CONTENTS

Introduction 1

PART	I. WHAT LIVES INSIDE EARTH AND HOW DO WE GET TO IT?	
-1	Is There a "Habitat" inside Earth's Crust?	13
2	Cracking into Solid Earth	27
3	The Two DNA Revolutions	40
PART	II. HOW DO INTRATERRESTRIALS CHANGE OUR BASIC	
	NOTIONS OF WHAT LIFE IS LIKE ON EARTH?	
4	Humans and Other Plants	55
5	How to Live inside a Volcano	78
6	Breathing Rocks	96
7	Living on the Edge	115
PART	III. HOW DO INTRATERRESTRIALS AFFECT OUR CONCEPTIONS OF OURSELVES?	
8	Immortal Microbes	135
9	Rethinking Our Beginnings	158
10	Equilibrium Is Death	171
II	What Can Intraterrestrials Do for Us?	185
	Conclusion: The Future, Maybe	204

Acknowledgments 213 References 217 Index 225

v

INTRODUCTION

As I awoke the morning of what was *supposed* to be my first deepsea dive, I prayed to no one in particular, "Oh please, don't let my legs be slamming against my mattress." If they were, that would mean the seas were too rough to launch the submersible from the research ship where we were living and working for three weeks, hundreds of miles offshore in the Gulf of Mexico. And I wouldn't get a second shot at it. As my brain gradually regained consciousness, I began to smell bacon wafting from the galley below, I heard the whirr of air conditioning, and, miraculously, I came to realize that my bunk was as still as if I were on land. The water outside was like glass. Perfect conditions.

I leaped out of my bunk and began to gather my diving clothes. When it comes to submersibles, fashion is dictated by engineering and oceanography. The bottom of the ocean is universally cold, no matter where you are on Earth, and our submersible, the *Johnson-Sea-Link II*, would not offer me much thermal protection. Though the divers in the front of the vessel sit in a beautiful clear Plexiglass ball, which insulates it from the cold and gives a splendid half-sphere view of the ocean, this cozy throne only holds one scientist and one pilot. Being one of the lower-ranking scientists (I was a PhD student at the

1

2 INTRODUCTION

time), I would not get to travel in such luxury. Instead, I'd be stashed in "the coffin," located at the back of the submersible. The coffin is a rectangular box where a second scientist (that would be me, for this dive) and a second pilot lay side by side, with no room for either to sit up straight. They communicate with the folks in the Plexiglass ball via an internal headset, but otherwise the ball and the coffin are separate. Since the coffin is made of metal, I would get to experience the authentic temperature of the deep sea without insulation. And, as the name suggests, this can be a deadly cold: the first version of the Sea-Link snagged on the bottom of the ocean, where it stayed for more than a day. The two men in the back of the submersible, one of whom was the son of Edward Link, the submersible's designer, died from cold exposure and carbon dioxide accumulation. Their tragedy led to safety improvements that now make such accidents far less likely.

So I started dressing as if I were going outside in winter. There's something incongruous about pulling on a wool sweater to get into water; a wet suit would have felt more natural. But putting on a wet suit would've been silly. The only scenario in which I'd touch seawater half a mile deep in the ocean would be if the hull breached. And if the hull breached, I wouldn't live long enough to know it had happened.

Properly attired, I joined the crew at the submersible on the back deck of the ship. Frank (the extra pilot) and I (the extra scientist) climbed into the coffin and sealed ourselves in. From our confined space, we had no ability to drive, steer, or gather samples. We were just there to observe, advise—and perhaps save everyone's lives: Frank explained to me that if the three other people were "incapacitated," I should follow a protocol to drop external weights and the submersible would bob to the surface like a beach ball. I paid close attention. I didn't want to

INTRODUCTION 3

be the graduate student who killed everyone at the seafloor because she couldn't remember which switches to flip.

A moment later, I experienced the sensation of being lifted off the deck of the ship by the powerful A-frame winch and gently nestled into the ocean, where the submersible started bobbing fitfully. After the final checks, the main pilot released air ballast and we began our descent by freefall through the ocean. Frank, who was lying head-to-toe with me, announced that he was going to sleep and wished me a nice dive. I couldn't imagine sleeping. I was wired.

