CONTENTS

Preface ... xxv
Acknowledgments ... xxvii
Notation ... xxix

1 INTRODUCTION 1

1.1 What Is Econometrics? .. 1
1.2 The Probability Approach to Econometrics 1
1.3 Econometric Terms .. 2
1.4 Observational Data ... 3
1.5 Standard Data Structures 4
1.6 Econometric Software 6
1.7 Replication .. 6
1.8 Data Files for Textbook 7
1.9 Reading the Book ... 9

PART I REGRESSION 11

2 CONDITIONAL EXPECTATION AND PROJECTION 13

2.1 Introduction .. 13
2.2 The Distribution of Wages 13
2.3 Conditional Expectation 15
2.4 Logs and Percentages 17
2.5 Conditional Expectation Function 19
2.6 Continuous Variables 20
2.7 Law of Iterated Expectations 21
2.8 CEF Error .. 23
2.9 Intercept-Only Model 25
2.10 Regression Variance 25
2.11 Best Predictor ... 26
2.12 Conditional Variance 27
2.13 Homoskedasticity and Heteroskedasticity 29
2.14 Regression Derivative ... 30
2.15 Linear CEF .. 31
2.16 Linear CEF with Nonlinear Effects 32
2.17 Linear CEF with Dummy Variables 33
2.18 Best Linear Predictor .. 35
2.19 Illustrations of Best Linear Predictor 39
2.20 Linear Predictor Error Variance 41
2.21 Regression Coefficients ... 41
2.22 Regression Subvectors .. 42
2.23 Coefficient Decomposition .. 43
2.24 Omitted Variable Bias .. 44
2.25 Best Linear Approximation .. 45
2.26 Regression to the Mean .. 46
2.27 Reverse Regression .. 47
2.28 Limitations of the Best Linear Projection 48
2.29 Random Coefficient Model .. 48
2.30 Causal Effects .. 50
2.31 Existence and Uniqueness of the Conditional Expectation* 55
2.32 Identification* ... 56
2.33 Technical Proofs* ... 57
2.34 Exercises .. 59

3 THE ALGEBRA OF LEAST SQUARES 62

3.1 Introduction .. 62
3.2 Samples ... 62
3.3 Moment Estimators ... 63
3.4 Least Squares Estimator ... 64
3.5 Solving for Least Squares with One Regressor 65
3.6 Solving for Least Squares with Multiple Regressors 66
3.7 Illustration .. 69
3.8 Least Squares Residuals ... 71
3.9 Demeaned Regressors .. 72
3.10 Model in Matrix Notation .. 73
3.11 Projection Matrix ... 74
3.12 Annihilator Matrix ... 76
3.13 Estimation of Error Variance ... 76
3.14 Analysis of Variance ... 77
3.15 Projections ... 78
3.16 Regression Components .. 78
3.17 Regression Components (Alternative Derivation)* 80
3.18 Residual Regression ... 81
3.19 Leverage Values ... 83
3.20 Leave-One-Out Regression ... 84
3.21 Influential Observations .. 86
3.22 CPS Dataset .. 88
3.23 Numerical Computation ... 88
3.24 Collinearity Errors ... 89
3.25 Programming ... 91
3.26 Exercises .. 94

4 LEAST SQUARES REGRESSION ... 98
4.1 Introduction ... 98
4.2 Random Sampling ... 98
4.3 Sample Mean ... 99
4.4 Linear Regression Model 100
4.5 Expectation of Least Squares Estimator 100
4.6 Variance of Least Squares Estimator 102
4.7 Unconditional Moments 103
4.8 Gauss-Markov Theorem 104
4.9 Generalized Least Squares 107
4.10 Residuals ... 109
4.11 Estimation of Error Variance 110
4.12 Mean-Squared Forecast Error 111
4.13 Covariance Matrix Estimation under Homoskedasticity .. 113
4.14 Covariance Matrix Estimation under Heteroskedasticity .. 113
4.15 Standard Errors ... 117
4.16 Estimation with Sparse Dummy Variables 118
4.17 Computation .. 120
4.18 Measures of Fit ... 121
4.19 Empirical Example ... 122
4.20 Multicollinearity .. 123
4.21 Clustered Sampling .. 124
4.22 Inference with Clustered Samples 131
4.23 At What Level to Cluster? 131
4.24 Technical Proofs* .. 132
4.25 Exercises ... 134

5 NORMAL REGRESSION ... 139
5.1 Introduction ... 139
5.2 The Normal Distribution 139
5.3 Multivariate Normal Distribution 141
5.4 Joint Normality and Linear Regression 142
5.5 Normal Regression Model 143
5.6 Distribution of OLS Coefficient Vector 145
5.7 Distribution of OLS Residual Vector 146
5.8 Distribution of Variance Estimator 146
5.9 t-Statistic ... 147
PART II LARGE SAMPLE METHODS

6 A REVIEW OF LARGE SAMPLE ASYMPTOTICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>159</td>
</tr>
<tr>
<td>6.2</td>
<td>Modes of Convergence</td>
<td>159</td>
</tr>
<tr>
<td>6.3</td>
<td>Weak Law of Large Numbers</td>
<td>160</td>
</tr>
<tr>
<td>6.4</td>
<td>Central Limit Theorem</td>
<td>160</td>
</tr>
<tr>
<td>6.5</td>
<td>Continuous Mapping Theorem and Delta Method</td>
<td>161</td>
</tr>
<tr>
<td>6.6</td>
<td>Smooth Function Model</td>
<td>162</td>
</tr>
<tr>
<td>6.7</td>
<td>Stochastic Order Symbols</td>
<td>162</td>
</tr>
<tr>
<td>6.8</td>
<td>Convergence of Moments</td>
<td>163</td>
</tr>
</tbody>
</table>

7 ASYMPOTIC THEORY FOR LEAST SQUARES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>7.2</td>
<td>Consistency of Least Squares Estimator</td>
<td>165</td>
</tr>
<tr>
<td>7.3</td>
<td>Asymptotic Normality</td>
<td>167</td>
</tr>
<tr>
<td>7.4</td>
<td>Joint Distribution</td>
<td>171</td>
</tr>
<tr>
<td>7.5</td>
<td>Consistency of Error Variance Estimators</td>
<td>173</td>
</tr>
<tr>
<td>7.6</td>
<td>Homoskedastic Covariance Matrix Estimation</td>
<td>174</td>
</tr>
<tr>
<td>7.7</td>
<td>Heteroskedastic Covariance Matrix Estimation</td>
<td>174</td>
</tr>
<tr>
<td>7.8</td>
<td>Summary of Covariance Matrix Notation</td>
<td>176</td>
</tr>
<tr>
<td>7.9</td>
<td>Alternative Covariance Matrix Estimators*</td>
<td>177</td>
</tr>
<tr>
<td>7.10</td>
<td>Functions of Parameters</td>
<td>178</td>
</tr>
<tr>
<td>7.11</td>
<td>Asymptotic Standard Errors</td>
<td>180</td>
</tr>
<tr>
<td>7.12</td>
<td>t-Statistic</td>
<td>182</td>
</tr>
<tr>
<td>7.13</td>
<td>Confidence Intervals</td>
<td>183</td>
</tr>
<tr>
<td>7.14</td>
<td>Regression Intervals</td>
<td>185</td>
</tr>
<tr>
<td>7.15</td>
<td>Forecast Intervals</td>
<td>187</td>
</tr>
<tr>
<td>7.16</td>
<td>Wald Statistic</td>
<td>187</td>
</tr>
<tr>
<td>7.17</td>
<td>Homoskedastic Wald Statistic</td>
<td>188</td>
</tr>
<tr>
<td>7.18</td>
<td>Confidence Regions</td>
<td>188</td>
</tr>
<tr>
<td>7.19</td>
<td>Edgeworth Expansion*</td>
<td>189</td>
</tr>
<tr>
<td>7.20</td>
<td>Uniformly Consistent Residuals*</td>
<td>191</td>
</tr>
<tr>
<td>7.21</td>
<td>Asymptotic Leverage*</td>
<td>192</td>
</tr>
<tr>
<td>7.22</td>
<td>Exercises</td>
<td>192</td>
</tr>
</tbody>
</table>
8 RESTRICTED ESTIMATION

8.1 Introduction .. 199
8.2 Constrained Least Squares ... 200
8.3 Exclusion Restriction ... 201
8.4 Finite Sample Properties .. 202
8.5 Minimum Distance ... 205
8.6 Asymptotic Distribution .. 206
8.7 Variance Estimation and Standard Errors 208
8.8 Efficient Minimum Distance Estimator 208
8.9 Exclusion Restriction Revisited 209
8.10 Variance and Standard Error Estimation 211
8.11 Hausman Equality ... 211
8.12 Example: Mankiw, Romer, and Weil (1992) 212
8.13 Misspecification ... 216
8.14 Nonlinear Constraints .. 218
8.15 Inequality Restrictions ... 219
8.16 Technical Proofs* ... 220
8.17 Exercises ... 221

9 HYPOTHESIS TESTING

9.1 Introduction .. 225
9.2 Hypotheses ... 225
9.3 Acceptance and Rejection 226
9.4 Type I Error ... 227
9.5 t-Tests ... 228
9.6 Type II Error and Power 229
9.7 Statistical Significance 230
9.8 p-Values ... 231
9.9 t-Ratios and the Abuse of Testing 232
9.10 Wald Tests ... 233
9.11 Homoskedastic Wald Tests 235
9.12 Criterion-Based Tests 236
9.13 Minimum Distance Tests 236
9.14 Minimum Distance Tests under Homoskedasticity 237
9.15 F Tests ... 238
9.16 Hausman Tests ... 239
9.17 Score Tests .. 240
9.18 Problems with Tests of Nonlinear Hypotheses 242
9.19 Monte Carlo Simulation 245
9.20 Confidence Intervals by Test Inversion 247
9.21 Multiple Tests and Bonferroni Corrections 248
9.22 Power and Test Consistency 250
9.23 Asymptotic Local Power 251
Contents

10 Resampling Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>262</td>
</tr>
<tr>
<td>10.2</td>
<td>Example</td>
<td>262</td>
</tr>
<tr>
<td>10.3</td>
<td>Jackknife Estimation of Variance</td>
<td>263</td>
</tr>
<tr>
<td>10.4</td>
<td>Example</td>
<td>266</td>
</tr>
<tr>
<td>10.5</td>
<td>Jackknife for Clustered Observations</td>
<td>267</td>
</tr>
<tr>
<td>10.6</td>
<td>The Bootstrap Algorithm</td>
<td>268</td>
</tr>
<tr>
<td>10.7</td>
<td>Bootstrap Variance and Standard Errors</td>
<td>270</td>
</tr>
<tr>
<td>10.8</td>
<td>Percentile Interval</td>
<td>272</td>
</tr>
<tr>
<td>10.9</td>
<td>The Bootstrap Distribution</td>
<td>273</td>
</tr>
<tr>
<td>10.10</td>
<td>The Distribution of the Bootstrap Observations</td>
<td>274</td>
</tr>
<tr>
<td>10.11</td>
<td>The Distribution of the Bootstrap Sample Mean</td>
<td>275</td>
</tr>
<tr>
<td>10.12</td>
<td>Bootstrap Asymptotics</td>
<td>276</td>
</tr>
<tr>
<td>10.13</td>
<td>Consistency of the Bootstrap Estimate of Variance</td>
<td>279</td>
</tr>
<tr>
<td>10.14</td>
<td>Trimmed Estimator of Bootstrap Variance</td>
<td>280</td>
</tr>
<tr>
<td>10.15</td>
<td>Unreliability of Untrimmed Bootstrap Standard Errors</td>
<td>282</td>
</tr>
<tr>
<td>10.16</td>
<td>Consistency of the Percentile Interval</td>
<td>283</td>
</tr>
<tr>
<td>10.17</td>
<td>Bias-Corrected Percentile Interval</td>
<td>285</td>
</tr>
<tr>
<td>10.18</td>
<td>BCa Percentile Interval</td>
<td>286</td>
</tr>
<tr>
<td>10.19</td>
<td>Percentile-t Interval</td>
<td>288</td>
</tr>
<tr>
<td>10.20</td>
<td>Percentile-t Asymptotic Refinement</td>
<td>290</td>
</tr>
<tr>
<td>10.21</td>
<td>Bootstrap Hypothesis Tests</td>
<td>292</td>
</tr>
<tr>
<td>10.22</td>
<td>Wald-Type Bootstrap Tests</td>
<td>294</td>
</tr>
<tr>
<td>10.23</td>
<td>Criterion-Based Bootstrap Tests</td>
<td>295</td>
</tr>
<tr>
<td>10.24</td>
<td>Parametric Bootstrap</td>
<td>296</td>
</tr>
<tr>
<td>10.25</td>
<td>How Many Bootstrap Replications?</td>
<td>297</td>
</tr>
<tr>
<td>10.26</td>
<td>Setting the Bootstrap Seed</td>
<td>298</td>
</tr>
<tr>
<td>10.27</td>
<td>Bootstrap Regression</td>
<td>298</td>
</tr>
<tr>
<td>10.28</td>
<td>Bootstrap Regression Asymptotic Theory</td>
<td>300</td>
</tr>
<tr>
<td>10.29</td>
<td>Wild Bootstrap</td>
<td>301</td>
</tr>
<tr>
<td>10.30</td>
<td>Bootstrap for Clustered Observations</td>
<td>303</td>
</tr>
<tr>
<td>10.31</td>
<td>Technical Proofs*</td>
<td>304</td>
</tr>
<tr>
<td>10.32</td>
<td>Exercises</td>
<td>307</td>
</tr>
</tbody>
</table>

