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Introduction

This book is intended as an exploration of the moduli space Polyd of complex
polynomials of degree d ≥ 2 in one variable using tools primarily coming from
arithmetic geometry.

The Mandelbrot set in Poly2 has undoubtedly been the focus of the most
comprehensive set of studies, and its local geometry is still an active research
field in connection with the Fatou conjecture; see [19] and the references therein.
In their seminal work, Branner and Hubbard [30, 31] gave a topological descrip-
tion of the space of cubic polynomials with disconnected Julia sets using combi-
natorial tools. In any degree, Polyd is a complex orbifold of dimension d−1, and
is therefore naturally amenable to complex analysis and in particular to pluripo-
tential theory. This observation has been particularly fruitful to describe the
locus of instability, and to investigate the boundary of the connectedness locus.
DeMarco [49] constructed a positive closed (1, 1) current whose support is pre-
cisely the set of unstable parameters. Dujardin and the first author [68] then
noticed that the Monge-Ampère measure of this current defines a probability
measure µbif whose support is in a way the right generalization of the boundary
of the Mandelbrot set in higher degree, capturing the part of the moduli space
where the dynamics is the most unstable (see also [11] for the case of rational
maps). The support of µbif has a very intricate structure: it was proved by
Shishikura [152] in degree 2 and later generalized in higher degree by the second
author [87] that the Hausdorff dimension of the support of µbif is maximal equal
to 2(d− 1).

A polynomial is said to be post-critically finite (or PCF) if all its critical
points have a finite orbit. The Julia set of a PCF polynomial is connected, of
zero measure, and the dynamics on it is hyperbolic off the post-critical set. PCF
polynomials form a countable subset of larger classes of polynomials (such as
Misiurewicz, or Collet-Eckmann) for which the thermodynamical formalism is
well understood [141, 142]. They also play a pivotal role in the study of the
connectedness locus of Polyd: their distribution was described in a series of
papers [76, 90, 91] and proved to represent the bifurcation measure µbif.

Any PCF polynomial is the solution of a system of d − 1 equations of the
form Pn(c) = Pm(c) where c denotes a critical point and n,m are two distinct
integers. In the moduli space, these equations are algebraic with integral coeffi-
cients, so that any PCF polynomial is in fact defined over a number field. Ingram
[109] pushed this remark further and built a natural height hbif : Polyd(Q̄)→ R+
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for which the set of PCF polynomials coincides with {hbif = 0}.
Height theory yields interesting new perspectives on the geometry of Polyd,

and more specifically on the distribution of PCF polynomials. We will be mostly
interested here in the so-called dynamical André-Oort conjecture, which ap-
peared in [6]; see also [156].

This remarkable conjecture was set out by Baker and DeMarco, who were
motivated by deep analogies between PCF dynamics and CM points in Shimura
varieties, and more specifically by works by Masser-Zannier [27, 123, 171] on
torsion points in elliptic curves. An historical account on the introduction of
these ideas in arithmetic dynamics is given in [5, §1.2] and [6, §1.2]; see also [93].
We note that this analogy goes far beyond the problems considered in this book,
and applies to various conjectures described in [52, 155]. We refer to the book
by Zannier [171] for a beautiful discussion of unlikely intersection problems in
arithmetic geometry.

Baker and DeMarco proposed characterizing irreducible subvarieties of Polyd
(or more generally of the moduli space of rational maps) containing a Zariski
dense subset of PCF polynomials, and conjectured that such varieties were de-
fined by critical relations. This conjecture was proven for unicritical polynomials
in [97] and [98], and in degree 3 in [77] and [103].

It is our aim to give a proof of that conjecture for curves in Polyd for any
d ≥ 2, and based on this result to attempt a classification of these curves in
terms of combinatorial data encoding critical relations.

Our proof roughly follows the line of arguments devised in the original paper
of Baker and DeMarco, and relies on equidistribution theorems of points of
small height by Thuillier [160] and Yuan [168]; on the expansion of the Böttcher
coordinates; and on Ritt’s theory characterizing equalities of composition of
polynomials.