The thing that you should know about the oceans is that they are not empty. Sure, there are fish and whales and sea turtles—but I'm referring to the fact that every *inch* of the ocean is packed with invertebrates and other bits of floating goo. When you're freefalling through the ocean, all this schmutz bioluminesces—it glows—when your submersible hits it. The coffin had one porthole on each side. The one on my side was in between my shoulder and my chin—perfect for viewing the glittering ocean as long as I ignored the growing crick in my neck. Sparkly lights shot by, with the occasional crescendo of blue, red, and purple zipping through a long, segmented body. I could have hung out in the dark pelagic zone for hours, happy as a clam, just staring at the beauty.

The main pilot soon slowed to neutral buoyancy to prevent us from slamming into the seafloor. I had finally arrived at the place I had been researching for six years but had never actually visited. It was desolate. Somehow this made me like it even more. Two-thirds of the Earth is covered by oceans, and yet the seafloor remains largely unseen by humans. Chances are slim that anyone else will ever visit the exact area that I found myself in that day. It felt like I was looking at the truth.

While the folks up front discussed how to travel from where we landed to where we wanted to be, I was surprised to discover

4 INTRODUCTION

that there was more going on at the seafloor than I had anticipated. I watched as a deep-sea crab decided to go to war with us: it held up tiny menacing claws and stood stock-still, ready to destroy us. A bright purple jellyfish floated by, and long, slithery fish scurried along the seafloor, searching for invertebrates to munch. But my favorite animals were the holothurians, or sea cucumbers. These creatures are passive, hollow tubes, roughly the size of two bananas laid end to end, and just as charismatic. All they do, day in and day out, is suck mud through one end of their bodies and push it out the other. They wipe the nutritious bits of organic matter from the mud and then deposit pristine beach sand out of their butts.

While I was admiring these deep-sea Roombas, the other crew members were carefully navigating the landscape. At the bottom of the sea, there are two main challenges when it comes to finding one's way around. First, because the ocean drowns satellite signals as effectively as it drowns people, there is no GPS. Instead, we improvise our own X-Y grid system by sending acoustic "pings" between the submersible and the ship. These pings tell us our depth and angle from the ship, and the Pythagorean theorem does the rest. Second, the lights on the submersible are no match for the darkness of the sea, so it's impossible to view the whole landscape. We'd only see an underwater mountain if we were about to run into it. Sonar can help avoid major catastrophes, but there's no solution for the problem of being just a few meters away from the desired site and not knowing it. We used the X-Y grid to make our way to the general area, but then we had to nose around like a wobbly beetle until we found the spot.

Our target that day was a cold methane seep, where ancient, deeply buried methane burbles up to the seafloor through cracks caused by movements of tectonic plates or geological scouring.

INTRODUCTION 5

In our normal lives, methane is the natural gas we use to heat our houses, but at the seafloor, it's "manna from heaven" (or perhaps, more accurately, "manna from hell"). Methane is a highly energetic food in what is otherwise a desert, so life crams around it like antelopes at a savanna watering hole. The animals here don't eat the methane, but they eat the microbes (tiny, single-celled organisms that include the bacteria) that do. So, although you can't see methane in water unless there's so much of it that it forms bubbles, you can tell when you're nearing a methane seep because they are jam-packed with clams, mussels, crabs, shrimp, fish, sea anemones, and creepy, otherworldly worms.

As I lay in the submersible, craning my neck to watch the seafloor go by my awkward porthole, I started to see bits of broken shells and eventually whole, live mussels packed tight and sticking out of the muck. Crabs were crawling across the mussels, picking off filamentous tendrils of bacteria and invertebrates to eat. Soon, every place that wasn't covered in mussels was carpeted with bright white mats of Beggiatoa—bacteria that transform stinky sulfide into pearls of pure elemental sulfur. We had arrived at the methane seep! We stopped the submersible and began our work.

I had spent the previous evening hose-clamping metal T-shaped handles to cylindrical plastic core tubes to make them compatible with the robotic grippers on the front of the submersible. To keep the cores from floating away while we descended, we strapped them onto milk crates on the front of the submersible with rubber bands, which the robotic arm was able to break when it picked up the tube. Low-tech workarounds like these are a mainstay of scientific exploration—when you're doing something that very few people do, you can't just buy the equipment you need, prefabricated, from a store shelf. The main pilot used the submersible's robotic arm to pick up the

6 INTRODUCTION

core tubes, punch cores of dark black mud, and retrieve them back into the milk crates.