Part III Multiple Equation Models

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Multivariate Regression</td>
<td>315</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>315</td>
</tr>
<tr>
<td>11.2</td>
<td>Regression Systems</td>
<td>315</td>
</tr>
</tbody>
</table>
11.3 Least Squares Estimator ... 316
11.4 Expectation and Variance of Systems Least Squares 318
11.5 Asymptotic Distribution .. 319
11.6 Covariance Matrix Estimation 321
11.7 Seemingly Unrelated Regression 322
11.8 Equivalence of SUR and Least Squares 324
11.9 Maximum Likelihood Estimator 324
11.10 Restricted Estimation ... 325
11.11 Reduced Rank Regression .. 325
11.12 Principal Component Analysis 329
11.13 Factor Models ... 331
11.14 Approximate Factor Models 333
11.15 Factor Models with Additional Regressors 335
11.16 Factor-Augmented Regression 336
11.17 Multivariate Normal* .. 337
11.18 Exercises .. 339

12 INSTRUMENTAL VARIABLES ... 341

12.1 Introduction ... 341
12.2 Overview .. 341
12.3 Examples ... 342
12.4 Endogenous Regressors ... 344
12.5 Instruments .. 345
12.6 Example: College Proximity .. 346
12.7 Reduced Form ... 347
12.8 Identification .. 349
12.9 Instrumental Variables Estimator 350
12.10 Demeaned Representation .. 352
12.11 Wald Estimator .. 353
12.12 Two-Stage Least Squares .. 354
12.13 Limited Information Maximum Likelihood 357
12.14 Split-Sample IV and JIVE ... 359
12.15 Consistency of 2SLS ... 361
12.16 Asymptotic Distribution of 2SLS 362
12.17 Determinants of 2SLS Variance 363
12.18 Covariance Matrix Estimation 364
12.19 LIML Asymptotic Distribution 366
12.20 Functions of Parameters .. 367
12.21 Hypothesis Tests .. 368
12.22 Finite Sample Theory .. 369
12.23 Bootstrap for 2SLS .. 369
12.24 The Peril of Bootstrap 2SLS Standard Errors 372
12.25 Clustered Dependence ... 373
12.26 Generated Regressors .. 374
12.27 Regression with Expectation Errors 377
12.28 Control Function Regression .. 380
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.29</td>
<td>Endogeneity Tests</td>
<td>382</td>
</tr>
<tr>
<td>12.30</td>
<td>Subset Endogeneity Tests</td>
<td>385</td>
</tr>
<tr>
<td>12.31</td>
<td>Overidentification Tests</td>
<td>386</td>
</tr>
<tr>
<td>12.32</td>
<td>Subset Overidentification Tests</td>
<td>389</td>
</tr>
<tr>
<td>12.33</td>
<td>Bootstrap Overidentification Tests</td>
<td>392</td>
</tr>
<tr>
<td>12.34</td>
<td>Local Average Treatment Effects</td>
<td>392</td>
</tr>
<tr>
<td>12.35</td>
<td>Identification Failure</td>
<td>396</td>
</tr>
<tr>
<td>12.36</td>
<td>Weak Instruments</td>
<td>397</td>
</tr>
<tr>
<td>12.37</td>
<td>Many Instruments</td>
<td>400</td>
</tr>
<tr>
<td>12.38</td>
<td>Testing for Weak Instruments</td>
<td>404</td>
</tr>
<tr>
<td>12.39</td>
<td>Weak Instruments with $k_2 > 1$</td>
<td>410</td>
</tr>
<tr>
<td>12.40</td>
<td>Example: Acemoglu, Johnson, and Robinson (2001)</td>
<td>412</td>
</tr>
<tr>
<td>12.41</td>
<td>Example: Angrist and Krueger (1991)</td>
<td>414</td>
</tr>
<tr>
<td>12.42</td>
<td>Programming</td>
<td>416</td>
</tr>
<tr>
<td>12.43</td>
<td>Exercises</td>
<td>418</td>
</tr>
</tbody>
</table>

13 GENERALIZED METHOD OF MOMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>424</td>
</tr>
<tr>
<td>13.2</td>
<td>Moment Equation Models</td>
<td>424</td>
</tr>
<tr>
<td>13.3</td>
<td>Method of Moments Estimators</td>
<td>425</td>
</tr>
<tr>
<td>13.4</td>
<td>Overidentified Moment Equations</td>
<td>426</td>
</tr>
<tr>
<td>13.5</td>
<td>Linear Moment Models</td>
<td>427</td>
</tr>
<tr>
<td>13.6</td>
<td>GMM Estimator</td>
<td>427</td>
</tr>
<tr>
<td>13.7</td>
<td>Distribution of GMM Estimator</td>
<td>428</td>
</tr>
<tr>
<td>13.8</td>
<td>Efficient GMM</td>
<td>429</td>
</tr>
<tr>
<td>13.9</td>
<td>Efficient GMM versus 2SLS</td>
<td>430</td>
</tr>
<tr>
<td>13.10</td>
<td>Estimation of the Efficient Weight Matrix</td>
<td>430</td>
</tr>
<tr>
<td>13.11</td>
<td>Iterated GMM</td>
<td>431</td>
</tr>
<tr>
<td>13.12</td>
<td>Covariance Matrix Estimation</td>
<td>432</td>
</tr>
<tr>
<td>13.13</td>
<td>Clustered Dependence</td>
<td>432</td>
</tr>
<tr>
<td>13.14</td>
<td>Wald Test</td>
<td>433</td>
</tr>
<tr>
<td>13.15</td>
<td>Restricted GMM</td>
<td>434</td>
</tr>
<tr>
<td>13.16</td>
<td>Nonlinear Restricted GMM</td>
<td>435</td>
</tr>
<tr>
<td>13.17</td>
<td>Constrained Regression</td>
<td>436</td>
</tr>
<tr>
<td>13.18</td>
<td>Multivariate Regression</td>
<td>436</td>
</tr>
<tr>
<td>13.19</td>
<td>Distance Test</td>
<td>438</td>
</tr>
<tr>
<td>13.20</td>
<td>Continuously Updated GMM</td>
<td>439</td>
</tr>
<tr>
<td>13.21</td>
<td>Overidentification Test</td>
<td>439</td>
</tr>
<tr>
<td>13.22</td>
<td>Subset Overidentification Tests</td>
<td>440</td>
</tr>
<tr>
<td>13.23</td>
<td>Endogeneity Test</td>
<td>441</td>
</tr>
<tr>
<td>13.24</td>
<td>Subset Endogeneity Test</td>
<td>441</td>
</tr>
<tr>
<td>13.25</td>
<td>Nonlinear GMM</td>
<td>442</td>
</tr>
<tr>
<td>13.26</td>
<td>Bootstrap for GMM</td>
<td>443</td>
</tr>
<tr>
<td>13.27</td>
<td>Conditional Moment Equation Models</td>
<td>444</td>
</tr>
<tr>
<td>13.28</td>
<td>Technical Proofs*</td>
<td>445</td>
</tr>
<tr>
<td>13.29</td>
<td>Exercises</td>
<td>447</td>
</tr>
</tbody>
</table>
PART IV DEPENDENT AND PANEL DATA

14 TIME SERIES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>455</td>
</tr>
<tr>
<td>14.2</td>
<td>Examples</td>
<td>455</td>
</tr>
<tr>
<td>14.3</td>
<td>Differences and Growth Rates</td>
<td>456</td>
</tr>
<tr>
<td>14.4</td>
<td>Stationarity</td>
<td>458</td>
</tr>
<tr>
<td>14.5</td>
<td>Transformations of Stationary Processes</td>
<td>460</td>
</tr>
<tr>
<td>14.6</td>
<td>Convergent Series</td>
<td>460</td>
</tr>
<tr>
<td>14.7</td>
<td>Ergodicity</td>
<td>461</td>
</tr>
<tr>
<td>14.8</td>
<td>Ergodic Theorem</td>
<td>463</td>
</tr>
<tr>
<td>14.9</td>
<td>Conditioning on Information Sets</td>
<td>464</td>
</tr>
<tr>
<td>14.10</td>
<td>Martingale Difference Sequences</td>
<td>465</td>
</tr>
<tr>
<td>14.11</td>
<td>CLT for Martingale Differences</td>
<td>467</td>
</tr>
<tr>
<td>14.12</td>
<td>Mixing</td>
<td>468</td>
</tr>
<tr>
<td>14.13</td>
<td>CLT for Correlated Observations</td>
<td>469</td>
</tr>
<tr>
<td>14.14</td>
<td>Linear Projection</td>
<td>471</td>
</tr>
<tr>
<td>14.15</td>
<td>White Noise</td>
<td>471</td>
</tr>
<tr>
<td>14.16</td>
<td>The Wold Decomposition</td>
<td>472</td>
</tr>
<tr>
<td>14.17</td>
<td>Lag Operator</td>
<td>473</td>
</tr>
<tr>
<td>14.18</td>
<td>Autoregressive Wold Representation</td>
<td>473</td>
</tr>
<tr>
<td>14.19</td>
<td>Linear Models</td>
<td>474</td>
</tr>
<tr>
<td>14.20</td>
<td>Moving Average Process</td>
<td>475</td>
</tr>
<tr>
<td>14.21</td>
<td>Infinite-Order Moving Average Process</td>
<td>476</td>
</tr>
<tr>
<td>14.22</td>
<td>First-Order Autoregressive Process</td>
<td>477</td>
</tr>
<tr>
<td>14.23</td>
<td>Unit Root and Explosive AR(1) Processes</td>
<td>480</td>
</tr>
<tr>
<td>14.24</td>
<td>Second-Order Autoregressive Process</td>
<td>481</td>
</tr>
<tr>
<td>14.25</td>
<td>AR(p) Process</td>
<td>484</td>
</tr>
<tr>
<td>14.26</td>
<td>Impulse Response Function</td>
<td>485</td>
</tr>
<tr>
<td>14.27</td>
<td>ARMA and ARIMA Processes</td>
<td>486</td>
</tr>
<tr>
<td>14.28</td>
<td>Mixing Properties of Linear Processes</td>
<td>487</td>
</tr>
<tr>
<td>14.29</td>
<td>Identification</td>
<td>488</td>
</tr>
<tr>
<td>14.30</td>
<td>Estimation of Autoregressive Models</td>
<td>490</td>
</tr>
<tr>
<td>14.31</td>
<td>Asymptotic Distribution of Least Squares Estimator</td>
<td>491</td>
</tr>
<tr>
<td>14.32</td>
<td>Distribution under Homoskedasticity</td>
<td>492</td>
</tr>
<tr>
<td>14.33</td>
<td>Asymptotic Distribution under General Dependence</td>
<td>493</td>
</tr>
<tr>
<td>14.34</td>
<td>Covariance Matrix Estimation</td>
<td>493</td>
</tr>
<tr>
<td>14.35</td>
<td>Covariance Matrix Estimation under General Dependence</td>
<td>494</td>
</tr>
<tr>
<td>14.36</td>
<td>Testing the Hypothesis of No Serial Correlation</td>
<td>496</td>
</tr>
<tr>
<td>14.37</td>
<td>Testing for Omitted Serial Correlation</td>
<td>496</td>
</tr>
<tr>
<td>14.38</td>
<td>Model Selection</td>
<td>498</td>
</tr>
<tr>
<td>14.39</td>
<td>Illustrations</td>
<td>498</td>
</tr>
<tr>
<td>14.40</td>
<td>Time Series Regression Models</td>
<td>500</td>
</tr>
<tr>
<td>14.41</td>
<td>Static, Distributed Lag, and Autoregressive Distributed Lag Models</td>
<td>501</td>
</tr>
<tr>
<td>14.42</td>
<td>Time Trends</td>
<td>502</td>
</tr>
<tr>
<td>14.43</td>
<td>Illustration</td>
<td>505</td>
</tr>
</tbody>
</table>
Contents

15 MULTIVARIATE TIME SERIES

15.1 Introduction .. 524
15.2 Multiple Equation Time Series Models 524
15.3 Linear Projection .. 525
15.4 Multivariate Wold Decomposition 525
15.5 Impulse Response ... 527
15.6 VAR(1) Model .. 528
15.7 VAR(p) Model .. 529
15.8 Regression Notation ... 529
15.9 Estimation ... 530
15.10 Asymptotic Distribution .. 531
15.11 Covariance Matrix Estimation 532
15.12 Selection of Lag Length in a VAR 533
15.13 Illustration ... 533
15.14 Predictive Regressions .. 533
15.15 Impulse Response Estimation 535
15.16 Local Projection Estimator 537
15.17 Regression on Residuals ... 537
15.18 Orthogonalized Shocks ... 539
15.19 Orthogonalized Impulse Response Function 540
15.20 Orthogonalized Impulse Response Estimation 540
15.21 Illustration ... 541
15.22 Forecast Error Decomposition 542
15.23 Identification of Recursive VARs 543
15.24 Oil Price Shocks ... 544
15.25 Structural VARs ... 546
15.26 Identification of Structural VARs 549
15.27 Long-Run Restrictions .. 550
15.28 Blanchard and Quah (1989) Illustration 551
15.29 External Instruments ... 553
15.30 Dynamic Factor Models 554
15.31 Technical Proofs* ... 556
15.32 Exercises .. 557

16 NONSTATIONARY TIME SERIES 561

16.1 Introduction .. 561
16.2 Partial Sum Process and Functional Convergence 561
16.3 Beveridge-Nelson Decomposition .. 563
16.4 Functional CLT .. 565
16.5 Orders of Integration .. 566
16.6 Means, Local Means, and Trends 567
16.7 Demeaning and Detrending ... 569
16.8 Stochastic Integrals ... 570
16.9 Estimation of an AR(1) .. 572
16.10 AR(1) Estimation with an Intercept 574
16.11 Sample Covariances of Integrated and Stationary Processes ... 576
16.12 AR(p) Models with a Unit Root 576
16.13 Testing for a Unit Root .. 578
16.14 KPSS Stationarity Test .. 581
16.15 Spurious Regression ... 584
16.16 NonStationary VARs .. 588
16.17 Cointegration .. 589
16.18 Role of Intercept and Trend .. 593
16.19 Cointegrating Regression .. 594
16.20 VECM Estimation ... 597
16.21 Testing for Cointegration in a VECM 599
16.22 Technical Proofs* ... 603
16.23 Exercises ... 610

