219
phonon
as collective excitation, 329
phosphorylation reaction
as an example of an active process, 297-302
and reservoir, 298 f
pipe flow, 221f
as hydrogen atom of fluid
mechanics, 220
and Toner-Tu theory, 332f
and urination, 230, 231
planetary orbits and triangles, 25
Pliny the Elder
and starlings flying "in troops", 316
Poiseuille flow, 222, 230
Poisson effect, 346
Poisson ratio
introduced, 204
polar order
polar vs. nematic, 381 f
polymerization motor, 261
positional information, 117f
and Francis Crick, 43
introduced, 116
and magnitude of morphogen
fluxes, 54
and reaction-diffusion equations, 116-129
and Turing mechanism, 147f
power consumption
in ATP units, 99
rule of thumb for animals, 99
Prandtl, Ludwig
and boundary layer, 233f
pressure
in blastocoel, 178
Toner-Tu theory, 321
Priestley, Joseph
and experiment on respiration, 262
principle of superposition
and Fourier series, 73
and Green functions, 67
projection operator
defined, 375
introduced, 157
protonmotive force, 263
and ion gradient, 296f
quadratic formula
and eigenvalues of 2×2 matrix, 140
quantum field theory not in this book, 21
Quincke rollers how they work, 338 f
radius
of curvature, 344
ratchet
and cell junction rearrangements, 242
rate of deformation tensor, 211-212
defined, 211
example, 212 f
example of shear flow, 212
matrix form for shear flow, 212
and nematohydrodynamics, 394
reaction-diffusion equation, 120 continuum theory protocol, 119 f
discussion of, 118-129
steady-state solution, 120-122
for Turing mechanism, 132
reference configuration
of solid bodies, 207
refrigerators
and nonequilibrium steady state, 276
a supreme achievement, 299
regeneration
work of Abraham Trembley on hydra, 35f
relaxation dynamics
equation for sugar transport, 291
on free energy landscape, 397 f
recoil in tissues after laser ablation, 166
for scalar order parameter, 396-398
reservoir
in context of ATP, 298f
Reynolds number bar-tailed godwit, 218
blood flow, 218
equation for, 215

Reynolds number (cont.)
examples, 215-218
for flow in Chara algae cells, 223 f
Olympic swimmer, 218
swimming bacterium, 217
and turbulence, 218
urine, 218
RhoA
and actomyosin contractility, 247f
rotation
and strain tensor, 188
rule of thumb
for concentrations in cells and embryos, 85, 124
for cost of n-fold concentration gradient, 269
for density of water and air, 29
In $10 \approx 2.3,269$

