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Introduction

as i awoke the morning of what was supposed to be my first deep-
sea dive, I prayed to no one in particular, “Oh please, don’t let 
my legs be slamming against my mattress.” If they were, that 
would mean the seas were too rough to launch the submersible 
from the research ship where we were living and working for 
three weeks, hundreds of miles offshore in the Gulf of Mexico. 
And I wouldn’t get a second shot at it. As my brain gradually 
regained consciousness, I began to smell bacon wafting from 
the galley below, I heard the whirr of air conditioning, and, mi-
raculously, I came to realize that my bunk was as still as if I were 
on land. The water outside was like glass. Perfect conditions.

I leaped out of my bunk and began to gather my diving 
clothes. When it comes to submersibles, fashion is dictated by 
engineering and oceanography. The bottom of the ocean is uni-
versally cold, no matter where you are on Earth, and our sub-
mersible, the Johnson-Sea-Link II, would not offer me much 
thermal protection. Though the divers in the front of the vessel 
sit in a beautiful clear Plexiglass ball, which insulates it from the 
cold and gives a splendid half-sphere view of the ocean, this 
cozy throne only holds one scientist and one pilot. Being one 
of the lower-ranking scientists (I was a PhD student at the 
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time), I would not get to travel in such luxury. Instead, I’d be 
stashed in “the coffin,” located at the back of the submersible. 
The coffin is a rectangular box where a second scientist (that 
would be me, for this dive) and a second pilot lay side by side, with 
no room for either to sit up straight. They communicate with 
the folks in the Plexiglass ball via an internal headset, but other
wise the ball and the coffin are separate. Since the coffin is made 
of metal, I would get to experience the authentic temperature 
of the deep sea without insulation. And, as the name suggests, 
this can be a deadly cold: the first version of the Sea-Link 
snagged on the bottom of the ocean, where it stayed for more 
than a day. The two men in the back of the submersible, one of 
whom was the son of Edward Link, the submersible’s designer, 
died from cold exposure and carbon dioxide accumulation. 
Their tragedy led to safety improvements that now make such 
accidents far less likely.

So I started dressing as if I were going outside in winter. 
There’s something incongruous about pulling on a wool sweater 
to get into water; a wet suit would have felt more natural. But 
putting on a wet suit would’ve been silly. The only scenario in 
which I’d touch seawater half a mile deep in the ocean would be 
if the hull breached. And if the hull breached, I wouldn’t live 
long enough to know it had happened.

Properly attired, I joined the crew at the submersible on the 
back deck of the ship. Frank (the extra pilot) and I (the extra 
scientist) climbed into the coffin and sealed ourselves in. From 
our confined space, we had no ability to drive, steer, or gather 
samples. We were just there to observe, advise—and perhaps 
save everyone’s lives: Frank explained to me that if the three 
other people were “incapacitated,” I should follow a protocol to 
drop external weights and the submersible would bob to the 
surface like a beach ball. I paid close attention. I didn’t want to 
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be the graduate student who killed everyone at the seafloor 
because she couldn’t remember which switches to flip.

A moment later, I experienced the sensation of being lifted off 
the deck of the ship by the powerful A-frame winch and gently 
nestled into the ocean, where the submersible started bobbing 
fitfully. After the final checks, the main pilot released air ballast 
and we began our descent by freefall through the ocean. Frank, 
who was lying head-to-toe with me, announced that he was 
going to sleep and wished me a nice dive. I couldn’t imagine 
sleeping. I was wired.

The thing that you should know about the oceans is that they 
are not empty. Sure, there are fish and whales and sea turtles—but 
I’m referring to the fact that every inch of the ocean is packed with 
invertebrates and other bits of floating goo. When you’re free-
falling through the ocean, all this schmutz bioluminesces—it 
glows—when your submersible hits it. The coffin had one port-
hole on each side. The one on my side was in between my shoul-
der and my chin—perfect for viewing the glittering ocean as long 
as I ignored the growing crick in my neck. Sparkly lights shot by, 
with the occasional crescendo of blue, red, and purple zipping 
through a long, segmented body. I could have hung out in the dark 
pelagic zone for hours, happy as a clam, just staring at the beauty.

The main pilot soon slowed to neutral buoyancy to prevent 
us from slamming into the seafloor. I had finally arrived at the 
place I had been researching for six years but had never actually 
visited. It was desolate. Somehow this made me like it even 
more. Two-thirds of the Earth is covered by oceans, and yet the 
seafloor remains largely unseen by humans. Chances are slim 
that anyone else will ever visit the exact area that I found myself 
in that day. It felt like I was looking at the truth.