17 PANEL DATA .. 613

17.1 Introduction .. 613
17.2 Time Indexing and Unbalanced Panels 614
17.3 Notation ... 615
17.4 Pooled Regression .. 615
17.5 One-Way Error Component Model 617
17.6 Random Effects .. 617
17.7 Fixed Effects Model ... 620
17.8 Within Transformation ... 621
17.9 Fixed Effects Estimator .. 623
17.10 Differenced Estimator .. 624
17.11 Dummy Variables Regression ... 626
17.12 Fixed Effects Covariance Matrix Estimation 628
17.13 Fixed Effects Estimation in Stata 629
17.14 Between Estimator ... 630
17.15 Feasible GLS ... 632
17.16 Intercept in Fixed Effects Regression 633
17.17 Estimation of Fixed Effects ... 633
17.18 GMM Interpretation of Fixed Effects 634
17.19 Identification in the Fixed Effects Model 636
17.20 Asymptotic Distribution of Fixed Effects Estimator 636
17.21 Asymptotic Distribution for Unbalanced Panels 637
17.22 Heteroskedasticity-Robust Covariance Matrix Estimation 639
17.23 Heteroskedasticity-Robust Estimation—Unbalanced Case 641
Contents

Chapter 17
- 17.24 Hausman Test for Random vs. Fixed Effects .. 641
- 17.25 Random Effects or Fixed Effects? .. 642
- 17.26 Time Trends .. 642
- 17.27 Two-Way Error Components .. 643
- 17.28 Instrumental Variables ... 645
- 17.29 Identification with Instrumental Variables .. 646
- 17.30 Asymptotic Distribution of Fixed Effects 2SLS Estimator 647
- 17.31 Linear GMM ... 648
- 17.32 Estimation with Time-Invariant Regressors .. 648
- 17.33 Hausman-Taylor Model ... 650
- 17.34 Jackknife Covariance Matrix Estimation .. 652
- 17.35 Panel Bootstrap .. 653
- 17.36 Dynamic Panel Models ... 653
- 17.37 The Bias of Fixed Effects Estimation ... 654
- 17.38 Anderson-Hsiao Estimator .. 656
- 17.39 Arellano-Bond Estimator ... 657
- 17.40 Weak Instruments .. 659
- 17.41 Dynamic Panels with Predetermined Regressors 660
- 17.42 Blundell-Bond Estimator ... 661
- 17.43 Forward Orthogonal Transformation .. 664
- 17.44 Empirical Illustration .. 665
- 17.45 Exercises ... 666

Chapter 18
- 18 DIFFERENCE IN DIFFERENCES .. 669
- 18.1 Introduction .. 669
- 18.2 Minimum Wage in New Jersey ... 669
- 18.3 Identification .. 672
- 18.4 Multiple Units .. 673
- 18.5 Do Police Reduce Crime? ... 675
- 18.6 Trend Specification ... 677
- 18.7 Do Blue Laws Affect Liquor Sales? .. 678
- 18.8 Check Your Code: Does Abortion Impact Crime? 679
- 18.9 Inference .. 680
- 18.10 Exercises .. 682

Part V
- PART V NONPARAMETRIC METHODS .. 685

Chapter 19
- 19 NONPARAMETRIC REGRESSION .. 687
- 19.1 Introduction ... 687
- 19.2 Binned Means Estimator .. 687
- 19.3 Kernel Regression .. 689
- 19.4 Local Linear Estimator .. 690
Contents xvii

19.5 Local Polynomial Estimator .. 692
19.6 Asymptotic Bias .. 692
19.7 Asymptotic Variance ... 694
19.8 AIMSE ... 695
19.9 Reference Bandwidth .. 697
19.10 Estimation at a Boundary ... 698
19.11 Nonparametric Residuals and Prediction Errors 700
19.12 Cross-Validation Bandwidth Selection 701
19.13 Asymptotic Distribution .. 702
19.14 Undersmoothing ... 704
19.15 Conditional Variance Estimation 705
19.16 Variance Estimation and Standard Errors 706
19.17 Confidence Bands ... 707
19.18 The Local Nature of Kernel Regression 707
19.19 Application to Wage Regression 707
19.20 Clustered Observations ... 709
19.21 Application to Test Scores 710
19.22 Multiple Regressors .. 712
19.23 Curse of Dimensionality 713
19.24 Partially Linear Regression 714
19.25 Computation ... 715
19.26 Technical Proofs* ... 715
19.27 Exercises .. 720

20 SERIES REGRESSION .. 723

20.1 Introduction .. 723
20.2 Polynomial Regression .. 724
20.3 Illustrating Polynomial Regression 725
20.4 Orthogonal Polynomials ... 726
20.5 Splines .. 727
20.6 Illustrating Spline Regression 728
20.7 The Global/Local Nature of Series Regression 729
20.8 Stone-Weierstrass and Jackson Approximation Theory 731
20.9 Regressor Bounds .. 733
20.10 Matrix Convergence ... 734
20.11 Consistent Estimation .. 736
20.12 Convergence Rate ... 736
20.13 Asymptotic Normality ... 738
20.14 Regression Estimation ... 739
20.15 Undersmoothing .. 739
20.16 Residuals and Regression Fit 740
20.17 Cross-Validation Model Selection 740
20.18 Variance and Standard Error Estimation 742
20.19 Clustered Observations 743
20.20 Confidence Bands ... 743
20.21 Uniform Approximations .. 744
20.22 Partially Linear Model ... 745
20.23 Panel Fixed Effects ... 745
20.24 Multiple Regressors ... 746
20.25 Additively Separable Models .. 746
20.26 Nonparametric Instrumental Variables Regression 746
20.27 NPIV Identification .. 748
20.28 NPIV Convergence Rate .. 749
20.29 Nonparametric vs. Parametric Identification 750
20.30 Example: Angrist and Lavy (1999) .. 751
20.31 Technical Proofs* ... 754
20.32 Exercises .. 759

21 REGRESSION DISCONTINUITY 763

21.1 Introduction .. 763
21.2 Sharp Regression Discontinuity .. 763
21.3 Identification ... 764
21.4 Estimation ... 766
21.5 Inference ... 767
21.6 Bandwidth Selection .. 768
21.7 RDD with Covariates .. 770
21.8 A Simple RDD Estimator .. 771
21.9 Density Discontinuity Test .. 772
21.10 Fuzzy Regression Discontinuity .. 773
21.11 Estimation of FRD .. 774
21.12 Exercises .. 775

PART VI NONLINEAR METHODS 777

22 M-ESTIMATORS 779

22.1 Introduction .. 779
22.2 Examples .. 779
22.3 Identification and Estimation .. 780
22.4 Consistency .. 780
22.5 Uniform Law of Large Numbers .. 782
22.6 Asymptotic Distribution .. 783
22.7 Asymptotic Distribution under Broader Conditions* 784
22.8 Covariance Matrix Estimation ... 785
22.9 Technical Proofs* ... 786
22.10 Exercises .. 788
23 NONLINEAR LEAST SQUARES 790

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>Introduction</td>
<td>790</td>
</tr>
<tr>
<td>23.2</td>
<td>Identification</td>
<td>792</td>
</tr>
<tr>
<td>23.3</td>
<td>Estimation</td>
<td>792</td>
</tr>
<tr>
<td>23.4</td>
<td>Asymptotic Distribution</td>
<td>794</td>
</tr>
<tr>
<td>23.5</td>
<td>Covariance Matrix Estimation</td>
<td>796</td>
</tr>
<tr>
<td>23.6</td>
<td>Panel Data</td>
<td>797</td>
</tr>
<tr>
<td>23.7</td>
<td>Threshold Models</td>
<td>798</td>
</tr>
<tr>
<td>23.8</td>
<td>Testing for Nonlinear Components</td>
<td>802</td>
</tr>
<tr>
<td>23.9</td>
<td>Computation</td>
<td>804</td>
</tr>
<tr>
<td>23.10</td>
<td>Technical Proofs*</td>
<td>804</td>
</tr>
<tr>
<td>23.11</td>
<td>Exercises</td>
<td>805</td>
</tr>
</tbody>
</table>

24 QUANTILE REGRESSION 807

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1</td>
<td>Introduction</td>
<td>807</td>
</tr>
<tr>
<td>24.2</td>
<td>Median Regression</td>
<td>807</td>
</tr>
<tr>
<td>24.3</td>
<td>Least Absolute Deviations</td>
<td>809</td>
</tr>
<tr>
<td>24.4</td>
<td>Quantile Regression</td>
<td>810</td>
</tr>
<tr>
<td>24.5</td>
<td>Example Quantile Shapes</td>
<td>813</td>
</tr>
<tr>
<td>24.6</td>
<td>Estimation</td>
<td>814</td>
</tr>
<tr>
<td>24.7</td>
<td>Asymptotic Distribution</td>
<td>815</td>
</tr>
<tr>
<td>24.8</td>
<td>Covariance Matrix Estimation</td>
<td>817</td>
</tr>
<tr>
<td>24.9</td>
<td>Clustered Dependence</td>
<td>818</td>
</tr>
<tr>
<td>24.10</td>
<td>Quantile Crossings</td>
<td>819</td>
</tr>
<tr>
<td>24.11</td>
<td>Quantile Causal Effects</td>
<td>820</td>
</tr>
<tr>
<td>24.12</td>
<td>Random Coefficient Representation</td>
<td>821</td>
</tr>
<tr>
<td>24.13</td>
<td>Nonparametric Quantile Regression</td>
<td>822</td>
</tr>
<tr>
<td>24.14</td>
<td>Panel Data</td>
<td>823</td>
</tr>
<tr>
<td>24.15</td>
<td>IV Quantile Regression</td>
<td>824</td>
</tr>
<tr>
<td>24.16</td>
<td>Technical Proofs*</td>
<td>825</td>
</tr>
<tr>
<td>24.17</td>
<td>Exercises</td>
<td>827</td>
</tr>
</tbody>
</table>

25 BINARY CHOICE 829

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.1</td>
<td>Introduction</td>
<td>829</td>
</tr>
<tr>
<td>25.2</td>
<td>Binary Choice Models</td>
<td>829</td>
</tr>
<tr>
<td>25.3</td>
<td>Models for the Response Probability</td>
<td>830</td>
</tr>
<tr>
<td>25.4</td>
<td>Latent Variable Interpretation</td>
<td>832</td>
</tr>
<tr>
<td>25.5</td>
<td>Likelihood</td>
<td>833</td>
</tr>
<tr>
<td>25.6</td>
<td>Pseudo-True Values</td>
<td>835</td>
</tr>
<tr>
<td>25.7</td>
<td>Asymptotic Distribution</td>
<td>836</td>
</tr>
</tbody>
</table>
Contents

25

- **25.8** Covariance Matrix Estimation ... 838
- **25.9** Marginal Effects .. 838
- **25.10** Application ... 839
- **25.11** Semiparametric Binary Choice 840
- **25.12** IV Probit ... 841
- **25.13** Binary Panel Data ... 842
- **25.14** Technical Proofs* .. 844
- **25.15** Exercises ... 845

26

MULTIPLE CHOICE

- **26.1** Introduction .. 847
- **26.2** Multinomial Response ... 847
- **26.3** Multinomial Logit .. 848
- **26.4** Conditional Logit ... 851
- **26.5** Independence of Irrelevant Alternatives 854
- **26.6** Nested Logit ... 855
- **26.7** Mixed Logit ... 858
- **26.8** Simple Multinomial Probit ... 860
- **26.9** General Multinomial Probit ... 861
- **26.10** Ordered Response .. 862
- **26.11** Count Data ... 864
- **26.12** BLP Demand Model .. 865
- **26.13** Technical Proofs* .. 868
- **26.14** Exercises ... 870

27

CENSORING AND SELECTION

- **27.1** Introduction .. 872
- **27.2** Censoring ... 872
- **27.3** Censored Regression Functions 874
- **27.4** The Bias of Least Squares Estimation 875
- **27.5** Tobit Estimator .. 876
- **27.6** Identification in Tobit Regression 877
- **27.7** CLAD and CQR Estimators ... 879
- **27.8** Illustrating Censored Regression 880
- **27.9** Sample Selection Bias .. 881
- **27.10** Heckman's Model .. 882
- **27.11** Nonparametric Selection .. 884
- **27.12** Panel Data ... 885
- **27.13** Exercises ... 886
Model Selection, Stein Shrinkage, and Model Averaging

28.1 Introduction ... 889
28.2 Model Selection ... 889
28.3 Bayesian Information Criterion ... 891
28.4 Akaike Information Criterion for Regression 892
28.5 Akaike Information Criterion for Likelihood 894
28.6 Mallows Criterion .. 895
28.7 Hold-Out Criterion ... 896
28.8 Cross-Validation Criterion ... 897
28.9 K-Fold Cross-Validation .. 899
28.10 Many Selection Criteria Are Similar 900
28.11 Relation with Likelihood Ratio Testing 901
28.12 Consistent Selection ... 902
28.13 Asymptotic Selection Optimality .. 904
28.14 Focused Information Criterion .. 906
28.15 Best Subset and Stepwise Regression 908
28.16 The MSE of Model Selection Estimators 909
28.17 Inference after Model Selection ... 911
28.18 Empirical Illustration .. 913
28.19 Shrinkage Methods ... 914
28.20 James-Stein Shrinkage Estimator .. 915
28.21 Interpretation of the Stein Effect ... 916
28.22 Positive Part Estimator ... 916
28.23 Shrinkage Toward Restrictions ... 918
28.24 Group James-Stein ... 919
28.25 Empirical Illustrations ... 920
28.26 Model Averaging ... 923
28.27 Smoothed BIC and AIC .. 925
28.28 Mallows Model Averaging .. 927
28.29 Jackknife (CV) Model Averaging .. 929
28.30 Granger-Ramanathan Averaging .. 930
28.31 Empirical Illustration .. 931
28.32 Technical Proofs* ... 932
28.33 Exercises .. 939

