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Chapter 1

Radio Mathematics, Oscillators,  
and Transmitters

What is the soul of mathematics, and to what wavelength must 
our souls be tuned to catch its message?

—David Eugene Smith (1860–1944), speaking in 1921 as the retiring president of the 
American Mathematical Society. Just a few years earlier, this metaphor would 
have been meaningless to almost everybody.1

1.1	 Kirchhoff’s Laws and FitzGerald’s Oscillating Circuit

As you start reading this first chapter (or at any time as you read this 
book), take a parallel look at the appendix. That will give you an ap-
preciation for the central role high-frequency2 sinusoidal oscillations 
play in radio, starting at the transmitter. (Oscillators are in receivers, 
too, as you’ll see in subsequent chapters.) It was understood, right 
from the moment Maxwell published his Treatise (when all that he 
had written was still pretty much theory) that the crucial next step to 
elevate speculative theory to hard fact was to actually generate the 
oscillating electromagnetic waves the field equations predict. How 
to do that?

The key idea for the first (and eventually successful) approach to 
generating radio frequency (rf) waves came in 1883 from the Irish 

1 ​Smith’s address is reprinted under the title “Religio Mathematici” in the October 1921 
issue of the American Mathematical Monthly.

2 ​“High-frequency” is dictated by the quarter-wavelength 1
4
λ⎛

⎝⎜
⎞
⎠⎟  requirement (discussed 

in the appendix) for the transmitter antenna. To make 1
4
λ  a physically reasonable value, 

the frequency has to be “high.” For example, to build a radio antenna transmitting at the 
power-line frequency of 60 Hz would be ridiculous, as the wavelength at that frequency 

is 5 million meters. A 1
4
λ  antenna at 60 Hz would be 777 miles high, more than three 

times the orbital height of the International Space Station!
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physicist George Francis FitzGerald (1851–1901). FitzGerald suggested 
charging a capacitor (with the aid of a static electricity generator) 
to a high voltage and then letting it discharge through an inductive 
circuit. (This is actually only slightly more complicated than the cir
cuits of Professors Twombly and Tweedle in the preface.) FitzGerald 
suggested that oscillations with a wavelength of 10 m (meters) might 
be achieved (a frequency of 30 MHz (megahertz)—30 million cycles 
per second. To understand what FitzGerald was talking about requires 
us first to establish the two fundamental laws obeyed by the electrical 
circuits you’ll find in all radio electronics. These are Kirchhoff’s laws—
after the German physicist Gustav Robert Kirchhoff (1824–1887) who 
formulated them in 1845—which are simply the laws of conservation 
of energy and the conservation of electric charge. With reference to 
Figure 1.1.1, we have

Kirchhoff’s current law: The sum of the currents into any node 
(a point where components are connected together) is zero. This is 
conservation of electric charge. In other words, charge transported 
into any node by a current is transported out of the node by another 
current.

Kirchhoff’s voltage law: The sum of the voltage drops (or of the 
voltage increases) around any closed-loop path in a circuit is zero. This 
is conservation of energy. You can see this by recalling that voltage 
is energy per unit charge, and a voltage drop is the energy required 
to transport a unit charge through the electric field that exists in a 
component, and so the law says the total energy to go around a closed 

FIGURE 1 .1 . 1 .  Kirchhoff’s two circuit laws.
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loop is zero. If it were not zero, then we could endlessly transport 
charge around a closed loop in the sense for which the energy required 
is negative and so become rich selling the gained energy to the local 
power company! (You’ll believe that only if you believe in the possi-
bility of a perpetual motion machine.)

Now we can understand what FitzGerald was suggesting. Fig-
ure 1.1.2 shows his circuit, with the capacitor C charged to V0 volts. 
At t = 0 we close the switch, and so now there is a path through the 
resistor R and the inductor L in which the current i(t) can flow.

Just before we close the switch, the stored energy in the circuit is 
just the energy in the electric field of C (i(t) = 0 for t < 0, and so, as 
Professor Tweedle states at the end of the preface, initially there is no 
stored energy in the magnetic field of L, because there is no magnetic 
field in L for t < 0).