We needed, though, to overcome several important technical difficulties, such
as proving the continuity of metrics naturally attached to families of polynomi-
als. We also had to inject new ingredients, most notably some dynamical rigidity
results concerning families of polynomials with a marked point whose bifurcation
locus is real-analytic.

For the most part in the book, we shall work in the more general context
of polynomial dynamical pairs (P, a) parametrized by a complex affine curve
C, postponing the proof of the dynamical André-Oort conjecture to the last
chapter. We investigate quite generally the problem of unlikely intersection
that was promoted in the context of torsion points on elliptic curves by Zannier
and his co-authors [123, 171], and later studied by Baker and DeMarco [5, 6]
in our context. This problem amounts to understanding when two polynomial
dynamical pairs (P, a) and (Q, b) parametrized by the same curve C have an
infinite set of common parameters for which the marked points are preperiodic.
We obtain quite definite answers for polynomial pairs, and we prove finiteness
theorems that we feel are of some interest for further exploration.
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We have tried to review all the necessary material for the proof of the dy-
namical André-Oort conjecture, but we have omitted some technical proofs that
are already available in the literature in an optimal form. On the other hand,
we have made some efforts to clarify some proofs which we felt are too sketchy
in the literature. The group of dynamical symmetries of a polynomial plays a
very important role in unlikely intersection problems, and we have thus included
a detailed discussion of this notion.

Let us now describe in more detail the content of the book.

Polynomial dynamical pairs

In this paragraph we present the main players of our moograph. The central
notion is that of a polynomial dynamical pair parametrized by a curve. Such
a pair (P, a) is by definition an algebraic family of polynomials Pt parametrized
by an irreducible affine curve C defined over a field K, accompanied by a regular
function a ∈ K[C] which defines an algebraically varying marked point. Most of
the time, these objects will be defined over the field of complex numbers K = C,
but it will also be important to consider polynomial dynamical pairs over other
fields such as number fields, p-adic fields, or finite fields.

Any polynomial dynamical pair leaves a “trace” on the parameter space C,
which may take different forms. Suppose first that K is an arbitrary field, and
let K̄ be an algebraic closure of K. The first basic object to consider is the set
Preper(P, a) of (closed) points t ∈ C(K̄) such that a(t) is preperiodic under Pt.
This set is either equal to C or at most countable.

A slightly more complicated but equally important object one can attach
to (P, a) is the following divisor. Let C̄ be the completion of C, that is, the
unique projective algebraic curve containing C as a Zariski dense open subset,
and smooth at all points C̄ \ C. Points in C̄ \ C are called branches at infinity
of C. Any pair (P, a) induces an effective divisor DP,a on C̄, which is obtained
by setting

ordc (DP,a) := lim
n→∞

− 1

dn
min{0, ordc(P

n(a))}, (1)

for any branch c at infinity. The limit is known to exist and is always a rational
number; see §4.2.2.

When K = C, one can associate various topological objects to a polynomial
dynamical pair. One can consider the locus of stability of the pair (P, a) which
consists of the open set in which the family of holomorphic maps {Pn(a)}n≥0

is normal. Its complement is the bifurcation locus, which we denote by
Bif(P, a). This set can be characterized using potential theory as follows. Recall
the definition of the Green function of a polynomial P of degree d:

gP (z) := lim
n→∞

1

dn
max{log |Pn(z)|, 0},

so that {gP = 0} is the filled-in Julia set of P consisting of those points having
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bounded orbits. On the parameter space C, we then define the function

gP,a(t) = gPt(a(t)).

It is a non-negative continuous subharmonic function on C, and the support of
the measure µbif = ∆gP,a is precisely equal to Bif(P, a). Of crucial technical
importance is the following result from [78], which relates the function gP,a to
the divisor defined above.

Theorem 1. In a neighborhood of any branch at infinity c ∈ C̄, one has the
expansion

gP,a(t) = ordc (DP,a) log |t|−1 + g̃(t)

where t is a local parameter centered at c and g̃ is continuous at 0.

This result can be interpreted in the langage of complex geometry by saying
that gP,a induces a continuous semi-positive metrization on the Q-line bundle
OC̄(DP,a). This fact is the key to applying techniques from arithmetic geometry.

