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Variations
Leaf sizes also vary with environment: the mean and range of leaf sizes decrease from 

the tropics to the boreal zone, and from moist to dry forests. However, at any point 

on these environmental gradients there are usually tree species that vary along the 

architectural spectrum predicted by Corner’s rules. Why does this variation occur? 

The answer to this is not clear. One theory suggests that because leaves represent 

a cheaper investment than stems, creating a crown of large leaves and/or a greater 

leaf area per annual increment of wood can allow such species to be faster in height 

growth and crown expansion, and thus ideal for the high light levels created by the 

death of canopy trees.

Leonardo’s prediction
The Italian polymath Leonardo da Vinci (1452–1519) made a related prediction, saying 

that the cross-sectional area of a tree at its base is equal to its cross-sectional area at 

any distance from the base. In other words, if you gather all the twigs at the edge of 

a tree crown together as a bundle, the summed cross-sectional area of all the twigs 

will be the same as the cross-sectional area of the trunk at the base of the tree. To 

demonstrate this, imagine a set of 100 garden hoses, each 100 ft (30 m) long, gathered 

at one end as a round bundle. Moving along the bundle, at 30 ft (10 m) from the base, 

divide the 100 hoses into two sets of 50. Then at 50 ft (15 m) from the base, divide 

each of the two bundles into two sets (four in total) of 25. Continue this process until 

you are left, in each final “branch,” with a single hose. Thus, we have Leonardo’s 

prediction: the cross-sectional area of the hoses at the base is equal to the combined 

cross-sectional area of the individual hoses at the tips of the branching. 

This simple model echoes one of Corner’s rules: the more you divide the branches, the 

thinner those branches become. In reality, trees deviate somewhat from Leonardo’s 

prediction, because they are not just made up of hollow tubes for water conduction, 

but also have structures for mechanical support that may vary from tree base to twig 

tip. It also seems that trees “overproduce” twigs, such that the summed cross-sectional 

area at the twig level is somewhat greater than the trunk diameter, although there are 

few direct observations from which to draw a conclusion.

u Da Vinci trees 
Leonardo da Vinci 

became fascinated 

about rules that 

determine the branching 

patterns of trees. The 

far right sketch makes 

a critical prediction 

that the cross-sectional 

area of a tree trunk (the 

lowest line that crosses 

the trunk) is equal to the 

summed cross-sectional 

area at any distance 

from the base (that is, 

at the semicircles that 

represent successive 

distance from the trunk).
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FAST AND SLOW CROWN GROWTH 

Nonetheless, Leonardo’s general idea is implicit in one of ecology’s rules of thumb: 

the cross-sectional area of a tree trunk predicts the total leaf area of the crown. It 

being much easier to measure diameter than leaf area, field ecologists often take 

the diameter of the trunk as predictive of the tree’s role (total leaf area being tied to 

total productivity). Because tree trunks often swell near the ground, this diameter is 

usually measured at “breast height,” taken as 4½ ft (1.4 m) above the ground.

Fast and slow crown growth are represented by height growth 

among four trees in the high-elevation spruce-fir forests in 

Great Smoky Mountains National Park (see Chapter 2, pages 

70–71, for additional description of the disturbance dynamics 

of this ecosystem). The size of the disturbance patches (x-axis) 

is used as a surrogate for light availability.

Fraser Fir and Red Spruce
These two species have low 
leaf area per annual increment 
of stem growth. Fir and spruce 
persist in the deepest shade 
in these forests, but grow in 
height only about 2 in (5 cm) 
per year. They grow faster  
(up to 6 in/15 cm per year)  
in disturbed patches but  
are outcompeted in the  
largest patches.
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Pin Cherry
A species with high leaf area 
per annual increment of stem 
growth and fast growth. This 
species requires high light (large 
disturbance patch size) and 
does not survive under shady 
conditions. It reaches 20 in  
(50 cm) extension growth  
per year in larger patches.

Yellow Birch
A species with intermediate 
leaf area per annual increment 
of stem growth. This species 
requires some disturbance for 
long survival. It reaches 12–16 in 
(30–40 cm) extension growth 
per year.
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Henry Horn’s monolayers and multilayers
The second insight comes from the work of American ecologist Henry Horn, who 

in his 1971 book The Adaptive Geometry of Trees argued that the light environment 

predicts leaf arrangement. More specifically, he said that in low light tree branching 

should create less leaf overlap and, in the extreme, what he called monolayers of 

leaves, whereas in greater light trees can benefit from greater leaf overlap, creating 

what Horn called multilayers. For example, in the interior of a dense forest, with 

low light levels, seedlings and saplings are more like the monolayer extreme, and in 

patches created by windstorms, fields, and sunlit gardens, with higher light levels, 

trees should develop as multilayers. However, individual trees display plasticity and 

tree species also differ genetically. Early successional species (see pages 94–97) depend 

on high light levels and tend to be multilayers wherever they are found, whereas late 

successional species tend to be monolayers, except if they are large and old enough 

to dominate the sunlit forest canopy. Interestingly, a 2020 paper by Thomas Givnish 

pointed out that there may be other benefits to multilayered leaves, including a 

reduction in water loss in sunny environments, that may outweigh the importance  

of light interception per se.