Machine Learning

29.1 Introduction ... 941
29.2 Big Data, High Dimensionality, and Machine Learning 941
29.3 High-Dimensional Regression .. 942
29.4 p-norms ... 943
29.5 Ridge Regression ... 944
29.6 Statistical Properties of Ridge Regression 947
29.7 Illustrating Ridge Regression ... 948
Contents

29.8 Lasso ... 948
29.9 Lasso Penalty Selection ... 951
29.10 Lasso Computation .. 952
29.11 Asymptotic Theory for the Lasso 952
29.12 Approximate Sparsity ... 954
29.13 Elastic Net .. 955
29.14 Post-Lasso .. 956
29.15 Regression Trees ... 956
29.16 Bagging .. 958
29.17 Random Forests .. 960
29.18 Ensembling ... 961
29.19 Lasso IV ... 962
29.20 Double Selection Lasso .. 963
29.21 Post-Regularization Lasso 965
29.22 Double/Debiased Machine Learning 967
29.23 Technical Proofs* ... 968
29.24 Exercises .. 974

APPENDIXES

APPENDIX A: MATRIX ALGEBRA

A.1	Notation ... 977
A.2	Complex Matrices .. 978
A.3	Matrix Addition .. 979
A.4	Matrix Multiplication ... 979
A.5	Trace ... 980
A.6	Rank and Inverse .. 981
A.7	Orthogonal and Orthonormal Matrices 982
A.8	Determinant ... 982
A.9	Eigenvalues ... 983
A.10	Positive Definite Matrices .. 984
A.11	Idempotent Matrices .. 985
A.12	Singular Values ... 986
A.13	Matrix Decompositions .. 986
A.14	Generalized Eigenvalues ... 987
A.15	Extrema of Quadratic Forms .. 988
A.16	Cholesky Decomposition ... 990
A.17	QR Decomposition ... 991
A.18	Solving Linear Systems ... 991
A.19	Algorithmic Matrix Inversion 993
A.20	Matrix Calculus ... 993
A.21	Kronecker Products and the Vec Operator 995
A.22	Vector Norms .. 996
A.23	Matrix Norms .. 996
APPENDIX B: USEFUL INEQUALITIES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Inequalities for Real Numbers</td>
<td>999</td>
</tr>
<tr>
<td>B.2</td>
<td>Inequalities for Vectors</td>
<td>1000</td>
</tr>
<tr>
<td>B.3</td>
<td>Inequalities for Matrices</td>
<td>1001</td>
</tr>
<tr>
<td>B.4</td>
<td>Probability Inequalities</td>
<td>1001</td>
</tr>
<tr>
<td>B.5</td>
<td>Proofs*</td>
<td>1005</td>
</tr>
</tbody>
</table>

References ... 1021
Index .. 1033
CHAPTER 1
INTRODUCTION

1.1 WHAT IS ECONOMETRICS?

The term “econometrics” is believed to have been crafted by Ragnar Frisch (1895–1973) of Norway, one of the three principal founders of the Econometric Society, first editor of the journal *Econometrica*, and co-winner of the first Nobel Memorial Prize in Economic Sciences in 1969. It is therefore fitting that we turn to Frisch’s own words in the introduction to the first issue of *Econometrica* to describe the discipline.

A word of explanation regarding the term econometrics may be in order. Its definition is implied in the statement of the scope of the [Econometric] Society, in Section I of the Constitution, which reads: “The Econometric Society is an international society for the advancement of economic theory in its relation to statistics and mathematics. . . . Its main object shall be to promote studies that aim at a unification of the theoretical-quantitative and the empirical-quantitative approach to economic problems. . . .”

But there are several aspects of the quantitative approach to economics, and no single one of these aspects, taken by itself, should be confounded with econometrics. Thus, econometrics is by no means the same as economic statistics. Nor is it identical with what we call general economic theory, although a considerable portion of this theory has a definitively quantitative character. Nor should econometrics be taken as synonymous with the application of mathematics to economics. Experience has shown that each of these three view-points, that of statistics, economic theory, and mathematics, is a necessary, but not by itself a sufficient, condition for a real understanding of the quantitative relations in modern economic life. It is the *unification* of all three that is powerful. And it is this unification that constitutes econometrics. (Frisch, 1933, pp. 1–2).

This definition remains valid today, although some terms have evolved somewhat in their usage. Today, we would say that econometrics is the unified study of economic models, mathematical statistics, and economic data.

In the field of econometrics there are subdivisions and specializations. *Econometric theory* concerns the development of tools and methods, and the study of the properties of econometric methods. *Applied econometrics* is a term describing the development of quantitative economic models and the application of econometric methods to these models using economic data.

1.2 THE PROBABILITY APPROACH TO ECONOMETRICS

The unifying methodology of modern econometrics was articulated by Trygve Haavelmo (1911–1999) in his seminal paper “The probability approach in econometrics” (1944). Haavelmo argued that quantitative economic models must necessarily be *probability models* (by which today we would mean *stochastic*). Deterministic models are blatantly inconsistent with observed economic quantities, and it is incoherent to apply...
deterministic models to nondeterministic data. Economic models should be explicitly designed to incorporate randomness; stochastic errors should not be simply added to deterministic models to make them random. Once we acknowledge that an economic model is a probability model, it follows naturally that an appropriate tool to quantify, estimate, and conduct inferences about the economy is the powerful theory of mathematical statistics. The appropriate method for a quantitative economic analysis follows from the probabilistic construction of the economic model. Haavelmo’s probability approach was quickly embraced by the economics profession. Today, no quantitative work in economics shuns its fundamental vision.

While all economists embrace the probability approach, there has been some evolution in its implementation.

The structural approach is the closest to Haavelmo’s original idea. A probabilistic economic model is specified, and the quantitative analysis performed under the assumption that the economic model is correctly specified. Researchers often describe this as “taking their model seriously.” The structural approach typically leads to likelihood-based analysis, including maximum likelihood and Bayesian estimation.

A criticism of the structural approach is that it is misleading to treat an economic model as correctly specified. Instead, it is more accurate to view a model as a useful abstraction or approximation. In this case, how should we interpret structural econometric analysis? The quasi-structural approach to inference views a structural economic model as an approximation rather than the truth. This theory has led to the concepts of the pseudo-true value (the parameter value defined by the estimation problem), the quasi-likelihood function, quasi-maximum likelihood estimate (quasi-MLE), and quasi-likelihood inference.

Closely related is the semiparametric approach. A probabilistic economic model is partially specified but some features are left unspecified. This approach typically leads to estimation methods, such as least squares and the generalized method of moments. The semiparametric approach dominates contemporary econometrics and is the main focus of this textbook.

Another branch of quantitative structural economics is the calibration approach. Similar to the quasi-structural approach, the calibration approach interprets structural models as approximations and hence inherently false. The difference is that the calibrationist literature rejects mathematical statistics (deeming classical theory as inappropriate for approximate models) and instead selects parameters by matching model and data moments using nonstatistical ad hoc\(^1\) methods.

Trygve Haavelmo

The founding ideas of the field of econometrics are largely due to the Norwegian econometrician Trygve Haavelmo (1911–1999). His advocacy of probability models revolutionized the field, and his use of formal mathematical reasoning laid the foundation for subsequent generations. He was awarded the Nobel Memorial Prize in Economic Sciences in 1989.

1.3 Econometric Terms

In a typical application, an econometrician has a set of repeated measurements on a set of variables. For example, in a labor application, the variables could include weekly earnings, educational attainment, age, and other descriptive characteristics. We call this information the data, dataset, or sample.

\(^1\)Ad hoc means “for this purpose”—a method designed for a specific problem—and not based on a generalizable principle.
We use the term observations to refer to distinct repeated measurements on the variables. An individual observation often corresponds to a specific economic unit, such as a person, household, corporation, firm, organization, country, state, city, or other geographical region. An individual observation could also be a measurement at a point in time, such as quarterly gross domestic product (GDP) or a daily interest rate.

Economists typically denote variables by the italicized roman characters $Y, X,$ and/or Z. The convention in econometrics is to use the character Y to denote the variable to be explained, while the characters X and Z are used to denote the conditioning (explanatory) variables. Following mathematical practice, random variables and vectors are denoted by uppercase roman characters, such as Y and X. We make an exception for equation errors, which we typically denote by the lowercase letters $e, u, o r v$.

Real numbers (elements of the real line \mathbb{R}, also called scalars) are written using lowercase italics, such as x. Vectors (elements of \mathbb{R}^k) are typically also written using lowercase italics, such as x, or using lowercase bold italics, such as \mathbf{x}. We use bold in matrix algebraic expressions for compatibility with matrix notation.

Matrices are written using uppercase bold italics, such as \mathbf{X}. Our notation will not make a distinction between random and nonrandom matrices. Typically we use $\mathbf{U}, \mathbf{V}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ to denote random matrices and use $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{W}$ to denote nonrandom matrices.

We denote the number of observations by the natural number n, and subscript the variables by the index i to denote the individual observation (e.g., Y_i). In some contexts, we use indices other than i, such as in time series applications where the index t is common. In panel studies, we typically use the double index it to refer to individual i at time period t.

We typically use Greek letters, such as $\beta, \theta,$ and σ^2, to denote unknown parameters (scalar or vectors). Parameter matrices are written using uppercase Latin boldface (e.g., A). Estimators are typically denoted by putting a hat “$\hat{}$,” tilde “\sim,” or bar “$\bar{}$” over the corresponding letter (e.g., $\hat{\beta}$ and $\tilde{\beta}$ are estimators of β, and \hat{A} is an estimator of A).

The covariance matrix of an econometric estimator will typically be written using the uppercase boldface V, often with a subscript to denote the estimator (e.g., $V_\beta = \text{var} [\hat{\beta}]$ as the covariance matrix for $\hat{\beta}$). Hopefully without causing confusion, we will use the notation $V_\beta = \text{avar} [\hat{\beta}]$ to denote the asymptotic covariance matrix of $\sqrt{n} (\hat{\beta} - \beta)$ (the variance of the asymptotic distribution). Covariance matrix estimators will be denoted by appending hats or tildes (e.g., \hat{V}_β is an estimator of V_β).

1.4 OBSERVATIONAL DATA

A common econometric question is to quantify the causal impact of one set of variables on another variable. For example, a concern in labor economics is the returns to schooling—the change in earnings induced by increasing a worker’s education, holding other variables constant. Another issue of interest is the earnings gap between men and women.

Ideally, we would use experimental data to answer these questions. To measure the returns to schooling, an experiment might randomly divide children into groups, mandate different levels of education to the different groups, and then follow the children’s wage path after they mature and enter the labor force. The differences between the groups would be direct measurements of the effects of different levels of education. However, experiments such as this would be widely condemned as immoral! Consequently, in economics, experimental data sets are typically narrow in scope.

Instead, most economic data is observational. To continue the above example, through data collection we can record the level of a person’s education and their wage. With such data, we can measure the joint distribution of these variables and assess their joint dependence. But from observational data, it is difficult to
infer causality as we are not able to manipulate one variable to see the direct effect on the other. For example, a person's level of education is (at least partially) determined by that person's choices. These factors are likely to be affected by their personal abilities and attitudes toward work. The fact that a person is highly educated suggests a high level of ability, which suggests a high relative wage. This is an alternative explanation for an observed positive correlation between educational levels and wages. High ability individuals do better in school, and therefore choose to attain higher levels of education, and their high ability is the fundamental reason for their high wages. The point is that multiple explanations are consistent with a positive correlation between schooling levels and education. Knowledge of the joint distribution alone may not be able to distinguish between these explanations.

Most economic data sets are observational, not experimental. Thus, all variables must be treated as random and possibly jointly determined.

This discussion shows that it is difficult to infer causality from observational data alone. Causal inference requires identification, which is based on strong assumptions. We will discuss these issues on occasion throughout the text.

1.5 STANDARD DATA STRUCTURES

There are five major types of economic data sets: cross-sectional, time series, panel, clustered, and spatial. They are distinguished by the dependence structure across observations.

Cross-sectional data sets have one observation per individual. Surveys and administrative records are a typical source for cross-sectional data. In typical applications, the individuals surveyed are persons, households, firms, or other economic agents. In many contemporary econometric cross-sectional studies, the sample size n is quite large. It is conventional to assume that cross-sectional observations are mutually independent. Most of this text is devoted to the study of cross-sectional data.

Time series data are indexed by time. Typical examples include macroeconomic aggregates, prices, and interest rates. This type of data is characterized by serial dependence. Most aggregate economic data are only available at a low frequency (annual, quarterly, or monthly), so the sample size is typically much smaller than in cross-sectional studies. An exception is financial data, where data are available at a high frequency (daily, hourly, or by transaction), so sample sizes can be quite large.

Panel data combines elements of cross-sectional and time series. These data sets consist of a set of individuals (typically persons, households, or corporations) measured repeatedly over time. The common modeling assumption is that the individuals are mutually independent of one another, but a given individual's observations are mutually dependent. In some panel data contexts, the number of time series observations T per individual is small, while the number of individuals n is large. In other panel data contexts (for example when countries or states are taken as the unit of measurement), the number of individuals n can be small, while the number of time series observations T can be moderately large. An important issue in econometric panel data is the treatment of error components.

Clustered samples are becoming increasingly popular in applied economics and are related to panel data. In clustered sampling, the observations are grouped into “clusters” which are treated as mutually independent yet allowed to be dependent within the cluster. The major difference from panel data is that clustered sampling
typically does not explicitly model error component structures, nor the dependence within clusters, but is instead concerned with inference which is robust to arbitrary forms of within-cluster correlation.