If W(t) is the total energy in the circuit, then in general we have

W (t) = 1
2
Ce2 (t) + 1

2
Li2 (t),

and if we differentiate with respect to t,

dW
dt

=Ce de
dt

+ Li di
dt
.

FIGURE 1 .1 .2.  FitzGerald’s oscillating circuit.
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But since

i(t) = −C de
dt
,

then

dW
dt

=Ce − i
C

⎛
⎝⎜

⎞
⎠⎟ + Li

di
dt

= − i e − L di
dt

⎛
⎝⎜

⎞
⎠⎟ .

Now, as the inductor voltage v(t) is

v(t) = L di
dt
,

we have

dW
dt

= − i(e − v).

Since Ohm’s law says

i(t) = e − v
R

,

we have (e − v) = iR, and therefore,

dW
dt

= − i2R < 0,

because no matter what i(t) is, i2 ≥ 0. Thus, dW
dt

 is always negative if 

we assume R ≥ 0. This may appear to be a trivial assumption, as of 
course R is positive, right? After all, just go into a store selling electrical 
parts and ask for a box of negative resistors, and see what the clerk 
says! But, in fact, as we’ll get to soon when we discuss how Hardy’s 
friend Littlewood tackled the Van der Pol equation, there is such a 
thing as negative resistance, and, in fact, the entire development of 
modern electronics is based on that fact.

For now, however, in FitzGerald’s preelectronic 1883 circuit R has 
a positive value, and so we see the initial stored energy in the C con-
tinuously decreases once the switch is closed. The central issue raised 
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by FitzGerald, however, was not that the energy decreases but rather 
how that decrease occurs. To answer that question, let’s look in more 
detail at i(t). Starting at the ground node (which, by definition is at a 
voltage of zero) in Figure 1.1.2, let’s write Kirchhoff’s voltage law as 
we go around the loop in a clockwise sense (the sum of the voltage 
drops3 is zero):

−e(t) + i(t)R + L di
dt

= 0.

Differentiating with respect to time,

− de
dt

+ R di
dt

+ L d
2i

dt2
= 0,

or, as we observed before, since

de
dt

= − i
C
,

we have

i
C
+ R di

dt
+ L d

2i
dt2

= 0,

or

d2i
dt2

+ R
L
di
dt

+ 1
LC

i = 0.

The standard method for solving this second-order differential equa-
tion is to assume the solution

i(t) = Iest,

where s is some constant to be determined. Substituting this assump-
tion back into the differential equation, we get

3 ​As we travel through the C we experience a voltage rise from zero to e, which explains 
why we write −e as the voltage drop.
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Is2est + R
L
Isest + 1

LC
Iest = 0,

and so, making the obvious cancellations (which explains why this 
method works!), we get

s2 + R
L
s + 1

LC
= 0,

a result that lets us solve for what the constant s actually is (in fact, 
there are two such values):

s = 1
2

− R
L
± R

L
⎛
⎝⎜

⎞
⎠⎟
2

− 4
LC

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

Now, notice that for given values of L and C, if we have R sufficiently 
small so that

R
L

⎛
⎝⎜

⎞
⎠⎟
2

< 4
LC

,

then with j = −1  we have4

s = 1
2

− R
L
± j 4

LC
− R

L
⎛
⎝⎜

⎞
⎠⎟
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

or, more compactly, our two values of s are

s1 = − R
2L

+ jω 0 , s2 = − R
2L

− jω 0 , ω 0 =
1
LC

− R
2L

⎛
⎝⎜

⎞
⎠⎟
2

.

Thus, the most general solution for i(t) is

4 ​Mathematicians almost always write i = −1 and like to joke that electrical engi-
neers write j = −1  because otherwise they’ll confuse −1  with electrical currents in 
their circuits (which are usually written with the symbol i). This, of course, is nonsense 
of a near-libelous nature—but, I have to admit, it is less confusing not to use i for both 
concepts. So, if mathematicians will let me write j = −1  and reserve i for currents, I will, 
in turn, promise not to tell any silly mathematician jokes in this book.
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i(t) = I1es1t + I2es2t .

