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INTRODUCTION

11 WHAT I5 ECONOMETRICS?

The term “econometrics” is believed to have been crafted by Ragnar Frisch (1895-1973) of Norway, one of the
three principal founders of the Econometric Society, first editor of the journal Econometrica, and co-winner
of the first Nobel Memorial Prize in Economic Sciences in 1969. It is therefore fitting that we turn to Frisch’s
own words in the introduction to the first issue of Econometrica to describe the discipline.

A word of explanation regarding the term econometrics may be in order. Its definition is implied in the
statement of the scope of the [Econometric] Society, in Section I of the Constitution, which reads: “The
Econometric Society is an international society for the advancement of economic theory in its relation to
statistics and mathematics. . . . Its main object shall be to promote studies that aim at a unification of the
theoretical-quantitative and the empirical-quantitative approach to economic problems. . ..”

But there are several aspects of the quantitative approach to economics, and no single one of these
aspects, taken by itself, should be confounded with econometrics. Thus, econometrics is by no means
the same as economic statistics. Nor is it identical with what we call general economic theory, although a
considerable portion of this theory has a defininitely quantitative character. Nor should econometrics be
taken as synonomous with the application of mathematics to economics. Experience has shown that each
of these three view-points, that of statistics, economic theory, and mathematics, is a necessary, but not by
itself a sufficient, condition for a real understanding of the quantitative relations in modern economic life.
It is the unification of all three that is powerful. And it is this unification that constitutes econometrics.
(Frisch, 1933, pp. 1-2).

This definition remains valid today, although some terms have evolved somewhat in their usage. Today, we
would say that econometrics is the unified study of economic models, mathematical statistics, and economic
data.

In the field of econometrics there are subdivisions and specializations. Econometric theory concerns
the development of tools and methods, and the study of the properties of econometric methods. Applied
econometrics is a term describing the development of quantitative economic models and the application of
econometric methods to these models using economic data.

1.2 THE PROBABILITY APPROACH TO ECONDMETRICS

The unifying methodology of modern econometrics was articulated by Trygve Haavelmo (1911-1999) in
his seminal paper “The probability approach in econometrics” (1944). Haavelmo argued that quantitative
economic models must necessarily be probability models (by which today we would mean stochastic). Deter-
ministic models are blatently inconsistent with observed economic quantities, and it is incoherent to apply
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deterministic models to nondeterministic data. Economic models should be explicitly designed to incorpo-
rate randomness; stochastic errors should not be simply added to deterministic models to make them random.
Once we acknowledge that an economic model is a probability model, it follows naturally that an appropriate
tool to quantify, estimate, and conduct inferences about the economy is the powerful theory of mathematical
statistics. The appropriate method for a quantitative economic analysis follows from the probabilistic con-
struction of the economic model. Haavelmo’s probability approach was quickly embraced by the economics
profession. Today, no quantitative work in economics shuns its fundamental vision.

While all economists embrace the probability approach, there has been some evolution in its implemen-
tation.

The structural approach is the closest to Haavelmo’s original idea. A probabilistic economic model is
specified, and the quantitative analysis performed under the assumption that the economic model is correctly
specified. Researchers often describe this as “taking their model seriously.” The structural approach typically
leads to likelihood-based analysis, including maximum likelihood and Bayesian estimation.

A criticism of the structural approach is that it is misleading to treat an economic model as correctly
specified. Instead, it is more accurate to view a model as a useful abstraction or approximation. In this case,
how should we interpret structural econometric analysis? The quasi-structural approach to inference views
a structural economic model as an approximation rather than the truth. This theory has led to the concepts of
the pseudo-true value (the parameter value defined by the estimation problem), the quasi-likelihood function,
quasi-maximum likelihood estimate (quasi-MLE), and quasi-likelihood inference.

Closely related is the semiparametric approach. A probabilistic economic model is partially specified
but some features are left unspecified. This approach typically leads to estimation methods, such as least
squares and the generalized method of moments. The semiparametric approach dominates contemporary
econometrics and is the main focus of this textbook.

Another branch of quantitative structural economics is the calibration approach. Similar to the quasi-
structural approach, the calibration approach interprets structural models as approximations and hence
inherently false. The difference is that the calibrationist literature rejects mathematical statistics (deeming
classical theory as inappropriate for approximate models) and instead selects parameters by matching model
and data moments using nonstatistical ad hoc! methods.

Trygve Haavelmo

The founding ideas of the field of econometrics are largely due to the Norweigen econometrician Trygve
Haavelmo (1911-1999). His advocacy of probability models revolutionized the field, and his use of for-
mal mathematical reasoning laid the foundation for subsequent generations. He was awarded the Nobel
Memorial Prize in Economic Sciences in 1989.

1.3 ECONOMETRIC TERMS

In a typical application, an econometrician has a set of repeated measurements on a set of variables. For exam-
ple, in a labor application, the variables could include weekly earnings, educational attainment, age, and other
descriptive characteristics. We call this information the data, dataset, or sample.

1 Ad hoc means “for this purpose”—a method designed for a specific problem—and not based on a generalizable principle.
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We use the term observations to refer to distinct repeated measurements on the variables. An individual
observation often corresponds to a specific economic unit, such as a person, household, corporation, firm,
organization, country, state, city, or other geographical region. An individual observation could also be a
measurement at a point in time, such as quarterly gross domestic product (GDP) or a daily interest rate.

Economists typically denote variables by the italicized roman characters Y, X, and/or Z. The convention in
econometrics is to use the character Y to denote the variable to be explained, while the characters X and Z are
used to denote the conditioning (explanatory) variables. Following mathematical practice, random variables
and vectors are denoted by uppercase roman characters, such as Y and X. We make an exception for equation
errors, which we typically denote by the lowercase letters e, u, or v.

Real numbers (elements of the real line R, also called scalars) are written using lowercase italics, such as
x. Vectors (elements of R¥) are typically also written using lowercase italics, such as x, or using lowercase bold
italics, such as x. We use bold in matrix algebraic expressions for compatibility with matrix notation.

Matrices are written using uppercase bold italics, such as X. Our notation will not make a distinction
between random and nonrandom matrices. Typically we use U, V, X, Y, Z to denote random matrices and
use A, B, C, W to denote nonrandom matrices.

We denote the number of observations by the natural number #, and subscript the variables by the index
i to denote the individual observation (e.g., Y;). In some contexts, we use indices other than i, such as in time
series applications where the index t is common. In panel studies, we typically use the double index it to refer
to individual 7 at time period .

We typically use Greek letters, such as f8, 6, and o2, to denote unknown parameters (scalar or vectors).
Parameter matrices are written using uppercase Latin boldface (e.g., A). Estimators are typically denoted by
putting a hat “/\,” tilde “~,” or bar “~” over the corresponding letter (e.g., B and B are estimators of 8, and
A is an estimator of A).

The covariance matrix of an econometric estimator will typically be written using the uppercase boldface

« »

V', often with a subscript to denote the estimator (e.g., V= var [E] as the covariance matrix for f8). Hopefully
without causing confusion, we will use the notation Vg = avar [B\] to denote the asymptotic covariance matrix
of /n (3— B) (the variance ofihe asymptotic distribution). Covariance matrix estimators will be denoted by
appending hats or tildes (e.g., Vg is an estimator of V).

14 OBSERVATIONAL DATA

A common econometric question is to quantify the causal impact of one set of variables on another variable.
For example, a concern in labor economics is the returns to schooling-the change in earnings induced by
increasing a worker’s education, holding other variables constant. Another issue of interest is the earnings gap
between men and women.

Ideally, we would use experimental data to answer these questions. To measure the returns to school-
ing, an experiment might randomly divide children into groups, mandate different levels of education to the
different groups, and then follow the childrens wage path after they mature and enter the labor force. The
differences between the groups would be direct measurements of the effects of different levels of education.
However, experiments such as this would be widely condemned as immoral! Consequently, in economics,
experimental data sets are typically narrow in scope.

Instead, most economic data is observational. To continue the above example, through data collection
we can record the level of a person’s education and their wage. With such data, we can measure the joint
distribution of these variables and assess their joint dependence. But from observational data, it is difficult to
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infer causality as we are not able to manipulate one variable to see the direct effect on the other. For exam-
ple, a persons level of education is (at least partially) determined by that person’s choices. These factors are
likely to be affected by their personal abilities and attitudes toward work. The fact that a person is highly edu-
cated suggests a high level of ability, which suggests a high relative wage. This is an alternative explanation
for an observed positive correlation between educational levels and wages. High ability individuals do better
in school, and therefore choose to attain higher levels of education, and their high ability is the fundamental
reason for their high wages. The point is that multiple explanations are consistent with a positive correla-
tion between schooling levels and education. Knowledge of the joint distribution alone may not be able to
distinguish between these explanations.

Most economic data sets are observational, not experimental. Thus, all variables must be treated as
random and possibly jointly determined.

This discussion shows that it is difficult to infer causality from observational data alone. Causal infer-
ence requires identification, which is based on strong assumptions. We will discuss these issues on occasion
throughout the text.

1.0 STANDARD DATA STRUCTURES

There are five major types of economic data sets: cross-sectional, time series, panel, clustered, and spatial.
They are distinguished by the dependence structure across observations.

Cross-sectional data sets have one observation per individual. Surveys and administrative records are
a typical source for cross-sectional data. In typical applications, the individuals surveyed are persons, house-
holds, firms, or other economic agents. In many contemporary econometric cross-sectional studies, the sample
size n is quite large. It is conventional to assume that cross-sectional observations are mutually independent.
Most of this text is devoted to the study of cross-sectional data.

Time series data are indexed by time. Typical examples include macroeconomic aggregates, prices, and
interest rates. This type of data is characterized by serial dependence. Most aggregate economic data are only
available at a low frequency (annual, quarterly, or monthly), so the sample size is typically much smaller than
in cross-sectional studies. An exception is financial data, where data are available at a high frequency (daily,
hourly, or by transaction), so sample sizes can be quite large.