While the work was going on, I lay in my little coffin, occasionally conferring with the main scientist about where we should take cores. After about eight hours, the main pilot dropped the weights, and we started our half-hour ascent.

The reason I was so eager to take this perilous journey, and the reason I immediately began plotting ways to return, is that I was searching for the answer to a question that had been gnawing at me for a long while: Are there life-forms hiding inside Earth that are so strange that they change our conception of life itself? Let's explore this question, shall we?

The Intraterrestrials

For much of my life, I have been tracking the strange types of microbes that live at the bottom of the oceans, inside volcanoes, and deep within the Arctic permafrost, in an attempt to answer this great driving question about hidden life on Earth. From my efforts and those of other scientists like me, we have learned that life can even exist kilometers under the seafloor, way deeper than you can get to by submersible. In fact, we have not yet encountered a depth at which life ceases to exist. And most of this subsurface life is entirely unlike anything we find at the surface: against all odds, it seems that Earth's subsurface may be a nice place to live, as long as you aren't too attached to multicellularity or oxygen. Luckily for us humans, these tiny lifeforms promise to unlock some of the most important mysteries of life: they might tell us how life first developed on this planet, change our basic assumptions about the rules of life, even upend our understanding of what it means to be alive. As a bonus, they might save us from our self-destructive tendencies by helping alleviate the effects of climate change.

INTRODUCTION 7

The biogeochemist Karsten Pedersen coined the term "intraterrestrials" to describe this abundant life within Earth's crust.¹ "Intra" means inside, and "terrestrial" means "of Earth," so intraterrestrial literally means an inhabitant inside the Earth. I like this word because it mirrors the term "extraterrestrial," which conveys some sense of the alien nature of these new life-forms. Now, I don't want to diminish the importance of finding new *animals*—new species of monkeys are thrilling. But the major categories of visible life on Earth are pretty much settled. The discoveries we're making within the Earth's crust are like finding the existence of *all* animals, many tens of times over, based on the evolutionary novelty of these organisms relative to previously known life. This ongoing discovery, which started in the late 1980s, is gradually revealing that we have been missing major branches on the tree of life.²

Part of the reason these creatures are so different from previously known life is that, although we share a planet with them, we inhabit vastly different worlds. David Valentine, another biogeochemist, has aptly described the "microbial purgatory deep below Earth's surface," in which these single-celled organisms thrive: "Bounded from below by the inhospitable temperature of Earth's interior, intraterrestrials face a chronic limitation of food-derived energy because they are far removed from sunlight-driven productivity." Once we begin to peer downward past our feet into the deep, dark recesses of Earth's crust and oceans, a new world emerges. This new world raises a host of questions, such as: Without the sun, where do these creatures get energy? Without oxygen, what do they breathe? And how long, exactly, can any organism survive in harsh environments, where pH ranges from pure acid to pure alkaline? The answers to these questions—they get energy from chemical reactions, breathe rocks, and sometimes live for

8 INTRODUCTION

thousands or perhaps millions of years—will demonstrate that our assumptions about the boundaries of life, based on our narrow experience of living in the thin green layer at Earth's surface, are often wrong.

Our journey to understand these creatures will be divided into three sections. In part I of this book, I will describe what this subsurface habitat is like, how we exhume living beings from it, and how we use DNA sequencing to "see" these microscopic beings. In part II, I will describe how these intraterrestrials have changed what we know about the evolutionary relationships among all life on Earth, how they are able to thrive in previously unthinkable environmental conditions, and how they play with thermodynamics* in ways that are totally foreign to life on Earth's surface. In part III, I will suggest that intraterrestrials skew how life interacts with time itself, give us new perspectives on life's origins, and maybe, if we play our cards right, can help us with climate change. Finally, I'll imagine what life will be like a thousand years into the future, perhaps on other planetary bodies, based on the expanded vision shown to us by the intraterrestrials.