Let us now suppose that K = K is a number field. For any place v of K,
denote by Kv the completion of K, and by Cv the completion of its algebraic
closure. It is then possible to mimic the previous constructions at any (finite or
infinite) place v of K to obtain functions gP,a,v : Can

v → R+ on the analytification
(in the sense of Berkovich) Can

v of the curve C over Cv. Summing all these
functions yields a height function hP,a : C(K̄) → R+. Alternatively, we may
start from the standard Weil height hst : P1(K̄) → R+; see e.g. [105]. Then for
any polynomial with algebraic coefficients, we define its canonical height [36] to
be

hP (z) := lim
n→∞

1

dn
hst(P

n(z)),

and finally we set hP,a(t) := hPt(a(t)). Using the Northcott theorem, one obtains
that {hP,a = 0} coincides with the set Preper(P, a) of parameters t ∈ C(K̄) for
which a(t) is a preperiodic point of Pt.

It is an amazing fact that all the objects attached to a polynomial dynamical
pair (P, a) we have seen so far are tightly interrelated, as the next theorem due
to DeMarco [51] shows.

An isotrivial pair (P, a) is a pair which is conjugated to a constant polynomial
and a constant marked point, possibly after a base change. A marked point is
stably preperiodic when there exist two integers n > m such that Pnt (a(t)) =
Pmt (a(t)).

Theorem 2. Let (P, a) be a polynomial dynamical pair of degree d ≥ 2 which
is parametrized by an affine irreducible curve C defined over a number field K.
If the pair is not isotrivial, then the following assertions are equivalent:

(1) the set Preper(P, a) is equal to C(K̄);

(2) the marked point is stably preperiodic;
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(3) the divisor DP,a of the pair (P, a) vanishes;

(4) for any Archimedean place v, the bifurcation measure µP,a,v := ∆gP,a,v
vanishes;

(5) the height hP,a is identically zero.

A pair (P, a) which satisfies either one of the previous conditions is said to be
passive; otherwise it is called an active pair. For an active pair, Preper(P, a)
is countable, the bifurcation measure µP,a is non-trivial, and the height hP,a is
non-zero.

Holomorphic rigidity for polynomial dynamical pairs

Rigidity results are pervasive in (holomorphic) dynamics. One of the most fa-
mous rigidity results was obtained by Zdunik [172] and asserts that the measure
of maximal entropy of a polynomial P is absolutely continuous with respect to
the Hausdorff measure of its Julia set iff P is conjugated by an affine transfor-
mation to either a monomial map Md(z) = zd, or to a Chebyshev polynomial
±Td where Td(z+z−1) = zd+z−d. In particular, these two families of examples
are the only ones having a smooth Julia set, a theorem due to Fatou [74].

The following analog of Zdunik’s result for polynomial dynamical pairs is
our first main result.

Theorem A. Let (P, a) be a polynomial dynamical pair of degree d ≥ 2 which is
parametrized by a connected Riemann surface S. Assume that Bif(P, a) is non-
empty and included in a smooth real curve. Then one of the following holds:

• either Pt is conjugated to Md or ±Td for all t ∈ S;
• or there exists a univalent map ı : D → S such that ı−1(Bif(P, a)) is a non-

empty closed and totally disconnected perfect subset of the real line and the
pair (P ◦ ı, a ◦ ı) is conjugated to a real family over D.

We say that a polynomial dynamical pair (P, a) parametrized by the unit
disk is a real family whenever the power series defining the coefficients of P and
the marked point have all real coefficients.

The previous theorem is a crucial ingredient for handling the unlikely in-
tersection problem that we will describe later. Its proof builds on a transfer
principle from the parameter space to the dynamical plane, which can be de-
composed into two parts.

The first step is to find a parameter t0 at which a(t0) is preperiodic to a
repelling orbit of Pt0 and such that t 7→ a(t) is transversal at t0 to the preperiodic
orbit degenerating to a(t0). This step builds on an argument of Dujardin [67].
The second step relies on Tan Lei’s similarity theorem [159], which shows that
the bifurcation locus Bif(P, a) near t0 is conformally equivalent at small scales
to the Julia set of Pt0 .
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Combining these two ingredients, we see that if Bif(P, a) is connected, then
Zdunik’s theorem implies that the family is isotrivial and Pt conjugated to Md

or ±Td for all t ∈ C. When Bif(P, a) is disconnected, then we prove that
all multipliers of Pt0 are real and we conclude that Pt is real for all nearby
parameters using an argument of Eremenko and Van Strien [73].