Panel data combines elements of cross-sectional and time series. These data sets consist of a set of individ-
uals (typically persons, households, or corporations) measured repeatedly over time. The common modeling
assumption is that the individuals are mutually independent of one another, but a given individual’s obser-
vations are mutually dependent. In some panel data contexts, the number of time series observations T per
individual is small, while the number of individuals # is large. In other panel data contexts (for example when
countries or states are taken as the unit of measurement), the number of individuals # can be small, while the
number of time series observations T can be moderately large. An important issue in econometric panel data
is the treatment of error components.

Clustered samples are becoming increasingly popular in applied economics and are related to panel data.
In clustered sampling, the observations are grouped into “clusters” which are treated as mutually independent
yet allowed to be dependent within the cluster. The major difference from panel data is that clustered sampling
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typically does not explicitly model error component structures, nor the dependence within clusters, but is
instead concerned with inference which is robust to arbitrary forms of within-cluster correlation.

Spatial dependence is another model of interdependence. The observations are treated as mutually depen-
dent according to a spatial measure (for example, geographic proximity). Unlike clustering, spatial models
allow all observations to be mutually dependent and typically rely on explicit modeling of the dependence
relationships. Spatial dependence can also be viewed as a generalization of time series dependence.

Data Structures

e Cross-section
o Time series

o Panel

e Clustered

« Spatial

As mentioned above, most of this text will be devoted to cross-sectional data under the assumption of
mutually independent observations. By mutual independence, we mean that the ith observation (Y;, X;) is
independent of the jth observation (Y}, X;) for i  j. In this case, we say that the data are independently dis-
tributed. (Sometimes the label “independent” is misconstrued. It is a statement about the relationship between
observations i and j, not a statement about the relationship between Y; and X;.)

Furthermore, if the data are randomly gathered, it is reasonable to model each observation as a draw
from the same probability distribution. In this case, we say that the data are identically distributed. If the
observations are mutually independent and identically distributed, we say that the observations are indepen-
dent and identically distributed (i.i.d.) or a random sample. For most of this text, we will assume that our
observations come from a random sample.

Definition 1.1 The variables (Y;,X;) are a sample from the distribution F if they are identically
distributed with distribution F.

Definition 1.2 The variables (Y;, X;) are a random sample if they are mutually independent and
identically distributed (i.i.d.) acrossi=1,...,n.

In the random sampling framework, we think of an individual observation (Y;, X;) as a realization from a
joint probability distribution F (y, x), which we call the population. This “population” is infinitely large. This
abstraction can be a source of confusion, as it does not correspond to a physical population in the real world.
It is an abstraction because the distribution F is unknown, and the goal of statistical inference is to learn about
features of F from the sample. The assumption of random sampling provides the mathematical foundation for
treating economic statistics with the tools of mathematical statistics.
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The random sampling framework was a major intellectual breakthrough of the late nineteenth century,
allowing the application of mathematical statistics to the social sciences. Before this conceptual development,
methods from mathematical statistics had not been applied to economic data, as the latter were viewed as
nonrandom. The random sampling framework enabled economic samples to be treated as random, a necessary
precondition for the application of statistical methods.

1.6 ECONOMETRIC SOFTWARE

Economists use a variety of econometric, statistical, and programming software. Stata is a powerful statisti-
cal program with a broad set of pre-programmed econometric and statistical tools. It is quite popular among
economists and is continuously being updated with new methods. It is an excellent package for most econo-
metric analysis but is limited when you want to use new or less-common econometric methods which have
not yet been programed. At many points in this textbook, specific Stata estimation methods and commands
are described. These commands are valid for Stata version 16.

MATLAB, GAUSS, and OxMetrics are high-level matrix programming languages with a wide variety of
built-in statistical functions. Many econometric methods have been programed in these languages and are
available on the web. The advantage of these packages is that you are in complete control of your analysis, and
it is easier to program new methods than it is in Stata. Some disadvantages are that you have to do much of
the programming yourself, programming complicated procedures takes significant time, and programming
errors are hard to prevent and difficult to detect and eliminate. Of these languages, GAUSS used to be quite
popular among econometricians, but currently MATLAB is more popular.

An intermediate choice is R. R has the capabilities of the above high-level matrix programming languages,
but it also has many built-in statistical environments which can replicate much of the functionality of Stata.
R is the dominant programming language in the statistics field, so methods developed in that arena are most
commonly available in R. Uniquely, R is open source, user contributed, and best of all, completely free! A
growing group of econometricians are enthusiastic fans of R.

For highly intensive computational tasks, some economists write their programs in a standard program-
ming language, such as Fortran or C. This can lead to major gains in computational speed, at the cost of
increased time in programming and debugging.

Many other packages are used by econometricians, including Eviews, Gretl, PcGive, Python, Julia, RATS,
and SAS.

As the packages described above have distinct advantages, many empirical economists use multiple pack-
ages. As a student of econometrics, you will learn at least one of these packages and probably more than one.
My advice is that all students of econometrics should develop a basic level of familiarity with Stata, MATLAB,
and R.

17 REPLICATION

Scientific research needs to be documented and replicable. For social science research using observational
data, this requires careful documentation and archiving of the research methods, data manipulations, and
coding.

The best practice is as follows. Accompanying each published paper, an author should create a complete
replication package (set of data files, documentation, and program code files). This package should contain
the source (raw) data used for analysis and code which executes the empirical analysis and other numerical
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work reported in the paper. In most cases, this code is a set of programs which may need to be executed
sequentially. (For example, there may be an initial program which “cleans” and manipulates the data, and then
a second set of programs which estimate the reported models.) The ideal is full documentation and clarity.
This package should be posted on the author(s) website and posted on the journal website when that is an
option.

A complicating factor is that many current economic data sets have restricted access and cannot be shared
without permission. In these cases, the data cannot be posted or shared. The computed code, however, can
and should be posted.

Most journals in economics require authors of published papers to make their datasets generally available.
For example:

Econometrica states:

Econometrica has the policy that all empirical, experimental and simulation results must be replicable. Therefore, authors of accepted
papers must submit data sets, programs, and information on empirical analysis, experiments and simulations that are needed for
replication and some limited sensitivity analysis.

The American Economic Review states (on its webpage):

It is the policy of the American Economic Association to publish papers only if the data and code used in the analysis are clearly
and precisely documented and access to the data and code is non-exclusive to the authors. Authors of accepted papers that contain
empirical work, simulations, or experimental work must provide, prior to acceptance, information about the data, programs, and
other details of the computations sufficient to permit replication, as well as information about access to data and programs.

The Journal of Political Economy states:

It is the policy of the Journal of Political Economy to publish papers only if the data used in the analysis are clearly and precisely
documented and are readily available to any researcher for purposes of replication.

If you are interested in using the data from a published paper, first check the journals website, as many
journals archive data and replication programs online. Second, check the website(s) of the paper’s author(s).
Most academic economists maintain webpages, and some make available replication files complete with data
and programs. If these investigations fail, email the author(s), politely requesting the data. You may need to
be persistent.

As a matter of professional etiquette, all authors absolutely have the obligation to make their data and
programs available. Unfortunately, many fail to do so, and typically for poor reasons. The irony of the situation
is that it is typically in the best interests of a scholar to make as much of their work (including all data and
programs) freely available, as this only increases the likelihood of their work being cited and having an impact.

Keep this in mind as you start your own empirical project. Remember that as part of your end product,
you will need (and want) to provide all data and programs to the community of scholars. The greatest form of
flattery is to learn that another scholar has read your paper, wants to extend your work, or wants to use your
empirical methods. In addition, public openness provides a healthy incentive for transparency and integrity
in empirical analysis.

1.8 DATA FILES FOR TEXTBOOK

On the textbook webpage https://press.princeton.edu/books/econometrics are posted files containing data sets
which are used in this textbook both for illustration and for end-of-chapter empirical exercises. Most of the
datasets have four files: (1) Description (pdf format); (2) Excel data file; (3) Text data file; and (4) Stata data
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file. The three data files are identical in content: the observations and variables are listed in the same order in

each, and all have variable labels.

For example, the text makes frequent reference to a wage dataset extracted from the Current Population

Survey. This dataset is named cps 09mar, and is represented by the files cps09mar description.pdf,

cps09mar.x1sx, cps09mar. txt,and cps09mar.dta.
The datasets currently included are

AB1991

—Data file from Arellano and Bond (1991)
AJR2001

—Data file from Acemoglu, Johnson, and Robinson (2001)
AK1991

—Data file from Angrist and Krueger (1991)
AL1999

—Data file from Angrist and Lavy (1999)

BMN2016

—Data file from Bernheim, Meer, and Novarro (2016)
cpsO09mar

—household survey data extracted from the March 2009 Current Population Survey
Cardl995

—Data file from Card (1995)

CHJ2004

—Data file from Cox, Hansen, and Jimenez (2004)
CK1994

—Data file from Card and Krueger (1994)
CMR2008

—Date file from Card, Mas, and Rothstein (2008)
DDK2011

—Data file from Duflo, Dupas, and Kremer (2011)
DS2004

—Data file from DiTella and Schargrodsky (2004)
FRED-MD and FRED-QD

—US. monthly and quarterly macroeconomic databases from McCracken and Ng (2016,
2021)

Invest1993

—Data file from B. Hall and R. Hall (1993)

LM2007

—Data file from Ludwig and Miller (2007) and Cattaneo, Titiunik, and Vazquez-Bare (2017)
Kilian2009

—Data file from Kilian (2009)
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* Koppelman

—Data file from Forinash and Koppelman (1993), Koppelman and Wen (2000), and Wen and
Koppelman (2001)

e MRW1992
—Data file from Mankiw, Romer, and Weil (1992)
e Nerlovel963
—Data file from Nerlov (1963)
e PSS2017
—Data file from Papageorgiou, Saam, and Schulte (2017)
¢ RR2010
—Data file from Reinhard and Rogoft (2010)

19 READING THE BOOK

I have endeavored to use a unified notation and nomenclature. The development of the material is cumulative,
with later chapters building on the earlier ones. Nevertheless, every attempt has been made to make each
chapter self-contained, so readers can pick and choose topics according to their interests.

To fully understand econometric methods, it is necessary to have a mathematical understanding of its
mechanics, and this includes the mathematical proofs of the main results. Consequently, this text is self-
contained with nearly all results proved with full mathematical rigor. The mathematical development and
proofs aim at brevity and conciseness (sometimes described as mathematical elegance), but also at pedagogy.
To understand a mathematical proof, it is not sufficient to simply read the proof, you need to follow it and
re-create it for yourself.

