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INTRODUCTION

As 1awoke the morning of what was supposed to be my first deep-
sea dive, I prayed to no one in particular, “Oh please, don’t let
my legs be slamming against my mattress.” If they were, that
would mean the seas were too rough to launch the submersible
from the research ship where we were living and working for
three weeks, hundreds of miles offshore in the Gulf of Mexico.
And I wouldn’t get a second shot at it. As my brain gradually
regained consciousness, I began to smell bacon wafting from
the galley below, I heard the whirr of air conditioning, and, mi-
raculously, I came to realize that my bunk was as still as if T were
on land. The water outside was like glass. Perfect conditions.

I leaped out of my bunk and began to gather my diving
clothes. When it comes to submersibles, fashion is dictated by
engineering and oceanography. The bottom of the ocean is uni-
versally cold, no matter where you are on Earth, and our sub-
mersible, the Johnson-Sea-Link II, would not offer me much
thermal protection. Though the divers in the front of the vessel
sit in a beautiful clear Plexiglass ball, which insulates it from the
cold and gives a splendid half-sphere view of the ocean, this
cozy throne only holds one scientist and one pilot. Being one
of the lower-ranking scientists (I was a PhD student at the
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2 INTRODUCTION

time), I would not get to travel in such luxury. Instead, I'd be
stashed in “the coffin,” located at the back of the submersible.
The coffin is a rectangular box where a second scientist (that
would be me, for this dive) and a second pilot lay side by side, with
no room for either to sit up straight. They communicate with
the folks in the Plexiglass ball via an internal headset, but other-
wise the ball and the cofhin are separate. Since the coffin is made
of metal, I would get to experience the authentic temperature
of the deep sea without insulation. And, as the name suggests,
this can be a deadly cold: the first version of the Sea-Link
snagged on the bottom of the ocean, where it stayed for more
than a day. The two men in the back of the submersible, one of
whom was the son of Edward Link, the submersible’s designer,
died from cold exposure and carbon dioxide accumulation.
Their tragedy led to safety improvements that now make such
accidents far less likely.

So I started dressing as if I were going outside in winter.
There’s something incongruous about pulling on a wool sweater
to get into water; a wet suit would have felt more natural. But
putting on a wet suit would’ve been silly. The only scenario in
which I'd touch seawater half a mile deep in the ocean would be
if the hull breached. And if the hull breached, I wouldn’t live
long enough to know it had happened.

Properly attired, I joined the crew at the submersible on the
back deck of the ship. Frank (the extra pilot) and I (the extra
scientist) climbed into the coffin and sealed ourselves in. From
our confined space, we had no ability to drive, steer, or gather
samples. We were just there to observe, advise—and perhaps
save everyone’s lives: Frank explained to me that if the three
other people were “incapacitated,” I should follow a protocol to
drop external weights and the submersible would bob to the
surface like a beach ball. I paid close attention. I didn’t want to
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INTRODUCTION 3

be the graduate student who killed everyone at the seafloor
because she couldn’t remember which switches to flip.

A moment later, I experienced the sensation of being lifted off
the deck of the ship by the powerful A-frame winch and gently
nestled into the ocean, where the submersible started bobbing
fitfully. After the final checks, the main pilot released air ballast
and we began our descent by freefall through the ocean. Frank,
who was lying head-to-toe with me, announced that he was
going to sleep and wished me a nice dive. I couldn’t imagine
sleeping. I was wired.

The thing that you should know about the oceans is that they
are not empty. Sure, there are fish and whales and sea turtles—but
I'm referring to the fact that every inch of the ocean is packed with
invertebrates and other bits of floating goo. When you're free-
falling through the ocean, all this schmutz bioluminesces—it
glows—when your submersible hits it. The coffin had one port-
hole on each side. The one on my side was in between my shoul-
der and my chin—perfect for viewing the glittering ocean as long
as I ignored the growing crick in my neck. Sparkly lights shot by,
with the occasional crescendo of blue, red, and purple zipping
through along, segmented body. I could have hung out in the dark
pelagic zone for hours, happy as a clam, just staring at the beauty.

The main pilot soon slowed to neutral buoyancy to prevent
us from slamming into the seafloor. I had finally arrived at the
place I had been researching for six years but had never actually
visited. It was desolate. Somehow this made me like it even
more. Two-thirds of the Earth is covered by oceans, and yet the
seafloor remains largely unseen by humans. Chances are slim
that anyone else will ever visit the exact area that I found myself
in that day. It felt like I was looking at the truth.