The journey we take in this book will not merely be one of intellectual awakening. My goal is not just to explain what we've discovered about these new life-forms, but also to describe *how* we've made these discoveries. To collect samples and conduct the research described in this book, I've chased intraterrestrials to the ends of the Earth, and I want to take you with me—to Argentina's desolate altiplano; to the frozen Arctic tundra of

^{*}I find the Wikipedia definition to be quite complete: "Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation" (https://en.wikipedia.org/wiki/Thermodynamics).

INTRODUCTION 9

Svalbard; to the bottom of an active volcano in Costa Rica; to the muddy coastline of North Carolina; and, of course, to the bottom of the ocean.

Researching intraterrestrials involves long hours at a lab bench processing samples and at a computer analyzing data. But it also involves crawling on one's belly through spiders and bat guano, donning a mask to survive toxic fumes, and spending weeks or months in remote locations that test the limits of one's physiology. The mind-bending discoveries I describe in this book would simply not be possible without the hardships and triumphs of fieldwork. So, put on your diving clothes and climb into the coffin: we're about to embark on a journey to the depths of the Earth.

INDEX

acetogens, 22, 109 Bacon, Francis, scientific method of, acid, 87, 88-89, 196 68-69 acidic environments, 81, 84, 88, 90 bacteria, 15, 22, 25, 62, 65, 66; Alpha-Acidiphilum, 91 proteobacteria, 166, 168, 170; archaea acidophiles, 89-91, 155 and, 62, 63-64, 65, 67, 94; Atribac-Advanced Piston Coring (APC), 31 teria, 141; Beggiatoa, 5; cyanobac-Aliens of the Deep (documentary), 34n teria, 160, 167; giant worms and, alkaline environments, 91-92 163; growth rate of, 138-40; mitoalkaliphiles, 93, 155 chondria and, 166, 168; sulfideoxidizing, 112. See also Escherichia Alphaproteobacteria, 166, 168, 170 *Alvin* submersible, 161–63, *figure* 3 coli Alvinella pompejana, 142n bacterial DNA, 166 anammox, 114 Banfield, Jillian, 75 ANME-2, 141 barophiles, 155 archaea, 15, 62, 63, 65, 66; bacteria and, basalts, 16 62, 63-64, 65, 67, 94; Bathyar-Basic Local Alignment Search Tool chaeota, 76-77, taxonomy of, 62. (BLAST), 60 See also methanogens Bathyarchaeota, 76-77 Arctic fjord sediments, 125 Bayelva, Norway, 191–92 Arctic Ocean, 117-20 Bayelva River, 120 arc volcanoes, 19 Beggiatoa, 5 Argentina, 14, 36, 208; altiplano of, 14, bioinformatics, 50, 75 35; fieldwork in, 36-39, 208, figure 9; biopiles, 196 intraterrestrials in, 15, 39 biosphere (term), 158 Atlantic Ocean, 20, 23 black pyrite, 30 ATP, 87-88, 90, 93, 112 Bogue Sound, North Carolina, 135-37 Atribacteria, 141 Boike, Julia, 191 Boltzmann, Ludwig, 178, 179, 183n autotrophy. See chemolithoautotrophy; photosynthesis/photoautotrophy breathing, reversible, 125-28