Nevertheless, many readers will not be interested in each mathematical detail, explanation, or proof. This
is okay. To use a method, it may not be necessary to understand the mathematical details. Accordingly, I have
placed the more technical mathematical proofs and details in chapter appendices. These appendices and other
technical sections are marked with an asterisk (*). These sections can be skipped without any loss in exposition.

Key concepts in matrix algebra and a set of useful inequalities are reviewed in Appendices A and B. It
may be useful to read or review Appendix A.1-A.11 before starting Chapter 3, and review Appendix B before
Chapter 6. It is not necessary to understand all the material in the appendices. They are intended to be reference
material, and some of the results are not used in this textbook.
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abortion and crime difference in differences, 679-680

absolute t-ratio, 183

acceptance and rejection regions, hypothesis testing, 226-227

Acemoglu, Daron, 412-414

addition, matrix, 979

additively separable models, series regression, 746

adjusted R-squared, 121

aggregate supply shock, 544

Akaike information criterion (AIC), 498, 890; for likelihood,
894-895; for regression, 892-894; relation with likelihood ratio
testing, 901; smoothed, 925-927

algorithmic matrix inversion, 993

alternative hypotheses, 225-226

American Economic Review, 7

analysis of variance, 77-78

Anderson-Hsiao estimator, 656

Angrist, Joshua D., 414-416, 751-753

annihilator matrix, 76

applied econometrics, 1

approximate factor models, 333-335

approximate sparsity, 954-955

Arellano-Bond estimator, 657-659

asymptotic bias, nonparametric regression, 692-694

asymptotic critical value, 228

asymptotic distribution, 167-171, 206-207; binary choice, 836-
837; of fixed effects 2SLS estimator, 647-648; fixed effects
estimator, 636-637; under general dependence, 493; least
squares estimator, 491-492; limited likelihood maximum like-
lihood (LIML), 366-367; m-estimators, 783-785; multivariate
regression, 319-321; multivariate time series, 531-532; nonlin-
ear least squares (NLLS), 794-796; nonparametric regression,
702-704; quantile regression, 815-816; two-stage least squares,
362-363; for unbalanced panels, 637-639

asymptotic integrated MSE (AIMSE), 695-696; curse of
dimensionality, 713

asymptotic leverage, 192

asymptotic local power, 251-253; vector case, 254

asymptotic MSE (AMSE), 695-696

asymptotic normality, 167-171; series regression, 738-739

asymptotic null distribution, 227

asymptotic refinement, 290-292

asymptotics: bootstrap, 276-279; central limit theorem (CLT),
160-161; continuous mapping theorem (CMT) and delta
method, 161-162; convergence of moments, 163-164;

introduction, 159; modes of convergence, 159; smooth func-
tion model, 162; stochastic order symbols, 162-163; weak law
of large numbers (WLLN), 160

asymptotic selection optimality, 904-906

asymptotic theory, bootstrap regression, 300-301

asymptotic theory for least squares: alternative covariance matrix
estimators, 177-178; asymptotic leverage, 192; asymptotic
normality, 167-171; asymptotic standard errors, 180-182;
confidence intervals, 183-185; confidence regions, 188-189;
consistency of error variance estimator, 173; consistency
of least squares estimator, 165-167; Edgeworth expansion,
189-190; forecast intervals, 187; functions of parameters,
178-180; heteroskedastic covariance matrix estimation,
174-176; homoskedastic covariance matrix estimation, 174;
homoskedastic Wald statistic, 188; joint distribution, 171-
173; regression intervals, 185-187; summary of covariance
matrix notation, 176; t-statistic, 182-183; uniformly consistent
residuals, 191; Wald statistic, 187-188

asymptotic variance, nonparametric regression, 694-695

attenuation bias, 342

autoregressive AR(1) parameter estimation, 572-574; with an
intercept, 574-576

autoregressive AR[p] models with unit root, 576-578

autoregressive distributed lag models (AR-DL), 501-502, 524;
Granger causality, 505-507

autoregressive-integrated moving-average process (ARIMA), 487

autoregressive models, estimation of, 490-491

autoregressive-moving-average process (ARMA), 486-487

autoregressive Wold representation, 473-474

average causal effect (ACE), 51-53, 394

average marginal effect, 839

average treatment effect (ATE), 763

backward stepwise regression, 908-909

bagging, 958-960

Bahr-Esseen inequality, 1003, 1011-1012

balanced regression design, 83

bandwidth, 494; cross-validation bandwidth selection, 701-704;
reference, nonparametric regression, 697-698; regression
discontinuity, 768-770

basis transformations, 725

Basmann’s statistic, 387

Bayesian information criterion, 890, 891-892; relation with
likelihood ratio testing, 901; smoothed, 925-927
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Bernstein’s inequality, 1003, 1009-1011

Berry Levinsohn Pakes, 865-867

best linear approximation, 45-46

best linear predictor, 35-39; illustrations of, 39-41

best linear projection, limitations of, 48

best subset model, 908-909

between estimator, 630-631

Beveridge-Nelson decomposition, 563-565

bias: endogeneity or estimation, 342; sample selection, 881-882;
smoothing, 693, 699

bias-corrected percentile interval, 285-286; bootstrap accelerated,
286-288

big data, 941

Billingsley’s inequality, 1005, 1019

binary choice: application, 839-840; asymptotic distribution,
836-837; covariance matrix estimation, 838; IV probit,
841-842; latent variable interpretation, 832-833; likeli-
hood, 833-835; marginal effects, 838-839; models, 829-830;
models for response probability, 830-832; panel data,
842-843; pseudo-true values, 835-836; semiparametric,
840-841

binary variables, 33

binned means estimator, 687-688

bivariate regression, 71

Blanchard and Quah, 551-553

block bootstrap for time series, 510

BLP model, 865-867

blue laws difference in differences, 678-679

Blundell-Bond estimator, 661-664

Bonferroni corrections, 248-249

Bonferroni’s inequality, 1002, 1008

Boole’s inequality, 1001, 1008

bootstrap estimator, 262, 268-270; bias-corrected percentile
interval, 285-286; bootstrap accelerated bias-corrected
percentile interval, 286-288; bootstrap asymptotics, 276-279;
bootstrap distribution, 273-274; bootstrap regression,
298-299; bootstrap regression asymptotic theory, 300-301;
for clustered observations, 303-304; consistency of boot-
strap estimate of variance, 279-280; criterion-based tests,
295-296; distribution of bootstrap observations, 274-275;
distribution of bootstrap sample mean, 275-276; how many
replications to use, 297; hypothesis tests, 292-294; panel, 653;
parametric, 296-297; percentile interval, 272-273, 283-284;
percentile-t asymptotic refinement, 290-292; percentile-¢
interval, 288-290; setting the bootstrap seed, 298; for time
series, 508-510; trimmed estimator of bootstrap variance,
280-282; for two-stage least squares, 369-373; unreliability of
untrimmed bootstrap standard errors, 282; variance and stan-
dard errors, 270-272; Wald-type tests, 294-295; wild bootstrap,
301-302

bootstrap for generalized method of moments (GMM),
443-444

bootstrap overidentification tests, 392

bootstrap regression, 298-299; asymptotic theory, 300-301

boundary, estimation at a, 698-700

Box-Cox regression model, 790, 793

Brownian Bridge, 570; second-level, 583

Brownian motion, 572

C (programing language), 6

c2 inequality, 1000, 1006

calculus, matrix, 993-995

calibration approach, 2

Cauchy-Schwarz inequality, 1002, 1009

causal effects, 50-55; quantile, 820-821

causality, 4

censored least absolute deviations (CLAD), 872, 879-880

censored quantile regression (CQR), 880

censored regression, 872-874; functions, 874-875; illustrating,
880-881; panel data, 885-886

censoring: from below, 872; bias of least squares estimation and,
875-876; censored least absolute deviations (CLAD), 872,
879-880; Heckman’s model, 882-884

central limit theorem (CLT), 160-161; asymptotic distribution
under general dependence, 493; bootstrap, 277; for correlated
observations, 469-471; functional, 565-566; for martingale
differences, 467-468

Chebyshev’s inequality, 1003, 1009

Cholesky decomposition, 990-991

classical measurement error, 342

classification and regression trees, 956-958

clustered dependence, 98, 132; generalized method of moments
(GMM), 432-433; instrumental variables, 373; quantile
regression, 818-819

clustered observations: bootstrap for, 303-304; jackknife for, 267
268; nonparametric regression, 709-710; series regression,
743

clustered sampling, 4-5, 124-130; inference with, 131; levels of,
131-132

cluster-robust jackknife estimator of variance, 268

coeflicient decomposition, 43

coeflicient heterogeneity, 814

coeflicient of determination, 78

cointegration, 589-593; regression, 594-597; testing for, in a
VECM, 599-602

collinearity errors, 89-91

complex matrices, 978-979

conditional expectation function (CEF), 15-17, 19-20; best linear
approximation, 45-46; best linear predictor, 35-41; best linear
projection limitations, 48; best predictor, 26-27; causal effects,
50-55; CEF error, 23-25; coeficient decomposition, 43; con-
ditional expectation (conditional mean), 15-17; conditional
variance, 27-29; continuous variables, 20-21; continuous
variables and, 21; distribution of wages, 13-15; error, 23-25;
existence and uniqueness of, 55-56; homoskedasticity and
heteroskedasticity, 29-30; identification of, 56-57; intercept-
only model, 25; law of iterated expectations, 21-23; linear,
31-32; with dummy variables, 33-35; with non linear effects,
32; linear predictor error variance, 41; logs and percentages,
17-19; nonparametric regression, 705-706; omitted variable
bias, 44-45; random coefficient model, 48-49; regression
coefficients, 41-42; regression derivative, 30-31; regression
discontinuity, 766-767; regression subvectors, 42-43; regres-
sion to the mean, 46-47; regression variance, 25-26; reverse
regression, 47-48

conditional expectation inequality, 1002, 1009

conditional independence assumption (CIA), 53-54
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conditional Jensen’s inequality, 1002, 1008