In many results that we present below, we shall exclude all polynomials that
are affinely conjugated to either Md or ±Td. These dynamical systems carry
different names in the literature: Zdunik [172] names them maps with parabolic
orbifolds; they are called special in [55, 136]; and Medvedev and Scanlon call
them non-disintegrated polynomials; see the discussion on [126, p.16]. We shall
refer them to as integrable polynomials by analogy with the notion of inte-
grable system in Hamiltonian dynamics (see [40, 164]). A family of polynomials
{Pt}t∈C will be called non-integrable whenever there exists a dense open set
U ⊂ C such that Pt is not integrable for any t ∈ U .

Unlikely intersections for polynomial dynamical pairs

Our next objective is to investigate the problem of characterizing when two
polynomial dynamical pairs (P, a) and (Q, b) parametrized by the same algebraic
curve C leave the same “trace” on C.

Analogies with arithmetic geometry suggested that the quite weak condition
of Preper(P, a)∩Preper(Q, b) being infinite in fact implies very strong relations
between the two pairs. This phenomenon was first observed for Lattès maps by
Masser and Zannier [123], and later for unicritical polynomials by Baker and
DeMarco [5], and for more general families of polynomials parametrized by the
affine line by Ghioca, Hsia, and Tucker [95]. We refer to the surveys [93], [52],
and [14] where this problem is also addressed.

A precise conjecture was formulated by DeMarco in [53, Conjecture 4.8]:
up to symmetries and taking iterates, the two families P and Q are actually
equal, and the marked points belong to the same grand orbit. In other words,
the existence of unlikely intersections forces some algebraic rigidity between the
dynamical pairs.

We prove here DeMarco’s conjecture for polynomial dynamical pairs defined
over a number field.

Theorem B. Let (P, a) and (Q, b) be active non-integrable polynomial dynam-
ical pairs parametrized by an irreducible algebraic curve C of respective degree
d, δ ≥ 2. Assume that the two pairs are defined over a number field K. Then,
the following are equivalent:

(1) the set Preper(P, a) ∩ Preper(Q, b) is an infinite subset of C(K̄);

(2) the two height functions hP,a, hQ,b : C(K̄)→ R+ are proportional;

(3) there exist integers N,M ≥ 1, r, s ≥ 0, and families R, τ , and π of polyno-
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mials of degree ≥ 1 parametrized by C such that

τ ◦ PN = R ◦ τ and π ◦QM = R ◦ π, (†)

and τ(P r(a)) = π(Qs(b)).

It is not difficult to see that (3)⇒(2)⇒(1) so that the main content of the
theorem are the implications (1)⇒(2)⇒(3). To obtain (1)⇒(2), we first apply
Yuan-Thuillier’s equidistribution result [160, 168] for points of small height: it is
precisely at this step that the continuity of g̃ in Theorem 1 is crucial. This allows
one to prove that the bifurcation measures µP,a,v and µQ,b,v are proportional at
any place v of K. From there, one infers the proportionality of height functions,
i.e., (2), using our above rigidity result (Theorem A).

The implication (2)⇒(3) is more involved. We first prove that deg(P ) and
deg(Q) are multiplicatively dependent using an argument taken from [69] which
relies on computing the Hölder constants of continuity of the potentials of the
bifurcation measures at a complex place. From this, we obtain (3) by combining
in a quite subtle way several ingredients including:

• a precise understanding of the expansion at infinity of the Böttcher coordi-
nate;
• an algebraization result of germs of curves defined by adelic series due to Xie

[165]; and
• the classification of invariant curves by product maps (z, w) 7→ (R(z), R(w)).

The latter result is due to Medvedev and Scanlon [126], whose proof elaborates
on Ritt’s theory [144]. This theory aims at describing all possible ways a poly-
nomial can be written as the composition of lower degree polynomials. It is
very combinatorial in nature and was treated by several authors including Zan-
nier [170] and Müller-Zieve [175]; see also the references therein. Of particular
relevance for us are the series of papers by Pakovich [134, 135, 136], and by
Ghioca, Nguyen, and Ye [99, 101].