To calculate what I1 and I2 are, we start with the following impor
tant fact about inductors: the current in an inductor cannot change 
instantly, which follows immediately from its mathematical descrip-
tion. That is, if the current i in inductor could change instantly, then 

the voltage drop across the inductor would be infinite (because di
dt

 

would be infinite). Engineers and physicists reject the possibility of a 
physical infinity as nonsense, and so the current in FitzGerald’s circuit 
at t = 0+ (immediately after the switch closes) must equal the current 
at t = 0− (immediately before the switch closes).5 Since i(0−) = 0, then 
i(0+) = 0, too, and we have

i(0+) = 0 = I1 + I2,

and so I1 = −I2 = I, which gives us

i(t) = I (es1t − es2t ).

To determine what I is, we again use the fact that i(0+) = 0, which 
means (because of Ohm’s law) that the voltage drop across R is zero. 
That means, because of Kirchhoff’s voltage law, that the initial ca-
pacitor voltage V0 appears across L at t = 0+, and so

V0 = L
di
dt
|t=0+,

or

di
dt
|t = 0 + =

V0
L

= I (s1es1t − s2es2t ) |t = 0 + = I (s1 − s2 ),

or

I =

V0
L

s1 − s2
=

V0
L

j2ω 0
.

5 ​According to the same sort of argument, it follows that the voltage drop across a 
capacitor cannot change instantly, as that would require an infinite current.
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That is,

i t( ) = V0
j2ω 0L

e
− R
2L

+ jω0
⎛
⎝⎜

⎞
⎠⎟ t − e

− R
2L

− jω0
⎛
⎝⎜

⎞
⎠⎟ t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= V0e

− R
2L

t

j2ω 0L
[e jω0t − e− jω0t ]

= V0e
− R
2L

t

j2ω 0L
j  2 sin(ω 0t),

where I’ve used Euler’s identity.6 Thus,

i(t) = V0e
− R
2L

t

ω 0L
sin(ω 0t), ω 0 =

1
LC

− R
2L

⎛
⎝⎜

⎞
⎠⎟
2

,

assuming that R < 2 L
C
.  The current i(t) is said to be an alternating 

current, popularly known as “ac.”
So, FitzGerald was correct in saying his circuit will, if R is suffi-

ciently small, oscillate sinusoidally at a particular frequency deter-
mined by the values of the circuit components.7 Does that, however, 
mean the circuit will generate rf waves? We can explore that question 
by re-doing the calculation done by Professors Tweedle and Twombly 
in the Preface: the evaluation of the heat energy integral

0

∞

∫ i2Rdt = V0
ω 0L

⎛
⎝⎜

⎞
⎠⎟

2

R
0

∞

∫ e−
R
L
tsin2 (ω 0t)dt.

This is a straightforward (if slightly messy) freshman calculus calcu-

lation, and I’ll let you confirm that its value is 1
2
CV02, precisely the 

6 ​Euler’s identity, e jx = cos(x) + j sin(x), (due to the Swiss-born mathematician Leon-
hard Euler (1707–1783), is at the very heart of AM, FM, and SSB radio theory, and we will 
use it repeatedly in this book.

7 ​The oscillations are a manifestation of the circuit’s stored energy sloshing back 
and forth between the electric field of the C and the magnetic field of the L. Electrical 
engineers demonstrate the poetic nature of their souls by picturesquely calling the LC 
combination a tank circuit, a reference to the sloshing of water waves back and forth in 
a disturbed water tank.
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value of the initial stored energy in the capacitor. FitzGerald’s circuit, 
therefore, as it stands, is no better than Twombly’s in generating radio 
waves. But, unlike Twombly’s, all FitzGerald’s circuit needs is one 
final touch—the addition of an antenna! (This is where you really 
need to read the appendix, particularly the end of it.)