MONOLAYERS AND MULTILAYERS
Multilayers distribute leaves in a larger volume, monolayers 

tend to make fewer layers and, in extreme, just one.

Monolayer

Multilayer
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The 23 models of Hallé,  
Oldeman, and Tomlinson
A third insight into tree forms comes from the  

work of Hallé, Oldeman, and Tomlinson. Their 

scheme overlaps with some features of Corner’s 

rules in that it is particularly concerned with the 

pattern of branching. It is distinctive, though, 

in its emphasis on dynamics of development 

from seed to adult plant, its emphasis on the 

spatial position of growing points that produce 

branching, and its inclusion of where and how 

reproductive structures are produced. The authors 

described 23 models for the development of tree 

forms, naming each for a prominent botanist. Taking 

the palm form (single unbranched, thick stems and 

many large leaves) as an extreme in Corner’s rules,  

they named it Corner’s model. 

 

Wood density
Our last insight is that, even within one set of environmental conditions, tree 

species vary greatly in wood density, creating, among other things, a great range  

of materials fit for different kinds of human use—the Balsa wood of gliding aircraft 

to wood so dense that it sinks in water. By definition, low-density wood is less 

costly in terms of the use of carbon products from photosynthesis. One possible 

consequence of this is that, for a given amount of carbon fixed, low-density woods 

can create faster volumetric growth rates—faster growth in height and in crown 

expansion. Indeed, in full sunlight the annual height growth of Balsa trees is ten  

or more times the height growth of ebony trees (genus Diospyros), which have  

high-density wood. But there’s a trade-off: ebony trees, with their slow-growing, 

densely wooded strategy, are more durable and the lifespan difference between  

the two species is probably about the same, being ten or more times  

longer in ebony trees than in Balsa.

q Balsa wood  
In contrast to ebony 

trees, Balsa is a fast-

growing, short-lived  

tree with light wood  

with specialty uses  

such as building  

model airplanes.

p Ebony  
Ebony is a slow-growing, 

long-lived tree with very 

dense wood.



The Dragon Blood Tree (Dracaena cinnabari) is a 

striking tree with bright red sap found only on  

the Socotra Islands (Yemen) of the Indian Ocean — 

155 miles (250 km) east of the Somali coast and  

235 miles (380 km) south of the Yemen on the  

Arabian Peninsula. Of the vascular plant species 

on the Socotras 37 percent are found only there 

(endemic), which is comparable to other oceanic 

islands such as Mauritius, the Galápagos, and the 

Canary Islands. The flora of the Socotras have been 

evolving independently for the past 35 million years 

when they separated from the Arabian Peninsula. 

The trees are potentially vulnerable to an extinction 

under a climatic warming. 

The Dragon Blood Tree has a striking umbrella 

shape and complies to one of Hallé, Oldeman, and 

Tomlinson’s tree architectural models discussed 

on page 43. It is a great example of what they called 

Leeuwenberg’s model, in which the dominant bud at 

the end of a twig first flowers and then new twigs are 

produced that grow around the former flower bud.  

The stems are a joined assemblage of Y-shaped 

elements and the trees are made of Y-shaped twigs, 

which show up well in these photos as well as in the  

da Vinci tree diagrams on page 40.

Dragon Blood Tree 
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One explanation for the cap on tree height is that it is constrained by the mechanics 

of building tall structures from wood. Tree trunks are tall, slender, vertical wooden 

columns anchored to the ground. As with any other slender, vertical object, like 

a tower of wooden blocks, any small displacement may cause it to collapse by 

buckling. In 1757, Swiss mathematician Leonhard Euler (1707–1783) found that the 

maximum height a vertical column can reach before buckling under its own weight 

is related to the column diameter raised to the power of 2/3. So, if the base diameter 

of a column doubles, the column’s maximum height is multiplied by only a factor 

of 1.587. However, trees are generally not columnar, instead mostly have a conical, 

tapered shape, and they are not all made of a homogeneous material. Trunk shape 

and structure both slightly modify the coefficient of Euler’s buckling formula, but 

they do not change the way maximum height scales with trunk diameter. 

Environmental factors 
So long as the base of a tree is large enough, Euler’s formula does not set a maximum 

limit on its height. Two other processes must be considered: the risks of being 

damaged by wind, and the physiological constraints of the tree’s hydraulic system. 

In many parts of the world, strong wind gusts are a major threat to trees; so long as 

they are sheltered by other trees, the risks of breakage are limited. Yet, the towering 

giants of the forest are fully exposed to wind, which is therefore a potent selective 

force against tall trees. 