While the folks up front discussed how to travel from where
we landed to where we wanted to be, I was surprised to discover
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that there was more going on at the seafloor than I had antici-
pated. I watched as a deep-sea crab decided to go to war with
us: it held up tiny menacing claws and stood stock-still, ready
to destroy us. A bright purple jellyfish floated by, and long, slith-
ery fish scurried along the seafloor, searching for invertebrates
to munch. But my favorite animals were the holothurians, or
sea cucumbers. These creatures are passive, hollow tubes,
roughly the size of two bananas laid end to end, and just as
charismatic. All they do, day in and day out, is suck mud through
one end of their bodies and push it out the other. They wipe the
nutritious bits of organic matter from the mud and then deposit
pristine beach sand out of their butts.

While I was admiring these deep-sea Roombas, the other
crew members were carefully navigating the landscape. At the
bottom of the sea, there are two main challenges when it comes
to finding one’s way around. First, because the ocean drowns
satellite signals as effectively as it drowns people, there is no
GPS. Instead, we improvise our own X-Y grid system by send-
ing acoustic “pings” between the submersible and the ship.
These pings tell us our depth and angle from the ship, and the
Pythagorean theorem does the rest. Second, the lights on
the submersible are no match for the darkness of the sea, so it’s
impossible to view the whole landscape. We'd only see an un-
derwater mountain if we were about to run into it. Sonar can
help avoid major catastrophes, but there’s no solution for the
problem of being just a few meters away from the desired site
and not knowing it. We used the X-Y grid to make our way to
the general area, but then we had to nose around like a wobbly
beetle until we found the spot.

Our target that day was a cold methane seep, where ancient,
deeply buried methane burbles up to the seafloor through cracks
caused by movements of tectonic plates or geological scouring.

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.
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In our normal lives, methane is the natural gas we use to heat our
houses, but at the seafloor, it’s “manna from heaven” (or perhaps,
more accurately, “manna from hell”). Methane is a highly ener-
getic food in what is otherwise a desert, so life crams around it
like antelopes at a savanna watering hole. The animals here don’t
eat the methane, but they eat the microbes (tiny, single-celled
organisms that include the bacteria) that do. So, although you
can’'t see methane in water unless there’s so much of it that it
forms bubbles, you can tell when you're nearing a methane seep
because they are jam-packed with clams, mussels, crabs, shrimp,
fish, sea anemones, and creepy, otherworldly worms.

As I lay in the submersible, craning my neck to watch the
seafloor go by my awkward porthole, I started to see bits of
broken shells and eventually whole, live mussels packed tight
and sticking out of the muck. Crabs were crawling across the
mussels, picking off filamentous tendrils of bacteria and inver-
tebrates to eat. Soon, every place that wasn’t covered in mussels
was carpeted with bright white mats of Beggiatoa—Dbacteria
that transform stinky sulfide into pearls of pure elemental sul-
fur. We had arrived at the methane seep! We stopped the sub-
mersible and began our work.

I had spent the previous evening hose-clamping metal
T-shaped handles to cylindrical plastic core tubes to make them
compatible with the robotic grippers on the front of the sub-
mersible. To keep the cores from floating away while we de-
scended, we strapped them onto milk crates on the front of the
submersible with rubber bands, which the robotic arm was able
to break when it picked up the tube. Low-tech workarounds
like these are a mainstay of scientific exploration—when you're
doing something that very few people do, you can’t just buy
the equipment you need, prefabricated, from a store shelf. The
main pilot used the submersible’s robotic arm to pick up the
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core tubes, punch cores of dark black mud, and retrieve them
back into the milk crates.

While the work was going on, I lay in my little coffin, occa-
sionally conferring with the main scientist about where we
should take cores. After about eight hours, the main pilot
dropped the weights, and we started our half-hour ascent.

The reason I was so eager to take this perilous journey,
and the reason I immediately began plotting ways to return, is
that I was searching for the answer to a question that had been
gnawing at me for a long while: Are there life-forms hiding inside
Earth that are so strange that they change our conception of life it-
self? Let’s explore this question, shall we?