While the folks up front discussed how to travel from where 
we landed to where we wanted to be, I was surprised to discover 
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that there was more going on at the seafloor than I had antici-
pated. I watched as a deep-sea crab decided to go to war with 
us: it held up tiny menacing claws and stood stock-still, ready 
to destroy us. A bright purple jellyfish floated by, and long, slith-
ery fish scurried along the seafloor, searching for invertebrates 
to munch. But my favorite animals were the holothurians, or 
sea cucumbers. These creatures are passive, hollow tubes, 
roughly the size of two bananas laid end to end, and just as 
charismatic. All they do, day in and day out, is suck mud through 
one end of their bodies and push it out the other. They wipe the 
nutritious bits of organic matter from the mud and then deposit 
pristine beach sand out of their butts.

While I was admiring these deep-sea Roombas, the other 
crew members were carefully navigating the landscape. At the 
bottom of the sea, there are two main challenges when it comes 
to finding one’s way around. First, because the ocean drowns 
satellite signals as effectively as it drowns people, there is no 
GPS. Instead, we improvise our own X-Y grid system by send-
ing acoustic “pings” between the submersible and the ship. 
These pings tell us our depth and angle from the ship, and the 
Pythagorean theorem does the rest. Second, the lights on 
the submersible are no match for the darkness of the sea, so it’s 
impossible to view the whole landscape. We’d only see an un-
derwater mountain if we were about to run into it. Sonar can 
help avoid major catastrophes, but there’s no solution for the 
problem of being just a few meters away from the desired site 
and not knowing it. We used the X-Y grid to make our way to 
the general area, but then we had to nose around like a wobbly 
beetle until we found the spot.

Our target that day was a cold methane seep, where ancient, 
deeply buried methane burbles up to the seafloor through cracks 
caused by movements of tectonic plates or geological scouring. 
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In our normal lives, methane is the natural gas we use to heat our 
houses, but at the seafloor, it’s “manna from heaven” (or perhaps, 
more accurately, “manna from hell”). Methane is a highly ener-
getic food in what is otherwise a desert, so life crams around it 
like antelopes at a savanna watering hole. The animals here don’t 
eat the methane, but they eat the microbes (tiny, single-celled 
organisms that include the bacteria) that do. So, although you 
can’t see methane in water unless there’s so much of it that it 
forms bubbles, you can tell when you’re nearing a methane seep 
because they are jam-packed with clams, mussels, crabs, shrimp, 
fish, sea anemones, and creepy, otherworldly worms.

As I lay in the submersible, craning my neck to watch the 
seafloor go by my awkward porthole, I started to see bits of 
broken shells and eventually whole, live mussels packed tight 
and sticking out of the muck. Crabs were crawling across the 
mussels, picking off filamentous tendrils of bacteria and inver-
tebrates to eat. Soon, every place that wasn’t covered in mussels 
was carpeted with bright white mats of Beggiatoa—bacteria 
that transform stinky sulfide into pearls of pure elemental sul-
fur. We had arrived at the methane seep! We stopped the sub-
mersible and began our work.

I had spent the previous evening hose-clamping metal 
T-shaped handles to cylindrical plastic core tubes to make them 
compatible with the robotic grippers on the front of the sub-
mersible. To keep the cores from floating away while we de-
scended, we strapped them onto milk crates on the front of the 
submersible with rubber bands, which the robotic arm was able 
to break when it picked up the tube. Low-tech workarounds 
like these are a mainstay of scientific exploration—when you’re 
doing something that very few people do, you can’t just buy 
the equipment you need, prefabricated, from a store shelf. The 
main pilot used the submersible’s robotic arm to pick up the 
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core tubes, punch cores of dark black mud, and retrieve them 
back into the milk crates.

While the work was going on, I lay in my little coffin, occa-
sionally conferring with the main scientist about where we 
should take cores. After about eight hours, the main pilot 
dropped the weights, and we started our half-hour ascent.

The reason I was so eager to take this perilous journey, 
and the reason I immediately began plotting ways to return, is 
that I was searching for the answer to a question that had been 
gnawing at me for a long while: Are there life-forms hiding inside 
Earth that are so strange that they change our conception of life it-
self? Let’s explore this question, shall we?