Building tall trees 

u General Sherman  
A Giant Sequoia 

(Sequoiadendron 

giganteum) tree located 

in the Giant Forest  

of Sequoia National 

Park, California.

Human architectural wonders pale in comparison to the tallest Eucalyptus trees of Australia 

or Sequoiadendron trees of California. From an engineering standpoint, one can only marvel 

at the fact that a living organism can reach heights of more than 380 ft (115 m). We understand 

that trees grow tall in order to outcompete their neighbors and harvest as much light as 

possible, but why is the limit slightly over 380 ft (115 m)? Why is no tree 500 ft (150 m) tall? 

Why is the limit not 150 ft (45 m)?
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Tree hydraulics
The other explanation for the cap on tree height involves water. For a long time, 

observers thought that trees acquired their water through the condensation of air 

vapor at the surface of their leaves. However, it was later found that trees lift water 

from the soil. The control in lifting water upward is the difference in water density in 

the air relative to that in the leaf. This difference creates a water potential, which the 

plant tries to balance by transpiring water. The process creates a surface tension in 

the slender conduits in the tree, and by capillarity the water column is pulled upward 

from the roots. This theory was first formulated in 1914 by plant biologist Henry 

Dixon (1869–1953). 

Drought stress
Taller trees must compensate for a greater gravitational force, and the pulling force 

for the ascent of sap should therefore be higher. However, if the tension of the water 

column is too high, this may create a phenomenon called cavitation, similar to the 

breakage of a rope under high tension. Water does not “break,” but it does undergo a 

phase transition from a liquid to a gas, and this generates small water vapor bubbles 

in the otherwise liquid water column. Cavitation under tension produces a major 

alteration of the inner sap transportation conduits, leading to tissue death and 

even potentially the death of the entire tree. During extreme droughts, when the air 

surrounding leaves is very dry, plants lose large amounts of water through their leaf 

stomata (microscopic openings; see page 213) when they open these to let in carbon 

dioxide for photosynthesis. Under these conditions, the resultant tension on the 

water column is high enough to cause cavitation and eventually drought-induced 

death. Plants are adapted to their climate, and thin water conduits are much less 

likely to cavitate than wide water conduits, so it usually takes an exceptional drought 

to result in an actual increased mortality in trees. 

As trees grow taller, they are more exposed to dry air and to gravitational forces. 

In 2004, ecosystem scientist George Koch and his colleagues climbed a tall Coast 

Redwood (Sequoia sempervirens) and measured leaf water tension at different heights 

during the driest hour of the day. They found that water tension increased linearly 

from the ground to the treetop, and the highest values were close to values where 

cavitation occurs. One could imagine that taller trees could avoid cavitation risks by 

having thin water conduits, but these would make it difficult for them to transport 

the large amounts of water they need. According to plant physiologist Ian Woodward, 

the plant hydraulic system should cavitate without other adaptations at an absolute 

limit at around 330 ft (100 m). Several physiological adaptations can push this limit  

to a maximum height of 400–425 ft (122–130 m).
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WATER TRANSPORT AND CAVITATION

Trunk

Leaves

Root

2. Cohesion

Pith

Water 
molecule

Leaf vein

1. Absorption

3. Transpiration

Normal water-filled 
xylem vessel

Water vapor  
bubbles begin to  
block channels

Air pocket breaks the 
water column—xylem 

vessel is not functional

Cavitation

Trees must move water through the xylem in a continuous 

stream from the roots below to the leaves above. This 

movement is driven by the evaporation of water from  

the leaves, called transpiration, which produces tension  

in the water column. Under drought conditions, the  

tension becomes so negative, that bubbles of water  

vapor form, leading to a complete break in the water 

column—a phenomenon called cavitation.

Water molecule

Mesophyll cell

Stoma

Lower epidermis

Mesophyll cell

Xylem

Phloem

Soil particles

Root hair

Epidermis

Xylem

Water molecule
Xylem

Phloem
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Often a tree’s primary allocation to its growth of sugars derived from photosynthesis 

is to activate the top bud(s) and prioritize their elongation to add height. For 

ecologists, height reveals much about the status and future of each of the trees 

comprising a forest. For foresters, the height that a single-species forest of trees  

of equal age can reach at a given time is called the “site index” and it reveals the 

value of land for forest management. Site index tells a forester when to thin a forest, 

when to harvest it, and how densely the seedlings should be replanted in  

the regenerating forest after harvesting. 

The use of lidar (light detection and ranging) instruments from ground, airplane,  

or satellite platforms has revolutionized local, and now global, capacity to measure 

forest height and its change. The map above shows the average heights of the tallest 

10 percent of the trees in forests as seen from space using a 1,650 ft (500 m) spatial 

resolution. In this study, scientists used the Geoscience Laser Altimeter System on 

Reaching for the sky 

GLOBAL FOREST CANOPY HEIGHTS
In 2010, the ICESat satellite provided the first global lidar 

reconnaissance of the heights of the world’s forests  

measured as height of the tallest 10 percent of the trees. 