conditional likelihood estimator, 843

conditional logit, 851-854

conditional moment equation models, GMM, 444-445

conditional standard deviation, 27-28

conditional variance, 27-29; nonparametric regression,
705-706

conditioning on information sets, 464-465

conditioning variables, 13

confidence bands: nonparametric regression, 707; series
regression, 743-744

confidence intervals: asymptotic theory for least squares, 183—
185; for error variance, 150; normal-approximation bootstrap,
271; pointwise, 707; for regression coefficients, 148-149; by test
inversion, 247-248

confidence regions, 188-189

consistent estimation: m-estimators, 780-782; series regression,
736

constant elasticity of substitution (CES), 790-791

constrained least squares (CLS) estimator, 200-201; asymptotic
distribution, 206-207; efficient minimum distance estima-
tor, 208-209; exclusion restriction, 201-202; finite sample
properties, 202-205

constrained optimization methods, 218-219

constrained regression, generalized method of moments
(GMM), 436

continuously updated generalized method of moments
(GMM), 439

continuous mapping theorem (CMT), 161-162; bootstrap, 277,
278, 279, 300; consistency of least squares estimator, 165-167

continuous variables, 20-21

control function regression, 380-382

convergence, modes of, 159; bootstrap, 276-277

convergence rate, 736-737; nonparametric instrumental variables
regression (NPIV), 749-750

convergent series, 460-461

converging population, 46

count data, 864-865

Course in Econometrics, A, 124

covariance matrix estimation, 364-366; alternative, 177-178;
binary choice, 838; fixed effects, 628-629; generalized method
of moments (GMM), 432; under heteroskedasticity, 113-
116, 174-176; heteroskedasticity-robust, 639-641; under
homoskedasticity, 113, 174; jackknife, 652-653, 929-930;
m-estimators, 785-786; multivariate regression, 321; multi-
variate time series, 532-533; nonlinear least squares (NLLS),
796-797; notation, 176; quantile regression, 817-818; time
series, 493-496

covariates, 13; regression discontinuity design (RDD) with,
770-771

Cramér-Rao lower bound, 153-154

criterion-based bootstrap tests, 295-296

criterion-based statistic, 236

critical value, 151; hypothesis testing, 227

cross-sectional data, 4

cross-validation, 890; bandwidth selection, 701-702; criterion,
897-898; K-fold, 899-900, 951; series regression, 740-741

cumulative impulse response function (CIRF), 528

Index

Current Population Survey (CPS), 88
curse of dimensionality, 713

data, 2; big, 941; count, 864-865; cross-sectional, 4; experimen-
tal, 3; identically distributed, 5; independently distributed, 5;
observational, 3-4; panel (See panel data); replication of, 6-7;
textbook files, 7-9; time series, 4

data-generating process, 63

data sets, 2; CPS, 88; standard structures, 4-6

decompositions, matrix, 986-987; Cholesky, 990-991; QR, 991

delta method, 161-162; bootstrap, 278, 300

demeaned regressors, 72

demeaned representation, 352

demeaned values, 76

demeaning and detrending, nonstationary time series, 569-570

density discontinuity test, 772-773

dependent variables, 13

design matrix, 38

determinant, 982-983

Dickey-Fuller coefficient distribution, 573-576

differenced estimator, 624-626, 669-670

difference in differences: abortion and crime, 679-680; blue laws
and liquor sales, 678-679; do police reduce crime question,
675-677; identification, 672-673; inference, 680-681; mini-
mum wage in New Jersey, 669-672; multiple units, 673-675;
trend specification, 677-678

differences, time series, 456-458

dimensionality, high, 941

dissimilarity parameter, 849

distance test, generalized method of moments (GMM), 438-439

distributed lag models, 501-502

distribution: asymptotic (See asymptotic distribution); boot-
strap, 273-275; convergences in, 159; Dickey-Fuller coefficient,
573-576; GMM estimator, 428-429; joint asymptotic, 171-
173; Mammen, 302; OLS coefficient vector, 145; OLS residual
vector, 146; standard normal, 139-141; multivariate, 141-
142; time series, under homoskedasticity, 492-493; variance
estimator, 146-147

double/debiased machine learning (DML), 967-968

double selection Lasso, 963-965

drawing with replacement, 269

dummy variables, linear CEF with, 33-35

dummy variables regression, 626-627

dynamic factor models, 554-555

dynamic panel models, 653-654; with predetermined regressors,
660-661

Econometrica, 1,7

econometrics: defined, 1; probability approach to, 1-2; terms in,
2-3

econometric software, 6

econometric theory, 1

Edgeworth expansion, 189-190

efficient generalized method of moments (GMM), 429-430

efficient minimum distance estimator, 208-209

Eicker-White covariance matrix estimator, 115

eigenvalue product inequality, 1001

eigenvalues, 983-984; generalized, 987-988
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Index

elastic net, 955

endogeneity, 341-342; generalized method of moments (GMM),
441-442; subset tests, 385-386, 441-442

endogenous regressors, 344-345

Engle-Granger ADF test, 595-596

ensembling, 961-962

equal weighting, 924-925

equi-correlation model, 618

ergodicity, time series, 461-463

ergodic theorem, 463-464

error-correction representation, 592

error variance: confidence intervals for, 150; estimation of, 76-77,
110-111; estimators consistency, 173

estimation, restricted: asymptotic distribution, 206-207; con-
strained least squares (CLS) estimator, 200-201; efficient
minimum distance estimator, 208-209; exclusion restric-
tion, 201-202, 209-211; finite sample properties, 202-205;
Hausman equality, 211; inequality restrictions, 219-220;
introduction, 199-200; Mankiw, Romer, and Weil example,
212-215; minimum distance, 205-206; misspeciﬁcation,
216-218; nonlinear constraints, 218-219; variance estimation
and standard errors, 208

estimators, definition of, 3

Eviews, 6

existence of conditional expectation, 55-56

exogenous variables, 345-346

expectation, 14; errors, regression with, 377-379; of least squares
estimator, 100-102; and variance of systems least squares,
318-319

expectation equality, 1002, 1008

expectation inequality, 1002, 1009

experimental data, 3

explosive process, 481

exponential inequality, 1004, 1012-1013

external instrumental variables, 553-554

extrema of quadratic forms, 988-990

factor-augmented regression, 336-337

factor models, 331-333; with additional regressors, 335;
approximate, 333-335

familywise error probability, 249

finite sample properties, CLS estimator, 202-205

finite sample theory, 369

first-differencing transformation, 624-625

first-order autoregressive process, 477-480, 528-529

fixed design residual bootstrap for time series, 509

fixed design wild bootstrap for time series, 509-510

fixed effects: asymptotic distribution of fixed effects 2SLS estima-
tor, 647-648; covariance matrix estimation, 628-629; GMM
interpretation of, 634-635; Hausman test for random vs.,
641-642; regression, 633

fixed effects estimation, 623-624, 633-634; asymptotic distribu-
tion of fixed effects estimator, 636-637; bias of, 654-655; in
Stata, 629-630

fixed effects model, 620-621; identification in, 636

focused information criterion (FIC), 906-908

forecast error decomposition, 542-543

forecast intervals, asymptotic theory for least squares, 187

Fortran, 6

forward orthogonal transformation, 664-665

forward stepwise regression, 909

Frisch, Ragnar, 1, 82

Frisch-Waugh-Lovell (FWL) theorem, 82; dummy variable
estimator, 627

F-tests, 238-239

full information maximum likelihood (FIML), 357

functional central limit theorem (FCLT), 562

functional convergence, nonstationary time series, 561-563

fuzzy regression discontinuity (FRD), 763, 773-775; estimation
of, 774-775

GAUSS, 6

Gauss, Carl Friedrich, 144-145

Gaussian distribution, 139-141

Gaussian elimination, 144

Gaussian tail inequality, 1003, 1009

Gauss-Markov theorem, 104-107, 144; differenced estimator, 626;
panel data, 619

Gauss-Newton algorithm, 144

generalized eigenvalues, 987-988

generalized least squares (GLS), 107-108; differenced estima-
tor, 626; feasible, panel data, 632-633; forward orthogonal
transformation, 665; panel data, 618-619

generalized method of moments (GMM): Blundell-Bond, 661-
664; bootstrap for, 443-444; clustered dependence, 432-433;
conditional moment equation models, 444-445; constrained
regression, 436; continuously updated, 439; covariance matrix
estimation, 432; distance test, 438-439; distribution of GMM
estimator, 428-429; efficient, 429-430; efficient GMM versus
2SLS, 430; endogeneity tests, 441-442; estimation of efficient
weight matrix, 430-431; GMM estimator, 427-428; interpre-
tation of fixed effects, 634-635; iterated, 431; linear, 648; linear
moment models, 427; method of moments estimators, 425-
426; moment equation models, 424; multivariate regression,
436-437; nonlinear, 442-443; nonlinear restricted, 435-436;
overidentification tests, 439-441; overidentified moment equa-
tions, 426-427; restricted, 434-435; subset overidentification
tests, 440-441; Wald test, 433-434

general multinomial probit, 861-862

generated regressors, 374-377

geometric mean inequality, 999, 1005

Golderberger, Arthur S., 124

Granger, Clive W. J., 507

Granger causality, 505-507

Granger-Ramanathan averaging, 930-931

Granger representation theorem, 589, 597

Gretl, 6

group James-Stein, 919-920

growth rates, time series, 456-458

Haavelmo, Trygve, 1-2

Hall, Peter Gavin, 292

hat matrix, 74

Hausman equality, 211

Hausman-Taylor model, 650-652

Hausman tests, 239-240; for random vs. fixed effects, 641-642
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Heckman’s model, 882-884