226 INDEX

Cameron, James, 34n permafrost and, 187, 192-93; scecancer, 173 nario models, 193; sulfate reducers carbon, 108, 109, 160: atomic mass of, and, 125 17; and Bathyarchaeota, 76; chloriclone libraries, 43 nated, 109; as food, 65, 75; hydro-Cook Islands, 202 carbon deposits, 30; in permafrost, copper, 195, 196, 197 192-93; respiration of, 108-9, 11on. copper sulfide, 196 See also chemical fossils Costa Rica, Poás volcano in, 79-86 carbonates, 29, 30, 34, 195 Crystal Coast, North Carolina, 137 carbon degradation, 74 cyanobacteria, 160, 192n carbon capture and storage (CCS), 194-95; at high pH, 205 Darwin, Charles, 179 carbon dioxide, 21, 49, 109, 109n, 126, Darwinian evolution, 131-32, 146, 147, 173, 192, 192n, 193, 194; hydrogen 148, 151 Darwin's finches, 145 and, 92, 126; and plants, 109n; produced by methanogens, 126; in Deep-Sea Archaeal Group (DSAG), volcanic gasses, 100 164, 165 carbon monoxide, 21 deep-sea mining: in cobalt-rich ferro-Carteret County, North Carolina, manganese crusts, 200; environmental hazards of, 199-200, 201, 135-38 203; in exclusive economic zones Center for Dark Energy Biosphere Investigations, 75 (EEZ), 197, 202-3; at hydrothermal Challenger expedition, 196-97 vents, 200; of polymetallic nodules, chemical fossils, 172, 173 196-97, 198. See also Clarionchemolithoautotrophs, 21, 92, 160; and Clipperton Zone climate change, 192-93; and serpen-Deep-Sea Mining Finance Limited, tinization, 92 chemolithoautotrophy, 17-18, 173, 204; ΔG (delta-G). See Gibbs Free Energy at Poás volcano, 81; radiation as fuel (ΔG) deoxyribonucleic acid. See DNA for, 21 chemosynthesis. See Desulforudis audaxviator, 22, 33 chemolithoautotrophy dimethylsulfoxide, 109 Chile, Irruputuncu volcano in, 98-103; direct interspecies electron transfer chloroplasts, 167 (DIET), 111 dissipative structures, 181–82 chronophiles, 154-57, 182-84, 204 Clarion-Clipperton Zone, 198, 200, DNA, 41; and acidic environments, 86, 88; amplification of, 72, 73; bacterial, 166; bases, 41, 42, 61; chemiclimate change, 201; carbon capture cal reaction of, 103; extraction of, and storage (CCS), 194-95, 205; intraterrestrials and, 193-94; 42-43; and microbial physiology,

INDEX 227

Enceladus (moon), 206 75; of new phyla, 71-72, 164; of permafrost microbes, 191; and endosymbiosis, 166–67 Tag polymerase, 95. See also DNA energy: large-scale industrial storage sequencing of, 202; from reverse respiration, DNA polymerase, 51, 56n 125-28; sources of, for organisms, DNA sequencing, 41-51, 67; and clone 7-8. See also thermodynamics libraries, 43; E. coli used for, 43; 454 entropy, 178, 180, 181, 182, 184 pyrosequencing, 45-47; Illumina's environmental carrying capacity, process for, 47; nanopore technol-153 ogy for, 51; and polymerase chain enzymes, 56n, 73-74, 106, 107, 147, reaction (PCR), 43-44; and pre-195-96; and biotechnology, 155; dicting microbes' lifestyles, 49-50; DNA polymerase, 51; in nanopore and primers, 43, 48, 49; Sanger sequencing, 51; in pyrosequencing, sequencing, 41-44. See also 16S 46-47; Taq polymerase, 95 Escherichia coli, 43, 73, 82; approach to rRNA genes domain (taxonomic grouping), 62, eating and breathing of, 131; com-65-66,67 pared to archaea, 62; and DNA drilling: subseafloor, 31-33; drilling extraction, 43-44, 45; growth rate of, 138, 141; long-term dormancy of, techniques for permafrost, 187-89 149 Ettema, Thijs, 168 Earth: internal heat of, 19-20, 33, 34; microbial diversity of, 49, 64, 67; eukaryotes, 62, 63, 169; mitochondria origin of life on, 159-61, 174, 175. See as a defining feature of, 165-66; also Earth's crust diversity of, compared to microbes, Earth's crust, 16-17; carbon capture 63-66; origin of, 164-70 and storage in, 194; life in, 17, 21-22, Europa (moon), 206, 207 148; movement of chemicals in, 18, evolution: Darwinian, 131-32; and choosing genes for sequencing, 19, 20; and plate tectonics, 18-20, 145, 175; radioisotopes in, 174; spreading 55-56; as inspiration for Boltzmann, center/rift zone in, 19. See also sub-179; and long-term dormancy, surface; plate tectonics 145-51; and time scales, 63-64 ecology, 177 evolutionary drivers, 145 ecosystem: created by chemolithoexclusive economic zone (EEZ), 197, autotrophs, 21; mining as threat to, 202-3 199-201; subseafloor as, 23, 130, 131 Expedition Leg 370, 32 Edwards, Katrina, 75 extremophiles, 78, 97, 101-2, 150 electrons, 110-11, 122, 172n; sulfide, 112, fermentation, 128-30 flamingos, 36-37 elemental isotopes, 172

flounder, 136

elements, respiration of, 109, 110, 110n

228 INDEX

fossils: chemical, 172–73; isotopic, 174–75; microfossils, 171–72, 175 454 pyrosequencing, 46–47 fumarate, 109 fumaroles, 100, 101, 106 fungi, 22, 62