As mentioned above, the line of arguments for proving Theorem B is mostly
taken from the seminal paper of Baker and DeMarco, but with considerably
more technical issues. The core of the proof takes about eight pages and is the
content of §5.4.

It would be desirable to extend Theorem B to families defined over an arbi-
trary field of characteristic zero. Reducing to a family defined over a number
field typically uses a specialization argument. We faced an essential difficulty in
the course of this argument, and thus had to require an additional assumption.

Theorem C. Pick any irreducible algebraic curve C defined over a field of char-
acteristic 0. Let (P, a) and (Q, b) be active non-integrable polynomial dynamical
pairs parametrized by C of respective degree d, δ ≥ 2. Assume that

any branch at infinity c of C belongs to the support of the divisor DP,a. (M)
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Then, the following are equivalent:

(1) the set Preper(P, a) ∩ Preper(Q, b) is an infinite subset of C;

(2) there exist integers N,M ≥ 1, r, s ≥ 0, and families R, τ , and π of polyno-
mials parametrized by C such that

τ ◦ PN = R ◦ τ and π ◦QM = R ◦ π,

and τ(P r(a)) = π(Qs(b)).

Note that although (M) may not hold in general, it is always satisfied when C
admits a unique branch at infinity, e.g., when C is the affine line. In particular,
our result yields a far-reaching generalization of [5, Theorem 1.1].

In the sequel, we call two active polynomial dynamical pairs (P, a) and (Q, b)
entangled when Preper(P, a) ∩ Preper(Q, b) is Zariski dense. This terminol-
ogy inspired by quantum theory reflects the fact the two pairs are dynamically
strongly correlated.

Description of all pairs entangled to a fixed pair

Let us fix a polynomial dynamical pair (P, a) parametrized by an algebraic curve
C and for which the previous theorems apply (i.e., either the field of definition
of the pair is a number field, or condition (M) holds). We would like now to
determine all pairs that are entangled to (P, a).

In principle this problem is solvable by Ritt’s theory. Given a polynomial P ,
it is, however, very delicate to describe all polynomials Q for which (†) holds, in
particular because there is no a priori bounds on the degrees of τ and π. Much
progress has been made by Pakovich [136] but it remains unclear whether one
can design an algorithm to solve this problem.

To get around this, we consider a more restrictive question, which is to deter-
mine all pairs (P, b) that are entangled with (P, a). In this problem, the notion
of symmetries of a polynomial plays a crucial role, and most of Chapter 3 is
devoted to the study of this notion from the algebraic, topological, and arith-
metic perspectives. The group Σ(P ) of symmetries of a complex polynomial P
is the group of affine transformations preserving its Julia set. Over an arbitrary
field, the definition is less satisfactory. Any monic centered polynomial can be
written under the form P (z) = zµQ(zm) with deg(Q) minimal, and when P is
not integrable we set Σ(P ) to be the cyclic group of order m. It is also the
maximal finite group of affine transformations such that P (g · z) = ρ(g) · P (z)
for some morphism ρ : Σ(P )→ Σ(P ).

We then prove the following more intrinsic characterization of the symmetry
group:

Theorem 3. For any field K of characteristic zero and any P ∈ K[z] of de-
gree d ≥ 2, the group Σ(P ) coincides with the set of g ∈ Aff(K) such that
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g(Preper(P, K̄)) ∩ Preper(P, K̄) is infinite.

Of importance in the latter discussion is the subgroup Σ0(P ) of affine maps
g ∈ Σ(P ) such that Pn(g · z) = Pn(z) for some n ∈ N∗.

We also introduce the notion of primitive polynomials. A polynomial P is
primitive if any equality P = g ·Qn with g ∈ Σ(P ) implies n = 1.

These notions of symmetries and primitivity allow us to obtain the following
neat statement.

Theorem D. Let (P, a) be any active, primitive, non-integrable polynomial
dynamical pair parametrized by an algebraic curve defined over a field K of
characteristic 0. Assume that K is a number field, or that (M) is satisfied.