Hermite polynomial, 727

heteroskedasticity, 29-30; covariance matrix estimation under,
113-116, 174-176; joint asymptotic distribution, 171-173

heteroskedasticity and autocorrelation consistent (HAC)
covariance matrix estimators, 494-496

heteroskedasticity and autocorrelation robust (HAR) covariance
matrix estimators, 494-496

heteroskedasticity-robust covariance matrix estimation, 639-641

heteroskedasticity-robust estimation-unbalanced case, 641

high dimensionality, 941

high-dimensional regression, 942

Holder’s inequality, 1000, 1002, 1006, 1009

hold-out criterion, 896-897

homoskedasticity, 29-30; covariance matrix estimation under,
113, 174; joint asymptotic distribution, 171-173; linear regres-
sion model, 100; minimum distance tests under, 237-238; time
series distribution under, 492-493

homoskedastic martingale difference sequence, 466-467

homoskedastic Wald statistic, 188, 235-236

hypothesis testing, 150-152; acceptance and rejection regions,
226-227; alternative hypothesis, 225-226; asymptotic local
power, 251-253; vector case, 254; bootstrap, 292-296; con-
fidence intervals by test inversion, 247-248; criterion-based
tests, 236, 295-296; endogeneity, 382-385; F-tests, 238-
239; Hausman tests, 239-240; homoskedastic Wald tests,
235-236; instrumental variables, 368; KPSS stationarity test,
581-584; likelihood ratio test, 152-153; minimum distance
tests, 236-237; minimum distance tests under homoskedas-
ticity, 237-238; Monte Carlo simulation, 245-247; multiple
tests and Bonferroni corrections, 248-249; nonlinear compo-
nents, nonlinear least squares (NLLS), 802-804; of no serial
correlation, 496; null hypothesis, 150-152, 225-226; power
and test consistency, 250-251; problems with tests of nonlinear
hypotheses, 242-245; p-values, 231-232; score tests, 240-242;
statistical significance, 230-231; t-ratios and abuse of testing,
232-233; t-tests, 228-229; type I error, 227-228; type II error
and power, 229; unit root, 578-581; Wald tests, 233-235

idempotent matrices, 74, 985

identically distributed data, 5

identification: of conditional expectation, 56-57; difference in
differences, 672-673; failure in, 396-397; in fixed effects model,
636; with instrumental variables, 646; m-estimators, 780; non-
linear least squares (NLLS), 792; nonparametric instrumental
variables regression (NPIV), 748-749; parameter, instrumental
variables, 349; of recursive VARs, 543-544; regression disconti-
nuity, 764-765; of structural VARs, 549-550; time series model
parameters, 488-490; Tobit regression, 877-879

ill-posed inverse problem, 748

impulse response function (IRF), 485-486; multivariate time
series, 527-528, 535-537; orthogonalized impulse response
function (OIRF), 540-542

inclusion-exclusion principle, 1001, 1008

independence of irrelevant alternatives, multiple choice, 854-855

independent and identically distributed (i.i.d.) data, 5

independently distributed data, 5

index models, 831

Index

index series model, 831

indicator variables, 33

indirect least squares (ILS), 350

inequalities: for matrices, 1001; probability, 1001-1005; for real
numbers, 999-1000; for vectors, 1000

inequality restrictions, restricted estimation, 219-220

inference: after model selection, 911-913; difference in
differences, 680-681; regression discontinuity, 767-768

infinite-order moving average process, 476-477

influential observations, 86-88

information bound for normal regression, 153-154

instrumental variables: Acemoglu, Johnson, and Robinson
example, 412-414; Angrist and Krueger example, 414-416;
asymptotic distribution of 2SLS, 361-362; bootstrap for 2SLS,
369-373; bootstrap overidentification tests, 392; clustered
dependence, 373; college proximity example, 346-347; control
function regression, 380-382; covariance matrix estimation,
364-366; demeaned representation, 352; determinants of 2SLS
variance, 363-364; endogeneity, 341-342, 382-386; endoge-
nous regressors, 344-345; estimator, 350-352; examples,
342-344; finite sample theory, 369; functions of parameters,
367-368; generated regressors, 374-377; hypothesis tests, 368;
identification failure, 396-397; identification with, 646; instru-
ments, 345-346; Lasso, 962-963; limited likelihood maximum
likelikood (LIML), 357-359, 366-367; local average treatment
effects, 392-395; many instruments, 400-404; nonparametric
instrumental variables regression (NPIV), 746-750; overi-
dentification tests, 386-392; overview, 341-342; panel data,
645-646; parameter identification, 349; probit model, 841-842;
programming, 416-417; quantile regression, 824-825; reduced
form, 347-348; regression with expectation errors, 377-379;
split-sample IV and JIVE, 359-361; subset endogeneity tests,
385-386; subset overidentification tests, 389-392; two-stage
least squares, 354-364, 369-373; Wald estimator, 353-354;
weak instruments, 397-412

instruments, 345-346

integrated mean-squared error (IMSE), 701-702

integrated squared error (ISE), 736

interaction effect, 32

intercept-only model, 25

interdependence, 5

inverse Mills ratio, 834, 875

invertibility and identification, 38

iterated generalized method of moments (GMM), 431

jackknife covariance matrix estimation, 652-653

jackknife covariance matrix model averaging, 929-930

jackknife estimates, 262; for clustered observations, 267-268;
example, 266-267; of variance, 263-266

James-Stein shrinkage, 889, 915-916; empirical illustration, 920—
923; group, 919-920; interpretation of the Stein effect, 916;
positive part estimator, 916-917; shrinkage toward restrictions,
918-919

Jensen’s inequality, 999, 1002, 1005, 1008

Johnson, Simon, 412-414

joint asymptotic distribution, 171-173

joint normality and linear regression, 142

joint probability distribution, 5
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Index

Journal of Political Economy, 7
Julia, 6

K-class estimator, 358

kernel regression, 689-690; local nature of, 707

K-fold cross-validation, 899-900, 951

Khintchine’s inequality, 1004, 1013-1015

knots, 727

Kolmogorov’s inequality, 1005, 1019

Kronecker products, 995

Krueger, Alan B., 414-416

Kwiatkowski, Phillips, Schmidt, and Shin stationarity test,
581-584

lag length, VAR, 533

lag operator, time series, 473

lag truncation number, 494-495

Laguerre polynomial, 727

large sample asymptotics: central limit theorem (CLT), 160-
161; continuous mapping theorem (CMT) and delta method,
161-162; convergence of moments, 163-164; modes of con-
vergence, 159; smooth function model, 162; stochastic order
symbols, 162-163; weak law of large numbers (WLLN), 160

Lasso estimation, 948-951; asymptotic theory for, 952-954;
computation, 952; double selection, 963-965; elastic net,
955; instrumental variables, 962-963; penalty selection, 951;
post-Lasso, 956; post-regularization, 965-967

latent variable interpretation, 832-833

Lavy, Victor, 751-753

law of iterated expectations, 21-23, 104

least absolute deviations, 779; quantile regression, 809-810

least squares, asymptotic theory for: alternative covariance matrix
estimators, 177-178; asymptotic leverage, 192; asymptotic
normality, 167-171; asymptotic standard errors, 180-182;
confidence intervals, 183-185; confidence regions, 188-189;
consistency of error variance estimator, 173; consistency
of least squares estimator, 165-167; Edgeworth expansion,
189-190; forecast intervals, 187; functions of parameters,
178-180; heteroskedastic covariance matrix estimation,
174-176; homoskedastic covariance matrix estimation, 174;
homoskedastic Wald statistic, 188; joint distribution, 171-
173; regression intervals, 185-187; summary of covariance
matrix notation, 176; t-statistic, 182-183; uniformly consistent
residuals, 191; Wald statistic, 187-188

least squares estimator, 64-65; analysis of variance, 77-78; anni-
hilator matrix, 76; bias of, 875-876; collinearity errors, 89-91;
consistency of, 165-167; constrained, 200-201; CPS dataset,
88; demeaned regressors, 72; equivalence of SUR and, 324;
estimation of error variance, 76-77; expectation of, 100-102;
illustration of, 69-71; influential observations, 86-88; leave-
one-out regression, 84-86; leverage values, 83-84; model in
matrix notation, 73-74; multivariate regression, 316-318;
numerical computation, 88-89; Phillips curve, 505; pro-
gramming, 91-93; projection matrix, 74-75; projections, 78;
regression components, 78-81; residual regression, 81-82;
samples of, 62-63; solving for: with multiple regressors, 66-69;
with one regressor, 65-66; two-stage, 354-357; variance of,
102-103

least squares regression: clustered sampling, 124-130; cluster
levels, 131-132; computation, 120-121; covariance matrix esti-
mation under heteroskedasticity, 113-116; covariance matrix
estimation under homoskedasticity, 113; empirical example,
122-123; estimation of error variance, 110-111; estimation
with sparse dummy variables, 118-119; expectation of least
squares estimator, 100-102; Gauss-Markov theorem, 104-107;
generalized least squares, 107-108; inference with clustered
samples, 131; linear regression model, 100; mean-squared fore-
cast error, 111-112; measures of fit, 121-122; multicollinearity,
123-124; random sampling, 98; residuals, 109-110; sample
mean, 99; standard errors, 117-118; unconditional moments,
103-104; variance of least squares estimator, 102-103

least squares residuals, 71-72

leave-one-out cross validation, 122

leave-one-out regression, 84-86

Legendre, Adrien-Marie, 69

Legendre polynomial, 726

leverage point, 87

leverage values, 83-84

likelihood function, 143; Akaike information criterion (AIC) for,
894-895; probit and logit models, 833-835

likelihood ratio test, 152-153; AID and BIC selection and, 901

limited dependent variables, 829

limited likelihood maximum likelikood (LIML), 357-359;
asymptotic distribution, 366-367

linear conditional expectation function (CEF), 31-32; with
dummy variables, 33-35; with nonlinear effects, 32

linear generalized method of moments, 648

linear index function, 831

linear models, time series, 474-475

linear moment models, 427

linear predictor error variance, 41

linear probability model, 830-831

linear projection, 37-38, 62-63; multivariate time series, 525;
time series, 471

linear projection coeflicient, 36

linear quantile functions, 813-814

linear regression model, 100; joint normality and, 142

linear series model, 831

linear series regression model, 724

local average treatment effects (LATE), 392-395

local linear estimator, nonparametric regression, 690-692;
estimation at a boundary, 698-700

local mean, nonstationary time series, 567-569

local polynomial estimator, nonparametric regression, 692

local projection estimator, multivariate time series, 537

local-to-zero parameter, 398

Loeéve’s ¢, inequality, 999-1000, 1005

log concave functions, 834

logit model, 831; application, 839-840; asymptotic distribution,
836-837; binary panel data, 842-843; conditional, 851-854;
covariance matrix estimation, 838; latent variable interpreta-
tion, 832-833; likelihood, 833-835; marginal effects, 838-839;
mixed, 858-859; models, 829-830; models for response
probability, 830-832; multinomial, 848-850; nested,
855-858; pseudo-true values, 835-836; semiparametric,
840-841
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log-likelihood function, 143, 152-153

logs and percentages, 17-19

long regression, 44-45

long—run covariance matrix, 566

long-run impulse response matrix, 528
long-run multiplier, 502

long-run restrictions, structural VARs, 550-551
Lyapunov’s inequality, 1003, 1009

machine learning: approximate sparsity, 954-955; bagging,
958-960; big data, high dimensionality, and, 941-942; defined,
941; double/debiased, 967-968; elastic net, 955; ensem-
bling, 961-962; high-dimensional regression, 942; Lasso
estimation, 948-956; Lasso IV, 962-963; p-norms, 943; post-
Lasso, 956; post-regularization Lasso, 965-967; random
forests, 960-961; regression trees, 956-958; ridge regression,
944-951