Ganges river, 23 geological scouring, 4 Gibbs, J. Willard, 104, 175, 178 Gibbs Free Energy (ΔG), 104–5; and fermentation, 129-30; limitation of, as a descriptor, 176; and redox reaction, 107-8; and thermodynamic warfare among intraterrestrials, 120-23 global warming. See climate change gold, 109; South African gold mines, 33, 71 gravity coring, 28, 30 greenhouse gasses, 193, 194 growth advantage in stationary phase (GASP), 149 Gulf of California. See Sea of Cortez. Gulf of Mexico: buried salt deposits in, 20; samples from, 30, 59, 61; petroleum deposits in, 30; submersible dive in, 1-6

halophiles, 155
heat convection, of subsurface waters, 34
heavy metal industries, 33
high-pH environments, 91–94, 205
Hinrichs, Kai-Uwe, 76
hot springs, 34–35, 37
Huber, Julie, 45, 47, 143, 151
Hugenholtz, Phil, 66
hydrazine, 114
hydrofluoric acid, 101

hydrogen, 122; carbon dioxide and, 92, 126; as food for microbes, 25 hydrothermal vents, 34, 200; commercial mining near, 200; fluids from 169; Loki's Castle, 168; microbes from, 164, 168, 170; metal precipitates at, 196; ocean life near, 142n, 163; and origin of life 161, 170; samples from, 163, 164; submersible dive to, 162–63; Hynek, Brian, 90–91

Illumina, 47, 50

Imachi, Hiroyuki, 169-70 Inagaki, Fumio, 71, 164 International Seabed Authority (ISA), Into the Cool (Schneider and Sagan), 177, 183 intraterrestrials, 6-8; and carbon capture and storage (CCS), 194-95; and climate change, 193; collection of, 69-70; and enzymes, 73-74, 195-96; evolutionary cues for, 145-46, 149-151; food for, 18, 22; and growth advantage in stationary phase (GASP), 149; growth rates of, 141, 152-53, 154-55n; and hydrogen storage, 202; lifespans of, 137, 139, 143, 146; and low-energy living, 128-31; in marine sediments, 24, 143, 154; and metals, 109, 195-96; and oxygen creation, 22-23, 185; in permafrost, 187; researching, 9, 40, 49-50, 68-69, 77; respiration of, 109-11, 115, 121, 195-96; and reversible breathing, 125-28; and thermodynamics, 97–98, 115–17, 120–121. See also extremophiles; microbes; specific types

INDEX 229

iron, 30, 196; as a breathable material, 109, 110n; needed for life, 24, 185, 195–96; in polymetallic nodules, 197; in sediments, 120; and sulfide, 30, 121, 125; in tailings, 125

Irruputuncu volcano, 98–103, 106, figure 6 isotopes: elemental, 172; radioactive, 173 isotopic fossils, 174–75

Japan, 19; Expedition Leg 370, 32; leased rights to EEZ, 202; RV Chikyu, 31, 32 Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 71, 164, 169 Johnson-Sea-Link II (submersible), 1, 2,

kinetics, 111–12 Kings Bay, 118 Knittel, Katrin, 164, 165, 168 K strategists, 156

Laguna Botos, 79n
Laguna Caliente (Poás lake), 83–84
Lenski, Richard, 138
lignin, 76
Lokiarchaeota, 67n, 141, 168, 169,
170
Loki's Castle (hydrothermal vent), 168
Lotka, Alfred, 176

magma, 14–15; at Poás volcano, 80 magnesium, 195–96 manganese nodules, 197 Margulis, Lynn, 166 Marine Benthic Group B (MBG-B), 164, 165