130 ft (40 m)

100 ft (30 m)

65 ft (20 m)

30 ft (10 m)

0

Canopy height

The height of forests is an essential measurement, as forest vegetation is typified by 

verticality. The striving of trees to dominate the canopy, to gain the light they need to  

drive photosynthesis in their leaves and to gain control of local resources, drive the  

processes that ultimately produce forest patterns. 
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board NASA’s ICESat satellite to collect and calibrate 1,058,380 forest patches. 

ICESat was originally designed to measure the amount of ice in the Earth’s polar  

ice sheets; that it has also proved able to measure forest heights is very fortuitous.

The temperate conifer forests were the tallest forests measured by ICESat, but 

globally they were also the most variable in height. The boreal forests were the 

shortest forests, and among these the shortest were the extensive deciduous  

larch (genus Larix) forests of northern Asia. The Indo-Malayan region has notably 

tall tropical and subtropical coniferous forests. Menara, the Yellow Meranti (Shorea 

faguetiana) tree, is a record height for a tropical tree and is from this region. The 

African tropics has taller temperate broad-leaved and mixed forests, but shorter 

tropical forests than other regions.

p Lidar search 
Mountain Ash 

(Eucalyptus regnans, 

left) and Yellow Meranti 

(Shorea faguetiana, 

right). Scientists 

continue to seek out 

the tallest trees. New 

discoveries are on 

the increase with the 

availability of remote 

sensing to survey 

the heights of forest 

canopies.
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WORLD’S TALLEST TREES
Species of extremely tall trees and the locations where they 

can be found on a map of observed maximum tree heights.

> 195 ft (60 m)

160 ft (50 m) 

130 ft (40 m)

100 ft (30 m)

65 ft (20 m)

30 ft (10 m)

0

Forest tree  
height 

1 Picea sitchensis
(Sitka Spruce)

230–330 ft/70–100 m

5 Sequoia sempervirens 
(Coast Redwood)

230–375 ft/70–115 m

6 Pseudotsuga menziesii
(Douglas Fir)

160–330 ft/50–100 m

7 Sequoiadendron giganteum
(Giant Sequoia)

195–330 ft/60–100 m

8 Fitzroya cupressoides
(Patagonian Cypress)
160–230 ft/50–70 m

9 Diniza excelsa 
(Angelim Vermelho)
160–280 ft/50–85 m

2 Abies procera 
(Noble Fir)

195–295 ft/60–90 m

3 Liriodendron tulipifera
(Yellow Poplar)

80–160 ft/25–50 m

4 Pinus strobus
(Eastern White Pine)
130–195 ft/40–60 m
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10 Picea abies
(Norway Spruce)

130–160 ft/40–50 m

11 Abies normandiana
(Nordman Fir)

160–195 ft/50–60 m

12 Koompassia excelsa
(Tualang Tree)

160–230 ft/50–70 m

13 Shorea faguetiana
(Yellow Meranti)

230–330 ft/70–100 m

18 Araucaria hunsteinii
(Klink Pine)

160–295 ft/50–90 m

17 Eucalyptus regnans
(Mountain Ash)

260–330 ft/80–100 m

16 Eucalyptus globulus
(Blue Gum)

195–295 ft/60–90 m

15 Entandrophragma excelsum
(Tiama)

160–260 ft/50–80 m

14 Baillonella toxisperma
(Moabi)

130–230 ft/40–70 m
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In this simple definition, the one tricky word is “dominated.” In forests, trees  

usually dominate with respect to being the tallest, largest in mass, or most  

effectual in changing the local environment, but they are not necessarily  

dominant in terms of having the greatest number of individuals or the most  

species relative to other structural categories. Forests are structurally complex,  

and this complexity may be incorporated into one forest definition but not  

another. One reason a simpler definition for forest is preferred is that the term  

has hundreds of nuanced meanings, mainly because forests are important to  

people in so many ways and at so many scales. 

What is a forest? 

q Medieval forest  
In medieval Europe, 

forests were defined as 

any uncultivated land, 

which by law belonged 

to the Crown and were 

used as game preserves 

for royal hunts.

As we saw in Chapter 1, “tree” is a biologically complicated term. It follows that if a forest is 

composed of trees, then its definition could inherit some of that complexity as well. However, 

dictionary definitions that a forest is “an area dominated by trees” seem straightforward 

enough. For the sake of simplicity, this is the definition we will use in this book. 
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COMPONENTS OF A FOREST

The word “forest”
“Forest” as a word derives from ancient law and more precise definitions are 

important in modern law and environmental policy. Etymologically, it originates 

from the Latin foris, meaning “outside.” The Latin root for(s) carries this meaning in 

several European languages—for example, in the English word foreigner, meaning 

“one from the outside.” In medieval England, forests were land outside cultivation 

and by law belonged to the Crown, typically for use as royal hunting reserves. In 

Europe, the same concept appears for the first time in the laws of the Lombards, who 

ruled the Italian Peninsula in 568–774 ce, and in the capitularies of the Frankish 

emperor Charlemagne (724–814 ce), with forest (foresta in medieval Latin) again 

referring not to the nature of the land cover but to royal game reserves. 