For any marked point b ∈ K[C] such that (P, b) is active, the following
assertions are equivalent:

(1) the set Preper(P, a) ∩ Preper(P, b) is infinite (i.e., a and b are entangled),

(2) there exist g ∈ Σ(P ) and integers r, s ≥ 0 such that P r(b) = g · P s(a).

Note that this gives a positive answer to [95, Question 1.3] for polynomials.
Suppose that s = 0 and r is sufficiently large. Then solutions b to the

equation P r(b) = a are not necessarily regular functions on C: they belong to
a finite extension of K(C), and their degree is expected to tend to infinity as
r →∞. The next result gives a more detailed description on all marked points
parametrized by C which are entangled with (P, a).

Theorem E. Let (P, a) be any active primitive non-integrable polynomial dy-
namical pair parametrized by an irreducible affine curve C defined over Q̄.

The set of marked points in Q̄[C] that are entangled with a is the union of
{g · Pn(a) ;n ≥ 0 and g ∈ Σ0(P )} and a finite set.

This result seems to be new even for the unicritical family.1

It would obviously be more natural to assume the pair to be defined over
an algebraically closed field of characteristic 0, but we use at a crucial step the
assumption that (P, a) is defined over Q̄.

Interestingly enough, the proof of this finiteness theorem relies on the same
ingredients as Theorem C, namely the expansion of the Böttcher coordinate, an
algebraization result of adelic curves, and Ritt’s theory. The proof in fact shows
that one may only suppose b ∈ Q̄(C).

Unicritical polynomials.

In the short Chapter 7, we discuss in more depth some aspects of unlikely
intersection problems for unicritical polynomials.

Recall that in their seminal paper, Baker and DeMarco obtained the follow-
ing striking result: for any d ≥ 2, and any a, b ∈ C, the pairs Preper(zd + t, a),
Preper(zd + t, b) are entangled iff ad = bd. This result was further expanded
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by Ghioca, Hsia, and Tucker to more general families of polynomials and not
necessarily constant marked points; see [95, Theorem 2.3].

Building on our previous results, we obtain the following statement, which
slightly generalizes op. cit.

Theorem F. Let d, δ ≥ 2. If a, b are polynomials of the same degree and
Preper(zd+t, a(t))∩Preper(zδ+t, b(t)) is infinite, then d = δ and a(t)d = b(t)d.

After proving this theorem, we make some preliminary exploration of the set
M of complex numbers λ ∈ C∗ such that the bifurcation locus ∂Mλ is connected,
where we have set Mλ := {t, λ−1t ∈ K(zd + t)}, K(zd + t) being the filled-in
Julia set of zd + t. We observe that λ ∈M iff Mλ ⊂M(d, 0), and prove that M
is the union of finitely isolated points with a closed set of C∗ included in the unit
disk, and containing the punctured disk D∗(0, 1/8). We also include a series of
pictures obtained by A. Chéritat suggesting that the core of M is a topological
punctured disk.

Special curves in the parameter space of polynomials

We finally come back in Chapter 8 to our original objective, namely the classi-
fication of curves in Polyd which contain an infinite subset of PCF polynomials,
and the proof of Baker and DeMarco’s conjecture claiming that these curves are
cut out by critical relations.

A first answer to Baker and DeMarco’s question is given by the next result.

Theorem G. Pick any non-isotrivial complex family P of polynomials of degree
d ≥ 2 with marked critical points, parametrized by an algebraic curve C, and
containing infinitely many PCF parameters.

If the family is primitive, then possibly after a base change, there exists a
subset A of the set of critical points of P such that for any pair ci, cj ∈ A, there
exists a symmetry σ ∈ Σ(P ) and integers n,m ≥ 0 such that

Pn(ci) = σ · Pm(cj) ; (2)

and for any ci /∈ A there exist integers ni > mi ≥ 0 such that

Pni(ci) = Pmi(ci) . (3)

When the family is not primitive the statement is not true because the family
may exhibit symmetries of degree ≥ 2, as exemplified by Baker and Demarco [6,
Example 4]. After a base change, we may write P = σ · Pn0 with σ ∈ Σ(P ) and
P0 primitive and apply our result.

Following the terminology of [6, §1.4] inspired from arithmetic geometry, we
call special any curve in Polyd containing infinitely many PCF polynomials.