Mallows criterion, 895-896, 905-906; model averaging, 927-929

Mammen distribution, 302

Mankiw, Romer, Weil, 212-215

Marcinkiewicz WLLN, 304

Marcinkiewicz-Zygmund inequality, 1004, 1015-1016

marginal effects, 829; binary choice, 838-839

marginal significance level, 231

Markov’s inequality, 1003, 1009

martingale difference sequence (MDS), 465-467; asymptotic dis-
tribution of least squares estimator, 491-492; functional CLT,
565-566; stochastic integral, 571-572; white noise, 471-472

MATLAB, 6; clustered standard errors, 130; collinearity errors,
89-90; F-tests, 239; least squares regression, 93; nonlinear least
squares (NLLS) computation, 804; normal distribution, 140-
141; restricted estimation, 212, 215; setting the bootstrap seed
in, 298; standard errors computation, 120-121; Wald statistic,
234

matrices, 3, 977-978; addition, 979; algorithmic inversion,
993; calculus, 993-995; Cholesky decomposition, 990-991;
complex, 978-979; decompositions, 986-987; determinant,
982-983; eigenvalues, 983-984; extrema of quadratic forms,
988-990; generalized eigenvalues, 987-988; idempotent, 74,
985; inequalities for, 1001; Kronecker products and vec oper-
ator, 995; multiplication, 979-980; norms, 996-998; notation,
73-74, 977-978; orthogonal and orthonormal, 982; positive
definite, 984-985; QR decomposition, 991; rank and inverse,
981-982; singular values, 986; solving linear systems, 991-993;
trace, 980; vector norms, 996

matrix Cauchy-Schwarz inequality, 1002, 1009

matrix convergence, series regression, 734-735

maximal Khintchine inequality, 1004, 1015

maximum likelihood estimator (MLE), 143-144, 779; factor
models, 331-333; Heckman’s model, 884; probit and logit
models, 835

mean, 14; nonstationary time series, 567-569; regression to the,
46-47

mean squared error (MSE), 890; focused information criterion
(FIC), 906-907; of model selection estimators, 909-911

mean-squared forecast error (MSFE), 111-112

measurement error bias, 342

measurement error in the regressor, 342, 346

Index

measures of central tendency, 14-15

measures of fit, least squares regression, 121-122

median, 14

median regression, 807-809

medium regression, 44-45

m-estimators: asymptotic distribution, 783-785; consistency,
780-782; covariance matrix estimation, 785-786; identification
and estimation, 780; uniform law of large numbers (ULLN),
782-783

method of moments estimators (MME), 425-426

minimization, 39

minimum distance, 205-206; tests for, 236-237; tests under
homoskedasticity, 237-238

minimum wage in New Jersey difference in differences, 669-672

Minkowski’s inequality, 1000, 1002, 1006-1007, 1009

misspecification, restricted estimation, 216-218

mixed logit, 858-859

mixing properties of linear processes, 487-488

model averaging, 889, 923-925; empirical illustration, 931;
ensembling, 961-962; Granger-Ramanathan, 930-931; jack-
knife [CV], 929-930; Mallows, 927-929; smoothed BIC and
AIC, 925-927

model selection, 889-891; Akaike information criterion
(AIC), 498, 890, 892-895, 925-927; asymptotic selec-
tion optimality, 904-906; Bayesian information criterion,
890, 891-892, 925-927; best subset, 908-909; consistent,
902-904; cross-validation criterion, 897-898; empirical
illustration, 913-914; focused information criterion (FIC),
906-908; hold-out criterion, 896-897; inference after, 911-
913; K-fold cross-validation, 899-900; Mallows criterion,
895-896, 905-906, 927-929; model averaging and, 889,
923-931; MSE of, 909-911; relation with likelihood ratio test-
ing, 901; similar criteria for, 900-901; stepwise regression,
908-909

moment equation models, 424; overidentified, 426-427

moment estimators, 64

moments, convergence of, 163-164

monotone probability inequality, 1001, 1008

monotonicity, 821; norm, 1000, 1005

Monte Carlo simulation, 245-247; mixed logit, 859

moving average process, 475-476; infinite-order, 476-477

multicollinearity, 123-124

multinomial logit, 848-850

multinomial response, 847-848

multiple choice: BLP demand model, 865-867; conditional logit,
851-854; count data, 864-865; general multinomial probit,
861-862; independence of irrelevant alternatives, 854-855;
mixed logit, 858-859; multinomial logit, 848-850; multinomial
response, 847-848; nested logit, 855-858; ordered response,
862-864; simple multinomial probit, 860-861

multiple comparisons problem, 248-249

multiple regression, 71; nonparametric regression, 712-713

multiple testing problem, 248-249

multiplication, matrix, 979-980

multivariate Lindeberg-Lévy Central Limit Theorem (CLT),
160-161

multivariate matrix normal, 337-338

multivariate normal distribution, 141-142
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Index

multivariate regression: approximate factor models, 333-335;
asymptotic distribution, 319-321; covariance matrix esti-
mation, 321; equivalence of SUR and least squares, 324;
expectation and variance of systems least squares, 318-319;
factor-augmented regression, 336-337; factor models, 331-
337; generalized method of moments (GMM), 436-437; least
squares estimator, 316-318; maximum likelihood estimator,
324-325; multivariate matrix normal, 337-338; principal com-
ponent analysis (PCA), 329-331; reduced rank regression,
325-328; regression systems, 315-316; restricted estimation,
325; seemingly unrelated regression, 322-323

multivariate time series: asymptotic distribution, 531-532; Blan-
chard and Quah illustration, 551-553; covariance matrix
estimation, 532-533; dynamic factor models, 554-555; esti-
mation, 530-531; external instruments, 553-554; first-order
vector autoregressive process, 528-529; forecast error decom-
position, 542-543; illustrations, 533, 541-542, 551-553;
impulse response function (IRF), 527-528, 535-537; linear
projection, 525; local projection estimator, 537; long-run
restrictions, 550-551; multiple equation time series models,
524-525; multivariate Wold decomposition, 525-527; oil price
shocks, 544-545; orthogonalized impulse response function
(OIRF), 540-542; orthogonalized shocks, 539-540; predictive
regressions, 533-535; pth-order vector autoregressive process,
529; regression notation, 529-530; regression on residuals,
537-538; selection of lag length in VAR, 533; structural VARs,
546-550. See also time series

multivariate Wold decomposition, 525-527

Nadaraya-Watson (NW) estimator, 689

near multicollinearity, 123

nested logit, 855-858

nonlinear constraints, restricted estimation, 218-219

nonlinear effects, linear CEF with, 32

nonlinear generalized method of moments (GMM), 442-443

nonlinear hypotheses, 242-245

nonlinear least squares (NLLS), 779; asymptotic distribution,
794-796; computation, 804; covariance matrix estimation,
796-797; estimation, 792-794; identification, 792; panel
data, 797-798; testing for nonlinear components, 802-804;
threshold models, 798-802

nonlinear restricted generalized method of moments (GMM),
435-436

nonparametric identification, 57; parametric vs., 750-751

nonparametric instrumental variables regression (NPIV),
746-750; convergence rate, 749-750; identification, 748-749

nonparametric quantile regression, 822-823

nonparametric regression: application to test scores, 710-711;
application to wage regression, 707-709; asymptotic bias,
692-694; asymptotic distribution, 702-704; asymptotic MSE
(AMSE), 695-696; asymptotic variance, 694-695; binned
means estimator, 687-688; clustered observations, 709-710;
computation, 715; conditional variance estimation, 705-706;
confidence bands, 707; cross-validation bandwidth selection,
701-702; curse of dimensionality, 713; estimation at a bound-
ary, 698-700; kernel regression, 689-690, 707; local linear
estimator, 690-692; local polynomial estimator, 692; multiple
regressors, 712-713; nonparametric residuals and prediction

errors, 700-701; partially linear regression, 714-715; refer-
ence bandwidth, 697-698; undersmoothing, 704-705; variance
estimation and standard errors, 706

nonparametric selection, 884-885

nonrandom matrices, 3

nonstationary time series: AR(1) estimation with an intercept,
574-576; AR[p] models with unit root, 576-578; Beveridge-
Nelson decomposition, 563-565; cointegrating regression,
594-597; cointegration, 589-593; demeaning and detrend-
ing, 569-570; Dickey-Fuller coefficient distribution, 573-576;
estimation of AR(1) parameter, 572-574; functional CLT,
565-566; KPSS stationarity test, 581-584; means, local means,
and trends, 567-569; nonstationary VARs, 588-594; orders
of integration, 566-567; partial sum process and functional
convergence, 561-563; role of intercept and trend, 593-594;
sample covariances of integrated and stationary processes, 576;
spurious regression, 584-588; stochastic integrals, 570-572;
testing for a unit root, 578-581; testing for cointegration in
VECM, 599-602; VECM estimation, 597-599. See also time
series

normal-approximation bootstrap confidence interval, 271

normal distribution, 139-141; multivariate, 141-142

normal regression: confidence intervals for regression coefhi-
cients, 148-149; distribution of OLS coeflicient vector, 145;
distribution of OLS residual vector, 146; distribution of vari-
ance estimator, 146-147; information bound for, 153-154;
joint normality and linear regression, 142; likelihood ratio test,
152-153; multivariate normal distribution, 141-142; normal
distribution and, 139-141; normal regression model, 143-144;
t-statistic, 147-148; t-test, 150-152