Forest legislation
Law and ecology still come together in defining a forest. Increasing the growth and 

expansion of forests can reduce greenhouse gas concentrations in the atmosphere 

and ameliorate global climate change, and this drives a significant focus on forests 

today. We are now deeply involved with policy and legislation of forests of trees at 

every scale, from patches of trees to forest parks, to state and national forest reserves, 

and to forests over the national and global levels. Forest consultant H. Gyde Lund 

has compiled a running list of 1,713 words that might be translated as “forest” in more 

than 500 languages, along with more than a thousand other definitions developed 

for use at international, national, state, provincial, or local levels. In these, a forest is 

defined as an area of land covered to some degree by trees, or at least potentially so.

In this case a survey plot in a forest is used for simplicity. 

The canopy is the top of the forest, the mid-canopy refers 

to trees below the canopy trees, and the ground layer is the 

vegetation near the ground. The leaf area of the forest is  

the total area of leaves per area of ground. The rooting  

zone is the depth into the soil that the roots can access.  

While tree roots can grow to great depths, in most forests  

90 percent or more of the active roots are in the top meter  

of soil. Survey plots are arranged across an area. Sample 

systems of survey plots are averaged to obtain a measure  

of forests over a given area. 

Rooting zone Soil depth

Ground layer

Mid-canopy

Canopy
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TREE CANOPY COVER

Defining forest lands
National laws and policies often attempt to bound forest definitions quantitatively by 

asking a set of questions. What is the minimum area a forest must occupy? What is the 

minimum tree cover in a forest? How tall must the trees in a forest be? In countries 

in which trees are planted in strips for erosion control, for shelter from the wind, for 

shade, or for aesthetics, how wide must these strips be to be called forests? 

Minimum tree cover (the area of the sky blocked by leaves, stems, and branches) is 

sometimes not considered a necessary criterion in the definitions included among 

Lund’s many terms. If it is considered at all, it ranges from as little as 10 percent up to 

80 percent. It is important to note that the greater the lower limit of tree cover used 

to define a forest, the less “forest” there is in a particular area, region, or nation. The 

Food and Agriculture Organization of the United Nations defines a forest as an area of 

more than 1¼ acres (0.5 ha) with trees taller than 16 ft (5 m) and with the tree canopies 

covering at least 10 percent of the area. This definition is often used in international data 

compilations of forest cover and is the usual legal descriptor for a range of international 

forest issues, including storage of carbon or biomass (weight of organic matter per unit 

area), national inventories of forest cover, and rates of forest clearing or reforestation. 

The amount of forest cover depends on how forests are 

defined. The maps shown here show the global extent of 

forest under the requirement that 75 percent of the surface is 

covered by tree canopies (top), and 10 percent of the surface 

(bottom). (Sources: Hansen et al. 2003; Kirkup 2001.)

Tree canopy covering  
75% of the surface

Tree canopy covering  
10% of the surface
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AUSTRALIAN CLASSIFICATION
The Australian government has a long tradition of 

systematically classifying its unique vegetation types 

using a combination of cover and height. Some examples 

of forests categories include the following:

• Tall closed forests (rain forests)—closed forests with 

tree heights above 100 ft (30 m) and reaching to 330 ft 

(100 m) in height; cover greater than 70 percent

• Tall open forests—tree heights above 100 ft (30 m)  

and reaching to 330 ft (100 m); cover 30–70 percent

• Open forests—tree heights above 30 ft (10 m) and 

reaching to 100 ft (30 m); cover 30–70 percent

• Low open forests—tree heights to 30 ft (10 m);  

cover 30–70 percent

• Woodlands—tree heights to 100 ft (30 m);  

cover 10–30 percent

• Open woodlands—tree heights to 100 ft (30 m);  

cover less than 10 percent

• Low closed forests—tree heights less than 30 ft (10 m); 

cover greater than 70 percent.

Low closed forests Low open forests

Open forests

Open woodlands

% Cover

Height

Tall closed forests  
(rain forests)

Tall open forests

100–330 ft
(30–100 m)

30–100 ft
(10–30 m)

0–30 ft
(0–10 m)

Woodlands

0–10% 10–30% 30–70% 70–100%
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Amid this worldwide turmoil, the Ecological Society of 

America produced a pivotal publication, the 1935 issue 

number 4 of the journal Ecology, dedicated to Henry 

Chandler Cowles (1869–1939), whose work on long-

term change in ecosystems is discussed in Chapter 3. 