Our theorem says that a special curve in the moduli space of polynomials
of degree d either arises as the image under the composition map of a special
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curve in a lower degree moduli space, or is defined by critical relations (including
symmetries) such that all active critical points are entangled.

This result opens up the possibility to give a combinatorial classification of all
special curves in the moduli space of polynomials of a fixed degree Polyd. Recall
that a combinatorial classification of PCF polynomials in terms of Hubbard
trees has been developed by Douady and Hubbard [61, 62] and Bielefeld-Fisher-
Hubbard [25] and further expanded by Poirier [140] and Kiwi [112]. We make
here a first step toward the ambitious goal of classification of special curves
using a combinatorial gadget: the critically marked dynamical graph.

We refer to §8.2 for a precise definition of a critically marked dynamical
graph. It is a (possibly infinite) graph Γ(P ) together with a dynamics that
encodes precisely all dynamical critical relations (up to symmetry) of a given
polynomial P . We show that to any irreducible curve C in the moduli space of
(critically marked) polynomials, one can attach a marked dynamical graph Γ(C)
such that Γ(P ) = Γ(C) for all but countably many P ∈ C. We then identify
a class of marked graphs that we call special which arise from special curves.
Under the assumptions that the special graph Γ has no symmetry and that its
marked points are not periodic, we conversely prove that the set of polynomials
such that Γ(P ) = Γ defines a (possibly reducible) special curve.

Our precise statement is quite technical; see Theorem 8.30. To give a sample
of the results we obtain, let us describe the situation for cubic polynomials, in
which case the picture is quite complete. Recall first that the space of cubic
polynomials with marked critical points MPoly3

crit is two-dimensional and that
any cubic polynomial has two critical points (counted with multiplicity). Cubic
polynomials having a non-trivial symmetry group are either unicritical (Pt(z) =
z3 + t, Σ(Pt) = U3), or of the form Pt(z) = z(z2 + t) with Σ(Pt) = U3. We
obtain our first two special curves in MPoly3

crit that we denote by Σ(3, 3, 0)
and Σ(3, 2, 1). Let C be any special curve different from these two curves.
By Theorem G, either one critical point c1 is persistently preperiodic on C,
or there is a persistent collision between the two critical points c1 and c2. In
the former case, the graph Γ(C) is a union of a straight half-line and a finite
connected graph having a cycle with n vertices together with a segment with
m vertices attached which encodes the fact that m is the smallest integer such
that Pmt (c1) is periodic of exact period n for all t ∈ C (this graph is depicted
in the upper left of Figure 8.4). Denote by Γ1(n,m) this graph. In the latter
case, Γ(C) is an infinite tree obtained by attaching by their extremities two
segments with n1 and n2 vertices respectively to the origin of a half-line (see
the upper right of Figure 8.4). Here n1 and n2 correspond to the least integers
such that Pn1

t (c1) = Pn2
t (c2) for all t ∈ C (note that in this case we cannot have

n1 = n2 = 1 for degree issues). Denote by Γ2(n1, n2) this graph.

Theorem 4. For any pair of integers (n,m) with n > m ≥ 0 (resp. (n1, n2) 6=
(1, 1)), there exists a special curve C in MPoly3

crit such that Γ(C) = Γ1(n,m)
(resp. = Γ2(n1, n2)).
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We do not know whether the curve C is unique (see our question (SC3) on
p. 212).

The proof of Theorem 8.30 (which in turn implies the previous statement)
builds on two constructions of polynomials with special combinatorics, one
by Floyd, Kim, Koch, Parry, and Saenz on the realization of PCF combina-
torics [84], and one by McMullen and DeMarco on dynamical trees [57]. Binding
together these two results was quite challenging. In arbitrary degree, we have
been able to prove only a partial correspondence under simplifying additional
assumptions (e.g., the family should have no symmetry).

Some technical details that we have worked out and hopefully
clarified!

Besides presenting a set of new results, we have made special efforts to clarify
some technical aspects of the standard approach to the unlikely intersection
problem for polynomials. We emphasize some of them below.