Marine Hydrothermal Vent Group (MHVG), 164, 165 marine sediments: amount of microbial cells in, 25; build-up of, 23, 130; and deep-sea mining, 198-99; food availability in, 160; growth rate of microbes in, 143-45; 152; iron in, 30, 120; nongrowth states in, 130, 144-45, 146-47, 154; in North Carolina, 153-54; samples of, 24, 29, 33; sampling, 27-29, 31-32; thermodynamic competition in, 121, 124; timescales of, 139, 143 Mars, 206 Mayr, Ernst, 63-64, 66 Mediterranean Sea, salt deposits in. 20 Mendeleyev, Dimitri, 114 metals, 21; and cobalt-rich ferromanganese crusts, 200; and hydrothermal vents, 200; mining for, 195-96, 197, 198-99, 200-201; polymetallic nodules, 196-97; respiration of, 109-10, 195-96 Metals Company, The, 203n meteoric water, 20 methane, 30, 125, 192-93, 194; as food for microbes, 25; methane seep, 4-5. See also methanogens methanogens, 62, 124, 125-27 Methanosarcinales, 141 microbes: in acidic environments, 86-90; and dormancy, 140, 144-45, 146–47, 148, 149–51; fossilized, 175; in high-pH environments, 91–94; in marine sediments, 23, 24, 25–26, 147, 151-52, 154; measuring growth of, 138 151-53; and mining, 196; and multiple stressors, 94-95; and ultraslow growth, 140-41, 143-44, 154-55;

230 INDEX

microbes (continued) Orcutt, Beth, 202 in permafrost, 190-93; respiration of, origin of life: date of, 174; fossils and, 110, 121, 122. See also archaea; bacteria; 171-72; and hydrothermal vents, intraterrestrials; specific types 161, 170; location of, 158-61; thermomicrofossils, 171-72, 175 dynamics and, 159, 184 mines. See under gold oxygen: and intraterrestrials, 22-23, Miscellaneous Crenarchaeotal Group 185; in redox reactions, 107; respira-(MCG), 71, 75, 76 tion of, 104, 107-8; and sulfide, 112; mitochondria, 165-66, 167 sulfur and, 112; toxicity of, 107-8 molybdenum, 196 motor proteins, 87 Papua New Guinea, and EEZ mining, mud, 24-25, 24n 202-3 Pedersen, Karsten, 7 mud volcanoes, 18-19, 91 Pelagibacter ubique, 141 mutations, 56, 147 peridotites, 20 permafrost, 186-87; and climate nanopore sequencing, 51 nanowires, 110-11 change, 192-93; core drilling in, natural selection. See Darwinian 187-89, figure 5; microbes in, 190-93 evolution photosynthesis/photoautotrophy, 17, natural spring. See hot springs 18, 23, 173 Nautilus (company), 203 plankton, 24, 199 neodymium, 196 plate tectonics, 18-19; chemicals crenickel, 196 ated by, 21; creation and destruction Nile River, 23 of rocks by, 174-75; as evolutionary nitrate, 108 driver, 145, 150-51 Poás volcano, 79-86, figure 4 nitrite, 108 nitrogen, 21, 108 polymerase chain reaction (PCR), 41, 43-44, 48; amplification, Nitrosopumilus sp., 141 nitrous oxide, 108 polymetallic nodules, 197; mining of, non-equilibrium thermodynamics, 197, 198-200 Prigogine, Ilya, 181 177, 182 North Carolina, 135-37, 153-54 Prochlorococcus sp., 141 Norway: EEZ rights of, 202; Nyprokaryotes, 63, 169. See also archaea; Ålesund, 117–20; Svalbard, 117–20, bacteria Prometheoarchaeum syntrophicum, 124-25 NPL-UPA2, 93 170 Nucleotide BLAST, 59, 60 Prometheus, 170 proteins: ATP synthase, 87; gingipain, 73-74; metallic, 110-11; motor, 87; ocean drilling, scientific, 31-33 olivines, 20 transporter, 90

INDEX 231

proton motive force, 87, 89–90, 191 protons: and acidity, 86–87, 88, 89, 90; in carbon, 172; and high-pH environments, 93 psychrophiles, 155 pyrosequencing. *See* 454 pyrosequencing

radiation, as fuel for microbial life, 21 radioactive decay, 173 radioactive isotopes. See radioisotopes radioisotopes, 173-75 rare biospheres, 45–47 renewable energy, 195 respiration, 103-4; and redox reaction, 107; reversible breathing, 125-28 Riftia, 163 rift zone, 19 Rittmaster, Keith, 137n RNA. See 16S ribosomal RNA (rRNA) genes r strategists, 156 rules for life, thermodynamic, 113-14 RV Chikyu (Japan), 31, 32 RV Joides Resolution (US), 31, 32