The Intraterrestrials

For much of my life, I have been tracking the strange types of 
microbes that live at the bottom of the oceans, inside volcanoes, 
and deep within the Arctic permafrost, in an attempt to answer 
this great driving question about hidden life on Earth. From my 
efforts and those of other scientists like me, we have learned 
that life can even exist kilometers under the seafloor, way 
deeper than you can get to by submersible. In fact, we have not 
yet encountered a depth at which life ceases to exist. And most 
of this subsurface life is entirely unlike anything we find at the 
surface: against all odds, it seems that Earth’s subsurface may be 
a nice place to live, as long as you aren’t too attached to multi-
cellularity or oxygen. Luckily for us humans, these tiny life-
forms promise to unlock some of the most important mysteries 
of life: they might tell us how life first developed on this planet, 
change our basic assumptions about the rules of life, even 
upend our understanding of what it means to be alive. As a 
bonus, they might save us from our self-destructive tendencies 
by helping alleviate the effects of climate change.
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The biogeochemist Karsten Pedersen coined the term “in-
traterrestrials” to describe this abundant life within Earth’s 
crust.1 “Intra” means inside, and “terrestrial” means “of Earth,” 
so intraterrestrial literally means an inhabitant inside the Earth. 
I like this word because it mirrors the term “extraterrestrial,” 
which conveys some sense of the alien nature of these new 
life-forms. Now, I don’t want to diminish the importance of 
finding new animals—new species of monkeys are thrilling. But 
the major categories of visible life on Earth are pretty much 
settled. The discoveries we’re making within the Earth’s crust 
are like finding the existence of all animals, many tens of times 
over, based on the evolutionary novelty of these organisms rela-
tive to previously known life. This ongoing discovery, which 
started in the late 1980s, is gradually revealing that we have been 
missing major branches on the tree of life.2

Part of the reason these creatures are so different from previ-
ously known life is that, although we share a planet with them, 
we inhabit vastly different worlds. David Valentine, another 
biogeochemist, has aptly described the “microbial purgatory 
deep below Earth’s surface,” in which these single-celled 
organisms thrive: “Bounded from below by the inhospitable 
temperature of Earth’s interior, intraterrestrials face a chronic 
limitation of food-derived energy because they are far removed 
from sunlight-driven productivity.”3 Once we begin to peer 
downward past our feet into the deep, dark recesses of Earth’s 
crust and oceans, a new world emerges. This new world raises 
a host of questions, such as: Without the sun, where do these 
creatures get energy? Without oxygen, what do they breathe? 
And how long, exactly, can any organism survive in harsh 
environments, where pH ranges from pure acid to pure alka-
line? The answers to these questions—they get energy from 
chemical reactions, breathe rocks, and sometimes live for 
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thousands or perhaps millions of years—will demonstrate that 
our assumptions about the boundaries of life, based on our nar-
row experience of living in the thin green layer at Earth’s sur-
face, are often wrong.

Our journey to understand these creatures will be divided 
into three sections. In part I of this book, I will describe what 
this subsurface habitat is like, how we exhume living beings 
from it, and how we use DNA sequencing to “see” these 
microscopic beings. In part II, I will describe how these intra-
terrestrials have changed what we know about the evolutionary 
relationships among all life on Earth, how they are able to thrive 
in previously unthinkable environmental conditions, and how 
they play with thermodynamics* in ways that are totally foreign 
to life on Earth’s surface. In part III, I will suggest that intrater-
restrials skew how life interacts with time itself, give us new 
perspectives on life’s origins, and maybe, if we play our cards 
right, can help us with climate change. Finally, I’ll imagine what 
life will be like a thousand years into the future, perhaps on 
other planetary bodies, based on the expanded vision shown to 
us by the intraterrestrials.

The journey we take in this book will not merely be one of 
intellectual awakening. My goal is not just to explain what we’ve 
discovered about these new life-forms, but also to describe how 
we’ve made these discoveries. To collect samples and conduct 
the research described in this book, I’ve chased intraterrestrials 
to the ends of the Earth, and I want to take you with me—to 
Argentina’s desolate altiplano; to the frozen Arctic tundra of 

* I find the Wikipedia definition to be quite complete: “Thermodynamics is a 
branch of physics that deals with heat, work, and temperature, and their relation to 
energy, entropy, and the physical properties of matter and radiation” (https://en​
.wikipedia​.org​/wiki​/Thermodynamics).
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Svalbard; to the bottom of an active volcano in Costa Rica; to 
the muddy coastline of North Carolina; and, of course, to the 
bottom of the ocean.

Researching intraterrestrials involves long hours at a lab 
bench processing samples and at a computer analyzing data. But 
it also involves crawling on one’s belly through spiders and bat 
guano, donning a mask to survive toxic fumes, and spending 
weeks or months in remote locations that test the limits of one’s 
physiology. The mind-bending discoveries I describe in this 
book would simply not be possible without the hardships and 
triumphs of fieldwork. So, put on your diving clothes and climb 
into the coffin: we’re about to embark on a journey to the 
depths of the Earth.
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