• We include a self-contained proof by J. Xie of his algebraization result for
adelic curves (Theorem 1.17).
• We give the full expansion of the Böttcher coordinates for polynomials over

a field of characteristic 0 without assuming it to be centered or monic (§2.5).
• We study over an arbitrary field the group of symmetries of a polynomial. In

particular, we give a purely algebraic characterization of this group (Theorem
3.18).

• We introduce the notion of primitivity in §3.4, which seems appropriate to
exclude tricky examples of entangled pairs.

• We give a detailed proof of the fact that the height hP,a(t) = hPt(a(t)) at-
tached to any polynomial dynamical pair is adelic (Proposition 4.35).
• For a family of polynomials {Pt} parametrized by an algebraic variety Λ, we

consider the preperiodic locus in Λ×A1 which is a union of countably many
algebraic subvarieties. We study the set of points which are included in an
infinite collection of irreducible components of the preperiodic locus (Theorem
2.35). This result is crucial to our specialization argument to obtain Theorem
C and clarifies some arguments used in [100].

Open questions and perspectives.

There are many directions in which our results could find natural generalizations.

Let us indicate first why the restriction to families of polynomials is crucial
for us. Given a family of rational maps Rt parametrized by an algebraic curve
C, and given any marked point a, one can attach to the pair (R, a) a natural
height by setting hR,a(t) = hRt(a(t)) and a divisor at infinity DR,a generalizing
the definition (1) above. It is not completely clear, however, whether DR,a has
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rational coefficients. Some cases have been worked out by DeMarco and Ghioca
[54] but the general case remains elusive. It is not completely clear either if
this height is a Weil height associated to DR,a (in the sense of Moriwaki [131]).
There are instances (see [60]) where this height is not adelic, but a recent result
by Demarco and Mavraki [58] proves hR,a(t) to be a height associated to a
continuous semi-positive metrization under quite general assumptions.

Yuan-Zhang [169] and the second author [89] have, however, singled out a
class of height functions on quasi-projective varieties for which equidistribution
of small points holds unconditionnally. It turns out that all height functions of
the form hR,a fall into these classes. In particular, the first step of the general
strategy developed in the current text can be now adapted for general families
of rational maps.

We also note that Ritt’s theory is much less powerful for rational maps
leading to weaker classification of curves left invariant by product maps (see
[137]). We also refer to [166] for a characterization of rational maps having the
same maximal entropy measure; and to [130] for a version of Theorem B for
constant families of rational maps (but varying marked point).

It would be extremely interesting to look at polynomial dynamical tuples
parametrized by higher dimensional algebraic variety Λ and prove unlikely in-
tersection statements. The obstacles to surmount are also formidable. It is
unclear whether the canonical height is a Weil height on a suitable compact-
ification of Λ. Also in this case, the bifurcation measure is naturally defined
as a Monge-Ampère measure of some psh function on Λ, and dealing with a
non-linear operator makes things much more intricate. We refer, though, to the
papers by Ghioca, Hsia, and Tucker [96] and Ghioca, Hsia, and Nguyen [94] for
attempts to handle higher dimensional parameter spaces using one-dimensional
slices.

Let us list a couple of questions that are directly connected to our work.

(Q1) Prove the following purely Archimedean rigidity statement: two complex
polynomial dynamical pairs (P, a) and (Q, b) having identical bifurcation
measures are necessarily entangled. One of the problems to arriving at
such a statement is proving the multiplicative dependence of the degrees
in this context. Observe that Theorem 5.10 yields this dependence but at
the cost of a much stronger assumption.

(Q2) Is it possible to remove condition (M) and obtain Theorem C over any
field of characteristic 0?

(Q3) Can one extend Theorem E to any field of characteristic 0?

(Q4) Give a classification of special (irreducible) curves in the moduli space
of critically marked polynomials in terms of suitable combinatorial data.
Ideally, one would like to attach to each special irreducible curve a com-
binatorial object (such as a family of decorated graphs) and prove a one-
to-one correspondence between special curves and these objects. It would
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also be interesting to study the distribution (as currents) of special curves
whose associated combinatorics has complexity increasing to infinity.

Further, more specific open problems can be found in the three sections §3.7
(related to Ritt’s theory), §5.6 (on extensions of Theorem B) and §8.8 (on special
curves).
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