Sagan, Dorian, 177, 183
salars, 36
salmon, population of, 96
salt deposits, 20
salt flats, 36
Sanger sequencing, 41, 43–44, 45, 46
Schneider, Eric, 177, 183
Schramm, Andreas, 151n
scientific method, 68–69
Sea of Cortez, 161, 168
seawater: as a carrier for chemicals,
19–20, 161; microbes in, 141; sample
contamination by, 31–32

second law of thermodynamics, 177-78, 179-80; and chronophiles, 182-84 sediments. See marine sediments selenium, 196 serpentinization, 20-21, 92, 94, Shackleford Banks, 136 silicate precipitations, 34 Sipunculids, 63 16S ribosomal RNA (rRNA) genes, 56-60, 62, 65, 71, 165 sludge reactors, 77 Snowball Earth events, 206 sodium motive force, 89-90 Sogin, Mitch, 45, 47 Spang, Anja, 168, 169 spreading center, 19 Steen, Drew: colleague, 119; University of Tennessee, 74 Stepanauskas, Ramunas, 72–73 stratovolcano, 79, 79n subduction zones, 18, 19, 21 subseafloor: iron in, 30; scientific drilling into, 31-33; as the largest ecosystem on Earth, 130 subsurface: biospheres of, 17-18; definition of, 16; ecosystems of, 18, 23; and energy storage 201-2; fuel sources for life in, 17–18, 20, 22, 25, 92, 122; microbes in, 185, 194-95; number of microbial cells in, 25; and the origin of life, 159-61; sampling from, 27–28, 31–33, 34–35, 39, 69. See also Earth's crust; subseafloor subsurface biology, as a research field, sulfate, 108, 121, 122, 124, 125, 130 sulfate reducers, 121-25

232 INDEX

sulfide, 29, 121; Beggiatoa and, 5; and iron, 30, 121; oxidation of, 112, 125, 196 sulfite, 108 sulfur, 21: iron and, 125; at Irruputuncu volcano, 100; oxidation of, 90, 108, 163; at Poás volcano, 79, 81; reduced, 90

tailings, 196 Takai, Ken, 164 Taq polymerase, 95 taxonomic hierarchy, 62-63, 65 tectonic plates. See plate tectonics thermal convective cells, 19 thermodynamic landscape, 115-17 thermodynamics, 8, 97, 103-5; as energy plus activity, 97; equilibrium, 177; and limits of life, 103-6; nonequilibrium, 177, 182, 205; and the origin of life, 159; and probability, 179; and reverse breathing, 125-28; and rules for life, 113-14; second law of, 177-78, 179-80, 182-84 thermophiles, 155 Thermoplasmatota, 67n thiosulfate, 108 thorium, 21 three-domain theory, 65-66 Titanic, 161 Treaty of Versailles, 118 Trembath-Reichert, Elizabeth, 143, 151

trimethylamine, 109

tuberculosis, 140 tungsten, 196 *Tyrannosaurus rex*, 171 Tyson, Gene, 75

ultradormancy microbes, 155 United Nations Convention on the Law of the Sea, 198 uranium, 21

Valentine, David, 7
Vallino, Joseph, 182
Vernadsky, Vladimir, 158, 175–76
Vetriani, Costantino, 164
volcanoes, 14–15; in the Andes, 153;
arc, 19; microbial life in, 6, 15–16, 86, 88, 90–91, 94–95; mud, 18–19, 91–92; phreatic, 80; stratovolcano, 79; sulfur in, 79, 81, 100. See also Irruputuncu volcano; Poás volcano
Volcanoes of the Deep Sea (documentary), 34n

Wang, Fengping, 76 wastewater, 77 White Oak River, 69–70; cores from, 29 Woese, Carl, 56, 62–63, 67 Wrighton, Jill, 75 Wrighton, Kelly, 75

Yellowstone National Park, 34, 142, 143

zircon, 174