norm equivalence, 1001, 1008

norm monotonicity, 1000, 1005

no serial correlation, testing hypothesis of, 496

notation: matrix algebra, 977-978; panel data, 615

null hypothesis, 150-152, 225-226

numerical calculation, least squares, 88-89

observational data, 3-4

observations, 3; bootstrap, 274-275, 303-304; clustered, 267-268,
303-304, 709-710, 743; influential, 86-88

oil price shocks, 544-545

omitted serial correlation, testing for, 496-498

omitted variable bias, 44-45

one standard error (1se) rule, 899-900

one-way error component model, 617

ordered response, 862-864

orders of integration, nonstationary time series, 566-567

ordinary least squares (OLS) coefficient vector, distribution of,
145

ordinary least squares (OLS) estimator, 65-66, 69, 779;
Frisch-Waugh-Lovell (FWL), 82

ordinary least squares (OLS) residual vector, distribution of, 146

orthogonal decomposition, 77-78

orthogonalized impulse response function (OIRF), 540-542

orthogonal matrices, 982

orthogonal polynomials, 726-727

orthogonized shocks, 539-540

orthonormal matrices, 982

For general queries, contact webmaster@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

outliers, 86

overidentification tests, 386-392; bootstrap, 392; generalized
method of moments (GMM), 439-441; subset, 389-392,
440-441

overidentified moment equations, 426-427

OxMetrics, 6

pairs bootstrap, 299; for time series, 509

panel data, 4; Anderson-Hsiao estimator, 656; Arellano-Bond
estimator, 657-659; asymptotic distribution for unbalanced
panels, 637-639; asymptotic distribution of fixed effects 2SLS
estimator, 647-648; asymptotic distribution of fixed effects
estimator, 636-637; bias of fixed effects estimation, 654-655;
binary, 842-843; Blundell-Bond estimator, 661-664; bootstrap,
653; censored regression, 885-886; differenced estimator, 624
626; dummy variables regression, 626-627; dynamic panel
models, 653-654; dynamic panels with predetermined regres-
sors, 660-661; empirical illustration, 665-666; estimation of
fixed effects, 633-634; estimation of time-invariant regressors,
648-650; estimation with time-invariant regressors, 648-650;
between estimator, 630-631; feasible GLS, 632-633; fixed
effects covariance matrix estimation, 628-629; fixed effects
estimation in Stata, 629-630; fixed effects estimator, 623-624;
fixed effects model, 620-621, 636; forward orthogonal trans-
formation, 664-665; GMM interpretation of fixed effects,
634-635; Hausman-Taylor model, 650-652; Hausman test for
random vs. fixed effects, 641-642; heteroskedasticity-robust
covariance matrix estimation, 639-641; heteroskedasticity-
robust estimation-unbalanced case, 641; identification with
instrumental variables, 646; instrumental variables, 645-646;
intercept in fixed effects regression, 633; jackknife covari-
ance matrix estimation, 652-653; linear GMM, 648; nonlinear
least squares (NLLS), 797-798; notation, 615; one-way error
component model, 617; pooled regression, 615-617; quantile
regression, 823-824; random effects, 617-619; time index-
ing and unbalanced panels, 614; time trends, 642-643; within
transformation, 621-623; two-way error components, 643-645;
weak instruments, 659

panel nonparametric bootstrap, 653

parallel quantile functions, 814

parameters functions, asymptotic theory for least squares,
178-180

parametric bootstrap, 296-297

parametric identification, 57; nonparametric vs., 750-751

partially linear regression, 714-715; series regression, 745

partial sum process, 561-563

partitioned matrix, 978

partitioned matrix inversion, 80-81

PcGive, 6

percentile interval, bootstrap, 272-273, 283-284; bias-corrected,
285-286; percentile-t, 288-290

percentiles, 15

percentile-¢ asymptotic refinement, 290-292

percentile-£ interval, 288-290

perentages and logs, 17-19

Phillips curve, 505

plug-in estimators, 64; smooth function model, 162

p-norms, 943

Index

pointwise confidence intervals, 707

Poisson regression, 864-865

police presence and crime difference in differences, 675-677

polynomial regression, 724-725

pooled regression, 615-617

population, 5

positive definite matrices, 984-985

post-Lasso estimation, 956

post model-selection (PMS) estimator, 910

post-regularization Lasso, 965-967

potential outcomes framework, 50

power, asymptotic local, 251-253; vector case, 254

power and test consistency, hypothesis testing, 250-251

power function, hypothesis testing, 229

prediction errors, nonparametric regression, 700-701

prediction standard error, 85

predictive regressions, multivariate time series, 533-535

principal component analysis (PCA), 329-331

probability approach to econometrics, 1-2

probability convergence, 159

probability density function, 13-14

probability distribution, 13

probability inequalities, 1001-1005

probit model, 831; application, 839-840; asymptotic distri-
bution, 836-837; binary panel data, 842-843; covariance
matrix estimation, 838; general multinomial, 861-862; instru-
mental variables, 841-842; latent variable interpretation,
832-833; likelihood, 833-835; marginal effects, 838-839;
models, 829-830; models for response probability, 830-832;
pseudo-true values, 835-836; semiparametric, 840-841; simple
multinomial, 860-861

projection matrix, least squares estimator, 74-75

proxy SVARs, 553-554

pseudo-true values, binary choice, 835-836

pth-order autoregressive process, 484-485, 529

p-values, 231-232

Python, 6

QR decomposition, 991

quadratic forms, extrema of, 988-990

quadratic inequality, 1001, 1008

Quadratic Inequality, 84

quantile causal effects, 820-821

quantile crossings, 819-820

quantile regression, 779, 810-813; asymptotic distribution,
815-816; clustered dependence, 818-819; covariance matrix
estimation, 817-818; estimation, 814-815; example quan-
tile shapes, 813-814; instrumental variables, 824-825; least
absolute deviations, 809-810; median regression, 807-809;
nonparametric, 822-823; panel data, 823-824; quantile
causal effects, 820-821; quantile crossings, 819-820; random
coefficient representation, 821-822

quantiles, 15; normal distribution, 140-141

quantile treatment effects, 820

quasi-structural approach, 2

R (programming language), 6; clustered standard errors,
129-130; least squares regression, 92-93; nonlinear least
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Index

R (programming language) (cont.)
squares (NLLS) computation, 804; normal distribution,
140-141; restricted estimation, 212, 214; setting the bootstrap
seed in, 298; standard errors computation, 120

Rademacher random variables, 302, 1003

random coefficient model, 48-49; quantile regression, 821-822

random effects, panel data, 617-619; binary, 842-843; between
estimator, 630-631; Hausman test for fixed vs., 641-642

random forests, 960-961

random matrices, 3

random sampling, 5-6; least squares regression, 98

random walk, 480

range space, 74

rank and inverse, matrix, 981-982

RATS, 6

R-bar-squared, 121

real numbers, 3; inequalities for, 999-1000

recursive bootstrap for time series, 508-509

recursive VARs, 543-544

reduced form, instrumental variables, 347-348

reduced rank regression, 325-328

reference bandwidth, nonparametric regression, 697-698

regression, 13; Akaike information criterion (AIC) for, 892-894;
bivariate, 71; bootstrap, 298-301; Box-Cox, 790, 793; censored,
872-875; cointegrating, 594-597; control function, 380-382;
discontinuity (See regression discontinuity); dummy variables,
626-627; with expectation errors, 377-379; factor-augmented,
336-337; fixed effects, 633; high-dimensional, 942; intervals,
asymptotic theory for least squares, 185-187; kernel, 689-
690, 707; kink model, 791-792; least squares (See least squares
regression); least squares estimator, 78-81; leave-one-out, 84—
86; linear, 100, 142; long, 44-45; to the mean, 46-47; median,
807-809; medium, 44-45; multiple, 71; multivariate (See
multivariate regression); nonparametric (See nonparametric
regression); nonparametric instrumental variables regression
(NPIV), 746-750; normal (See normal regression); notation,
multivariate time series, 529-530; partially linear, 714-715;
Poisson, 864-865; polynomial, 724-725; pooled, 615-617;
predictive, multivariate time series, 533-535; quantile (See
quantile regression); reduced rank, 325-328; regressor bounds,
733-734; residual, 81-82; on residuals, multivariate time series,
537-538; reverse, 47-48; ridge, 944-951; series (See series
regression); short, 44-45; simple, 71; spline, 728-729; spurious,
584-588; stepwise, 908-909; testing for serial correlation in,
507-508; time series, 500-501; Tobit, 873, 876-879

regression coefficients, 41-42

regression derivative, 30-31

regression discontinuity design (RDD): bandwidth selection,
768-770; with covariates, 770-771; density discontinuity test,
772-773; estimation, 766-767; fuzzy, 763, 773-775; identifi-
cation, 764-765; inference, 767-768; sharp, 763-764; simple
estimator, 771-772

regression fallacy, 46-47

regression subvectors, 42-43

regression trees, 956-958; random forests, 960-961

regression variance, 25-26

regressors, 13

replication, 6-7; bootstrap, 297

resampling methods: bootstrap, 262, 268-304; jackknife, 263-268

residual bootstrap, 302

residuals: least squares, 71-72; regression, 81-82, 109-110; uni-
formly consistent, 191; nonparametric, 700-701; regression on,
537-538; series regression, 740

response probability, 829; models for, 830-832; multinomial
response, 847-848

restricted estimation: asymptotic distribution, 206-207; con-
strained least squares (CLS) estimator, 200-201; efficient
minimum distance estimator, 208-209; exclusion restriction,
201-202, 209-211; finite sample properties, 202-205; Haus-
man equality, 211; inequality restrictions, 219-220; Mankiw,
Romer, and Weil example, 212-215; minimum distance, 205-
206; misspeciﬁcation, 216-218; multivariate regression, 325;
nonlinear constraints, 218-219; variance estimation and
standard errors, 208

restricted generalized method of moments (GMM), 434-435

restricted wild bootstrap, 302

restricted wild cluster bootstrap, 303

reverse regression, 47-48

ridge regression, 944-946; illustrating, 948; Lasso, 948-951;
statistical properties, 947-948