This publication was a kaleidoscopic interweaving of 

topics in an ecologically changed and still changing 

United States. At the start of the issue is a remarkable 

paper by the Cambridge professor Sir Arthur G. 

Tansley (1871–1955) entitled “The use and abuse of 

vegetational concepts and terms.” This contained the 

first printed use of the word “ecosystem.” 

Tansley defined the term with the intent of 

transforming ecology beyond a mere description 

of nature and toward a scientific understanding of 

dynamic change in nature. Since the first usage of the 

word was in its definition, one might think this would 

make its meaning clear. However, the botanist’s text is 

somewhat opaque to the modern reader:

It is these systems so formed which, from the point of view of the ecologist, are the 

basic units of nature on the face of the earth. Our natural human prejudices force us 

to consider the organisms (in the sense of the biologist) as the most important parts 

of these systems, but certainly the inorganic “factors” are also parts—there could 

be no systems without them, and there is constant interchange of the most various 

kinds within each system, not only between the organisms but between the organic 

and the inorganic. These ecosystems, as we may call them, are of the most various 

kinds and sizes. They form one category of the multitudinous physical systems from 

the universe as a whole down to the atom.

What Tansley referred to as an ecosystem would nowadays be called a system  

of definition, a clearly defined abstraction that includes the important parts  

of systems and their interactions but excludes irrelevant things. Forming 

abstractions is an essential procedure for progress in modern science in  

general, and is no less so in forest ecology. One isolates system components  

and interactions to gain understanding. The ecosystem is formulated in this  

same manner—identifying the components needed for understanding a given 

question at a given time and at a given scale.

The ecosystem concept 

p Dust bowl  
Drought acerbated 

widespread land abuse 

across North America 

in the 1930s. In this 

setting, the ecosystem 

concept originated 

from attempts to 

predict dynamic 

systems of ecological/

environmental change.

u Ecosystem 
components 
An ecosystem is a 

specifically defined, 

interactive ecological/

environment system. It 

is defined to understand 

and predict change. 

The mid-1930s was a time of great challenge for ecologists. A horrific drought and poor 

farming methods in the North American Prairies combined to create the Dust Bowl, 

amplifying the effects of the Great Depression and leaving the nation and the world  

reeling from the consequences of past abuses of the land and natural systems.
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Forest ecosystems
Since the term ecosystem is a concept, ecologists study an ecosystem not the 

ecosystem. Research objectives determine an ecosystem’s case-specific definition. 

However, there are many ecological studies that have similar objectives and hence 

use similar ecosystem definitions. For example, an older but similar concept to 

ecosystem is biogeocenosis. This is defined as a community of plants and animals, 

along with their associated abiotic environment. A community in this case is an 

area with a similar assemblage of plants and animals across its extent or compared 

to other areas, and abiotic refers to inanimate components such as geology, the 

non-living parts of soils, and weather variables. Biogeocenosis is often applied 

by ecologists in central Europe somewhat analogously to the use of ecosystem. 

However, it differs from ecosystem as a definition by its reference to a specific area 

defined by the plant or animal community. It is a special case of an ecosystem—one 

in which its size or location size is defined by a community. 

Ecosystem services models
Ecosystem services models are often based on the flows of commodities that 

people receive from properly functioning forests, including clean water, flood and 

erosion control, and wildlife populations. They are often constructed to determine 

the value forests have for people and/or indicate the risks if the forests producing 

these services were taken away. In this context, forest ecosystems are defined as 

environmental services delivery systems. As with food webs, transfers of valuable 

services of commodities coming from a forest are shown in diagram format, with 

the various services sometimes quantified as dollar values. Models based on these 

ecosystems are often developed to incentivize the offset of environmentally 

detrimental aspects of human activities.

Plant communities
A biogeocenosis is seen as a physical unit bounded in 

space by the limits of specific plant communities—for 

example here a Ponderosa Pine forest and a Beaver 

pond/marshland. The landscape shown here could be 

thought of as a single ecosystem for some objectives or 

alternatively, one of the small beaver ponds could be 

defined as a different ecosystem for other purposes.

Beaver meadow

Ponderosa Pine forest
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Boreal forest food web
This food web has the productivity of green plants from 

photosynthesis, supplemented by nutrients from fungi, 

supplying food energy to herbivores, which in turn 

supports an array of predators of different sizes.  

Food webs
Another commonly used subset of ecosystems are food webs. These often emphasize 

plants and animals, and the transfer of food energy among them through predation. 

They are generally represented as “who eats whom” diagrams, with arrows 

indicating energy transfer and boxes indicating food energy stored in a particular 

population. This energy transfer is sometimes abstracted as a positive or negative 

effect of one species on another, and the complexity of the pathways varies under 

different conditions, which has implications for the maintenance of species 

diversity at a given location. One important issue concerns whether there are 

species in a location whose removal might cause a collapse in the total number of 

species there. Similar questions arise in assessing the effects on food web patterns 

of the introduction of exotic species. The current rate of extinction of species across 

the planet is high, and food web models are valuable tools for exploring the potential 

knock-on effects of one species’ extinction on others. 