Saha equation
equilibrium in a star, 292
scalar
as field variable, 33 f
scalar field
example, 34 f
scalar product, 153
defined, 154f
and projection of vectors onto coordinate axes, 153f
summation convention, 154
scaling
and wavelength and amplitude of gut folding, 351f
schools of fish, 317 f
Schrödinger, Erwin, 408
and active matter question, 5
and fluctuations, 32
and inert state of equilibrium, 259
scratch-and-sniff approach
and continuum equations, 45 f
and equations for self-organization, 373-376
and Fick's law, 53
and Toner-Tu equations, 317
sea lion
Green function, 408 f
second law of thermodynamics
as destiny, 275
self-organization
of actin filaments in Chara, 368-377
of actomyosin in Chara, 370f
separation of time scales
and equilibrium ideas in biology, 292
separation of variables
applied to diffusion equation, 72-75
applied to Stokes equations, 225-228
reaction-diffusion equation, 125
shape functions
finite elements, 86
illustrated in one dimension, 86 f
illustrated in two dimensions, 87 f
shear flow, 212
Shelley, Mary
Frankenstein, 5
shooting method
for solving differential equations, 333
Simba
and stampede of wildebeests, 330
$\sinh x$
defined, 122
Sommerfeld, Arnold
and partial differential equations of mathematical physics, 95
source term
in heat equation, 98,99
Sox9
and Turing patterns, 141
specific heat
of meat, 100
speed
of cells, 202f
Spemann-Mangold organizer predated by Ethel Browne's work on hydra, 37
spherical absorber
as model of a bacterium, 82
spherical coordinate
for heat equation, 105
spherical harmonics
as basis functions for spherical geometries, 86
spherical mouse, 86
spherically symmetric defined, 83
spindle
and energy cascade, 261f
starfish
oocytes and actin, 8
starlings
of Rome and Pliny the Elder, 316
statistical mechanics
fundamental law, 267-268
steady state
contrasted with equilibrium, 120
solution for morphogen gradient, 122
and solution of reaction-diffusion equation, 118-122
Stentor, 99
Stokes equations, 218
applied to gastrulation in the fly embryo, 355
in cylindrical coordinates, 225
solution for point force, 355-359
Stokeslet
applied to gastrulation in the fly embryo, 354
Green function for Stokes equation, 355-359
strain
areal, 350
in bent beam, 345
equation in a bent beam, 346
strain energy
for beam bent into circular arc, 347
of elastic sheet, 350
strain energy density
for a beam, 346
equation for, 198
strain rate tensor
defined, 211
strain tensor, 186-191
equation for, 187
shear, 190
torsion, 190 f
two-dimensional examples, 188 f
uniform expansion or compression, 190
stress
active, 403
measurement using ferrofluids, 252-254
stress-strain relation, 196
stress tensor
and balance of forces, 174 f
defined pictorially, 167f
equation for linear elastic material, 193
equation for thin-film active material, 306
and force balance, 172-176
as a matrix, 170
measurement in 2D by laser ablation, 167f
measurement in 3D by ferrofluid droplets, 253-255f
measurement of, 179
as momentum flux, 168f, 169-170
Newtonian fluid, 213
stretching energy
and mesentery sheet, 349f
Strogatz, Stephen
infinity principle, 23
sugar
as biological battery, $276 f$
transport across cell membrane, 289f
summary statistics
for distribution functions, 383
summation convention
defined and utilized, 153-155
sunflower
pattern, 341
symmetry
terms allowed by, 322
symmetry breaking
and morphogen gradient, 116
symmetry protocol
introduced, 317
symporter
as AND gate, 289f
T. castaneum
flows during morphogenesis, 314f
red flour beetle morphogenesis, 311-314
Tailleur, Julien
on nonequilibrum physics, 275
tangent-tangent correlation function, 366, 367f
tangent vector
polymer, 365
Taylor, GI
reversible mixing of a fluid, 219 f
temperature
distinguished from heat, 363
temperature of the Earth
as a function of depth, 112 f
as a function of depth for different assumed ages, 112 f
tensor
divergence of, 161f
as field variable, 33 f
mathematics of, 151-163
moment of inertia, 16
order parameter, 385
rate of deformation, 211-212
strain, 186
stress, 165, 167f
tensor field
example, 34 f
explained qualitatively, 151
tensor product, 157
defined, 157f
of two vectors, 376
thermal conductivity
defined, 98
of meat, 100
units of, 98
thermal diffusivity, 100
and conductivity, specific heat, and density, 98
defined, 96
of tissues, 100
units of, 98
thermal energy
scale of $k_{B} T, 277$
three-state disorder model
for scalar order parameter, 391
time machine
update rule for dynamics, 10 f
Tolkien, J.R.R.
and dragons in your calculations, 116
Toner-Tu theory, 316-339
equation for minimal model, 318 , 322
terms in equations, 319 f
tools
philosophy of their use, 77
topological charge
of defects, 400
topological defects
in active nematics, 400-404
in bacterial layers, 405 f
in hydra, 38f, 37-39, 40f
in Myxococcus xanthus, 402
torsional strain, 191f
total derivative
defined, 173 f
explained, 176-177
tourism, numerical
using finite element method, 87
Toxoplasma gondii
finite element mesh, 87f
traction force microscopy
data, 205f
and elastic Green function, 201-205
method introduced, 203f
transpose
of a matrix, 170
Trembley, Abraham
and regenerative properties of hydra, 35f
triumvirate
of idealization, simplification, and abstraction, 230, 342
Trollope, Anthony
labours of spasmodic Hercules, 165
Truesdell, Clifford on continuum mechanics, 17
Turing, Alan
and pattern formation, 130
Turing instability
introduced, 116
periodic patterns, 131f
Turing mechanism
conceptual introduction, 117 f
derivation, 129-145
and positional information, 147f
Turing network
three-noded, 141f
Turing pattern
architectures, 144f
and fingers, 143 f
and formation of digits, 142 f
simulation of Sox9, Bmp, and Wnt, $146 f$
turkey
time to cook, 100
Ulam, Stanislaw
non-elephant biology, 275
update rule
description of orientation field for Chara, 375
diffusion equation as, 26
for Turing pattern of Sox9, 142
as a way of thinking about dynamics, 10 f
urethra
and urination, 231f
urination
data on duration, 230, 231f
urine
Reynolds number, 218
variance
for diffusion equation, 70-71
vector
as field variable, 33 f
mathematics of, 151-163
vector field
example, 34 f
vector product, 155
geometric illustration, 156 f
indicial notation, 156
velocity
in C. elegans embryo, 309f
velocity boundary conditions
for introducing activity, 279
velocity field
across scales, 16 f
Vicsek model
analogous terms in Toner-Tu theory, 321
and origins of theory of active matter, 7
results, 11f
and two-dimensional order, 9-11, 316
virial expansion
analogy for flocking theory of
Toner-Tu, 321
viscoelastic deformation
of a tissue, 238 f
viscoelasticity
constitutive law, 45 f
defined, 237
experiments and models, 240-251
viscosity
in cytoplasm, 228
defined, 213
units of, 214
of water, 214
vitalism
molecular, 5
vortex
microtubules and motors, 8 f
vorticity tensor
defined, 394
whales
and their evolution, 116
wildebeests
density on the Serengeti, 326
speed measurement, 318
stampede in The Lion King, 330
and Toner-Tu theory, 320f
Wnt
and Turing patterns, 141
Wolpert, Lewis on gastrulation, 353 positional information, 116
Woodhouse-Goldstein theory for actin self-organization, 363-377

worm

one-dimensional, 86
X. laevis
gastrulation, 166
Yosemite Falls
and energy cascade, 260
Young, Thomas
course on all of physics, 193
introduction of modulus, 193
Young modulus
and beam bending, 346
and beam buckling, 343f
and bending, 185f
of biological materials, 193f
and flexural rigidity, 348
and Hooke's law, 192
introduced, 193
measured using ferrofluid droplets, 255f
for PDMS, 205f
and viscoelasticity, 253
zebrafish
measuring mechanical properties, 255f