Robinson, James A., 412-414

Rosenthal’s inequality, 1005, 1017-1019

R-squared, 78

Rubin causal model, 50

Rule-of-Thumb (ROT) bandwidth: nonparametric regression,
697-698; regression discontinuity, 768-770

running variable, 763

sample mean, 99; distribution of bootstrap, 275-276; squared
prediction error, 85

sample selection bias, 881-882

sampling, 2; clustered, 4-5, 124-130; random, 5-6. See also
resampling methods

Sargan, Denis, 389

Sargan test, 387-389, 390

SAS, 6

scalars, 3, 977

Schwarz criterion, 891-892

Schwarz inequality, 1000, 1006

Schwarz matrix inequality, 1001, 1007

score tests, 240-242

second-level Brownian Bridge, 583

second-order autoregressive process, 481-484

seemingly unrelated regression (SUR), 322-323; equivalence of
least squares and, 324

selection: model, 889-901; nonparametric, 884-885

selection bias, 881-882

semiparametric approach, 2; binary choice, 840-841

serial correlation, testing for, 507-508

series regression: additively separable models, 746; Angrist and
Lavy example, 751-753; asymptotic normality, 738-739; clus-
tered observations, 743; confidence bands, 743-744; consistent
estimation, 736; convergence rate, 736-737; cross-validation
model selection, 740-741; global/local nature of, 729-731;
matrix convergence, 734-735; multiple regressors, 746; non-
parametric instrumental variables regression (NPIV), 746-750;
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nonparametric vs. parametric identification, 750-751; orthog-
onal polynomials, 726-727; panel fixed effects, 745-746;
partially linear model, 745; polynomial regression, 724-725;
regression estimation, 739; regressor bounds, 733-734; residu-
als and regression fit, 740; spline regression, 728-729; splines,
727-728; Stone-Weierstrass and Jackson approximation theory,
731-733; undersmoothing, 739-740; uniform approximations,
744-745; variance and standard error estimation, 742

sharp regression discontinuity, 763-764

shocks: aggregate supply, 544; oil price, 544-545; orthogonalized,
539-540

short regression, 44-45

shrinkage methods, 914-915; James-Stein shrinkage, 915-923;
toward restrictions, 918-919

significance level, 151, 228

simple conditional multinomial probit, 860-861

simple law, 21-23

simple multinomial probit, 860-861

simple regression, 71

simulated maximum likelihood, 861

simultaneous equations bias, 344

single index model, 831

singular values, matrix, 986

smoothed BIC and AIC, 925-927

smooth function model, 162

smoothing bias, 693, 699

software, econometric, 6; least squares programming, 91-93

sparse dummy variables, 118-119

sparsity, approximate, 954-955

spatial dependence, 5

spectral norm, series regression, 735

splines, 727-728; regression model, 728-729

split-sample IV and JIVE, 359-361

spurious regression, 584-588

stacking, 929-930, 961

standard data structures, 4-6

standard errors: asymptotic, 180-182; bootstrap, 270-272, 282,
372-373; constrained least squares (CLS), 208; least squares
regression, 117-118; nonparametric regression, 706; series
regression, 742

standard normal distribution, 139-141; multivariate, 141-142

Stata, 6; asymptotic standard errors computation, 182; bootstrap
standard error, 271-272, 301; clustered standard errors, 129;
fixed effects estimation in, 629-630; instrumental variables,
416-417; jackknife standard errors, 267, 268; least squares
regression, 92; multivariate probit, 862; nonlinear least squares
(NLLS) computation, 804; nonparametric regression, 715; nor-
mal distribution, 140-141; quantile regression estimation, 815;
random effects probit, 843; random effects regression, 619;
restricted estimation, 212-213; setting the bootstrap seed in,
298; standard errors computation, 120; within transformation,
623; Wald statistic, 234-235

static models, 501-502

stationarity, time series, 458-460; KPSS test, 581-584

statistical significance, hypothesis testing, 230-231

stepwise regression, 908-909

stochastic integrals, nonstationary time series, 570-572

stochastic order symbols, 162-163

Index

Stone-Weierstrass theorem, 731-733

strict mean independence, 615-616

strict multicollinearity, 123

strong Schwarz matrix inequality, 1001, 1008

structural approach, 2

structural effects, 51

structural vector autoregressive models (SVARs), 546-548; exter-
nal instruments, 553-554; identification of, 549-550; long-run
restrictions, 550-551

studentized statistic, 182-183

subsampling, 262

subset endogeneity tests, 385-386; generalized method of
moments (GMM), 441-442

subset overidentification tests, 389-392; generalized method of
moments (GMM), 440-441

sum of squared errors (SSE), 65, 66-68, 78-79

switchers, 843

symmetrization inequality, 1004

terminology, econometrics, 2-3

test inversion, confidence intervals by, 247-248

test scores, nonparametric regression application to, 710-711

test statistic, 226-227

Theil, Henri, 122

threshold models, nonlinear least squares (NLLS), 798-802

tied-down Brownian motion, 570

time indexing, 614

time series, 4; Akaike information criterion (AIC), 498; ARMA
and ARIMA processes, 486-487; AR[P] process, 484-485;
asymptotic distribution of least squares estimator, 491-492;
asymptotic distribution under general dependence, 493;
autoregressive Wold representation, 473-474; bootstrap for,
508-510; CLT for correlated observations, 469-471; CLT for
martingale differences, 467-468; conditioning on informa-
tion sets, 464-465; convergent series, 460-461; covariance
matrix estimation, 493-494; covariance matrix estimation
under general dependence, 494-496; differences and growth
rates, 456-458; distribution under homoskedasticity, 492-493;
ergodicity, 461-463; ergodic theorem, 463-464; estimation of
autoregressive models, 490-491; examples, 455-456; first-order
autoregressive process, 477-480; Granger causality, 505-507;
identification of parameters, 488-490; illustrations, 498-
500, 505; impulse response function, 485-486; infinite-order
moving average process, 476-477; lag operator, 473; linear
models, 474-475; linear projection, 471; martingale difference
sequences (MDS), 465-467; mixing, 468-469; mixing proper-
ties of linear processes, 487-488; model selection, 498; moving
average process, 475-476; multivariate (See multivariate time
series); nonstationary (See nonstationary time series); regres-
sion models, 500-501; second-order autoregressive process,
481-484; static, distributed lag, and autoregressive distributed
lag models, 501-502; stationarity, 458-460; testing for omit-
ted serial correlation, 496-498; testing for serial correlation
in regression models, 507-508; testing the hypothesis of no
serial correlation, 496; time trends, 502-505; transformations
of stationary processes, 460; unit root and explosive AR[1] pro-
cesses, 480-481; white noise, 471-472; Wold decomposition,
472-473
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Index

time trends, 502-505, 642-643

Tobin, James, 877

Tobit estimator, 876-877

Tobit regression, 873, 876-879; identification in, 877-879; panel
data, 885-886

trace, matrix, 980

trace inequality, 1001, 1007-1008

transformations of stationary processes, 460

transpose of a matrix, 978

trees, regression, 956-958; random forests, 960-961

trend specification, difference in differences, 677-678

triangle inequality, 999, 1000, 1001, 1005, 1007

trimmed estimator of bootstrap variance, 280-282

Triumph of Mediocrity in Business, The, 47

trivial power, 229

t-statistic/t—ratio, 147-148, 182-183; Edgeworth expansion,
189-190; hypothesis testing, 232-233

t-test, 150-152, 228-229

two-stage least squares (2SLS), 354-357; asymptotic distribution
of, 362-363; asymptotic distribution of fixed effects, 647-648;
bootstrap for, 369-373; consistency of, 361-362; determinants
of variance, 363-364; efficient GMM versus, 430; standard
errors, 372-373

two-step GMM estimator, 430-431

two-way error components, panel data, 643-645

two-way within estimator, 644

type I error, 227-228

type II error, 229

unbalanced panels, 614

unbalanced regression design, 83

unbiased estimator, 99, 105

unconditional moments, 103-104

unconditional variance, 27

undersmoothing: nonparametric regression, 704-705; series
regression, 739-740

uniform approximations, series regression, 744-745

uniform law of large numbers (ULLN), 782-783

unit root process, 480-481; AR[p] models with, 576-578;
testing for, 578-581

univariate normal distribution, 140

untrimmed bootstrap standard errors, 282

variables, 3; best linear predictor, 62-63; continuous, 20-21;
estimation with sparse dummy, 118-119; instrumental
(See instrumental variables)

variance estimators: bootstrap (See bootstrap estimator); consis-
tency of, 173, 279-280; constrained least squares (CLS), 208;
distribution of, 146-147; jackknife, 263-266; nonparametric
regression, 706; series regression, 742

variance of least squares estimator, 102-103

vector autoregressive (VAR) model, 524-525; forecast error
decomposition, 542-543; identification of recursive,
543-544; long—run restrictions, 550-551; nonstationary,
588-589; selection of lag length in, 533; structural,
546-550

vector error correction model (VECM), 592-593; estimation,
597-599; role of intercept and trend in, 593-594; testing for
cointegration in, 599-602

vector norms, 996

vectors, 3, 977; inequalities for, 1000

wage regression, nonparametric regression application to,
707-709

Wald, Abraham, 235

Wald estimator, 353-354

Wald test, 187-188; F statistic, 239; generalized method
of moments (GMM), 433-434; Hausman statistic, 240;
homoskedastic Wald tests, 188, 235-236; hypothesis testing,
233-235; score tests, 241-242

Wald-type bootstrap tests, 294-295

weak instruments, 397-400; with K, greater than 1, 410-412;
panel data, 659; testing for, 404-410

weak law of large numbers (WLLN), 160; bootstrap, 277,
279, 300; consistency of least squares estimator, 165-167;
Marcinkiewicz, 304

weighted mean-squared error (WMSE), 889-890; shrinkage
methods, 914-915

White, Halbert L., 116-117

White covariance matrix estimator, 115

white noise, 471-472

Whittle’s inequalities, 1004, 1016-1017

Wiener process, 563

wild bootstrap, 301-302; for time series,
509-510

within-cluster correlation, 5

within transformation, panel data, 621-623

Wold decomposition, 472-473; multivariate,
525-527

Zellner, Arnold, 323
z-statistic, 182-183
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