Spatial dependence is another model of interdependence. The observations are treated as mutually dependent according to a spatial measure (for example, geographic proximity). Unlike clustering, spatial models allow all observations to be mutually dependent and typically rely on explicit modeling of the dependence relationships. Spatial dependence can also be viewed as a generalization of time series dependence.

Data Structures

- Cross-section
- Time series
- Panel
- Clustered
- Spatial

As mentioned above, most of this text will be devoted to cross-sectional data under the assumption of mutually independent observations. By mutual independence, we mean that the ith observation (Y_i, X_i) is independent of the jth observation (Y_j, X_j) for $i \neq j$. In this case, we say that the data are independently distributed. (Sometimes the label “independent” is misconstrued. It is a statement about the relationship between observations i and j, not a statement about the relationship between Y_i and X_i.)

Furthermore, if the data are randomly gathered, it is reasonable to model each observation as a draw from the same probability distribution. In this case, we say that the data are identically distributed. If the observations are mutually independent and identically distributed, we say that the observations are independent and identically distributed (i.i.d.) or a random sample. For most of this text, we will assume that our observations come from a random sample.

Definition 1.1 The variables (Y_i, X_i) are a sample from the distribution F if they are identically distributed with distribution F.

Definition 1.2 The variables (Y_i, X_i) are a random sample if they are mutually independent and identically distributed (i.i.d.) across $i = 1, \ldots, n$.

In the random sampling framework, we think of an individual observation (Y_i, X_i) as a realization from a joint probability distribution $F(y, x)$, which we call the population. This “population” is infinitely large. This abstraction can be a source of confusion, as it does not correspond to a physical population in the real world. It is an abstraction because the distribution F is unknown, and the goal of statistical inference is to learn about features of F from the sample. The assumption of random sampling provides the mathematical foundation for treating economic statistics with the tools of mathematical statistics.
The random sampling framework was a major intellectual breakthrough of the late nineteenth century, allowing the application of mathematical statistics to the social sciences. Before this conceptual development, methods from mathematical statistics had not been applied to economic data, as the latter were viewed as nonrandom. The random sampling framework enabled economic samples to be treated as random, a necessary precondition for the application of statistical methods.

1.6 ECONOMETRIC SOFTWARE

Economists use a variety of econometric, statistical, and programming software. Stata is a powerful statistical program with a broad set of pre-programmed econometric and statistical tools. It is quite popular among economists and is continuously being updated with new methods. It is an excellent package for most econometric analysis but is limited when you want to use new or less-common econometric methods which have not yet been programmed. At many points in this textbook, specific Stata estimation methods and commands are described. These commands are valid for Stata version 16.

MATLAB, GAUSS, and OxMetrics are high-level matrix programming languages with a wide variety of built-in statistical functions. Many econometric methods have been programed in these languages and are available on the web. The advantage of these packages is that you are in complete control of your analysis, and it is easier to program new methods than it is in Stata. Some disadvantages are that you have to do much of the programming yourself, programming complicated procedures takes significant time, and programming errors are hard to prevent and difficult to detect and eliminate. Of these languages, GAUSS used to be quite popular among econometricians, but currently MATLAB is more popular.

An intermediate choice is R. R has the capabilities of the above high-level matrix programming languages, but it also has many built-in statistical environments which can replicate much of the functionality of Stata. R is the dominant programming language in the statistics field, so methods developed in that arena are most commonly available in R. Uniquely, R is open source, user contributed, and best of all, completely free! A growing group of econometricians are enthusiastic fans of R.

For highly intensive computational tasks, some economists write their programs in a standard programming language, such as Fortran or C. This can lead to major gains in computational speed, at the cost of increased time in programming and debugging.

Many other packages are used by econometricians, including Eviews, Gretl, PcGive, Python, Julia, RATS, and SAS.

As the packages described above have distinct advantages, many empirical economists use multiple packages. As a student of econometrics, you will learn at least one of these packages and probably more than one. My advice is that all students of econometrics should develop a basic level of familiarity with Stata, MATLAB, and R.

1.7 REPLICATION

Scientific research needs to be documented and replicable. For social science research using observational data, this requires careful documentation and archiving of the research methods, data manipulations, and coding.

The best practice is as follows. Accompanying each published paper, an author should create a complete replication package (set of data files, documentation, and program code files). This package should contain the source (raw) data used for analysis and code which executes the empirical analysis and other numerical
work reported in the paper. In most cases, this code is a set of programs which may need to be executed sequentially. (For example, there may be an initial program which “cleans” and manipulates the data, and then a second set of programs which estimate the reported models.) The ideal is full documentation and clarity. This package should be posted on the author(s) website and posted on the journal website when that is an option.

A complicating factor is that many current economic data sets have restricted access and cannot be shared without permission. In these cases, the data cannot be posted or shared. The computed code, however, can and should be posted.

Most journals in economics require authors of published papers to make their datasets generally available. For example:

Econometrica states:

Econometrica has the policy that all empirical, experimental and simulation results must be replicable. Therefore, authors of accepted papers must submit data sets, programs, and information on empirical analysis, experiments and simulations that are needed for replication and some limited sensitivity analysis.

The American Economic Review states (on its webpage):

It is the policy of the American Economic Association to publish papers only if the data and code used in the analysis are clearly and precisely documented and access to the data and code is non-exclusive to the authors. Authors of accepted papers that contain empirical work, simulations, or experimental work must provide, prior to acceptance, information about the data, programs, and other details of the computations sufficient to permit replication, as well as information about access to data and programs.

The Journal of Political Economy states:

It is the policy of the Journal of Political Economy to publish papers only if the data used in the analysis are clearly and precisely documented and are readily available to any researcher for purposes of replication.

If you are interested in using the data from a published paper, first check the journal's website, as many journals archive data and replication programs online. Second, check the website(s) of the paper's author(s). Most academic economists maintain webpages, and some make available replication files complete with data and programs. If these investigations fail, email the author(s), politely requesting the data. You may need to be persistent.

As a matter of professional etiquette, all authors absolutely have the obligation to make their data and programs available. Unfortunately, many fail to do so, and typically for poor reasons. The irony of the situation is that it is typically in the best interests of a scholar to make as much of their work (including all data and programs) freely available, as this only increases the likelihood of their work being cited and having an impact.

Keep this in mind as you start your own empirical project. Remember that as part of your end product, you will need (and want) to provide all data and programs to the community of scholars. The greatest form of flattery is to learn that another scholar has read your paper, wants to extend your work, or wants to use your empirical methods. In addition, public openness provides a healthy incentive for transparency and integrity in empirical analysis.

1.8 DATA FILES FOR TEXTBOOK

On the textbook webpage https://press.princeton.edu/books/econometrics are posted files containing data sets which are used in this textbook both for illustration and for end-of-chapter empirical exercises. Most of the datasets have four files: (1) Description (pdf format); (2) Excel data file; (3) Text data file; and (4) Stata data
file. The three data files are identical in content: the observations and variables are listed in the same order in each, and all have variable labels.

For example, the text makes frequent reference to a wage dataset extracted from the Current Population Survey. This dataset is named \texttt{cps09mar}, and is represented by the files \texttt{cps09mar_description.pdf}, \texttt{cps09mar.xlsx}, \texttt{cps09mar.txt}, and \texttt{cps09mar.dta}.

The datasets currently included are

- \texttt{AB1991} — Data file from Arellano and Bond (1991)
- \texttt{AJR2001} — Data file from Acemoglu, Johnson, and Robinson (2001)
- \texttt{AK1991} — Data file from Angrist and Krueger (1991)
- \texttt{AL1999} — Data file from Angrist and Lavy (1999)
- \texttt{BMN2016} — Data file from Bernheim, Meer, and Novarro (2016)
- \texttt{cps09mar} — household survey data extracted from the March 2009 Current Population Survey
- \texttt{CHJ2004} — Data file from Cox, Hansen, and Jimenez (2004)
- \texttt{CK1994} — Data file from Card and Krueger (1994)
- \texttt{CMR2008} — Data file from Card, Mas, and Rothstein (2008)
- \texttt{DDK2011} — Data file from Duflo, Dupas, and Kremer (2011)
- \texttt{FRED-MD} and \texttt{FRED-QD} — U.S. monthly and quarterly macroeconomic databases from McCracken and Ng (2016, 2021)
- \texttt{Invest1993} — Data file from B. Hall and R. Hall (1993)
- \texttt{LM2007} — Data file from Ludwig and Miller (2007) and Cattaneo, Titiunik, and Vazquez-Bare (2017)
- \texttt{Kilian2009} — Data file from Kilian (2009)
1.9 READING THE BOOK

I have endeavored to use a unified notation and nomenclature. The development of the material is cumulative, with later chapters building on the earlier ones. Nevertheless, every attempt has been made to make each chapter self-contained, so readers can pick and choose topics according to their interests.

To fully understand econometric methods, it is necessary to have a mathematical understanding of its mechanics, and this includes the mathematical proofs of the main results. Consequently, this text is self-contained with nearly all results proved with full mathematical rigor. The mathematical development and proofs aim at brevity and conciseness (sometimes described as mathematical elegance), but also at pedagogy. To understand a mathematical proof, it is not sufficient to simply read the proof, you need to follow it and re-create it for yourself.

Nevertheless, many readers will not be interested in each mathematical detail, explanation, or proof. This is okay. To use a method, it may not be necessary to understand the mathematical details. Accordingly, I have placed the more technical mathematical proofs and details in chapter appendices. These appendices and other technical sections are marked with an asterisk (*). These sections can be skipped without any loss in exposition.