Ecosystems that emphasize element cycling resemble food webs, but they trace 

the movement of elements through an ecosystem (see pages 100–105). Food energy 

is dissipated as it moves through food webs, but chemical elements are conserved 

in transfers within forests. Forest ecosystems often include large recycling loops, 

particularly with respect to essential elements for plant nutrition (see pages 92–93).

Sun

Green plants and trees Fungi

Deer

Lynx

Moose

Wolves

Squirrels

Weasels and stoats

Hares

Foxes

Small birds

Owls

Rodents

Hawks

All of the animals in this food web share a common 

problem of acquiring food energy while aiming to  

expend the minimum amount of food energy in 

obtaining this food.



When one flies over a mature forest or views it from a high 

lookout point, a graininess of the canopy arises from the average 

size of a large tree. Depending on the forest and its age, this is in 

the order of 30–100 ft (10–30 m) in diameter. The grains or tiles, 

which are the crowns of large individual trees, tessellate to form 

the mosaic that is the forest canopy. 

The tiles of a mosaic 
q Crown shyness  

Crown shyness is the 

tendency of tree canopy 

crowns to have open 

space between them.
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Because buds often grow at or near the ends of tree limbs, the branches of adjacent 

trees knock them off when they are whipped about by the wind. This creates a 

phenomenon called crown shyness, in which the crowns of trees do not touch 

and there is space between them. Lie on your back on the floor of a forest and look 

straight up through the canopy, or look at the same view taken with the fish-eye 

lens of a camera. The pattern of light streaming through the canopy has a beauty 

that resembles the rose window of a Gothic cathedral, and much of that light comes 

from center (directly overhead), through openings created by crown shyness. Much 

less light comes through oblique side-view angles. 

Crown shyness and the forest floor
The regularity of forest canopies, combined with crown shyness, implies that the 

forest floor is mostly shaded by the dominant canopy trees—a photograph taken 

at midday in a forest displays speckles of light. It is not surprising that many small 

forest animals, particularly young mammals, have light or white spots as camouflage 

in their light-speckled habitats. Spots of the brightest forest-floor illumination 

derive from shafts of light shining through direct, open paths from the sky to the 

ground, which are created by crown shyness. When the canopies of the trees are 

deep, crown shyness generates openings from the top of the canopy to the forest 

floor. If the angle of incoming sunlight matches the orientation of these openings, 

then shafts of sunlight shine through the canopy to the ground. Because the sun’s 

angle changes with the time of day and time of year, these sun flecks blink on or off at 

locations through the canopy and on the forest floor. On the forest floor, green plants 

rely on the light provided by sun flecks and light shafts for their photosynthesis.

p Blending in 
Juvenile mammals, such 

as fawns, often have 

white spots to help  

them blend with  

forest floor sunspots.



Yoda’s law
When viewed from above, crown shyness sharpens the boundaries among the 

individual tree crowns and increases the apparency of the mosaic nature of 

forests. This is especially easy to see in conifer forests, such as Douglas Fir 

(Pseudotsuga menziesii) forests. Crown shyness among encroaching, adjacent 

trees causes the trees to carve away the edges of their neighbors, a phenomenon 

called crown-pruning by foresters. Tree-to-tree competition in closed forests 

generally favors the larger, “dominant” trees, with subordinate trees growing 

more slowly and suffering, leading to increased death. This drives a reduction  

in the overall number of subordinate trees (thinning) in a growing forest, a 

phenomenon called Yoda’s law for the Japanese ecologist, Kyoji Yoda (1931–1996), 

who first described it. Thinning laws originated when Japanese forest ecologists 

were looking to predict the numbers and sizes of trees growing in regenerating 

stands from a theoretical basis because they did not have the extremely long 

records of forest yield that form the empirical basis for European forestry.  

Some important statistical issues vex the derivation of the relation between  



the average size of trees and the total number of trees. Nevertheless, Yoda’s law 

indicates a semi-crystalline regularity in the organization of forest canopies.  

In nature, this regularity may be one of the sources of the beauty of forests as  

an object of contemplation.