The Intraterrestrials

For much of my life, I have been tracking the strange types of
microbes that live at the bottom of the oceans, inside volcanoes,
and deep within the Arctic permafrost, in an attempt to answer
this great driving question about hidden life on Earth. From my
efforts and those of other scientists like me, we have learned
that life can even exist kilometers under the seafloor, way
deeper than you can get to by submersible. In fact, we have not
yet encountered a depth at which life ceases to exist. And most
of this subsurface life is entirely unlike anything we find at the
surface: against all odds, it seems that Earth’s subsurface may be
a nice place to live, as long as you aren’t too attached to multi-
cellularity or oxygen. Luckily for us humans, these tiny life-
forms promise to unlock some of the most important mysteries
oflife: they might tell us how life first developed on this planet,
change our basic assumptions about the rules of life, even
upend our understanding of what it means to be alive. As a
bonus, they might save us from our self-destructive tendencies
by helping alleviate the effects of climate change.
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The biogeochemist Karsten Pedersen coined the term “in-
traterrestrials” to describe this abundant life within Earth’s
crust.! “Intra” means inside, and “terrestrial” means “of Earth,”
so intraterrestrial literally means an inhabitant inside the Earth.
I like this word because it mirrors the term “extraterrestrial,”
which conveys some sense of the alien nature of these new
life-forms. Now, I don’t want to diminish the importance of
finding new animals—new species of monkeys are thrilling. But
the major categories of visible life on Earth are pretty much
settled. The discoveries we're making within the Earth’s crust
are like finding the existence of all animals, many tens of times
over, based on the evolutionary novelty of these organisms rela-
tive to previously known life. This ongoing discovery, which
started in the late 1980s, is gradually revealing that we have been
missing major branches on the tree of life.>

Part of the reason these creatures are so different from previ-
ously known life is that, although we share a planet with them,
we inhabit vastly different worlds. David Valentine, another
biogeochemist, has aptly described the “microbial purgatory
deep below Earth’s surface,” in which these single-celled
organisms thrive: “Bounded from below by the inhospitable
temperature of Earth’s interior, intraterrestrials face a chronic
limitation of food-derived energy because they are far removed
from sunlight-driven productivity.”> Once we begin to peer
downward past our feet into the deep, dark recesses of Earth’s
crust and oceans, a new world emerges. This new world raises
a host of questions, such as: Without the sun, where do these
creatures get energy? Without oxygen, what do they breathe?
And how long, exactly, can any organism survive in harsh
environments, where pH ranges from pure acid to pure alka-
line? The answers to these questions—they get energy from
chemical reactions, breathe rocks, and sometimes live for
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thousands or perhaps millions of years—will demonstrate that
our assumptions about the boundaries of life, based on our nar-
row experience of living in the thin green layer at Earth’s sur-
face, are often wrong.

Our journey to understand these creatures will be divided
into three sections. In part I of this book, I will describe what
this subsurface habitat is like, how we exhume living beings
from it, and how we use DNA sequencing to “see” these
microscopic beings. In part II, I will describe how these intra-
terrestrials have changed what we know about the evolutionary
relationships among all life on Earth, how they are able to thrive
in previously unthinkable environmental conditions, and how
they play with thermodynamics* in ways that are totally foreign
to life on Earth’s surface. In part III, I will suggest that intrater-
restrials skew how life interacts with time itself, give us new
perspectives on life’s origins, and maybe, if we play our cards
right, can help us with climate change. Finally, I'll imagine what
life will be like a thousand years into the future, perhaps on
other planetary bodies, based on the expanded vision shown to
us by the intraterrestrials.

The journey we take in this book will not merely be one of
intellectual awakening. My goal is not just to explain what we’ve
discovered about these new life-forms, but also to describe how
we’ve made these discoveries. To collect samples and conduct
the research described in this book, I've chased intraterrestrials
to the ends of the Earth, and I want to take you with me—to
Argentina’s desolate altiplano; to the frozen Arctic tundra of

*1I find the Wikipedia definition to be quite complete: “Thermodynamics is a
branch of physics that deals with heat, work, and temperature, and their relation to
energy, entropy, and the physical properties of matter and radiation” (https://en
.wikipedia.org/wiki/ Thermodynamics).
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Svalbard; to the bottom of an active volcano in Costa Rica; to
the muddy coastline of North Carolina; and, of course, to the
bottom of the ocean.

Researching intraterrestrials involves long hours at a lab
bench processing samples and at a computer analyzing data. But
it also involves crawling on one’s belly through spiders and bat
guano, donning a mask to survive toxic fumes, and spending
weeks or months in remote locations that test the limits of one’s
physiology. The mind-bending discoveries I describe in this
book would simply not be possible without the hardships and
triumphs of fieldwork. So, put on your diving clothes and climb
into the coffin: we're about to embark on a journey to the

depths of the Earth.
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