Key concepts in matrix algebra and a set of useful inequalities are reviewed in Appendices A and B. It may be useful to read or review Appendix A.1–A.11 before starting Chapter 3, and review Appendix B before Chapter 6. It is not necessary to understand all the material in the appendices. They are intended to be reference material, and some of the results are not used in this textbook.
abortion and crime difference in differences, 679–680
absolute t-ratio, 183
acceptance and rejection regions, hypothesis testing, 226–227
Acemoglu, Daron, 412–414
addition, matrix, 979
additively separable models, series regression, 746
adjusted R-squared, 121
aggregate supply shock, 544
Akaike information criterion (AIC), 498, 890; for likelihood, 894–895; for regression, 892–894; relation with likelihood ratio testing, 901; smoothed, 925–927
algorithmic matrix inversion, 993
alternative hypotheses, 225–226
American Economic Review, 7
analysis of variance, 77–78
Anderson-Hsiao estimator, 656
Angrist, Joshua D., 414–416, 751–753
annihilator matrix, 76
applied econometrics, 1
approximate factor models, 333–335
approximate sparsity, 954–955
Arellano-Bond estimator, 657–659
asymptotic bias, nonparametric regression, 692–694
asymptotic critical value, 228
asymptotic distribution, 167–171, 206–207; binary choice, 836–837; of fixed effects 2SLS estimator, 647–648; fixed effects estimator, 636–637; under general dependence, 493; least squares estimator, 491–492; limited likelihood maximum likelihood (LIML), 366–367; m-estimators, 783–785; multivariate regression, 319–321; multivariate time series, 531–532; nonlinear least squares (NLLS), 794–796; nonparametric regression, 702–704; quantile regression, 815–816; two-stage least squares, 362–363; for unbalanced panels, 637–639
asymptotic integrated MSE (AIMSE), 695–696; curse of dimensionality, 713
asymptotic leverage, 192
asymptotic local power, 251–253; vector case, 254
asymptotic MSE (AMSE), 695–696
asymptotic normality, 167–171; series regression, 738–739
asymptotic null distribution, 227
asymptotic refinement, 290–292
asymptotics: bootstrap, 276–279; central limit theorem (CLT), 160–161; continuous mapping theorem (CMT) and delta method, 161–162; convergence of moments, 163–164; introduction, 159; modes of convergence, 159; smooth function model, 162; stochastic order symbols, 162–163; weak law of large numbers (WLLN), 160
asymptotic selection optimality, 904–906
asymptotic theory, bootstrap regression, 300–301
asymptotic variance, nonparametric regression, 694–695
attenuation bias, 342
autoregressive AR(1) parameter estimation, 572–574; with an intercept, 574–576
autoregressive AR[p] models with unit root, 576–578
autoregressive distributed lag models (AR-DL), 501–502, 524; Granger causality, 505–507
autoregressive-integrated moving-average process (ARIMA), 487
autoregressive models, estimation of, 490–491
autoregressive-moving-average process (ARMA), 486–487
autoregressive Wold representation, 473–474
average causal effect (ACE), 51–53, 394
average marginal effect, 839
average treatment effect (ATE), 763
backward stepwise regression, 908–909
bagging, 958–960
Bahr-Esseen inequality, 1003, 1011–1012
balanced regression design, 83
bandwidth, 494; cross-validation bandwidth selection, 701–704; reference, nonparametric regression, 697–698; regression discontinuity, 768–770
basis transformations, 725
Basmann’s statistic, 387
Bayesian information criterion, 890, 891–892; relation with likelihood ratio testing, 901; smoothed, 925–927
Bernstein’s inequality, 1003, 1009–1011
Berry Levinsohn Pakes, 865–867
best linear approximation, 45–46
best linear predictor, 35–39; illustrations of, 39–41
best linear projection, limitations of, 48
best subset model, 908–909
between estimator, 630–631
Beveridge-Nelson decomposition, 563–565
bias: endogeneity or estimation, 342; sample selection, 881–882; smoothing, 693, 699
bias-corrected percentile interval, 285–286; bootstrap accelerated, 286–288
big data, 941
Billingsley’s inequality, 1005, 1019
binary variables, 33
binned means estimator, 687–688
bivariate regression, 71
Blanchard and Quah, 551–553
block bootstrap for time series, 510
BLP model, 865–867
blue laws difference in differences, 678–679
Blundell-Bond estimator, 661–664
Bonferroni corrections, 248–249
Bonferroni’s inequality, 1002, 1008
Boole’s inequality, 1001, 1008
bootstrap estimator, 262, 268–270; bias-corrected percentile interval, 285–286; bootstrap accelerated bias-corrected percentile interval, 286–288; bootstrap asymptotics, 276–279; bootstrap distribution, 273–274; bootstrap regression, 298–299; bootstrap regression asymptotic theory, 300–301; for clustered observations, 303–304; consistency of bootstrap estimate of variance, 279–280; criterion-based tests, 295–296; distribution of bootstrap observations, 274–275; distribution of bootstrap sample means, 275–276; how many replications to use, 297; hypothesis tests, 292–294; panel, 653; parametric, 296–297; percentile interval, 272–273, 283–284; percentile-t asymptotic refinement, 290–292; percentile-t interval, 288–290; setting the bootstrap seed, 298; for time series, 508–510; trimmed estimator of bootstrap variance, 280–282; for two-stage least squares, 369–373; unreliability of untrimmed bootstrap standard errors, 282; variance and standard errors, 270–272; Wald-type tests, 294–295; wild bootstrap, 301–302
bootstrap for generalized method of moments (GMM), 443–444
bootstrap overidentification tests, 392
bootstrap regression, 298–299; asymptotic theory, 300–301
boundary, estimation at a, 698–700
Box-Cox regression model, 790, 793
Brownian Bridge, 570; second-level, 583
Brownian motion, 572
C (programming language), 6
C_2 inequality, 1000, 1006
calculus, matrix, 993–995
calibration approach, 2
Cauchy-Schwarz inequality, 1002, 1009
causal effects, 50–55; quantile, 820–821
causality, 4
censored least absolute deviations (CLAD), 872, 879–880
censored quantile regression (CQR), 880
censored regression, 872–874; functions, 874–875; illustrating, 880–881; panel data, 885–886
censoring: from below, 872; bias of least squares estimation and, 875–876; censored least absolute deviations (CLAD), 872, 879–880; Heckman’s model, 882–884
central limit theorem (CLT), 160–161; asymptotic distribution under general dependence, 493; bootstrap, 277; for correlated observations, 469–471; functional, 365–366; for martingale differences, 467–468
Chebyshev’s inequality, 1003, 1009
Cholesky decomposition, 990–991
classical measurement error, 342
classification and regression trees, 990–991
collinearity errors, 89–91
complex matrices, 978–979
conditional expectation inequality, 1002, 1009
conditional independence assumption (CIA), 53–54
conditional Jensen’s inequality, 1002, 1008
conditional likelihood estimator, 843
conditional logit, 851–854
conditional moment equation models, GMM, 444–445
conditional standard deviation, 27–28
conditional variance, 27–29; nonparametric regression, 705–706
conditioning on information sets, 464–465
conditioning variables, 13
confidence bands: nonparametric regression, 707; series regression, 743–744
confidence intervals: asymptotic theory for least squares, 183–185; for error variance, 150; normal-approximation bootstrap, 271; pointwise, 707; for regression coefficients, 148–149; by test inversion, 247–248
confidence regions, 188–189
consistent estimation: m-estimators, 780–782; series regression, 736
constant elasticity of substitution (CES), 790–791
constrained least squares (CLS) estimator, 200–201; asymptotic distribution, 206–207; efficient minimum distance estimator, 208–209; exclusion restriction, 201–202; finite sample properties, 202–205
constrained optimization methods, 218–219
constrained regression, generalized method of moments (GMM), 436
continuously updated generalized method of moments (GMM), 439
continuous mapping theorem (CMT), 161–162; bootstrap, 277, 278, 279, 300; consistency of least squares estimator, 165–167
continuous variables, 20–21
covariates, 13; regression discontinuity design (RDD) with, 770–771
Cramér-Rao lower bound, 153–154
criterion-based bootstrap tests, 295–296
criterion-based statistic, 236
critical value, 151; hypothesis testing, 227
cross-sectional data, 4
cross-validation, 890; bandwidth selection, 701–702; criterion, 897–898; K-fold, 899–900, 951; series regression, 740–741
cumulative impulse response function (CIRF), 528
current population survey (CPS), 88
curse of dimensionality, 713
data, 2; big, 941; count, 864–865; cross-sectional, 4; experimental, 3; identically distributed, 5; independently distributed, 5; observational, 3–4; panel (see panel data); replication of, 6–7; textbook files, 7–9; time series, 4
data-generating process, 63
data sets, 2; CPS, 88; standard structures, 4–6
decompositions, matrix, 986–987; Cholesky, 990–991; QR, 991
delta method, 161–162; bootstrap, 278, 300
demeaned regressors, 72
demeaned representation, 352
demeaned values, 76
demeaning and detrending, nonstationary time series, 569–570
density discontinuity test, 772–773
dependent variables, 13
design matrix, 38
determinant, 982–983
Dickey-Fuller coefficient distribution, 573–576
differenced estimator, 624–626, 669–670
difference in differences: abortion and crime, 679–680; blue laws and liquor sales, 678–679; do police reduce crime question, 675–677; identification, 672–673; inference, 680–681; minimum wage in New Jersey, 669–672; multiple units, 673–675; trend specification, 677–678
differences, time series, 456–458
dimensionality, high, 941
dissimilarity parameter, 849
distance test, generalized method of moments (GMM), 438–439
distributed lag models, 501–502
distribution: asymptotic (see asymptotic distribution); bootstrap, 273–275; convergences in, 159; Dickey-Fuller coefficient, 573–574; GMM estimator, 428–429; joint asymptotic, 171–173; Mammen, 302; OLS coefficient vector, 145; OLS residual vector, 146; standard normal, 139–141; multivariate, 141–142; time series, under homoskedasticity, 492–493; variance estimator, 146–147
double/debiased machine learning (DML), 967–968
double selection Lasso, 963–965
drawing with replacement, 269
dummy variables, linear CEF with, 33–35
dummy variables regression, 626–627
dynamic factor models, 554–555
dynamic panel models, 653–654; with predetermined regressors, 660–661

Econometrica, 1, 7
econometrics: defined, 1; probability approach to, 1–2; terms in, 2–3
ecometric software, 6
econometric theory, 1
Edgeworth expansion, 189–190
efficient generalized method of moments (GMM), 429–430
efficient minimum distance estimator, 208–209
Eicker-White covariance matrix estimator, 115
eigenvalue product inequality, 1001
eigenvalues, 983–984; generalized, 987–988
elastic net, 955
dependent, 341–342; generalized method of moments (GMM),
441–442; subset tests, 385–386, 441–442
dependent regressors, 344–345
Engle-Granger ADF test, 595–596
ensembling, 961–962
equal weighting, 924–925
equi-correlation model, 618
ergodicity, time series, 461–463
ergodic theorem, 463–464
ero-correction representation, 592
error variance: confidence intervals for, 150; estimation of, 76–77,
110–111; estimators consistency, 173
estimation, restricted: asymptotic distribution, 206–207; con-
strained least squares (CLS) estimator, 200–201; efficient
minimum distance estimator, 208–209; exclusion restriction,
201–202, 209–211; finite sample properties, 202–205;
Hausman equality, 211; inequality restrictions, 219–220;
introduction, 199–200; Mankiw, Romer, and Weil example,
212–215; minimum distance, 205–206; misspecification,
216–218; nonlinear constraints, 218–219; variance estimation
and standard errors, 208
estimators, definition of, 3
Eviews, 6
existence of conditional expectation, 55–56
exogenous variables, 345–346
expectation, 14; errors, regression with, 377–379; of least squares
estimator, 100–102; and variance of systems least squares,
318–319
expectation equality, 1002, 1008
expectation inequality, 1002, 1009
experimental data, 3
explosive process, 481
exponential inequality, 1004, 1012–1013
external instrumental variables, 553–554
extrema of quadratic forms, 988–990
factor-augmented regression, 336–337
factor models, 331–333; with additional regressors, 335;
approximate, 333–335
familywise error probability, 249
finite sample properties, CLS estimator, 202–205
finite sample theory, 369
first-differencing transformation, 624–625
first-order autoregressive process, 477–480, 528–529
fixed design residual bootstrap for time series, 509
fixed design wild bootstrap for time series, 509–510
fixed effects: asymptotic distribution of fixed effects 2SLS estima-
tor, 647–648; covariance matrix estimation, 628–629; GMM
interpretation of, 634–635; Hausman test for random vs.,
641–642; regression, 633
fixed effects estimation, 623–624, 633–634; asymmetric distribu-
tion of fixed effects estimator, 636–637; bias of, 654–655; in
Stata, 629–630
fixed effects model, 620–621; identification in, 636
focused information criterion (FIC), 906–908
forecast error decomposition, 542–543
forecast intervals, asymptotic theory for least squares, 187
Fortran, 6
forward orthogonal transformation, 664–665
forward stepwise regression, 909
Frisch, Ragnar, 1, 82
Frisch-Waugh-Lovell (FWL) theorem, 82; dummy variable
estimator, 627
F-tests, 238–239
full information maximum likelihood (FIML), 357
functional central limit theorem (FCLT), 562
functional convergence, nonstationary time series, 561–563
fuzzy regression discontinuity (FRD), 763, 773–775; estimation
of, 774–775
GAUSS, 6
Gauss, Carl Friedrich, 144–145
Gaussian distribution, 139–141
Gaussian elimination, 144
Gaussian tail inequality, 1003, 1009
Gauss-Markov theorem, 104–107, 144; differenced estimator, 626;
panel data, 619
Gauss-Newton algorithm, 144
generalized eigenvalues, 987–988
generalized least squares (GLS), 107–108; differenced estima-
tor, 626; feasible, panel data, 632–633; forward orthogonal
transformation, 665; panel data, 618–619
generalized method of moments (GMM): Blundell-Bond, 661–
664; bootstrap for, 443–444; clustered dependence, 432–433;
conditional moment equation models, 444–445; constrained
regression, 436; continuously updated, 439; covariance matrix
estimation, 432; distance test, 438–439; distribution of GMM
estimator, 428–429; efficient, 429–430; efficient GMM versus
2SLS, 430; endogeneity tests, 441–442; estimation of efficient
weight matrix, 430–431; GMM estimator, 427–428; interpre-
tation of fixed effects, 634–635; iterated, 431; linear, 648; linear
moment models, 427; method of moments estimators, 425–
426; moment equation models, 424; multivariate regression,
436–437; nonlinear, 442–443; nonlinear restricted, 435–436;
overidentification tests, 439–441; overidentified moment equa-
tions, 426–427; restricted, 434–435; subset overidentification
tests, 440–441; Wald test, 433–434
generalized multinomial probit, 861–862
generated regressors, 374–375
growth rates, time series, 456–458
Hausman equality, 211
Hausman, 211
Hausman-Blundell-Bond estimator, 662
Hausman test, 239–240; for random vs. fixed effects, 641–642
Hausman-Taylor model, 650–652
growth rates, time series, 456–458
Haavelmo, Trygve, 1–2
Haller, Peter Gavin, 292
hat matrix, 74
Hausman equality, 211
Hausman-Taylor model, 650–652
Hausman tests, 239–240; for random vs. fixed effects, 641–642

For general queries, contact webmaster@press.princeton.edu
Heckman’s model, 882–884
Hermite polynomial, 727
heteroskedasticity, 29–30; covariance matrix estimation under,
heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimators, 494–496
heteroskedasticity and autocorrelation robust (HAR) covariance matrix estimators, 494–496
heteroskedasticity-robust covariance matrix estimation, 639–641
heteroskedasticity-robust estimation-unbalanced case, 641
high dimensionality, 941
high-dimensional regression, 942
Hölder’s inequality, 1000, 1002, 1006, 1009
independence of irrelevant alternatives, multiple choice, 854–855
inclusion-exclusion principle, 1001, 1008
independent and identically distributed (i.i.d.) data, 5
independently distributed data, 5
index models, 831
index series model, 831
indirect least squares (ILS), 350
influential observations, 86–88
influence: after model selection, 911–913; difference in
differences, 680–681; regression discontinuity, 767–768
information bound for normal regression, 153–154
information series model, 831
inference: after model selection, 911–913; difference in
differences, 680–681; regression discontinuity, 767–768
infinite-order moving average process, 476–477
infinite-dimensional regression, 188, 235–236
influence function (IRF), 485–486; multivariate time
series, 527–528, 535–537; orthogonalized impulse response function (OIRF), 540–542
influential observations, 86–88
regressors, 344–345; estimator, 350–352; examples, 342–344; finite sample theory, 369; functions of parameters, 367–368; generated regressors, 374–377; hypothesis tests, 368; identification failure, 396–397; identification with, 646; instru-
ments, 345–346; Lasso, 962–963; limited likelihood maximum likelihood (LIML), 357–359, 366–367; local average treatment effects, 392–395; many instruments, 400–404; nonparametric instrumental variables regression (NPIV), 746–750; overi-
dentification tests, 386–392; overview, 341–342; panel data, 645–646; parameter identification, 349; probit model, 841–842; programming, 416–417; quantile regression, 824–825; reduced
instruments, 345–346
integration of nonlinear models, 824–825
integrated mean-squared error (IMSE), 701–702
integrated squared error (ISE), 736
integration of nonlinear models, 824–825
interaction effect, 32
intercept-only model, 25
interdependence, 5
inverse Mills ratio, 834, 875
invertibility and identification, 38
iterative generalized method of moments (GMM), 431
jackknife covariance matrix estimation, 652–653
jackknife covariance matrix model averaging, 929–930
jackknife estimates, 262; for clustered observations, 267–268; example, 266–267; of variance, 263–266
James-Stein shrinkage, 889, 915–916; empirical illustration, 920–923; group, 919–920; interpretation of the Stein effect, 916; positive part estimator, 916–917; shrinkage toward restrictions, 918–919
Jensen’s inequality, 999, 1002, 1005, 1008
Johnson, Simon, 412–414
joint asymptotic distribution, 171–173
joint normality and linear regression, 142
joint probability distribution, 5
Journal of Political Economy, 7