Granularity and self-organization
With modern remote-sensing technologies, one can detect the graininess of forest 

canopies, as well as quantify the rates of photosynthesis according to tree-scale 

granularity across entire landscapes. This is in no small part due to the many ways 

in which trees alter their local environments. A theoretical basis has developed 

for understanding the manner in which the forest mosaic self-organizes through 

predictable interactions into regular patterns and spacing. Further, the death 

of an individual canopy-level tree is a locally significant event in a closed forest, 

initiating a more-or-less predictable chain of responses over time that repair the 

holes in the ventilated canopy. The sections that follow discuss these essential 

forest processes in more detail. 

q Crown shyness 
from above 
Aerial view of a 

coniferous forest canopy 

in the Carpathian 

Mountains,  

Ivano-Frankivsk  

Oblast, Ukraine.
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Watt stated that some patches are young due to recent disturbance or species 

decline, while others are old because they have been free of recent disturbances  

or deaths. He argued that a vegetation pattern is a snapshot of an ongoing  

dynamic process. Prior to this, vegetation ecologists had often focused only  

on the patterns themselves and, within these, usually only on the oldest patches. 

Watt’s revolutionary “pattern and process” perspective links all patch types  

with the dynamic process—in other words, vegetation has to be understood as  

both pattern and process. While process creates pattern, the converse is also  

true. For instance, a flammable patch of forest may be surrounded by natural 

“firebreaks” like wetlands, such that a fire is unable to spread to that patch,  

thereby lowering fire frequency there. 

Pattern and process in forests 

q Natural firebreak 
Firebreaks, whether 

man-made or natural, 

are areas with reduced 

burnable fuels and/

or areas in which the 

potential fuels have a 

high moisture content. 

River channels have 

both low fuel and  

high moisture. 

Alex S. Watt (1892–1985), a professor at Cambridge University, England, published a highly 

influential paper in 1947 entitled “Pattern and process in the plant community.” The key 

insight of this paper is that all vegetation, whether grassland, heathland, or forest, consists 

of patches that differ in age—that is, time since the last disturbance (sudden destruction of 

living biomass) or mortality event (see pages 80–81).
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PATTERN AND PROCESS

Age and process
We can take this a step further: the processes themselves can be correlated with 

patch age. One of the vegetation types Watt described in his paper is English 

deciduous woodland. With time, the dominant trees here become larger, but 

they also become more vulnerable to wind and insects. Thus, the probability of 

disturbance increases with patch age. In other words, regardless of whether wind 

and insects increase or fall over time for other reasons, there is a natural rhythm of 

forest disturbance that is a function of time since last disturbance. As time goes by, 

short-lived species that colonize disturbance patches are replaced by longer-lived 

species that are more tolerant of low-resource conditions. And so the cycle repeats—

as long as all other conditions, such as external factors, remain constant. 

The concept of pattern and process was initially developed 

by Alex S. Watt in his doctoral work in 1924 on ancient beech 

forests on the Sussex Downs in southern England. Watt 

had the insight that the patchwork patterns of small areas 

occupied by trees of different sizes in a mature European 

Beech (Fagus sylvatica) forest that he studied arose from 

an ecological process filling the openings left in the forest 

canopy by the death of a large canopy tree. The patches of 

the forests could be resolved by reassembling them into a 

coherent sequence of regular underlying change. 

Forest development through  
time on a single patch

300 years post-
gap formation

Recent gap

Forest disturbance patches  
through space

Gap formation

200 years post-
gap formation

100 years post-
gap formation

10 years 100 years 300 years

100 / 30

50 / 15

15/ 5

0

Plant height ft/m

Plant height ft/m

100 / 30

50 / 15

0

15 / 5

50 years post-gap 
formation
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Dominant species after disturbance
To further illustrate the importance of pattern and process, consider the high-

elevation spruce- and fir-dominated forests of the southern Appalachians in Great 

Smoky Mountains National Park, North Carolina and Tennessee. There are four 

potential dominants of the forest, depending on disturbance characteristics: Pin 

Cherry (Prunus pensylvanica), Yellow Birch (Betula alleghaniensis), Red Spruce  

(Picea rubens), and Fraser Fir (Abies fraseri). 

Trees that dominate large patches
Disturbances that cause the loss of tens to hundreds of canopy trees result in 

colonization by Pin Cherry, a species with a persistent pool of dormant seeds in the 

soil. These high-magnitude disturbances, causing the upheaval of many trees and 

exposing mineral soil, are rare. Pin Cherry seeds are capable of long dormancy (100 

years or more) and the species is the fastest grower of the four species considered 

here. It soon dominates large disturbance patches but lives only 40–60 years. It 

reproduces at 5–10 years of age and goes on producing seeds, replenishing the 

dormant soil seed pool. Without disturbance, Pin Cherry declines and ultimately  

is represented by only the dormant seeds below ground.

u Yellow Birch 
The seedlings of 

Yellow Birch (Betula 

alleghaniensis) have a 

low survival rate in the 

shade but can colonize 

gaps resulting from the 

fall of three to five or 

more canopy trees. 

u Pin Cherry  
Pin Cherry (Prunus 

pensylvanica) is 

a rapidly growing 

but short-lived tree 

that colonizes large 

disturbance patches, 

usually from a buried 

pool of dormant seeds 

that accumulate in high 

elevation soils through 

bird dispersal. 

(continued...)
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