Julia, 6

K-class estimator, 358
kernel regression, 689–690; local nature of, 707
K-fold cross-validation, 899–900, 951
Khintchine's inequality, 1004, 1013–1015
knots, 727
Kolmogorov's inequality, 1005, 1019
Kronecker products, 995
Krueger, Alan B., 414–416
Kwiatkowski, Phillips, Schmidt, and Shin stationarity test, 581–584

lag length, VAR, 533
lag operator, time series, 473
lag truncation number, 494–495
Laguerre polynomial, 727

large sample asymptotics: central limit theorem (CLT), 160–161; continuous mapping theorem (CMT) and delta method, 161–162; convergence of moments, 163–164; modes of convergence, 159; smooth function model, 162; stochastic order symbols, 162–163; weak law of large numbers (WLLN), 160
Lasso estimation, 948–951; asymptotic theory for, 952–954; computation, 952; double selection, 963–965; elastic net, 955; instrumental variables, 962–963; penalty selection, 951; post-Lasso, 956; post-regularization, 965–967
latent variable interpretation, 832–833
Lavy, Victor, 751–753
law of iterated expectations, 21–23, 104
least absolute deviations, 779; quantile regression, 809–810
least squares estimator, 64–65; analysis of variance, 77–78; annihilator matrix, 76; bias of, 875–876; collinearity errors, 89–91; consistency of, 165–167; constrained, 200–201; CPS dataset, 88; demeaned regressors, 72; equivalence of SUR and, 324; estimation of error variance, 76–77; expectation of, 100–102; illustration of, 69–71; influential observations, 86–88; leave-one-out regression, 84–86; leverage values, 83–84; model in matrix notation, 73–74; multivariate regression, 316–318; numerical computation, 88–89; Phillips curve, 505; programming, 91–93; projection matrix, 74–75; projections, 78; regression components, 78–81; residual regression, 81–82; samples of, 62–63; solving for: with multiple regressors, 66–69; with one regressor, 65–66; two-stage, 354–357; variance of, 102–103
least squares regression: clustered sampling, 124–130; cluster levels, 131–132; computation, 120–121; covariance matrix estimation under heteroskedasticity, 113–116; covariance matrix estimation under homoskedasticity, 113; empirical example, 122–123; estimation of error variance, 110–111; estimation with sparse dummy variables, 118–119; expectation of least squares estimator, 100–102; Gauss–Markov theorem, 104–107; generalized least squares, 107–108; inference with clustered samples, 131; linear regression model, 100; mean-squared forecast error, 111–112; measures of fit, 121–122; multicollinearity, 123–124; random sampling, 98; residuals, 109–110; sample mean, 99; standard errors, 117–118; unconditional moments, 103–104; variance of least squares estimator, 102–103
least squares residuals, 71–72
leave-one-out cross validation, 122
leave-one-out regression, 84–86
Legendre, Adrien-Marie, 69
Legendre polynomial, 726
leverage point, 87
leverage values, 83–84
likelihood function, 143; Akaike information criterion (AIC) for, 894–895; probit and logit models, 833–835
likelihood ratio test, 152–153; AID and BIC selection and, 901
limited dependent variables, 829
limited likelihood maximum likelihood (LIML), 357–359; asymptotic distribution, 366–367
linear conditional expectation function (CEF), 31–32; with dummy variables, 33–35; with nonlinear effects, 32
linear generalized method of moments, 648
linear index function, 831
linear models, time series, 474–475
linear moment models, 427
linear predictor error variance, 41
linear probability model, 830–831
linear projection, 37–38, 62–63; multivariate time series, 525; time series, 471
linear projection coefficient, 36
linear quantile functions, 813–814
linear regression model, 100; joint normality and, 142
linear series model, 831
linear series regression model, 724
local average treatment effects (LATE), 392–395
local linear estimator, nonparametric regression, 690–692; estimation at a boundary, 698–700
local mean, nonstationary time series, 567–569
local polynomial estimator, nonparametric regression, 692
local projection estimator, multivariate time series, 537
local-to-zero parameter, 398
Loève's ξ_t inequality, 999–1000, 1005
log concave functions, 834
logit model, 831; application, 839–840; asymptotic distribution, 836–837; binary panel data, 842–843; conditional, 851–854; covariance matrix estimation, 838; latent variable interpretation, 832–833; likelihood, 833–835; marginal effects, 838–839; mixed, 858–859; models, 829–830; models for response probability, 830–832; multinomial, 848–850; nested, 855–858; pseudo-true values, 835–836; semiparametric, 840–841
Index 1039

log-likelihood function, 143, 152–153
logs and percentages, 17–19
long regression, 44–45
long-run covariance matrix, 566
long-run impulse response matrix, 528
long-run multiplier, 502
long-run restrictions, structural VARs, 550–551
Lyapunov’s inequality, 1003, 1009
machine learning: approximate sparsity, 954–955; bagging, 958–960; big data, high dimensionality, and, 941–942; defined, 941; double/debiased, 967–968; elastic net, 955; ensembling, 961–962; high-dimensional regression, 942; Lasso estimation, 948–956; Lasso IV, 962–963; p-norms, 943; post-Lasso, 956; post-regularization Lasso, 965–967; random forests, 960–961; regression trees, 956–958; ridge regression, 944–951
Mallows criterion, 895–896, 905–906; model averaging, 927–929
Mannen distribution, 302
Mankiw, Romer, Weil, 212–215
MarcinkiewiczWLLN, 304
Marcinkiewicz-Zygmund inequality, 1004, 1015–1016
marginal effects, 829; binary choice, 838–839
marginal significance level, 231
Markov’s inequality, 1003, 1009
martingale difference sequence (MDS), 465–467; asymptotic distribution of least squares estimator, 491–492; functional CLT, 565–566; stochastic integral, 571–572; white noise, 471–472
MATLAB, 6; clustered standard errors, 130; collinearity errors, F-tests, 239; least squares regression, 93; nonlinear least squares (NLLS) computation, 804; normal distribution, 140–141; restricted estimation, 212, 215; setting the bootstrap seed in, 298; standard errors computation, 120–121; Wald statistic, 234
matrices, 3, 977–978; addition, 979; algebraic inversion, 993; calculus, 993–995; Cholesky decomposition, 990–991; complex, 978–979; decompositions, 986–987; determinant, 982–983; eigenvalues, 983–984; extrema of quadratic forms, 988–990; generalized eigenvalues, 987–988; idempotent, 74, 985; inequalities for, 1001; Kronecker products and vec operator, 995; multiplication, 979–980; norms, 996–998; notation, 73–74, 977–978; orthogonal and orthonormal, 982; positive definite, 984–985; QR decomposition, 991; rank and inverse, 981–982; singular values, 986; solving linear systems, 991–993; trace, 980; vector norms, 996
matrix Cauchy–Schwarz inequality, 1002, 1009
matrix convergence, series regression, 734–735
maximal Khintchine inequality, 1004, 1015
maximum likelihood estimator (MLE), 143–144, 779; factor models, 331–333; Heckman’s model, 884; probit and logit models, 835
mean, 14; nonstationary time series, 567–569; regression to the, 46–47
mean squared error (MSE), 890; focused information criterion (FIC), 906–907; of model selection estimators, 909–911
mean-squared forecast error (MSFE), 111–112
measurement error bias, 342
measurement error in the regressor, 342, 346
measures of central tendency, 14–15
measures of fit, least squares regression, 121–122
median, 14
median regression, 807–809
medium regression, 44–45
m-estimators: asymptotic distribution, 783–785; consistency, 780–782; covariance matrix estimation, 785–786; identification and estimation, 780; uniform law of large numbers (ULLN), 782–783
method of moments estimators (MME), 425–426
minimization, 39
minimum distance, 205–206; tests for, 236–237; tests under homoskedasticity, 237–238
minimum wage in New Jersey difference in differences, 669–672
Minkowski’s inequality, 1000, 1002, 1006–1007, 1009
misspecification, restricted estimation, 216–218
mixed logit, 858–859
mixing properties of linear processes, 487–488
model averaging, 889, 923–925; empirical illustration, 931; ensembling, 961–962; Granger-Ramanathan, 930–931; jackknife [CV], 929–930; Mallows, 927–929; smoothed BIC and AIC, 925–927
model selection, 889–891; Akaike information criterion (AIC), 498, 890, 892–895, 925–927; asymptotic selection optimality, 904–906; Bayesian information criterion, 890, 891–892, 925–927; best subset, 908–909; consistent, 902–904; cross-validation criterion, 897–898; empirical illustration, 913–914; focused information criterion (FIC), 906–908; hold-out criterion, 896–897; inference after, 911–913; K-fold cross-validation, 899–900; Mallows criterion, 895–896, 905–906, 927–929; model averaging and, 889, 923–931; MSE of, 909–911; relation with likelihood ratio testing, 901; similar criteria for, 900–901; stepwise regression, 908–909
moment equation models, 424; overidentified, 426–427
moment estimators, 64
moments, convergence of, 163–164
monotone probability inequality, 1001, 1008
monotonicity, 821; norm, 1000, 1005
Monte Carlo simulation, 245–247; mixed logit, 859
moving average process, 475–476; infinite-order, 476–477
multicollinearity, 123–124
multinomial logit, 848–850
multinomial response, 847–848
multiple comparisons problem, 248–249
multiple regression, 71; nonparametric regression, 712–713
multiple testing problem, 248–249
multiplication, matrix, 979–980
multivariate Lindeberg-Lévy Central Limit Theorem (CLT), 160–161
multivariate matrix normal, 337–338
multivariate normal distribution, 141–142

multivariate time series: asymptotic distribution, 531–532; Blanchard and Quah illustration, 551–553; covariance matrix estimation, 532–533; dynamic factor models, 554–555; estimation, 530–531; external instruments, 553–554; first-order vector autoregressive process, 528–529; forecast error decomposition, 542–543; illustrations, 533, 541–542, 551–553; impulse response function (IRF), 527–528, 533–535; linear projection, 525; local projection estimator, 537; long-run restrictions, 550–551; multiple equation time series models, 524–525; multivariate Wold decomposition, 525–527; oil price shocks, 544–545; orthogonalized impulse response function (OIRF), 540–542; orthogonalized shocks, 539–540; predictive regressions, 533–535; pth-order vector autoregressive process, 529; regression notation, 529–530; regression on residuals, 537–538; selection of lag length in VAR, 533; structural VARs, 546–550. See also time series

multivariate Wold decomposition, 525–527

Nadaraya-Watson (NW) estimator, 689

near multicollinearity, 123

nested logit, 855–858

nonlinear constraints, restricted estimation, 218–219

nonlinear effects, linear CEF with, 32

nonlinear generalized method of moments (GMM), 442–443

nonlinear hypotheses, 242–245

nonlinear least squares (NLLS), 779; asymptotic distribution, 794–796; computation, 804; covariance matrix estimation, 796–797; estimation, 792–794; identification, 792; panel data, 797–798; testing for nonlinear components, 802–804; threshold models, 798–802

nonlinear restricted generalized method of moments (GMM), 435–436

nonparametric identification, 57; parametric vs., 750–751

nonparametric instrumental variables regression (NPIV), 746–750; convergence rate, 749–750; identification, 748–749

nonparametric quantile regression, 822–823

nonparametric regression: application to test scores, 710–711; application to wage regression, 707–709; asymptotic bias, 692–694; asymptotic distribution, 702–704; asymptotic MSE (AMSE), 695–696; asymptotic variance, 694–695; binned means estimator, 687–688; clustered observations, 709–710; computation, 713; conditional variance estimation, 705–706; confidence bands, 707; cross-validation bandwidth selection, 701–702; curse of dimensionality, 713; estimation at a boundary, 698–700; kernel regression, 689–690, 707; local linear estimator, 690–692; local polynomial estimator, 692; multiple regressors, 712–713; nonparametric residuals and prediction errors, 700–701; partially linear regression, 714–715; reference bandwidth, 697–698; undersmoothing, 704–705; variance estimation and standard errors, 706

nonparametric selection, 884–885

nonrandom matrices, 3

normal-approximation bootstrap confidence interval, 271

normal distribution, 139–141; multivariate, 141–142

normal regression: confidence intervals for regression coefficients, 148–149; distribution of OLS coefficient vector, 145; distribution of OLS residual vector, 146; distribution of variance estimator, 146–147; information bound for, 153–154; joint normality and linear regression, 142; likelihood ratio test, 152–153; multivariate normal distribution, 141–142; normal distribution and, 139–141; normal regression model, 143–144; t-statistic, 147–148; t-test, 150–152

norm equivalence, 1001, 1008

norm monotonicity, 1000, 1005

no serial correlation, testing hypothesis of, 496

notation: matrix algebra, 977–978; panel data, 615

null hypothesis, 150–152, 225–226

numerical calculation, least squares, 88–89

observational data, 3–4

observations, 3; bootstrap, 274–275, 303–304; clustered, 267–268, 303–304, 709–710, 743; influential, 86–88

oil price shocks, 544–545

omitted serial correlation, testing for, 496–498

omitted variable bias, 44–45

one standard error (1se) rule, 899–900

one-way error component model, 617

ordered response, 862–864

orders of integration, nonstationary time series, 566–567

ordinary least squares (OLS) coefficient vector, distribution of, 145

ordinary least squares (OLS) estimator, 65–66, 69, 779; Frisch-Waugh-Lovell (FWL), 82

ordinary least squares (OLS) residual vector, distribution of, 146

orthogonal decomposition, 77–78

orthogonalized impulse response function (OIRF), 540–542

orthogonal matrices, 982

orthogonal polynomials, 726–727

orthonormal matrices, 982
outliers, 86
overidentification tests, 386–392; bootstrap, 392; generalized method of moments (GMM), 439–441; subset, 389–392, 440–441
overidentified moment equations, 426–427
OxMetrics, 6
pairs bootstrap, 299; for time series, 509
panel nonparametric bootstrap, 653
parallel quantile functions, 814
parameters functions, asymptotic theory for least squares, 178–180
parametric bootstrap, 296–297
parametric identification, 57; nonparametric vs., 750–751
partially linear regression, 714–715; series regression, 745
partial sum process, 561–563
partitioned matrix, 978
partitioned matrix inversion, 80–81
PCGive, 6
percentile interval, bootstrap, 272–273, 283–284; bias-corrected, 285–286; percentile-t, 288–290
percentiles, 15
percentile-t asymptotic refinement, 290–292
percentile-t interval, 288–290
percentages and logs, 17–19
Phillips curve, 505
plug-in estimators, 64; smooth function model, 162
p-norms, 943
pointwise confidence intervals, 707
Poisson regression, 864–865
police presence and crime difference in differences, 675–677
polynomial regression, 724–725
pooled regression, 615–617
population, 5
positive definite matrices, 984–985
post-Lasso estimation, 956
post model-selection (PMS) estimator, 910
post-regularization Lasso, 965–967
power, asymptotic local, 251–253; vector case, 254
power and test consistency, hypothesis testing, 250–251
power function, hypothesis testing, 229
prediction errors, nonparametric regression, 700–701
prediction standard error, 85
predictive regressions, multivariate time series, 533–535
principal component analysis (PCA), 329–331
probability approach to econometrics, 1–2
probability convergence, 159
probability density function, 13–14
probability function, hypothesis testing, 229
projection matrix, least squares estimator, 74–75
proxy SVARs, 553–554
pseudo-true values, binary choice, 835–836
pth-order autoregressive process, 484–485, 529
p-values, 231–232
Python, 6
QR decomposition, 991
quadratic forms, extrema of, 988–990
quadratic inequality, 1001, 1008
Quadratic Inequality, 84
quantile causal effects, 820–821
quantile crossings, 819–820
quantiles, 15; normal distribution, 140–141
quantile treatment effects, 820
quasi-structural approach, 2
R (programming language), 6; clustered standard errors, 129–130; least squares regression, 92–93; nonlinear least
R (programming language) (cont.)
squares (NLLS) computation, 804; normal distribution, 140–141; restricted estimation, 212, 214; setting the bootstrap seed in, 298; standard errors computation, 120
Rademacher random variables, 302, 1003
random coefficient model, 48–49; quantile regression, 821–822
random effects, panel data, 617–619; binary, 842–843; between estimator, 630–631; Hausman test for fixed vs., 641–642
random forests, 960–961
random matrices, 3
random sampling, 5–6; least squares regression, 98
random walk, 480
range space, 74
rank and inverse, matrix, 981–982
RATS, 6
R-bar-squared, 121
real numbers, 3; inequalities for, 999–1000
recursive bootstrap for times series, 508–509
recursive VARs, 543–544
reduced form, instrumental variables, 347–348
reduced rank regression, 325–328
reference bandwidth, nonparametric regression, 697–698
regression, 13; Akaike information criterion (AIC) for, 892–894; bivariate, 71; bootstrap, 298–301; Box-Cox, 790, 793; censored, 872–875; cointegrating, 594–597; control function, 380–382; discontinuity (See regression discontinuity); dummy variables, 626–627; with expectation errors, 377–379; factor-augmented, 336–337; fixed effects, 633; high-dimensional, 942; intervals, asymptotic theory for least squares, 185–187; kernel, 689–690, 707; kink model, 791–792; least squares (See least squares regression); least squares estimator, 78–81; leave-one-out, 84–86; linear, 100, 142; long, 44–45; to the mean, 46–47; median, 807–809; medium, 44–45; multiple, 71; multivariate (See multivariate regression); nonparametric (See nonparametric regression); nonparametric instrumental variables regression (NPIV), 746–750; normal (See normal regression); notation, multivariate time series, 529–530; partially linear, 714–715; Poisson, 864–865; polynomial, 724–725; pooled, 615–617; predictive, multivariate time series, 533–535; quantile (See quantile regression); reduced rank, 325–328; regressor bounds, 733–734; residual, 81–82; on residuals, multivariate time series, 537–538; reverse, 47–48; ridge, 944–951; series (See series regression); short, 44–45; simple, 71; spline, 728–729; spurious, 584–588; stepwise, 908–909; testing for serial correlation in, 507–508; time series, 500–501; Tobit, 873, 876–879
regression coefficients, 41–42
regression derivative, 30–31
regression fallacy, 46–47
regression subvectors, 42–43
regression trees, 956–958; random forests, 960–961
regression variance, 25–26
regressors, 13
replication, 6–7; bootstrap, 297
resampling methods: bootstrap, 262, 268–304; jackknife, 263–268
residual bootstrap, 302
residuals: least squares, 71–72; regression, 81–82, 109–110; uniformly consistent, 191; nonparametric, 700–701; regression on, 537–538; series regression, 740
response probability, 829; models for, 830–832; multinomial response, 847–848
restricted estimation: asymptotic distribution, 206–207; constrained least squares (CLS) estimator, 200–201; efficient minimum distance estimator, 208–209; exclusion restriction, 201–202, 209–211; finite sample properties, 202–205; Hausman equality, 211; inequality restrictions, 219–220; Mankiw, Romer, and Weil example, 212–215; minimum distance, 205–206; misspecification, 216–218; multivariate regression, 325; nonlinear constraints, 218–219; variance estimation and standard errors, 208
restricted generalized method of moments (GMM), 434–435
restricted wild bootstrap, 302
restricted wild cluster bootstrap, 303
reverse regression, 47–48
ridge regression, 944–946; illustrating, 948; Lasso, 948–951; statistical properties, 947–948
Robinson, James A., 412–414
Rosenthal's inequality, 1005, 1017–1019
R-squared, 78
Rubin causal model, 50
Rule-of-Thumb (ROT) bandwidth: nonparametric regression, 697–698; regression discontinuity, 768–770
running variable, 763
sample mean, 99; distribution of bootstrap, 275–276; squared prediction error, 85
sample selection bias, 881–882
sampling, 2; clustered, 4–5, 124–130; random, 5–6. See also resampling methods
Sargan, Denis, 389
Sargan test, 387–389, 390
SAS, 6
scalars, 3, 977
Schwarz criterion, 891–892
Schwarz inequality, 1000, 1006
Schwarz matrix inequality, 1001, 1007
score tests, 240–242
second-level Brownian Bridge, 583
second-order autoregressive process, 481–484
seemingly unrelated regression (SUR), 322–323; equivalence of least squares and, 324
selection: model, 889–901; nonparametric, 884–885
selection bias, 881–882
semiparametric approach, 2; binary choice, 840–841
serial correlation, testing for, 507–508
series regression: additively separable models, 746; Angrist and Lavy example, 751–753; asymptotic normality, 738–739; cluttered observations, 743; confidence bands, 743–744; consistent estimation, 736; convergence rate, 736–737; cross-validation model selection, 740–741; global/local nature of, 729–731; matrix convergence, 734–735; multiple regressors, 746; nonparametric instrumental variables regression (NPIV), 746–750;
nonparametric vs. parametric identification, 750–751; orthogonal polynomials, 726–727; panel fixed effects, 745–746; partially linear model, 745; polynomial regression, 724–725; regression estimation, 739; regressor bounds, 733–734; residuals and regression fit, 740; spline regression, 728–729; splines, 727–728; Stone-Weierstrass and Jackson approximation theory, 731–733; undersmoothing, 739–740; uniform approximations, 744–745; variance and standard error estimation, 742

sharp regression discontinuity, 763–764

shocks: aggregate supply, 544; oil price, 544–545; orthogonalized, 539–540

short regression, 44–45

shrinkage methods, 914–915; James-Stein shrinkage, 915–923; toward restrictions, 918–919

significance level, 151, 228

simple conditional multinomial probit, 860–861

simple law, 21–23

simple multinomial probit, 860–861

simple regression, 71

simulated maximum likelihood, 861

software, econometric, 6; least squares programming, 91–93

sparsed dummy variables, 118–119

sparsity, approximate, 954–955

spatial dependence, 5

spectral norm, series regression, 735

splines, 727–728; regression model, 728–729

split-sample IV and JIVE, 359–361

spurious regression, 584–588

stacking, 929–930, 961

standard data structures, 4–6

standard errors: asymptotic, 180–182; bootstrap, 270–272, 282, 372–373; constrained least squares (CLS), 208; least squares regression, 117–118; nonparametric regression, 706; series regression, 742

standard normal distribution, 139–141; multivariate, 141–142

StatA, 6; asymptotic standard errors computation, 182; bootstrap standard error, 271–272, 301; clustered standard errors, 129; fixed effects estimation in, 629–630; instrumental variables, 416–417; jackknife standard errors, 267, 268; least squares regression, 92; multivariate probit, 862; nonlinear least squares (NLLS) computation, 804; nonparametric regression, 715; normal distribution, 140–141; quantile regression estimation, 815; random effects probit, 843; random effects regression, 619; restricted estimation, 212–213; setting the bootstrap seed in, 298; standard errors computation, 120; within transformation, 623; Wald statistic, 234–235

static models, 501–502

stationarity, time series, 458–460; KPSS test, 581–584

statistical significance, hypothesis testing, 230–231

stepwise regression, 908–909

stochastic integrals, nonstationary time series, 570–572

stochastic order symbols, 162–163

Stone-Weierstrass theorem, 731–733

strict mean independence, 615–616

strict multicollinearity, 123

strong Schwarz matrix inequality, 1001, 1008

structural approach, 2

structural effects, 51

structural vector autoregressive models (SVARs), 546–548; external instruments, 553–554; identification of, 549–550; long-run restrictions, 550–551

studentized statistic, 182–183

subsampling, 262

subset endogeneity tests, 385–386; generalized method of moments (GMM), 441–442

subset overidentification tests, 389–392; generalized method of moments (GMM), 440–441

sum of squared errors (SSE), 65, 66–68, 78–79

switchers, 843

symmetrization inequality, 1004

termology, econometrics, 2–3

test inversion, confidence intervals by, 247–248

test scores, nonparametric regression application to, 710–711

test statistic, 226–227

Theil, Henri, 122

threshold models, non linear least squares (NLLS), 798–802

tied-down Brownian motion, 570

time indexing, 614

time trends, 502–505, 642–643
Tobin, James, 877
Tobit estimator, 876–877
Tobit regression, 873, 876–879; identification in, 877–879; panel data, 885–886
trace, matrix, 980
trace inequality, 1001, 1007–1008
transformations of stationary processes, 460
transpose of a matrix, 978
trees, regression, 956–958; random forests, 960–961
trend specification, difference in differences, 677–678
triangle inequality, 999, 1001, 1005, 1007
trimmed estimator of bootstrap variance, 280–282
Triumph of Mediocrity in Business, The, 47
trivial power, 229
t-statistic/t−ratio, 147–148, 182–183; Edgeworth expansion, 189–190; hypothesis testing, 232–233
t-test, 150–152, 228–229
two-stage least squares (2SLS), 354–357; asymptotic distribution of, 362–363; asymptotic distribution of fixed effects, 647–648; bootstrap for, 369–373; consistency of, 361–362; determinants of variance, 363–364; efficient GMM versus, 430; standard errors, 372–373
two-step GMM estimator, 430–431
two-way error components, panel data, 643–645
two-way within estimator, 644
type I error, 227–228
type II error, 229
unbalanced panels, 614
unbalanced regression design, 83
unbiased estimator, 99, 105
unconditional moments, 103–104
unconditional variance, 27
undersmoothing: nonparametric regression, 704–705; series regression, 739–740
uniform approximations, series regression, 744–745
uniform law of large numbers (ULLN), 782–783
unit root process, 480–481; AR[p] models with, 576–578; testing for, 578–581
univariate normal distribution, 140
untrimmed bootstrap standard errors, 282
variables, 3; best linear predictor, 62–63; continuous, 20–21; estimation with sparse dummy, 118–119; instrumental (See instrumental variables)

variance estimators: bootstrap (See bootstrap estimator); consistency of, 173, 279–280; constrained least squares (CLS), 208; distribution of, 146–147; jackknife, 263–266; nonparametric regression, 706; series regression, 742
variance of least squares estimator, 102–103
vector error correction model (VECM), 592–593; estimation, 597–599; role of intercept and trend in, 593–594; testing for cointegration in, 599–602
vector norms, 996
vectors, 3, 977; inequalities for, 1000
wage regression, nonparametric regression application to, 707–709
Wald, Abraham, 235
Wald estimator, 353–354
Wald test, 187–188; F statistic, 239; generalized method of moments (GMM), 433–434; Hausman statistic, 240; homoskedastic Wald tests, 188, 235–236; hypothesis testing, 233–235; score tests, 241–242
Wald-type bootstrap tests, 294–295
weak instruments, 397–400; with K_2 greater than 1, 410–412; panel data, 659; testing for, 404–410
weak law of large numbers (WLLN), 160; bootstrap, 277, 279, 300; consistency of least squares estimator, 165–167; Marcinkiewicz, 304
weighted mean-squared error (WMSE), 889–890; shrinkage methods, 914–915
White, Halbert L., 116–117
White covariance matrix estimator, 115
white noise, 471–472
Whittle’s inequalities, 1004, 1016–1017
Wiener process, 563
wild bootstrap, 301–302; for time series, 509–510
within-cluster correlation, 5
within transformation, panel data, 621–623
Wold decomposition, 472–473; multivariate, 525–527

Zellner, Arnold, 323
z-statistic, 182–183