From the oscillating current in FitzGerald’s circuit, the resulting 
oscillating magnetic field of the L can be coupled via Faraday’s elec-
tromagnetic induction (as shown in Figure 1.1.3) into the antenna, to 
serve as the oscillating voltage that drives the conduction electrons in 
the antenna back and forth. That motion, as explained in the appen-
dix, creates kinks in the electric field in the space around the antenna, 
kinks which in turn give rise to a Poynting energy-flow vector always 
directed away from the antenna.

As it stands in Figure 1.1.3, FitzGerald’s circuit won’t transmit for 
long, because the initial energy in the C is quickly dissipated as heat in 
the R and as rf waves from the antenna. The early radio experimenters 
attempted to keep the oscillations going by periodically injecting new 
energy into the circuit, by incorporating a repeatedly operating spark 
gap, reaching speeds of up to 20,000 sparks per second. With each 
new spark a pulse of energy was injected, and such radio transmitters 
sounded like machine guns! This was okay for Morse code wireless 
telegraphy but totally inadequate for use in what would become mod-
ern voice-and-music radio, and I’ll not pursue that approach to radio 
in this book.8

A much different approach was to introduce a negative resistance 
into the oscillator circuit, to counter the energy loss caused by the 
positive R and the rf radiation. This was achieved, most importantly, 
with the invention in 1906–1907 of the triode electronic vacuum 
tube that so captured Einstein’s imagination, but it was preceded 
in the nineteenth century by the electric arc. We’ll briefly discuss 
the arc once we have established more mathematical results in the 
next section.

8 ​You can find a detailed mathematical discussion of spark-gap radio in my book 
The Science of Radio, Springer 2001. Such radios are now mostly of historical interest, as 
spark-gap radio has been illegal since 1923, for reasons based on the mathematics (which 
itself remains quite interesting).
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1.2	 Laplace Transforms, AC Impedance, and Transfer Functions

We will be concerned in all our discussions of radio with electri-
cal signals that vary sinusoidally with time, that is, with signals like 
cos(ω0t) and sin (ω0t), where ω0 is the angular frequency (in radians 
per second). (As used here, ω0 is an arbitrary frequency and is not the 
particular ω0 of the previous section.) If f0 is the frequency in hertz 
(what used to be called cycles per second), then ω0 = 2πf0. AM radio 
frequencies are in the interval 540 to 1600 kHz (kilohertz),9 while 
FM radio operates in the interval 88 to 108 MHz (megahertz). We 
will find that the differential equations that describe how numerous 
radio circuits work are linear, which means that the sum of two solu-

9 ​The first radio program Hardy heard was almost certainly broadcast by the BBC 
London-based station 2LO, which began operating in 1922 at 842 kHz (that is, at 842 
kilocycles).

FIGURE 1.1.3.  FitzGerald’s circuit as a transmitter (the oscillating current i(t) in L creates an 
oscillating magnetic field that, in turn, creates an oscillating voltage in the antenna which 
drives conduction electrons in the antenna back-and-forth, creating electric field kinks.
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tions to the differential equations is also a solution. Thus, rather than 
studying the behavior of a circuit in response to, say, a voltage signal 
like cos(ω0t) or sin(ω0t), we can do both problems simultaneously 
by studying the solution to the complex voltage signal e jω0t , because 
Euler’s identity says e jω0t = cos(ω 0t) + j  sin(ω 0t).

This is because the solution for the signal e jω0t is the sum of the 
solution to the signal cos(ω0t) and the solution to the signal j sin(ω0t). 
The solution to the signal j sin(ω0t) will be the solution to sin(ω0t) 
multiplied by the constant j (again, by linearity), and so the solution 
to the signal cos(ω0t) will be the real part of the solution to e jω0t , 
and the solution to the signal sin(ω0t) will be the imaginary part of 
the solution to e jω0t. This simple idea leads to the enormously useful 
concept of ac impedance, which allows us (for sinusoidal time func-
tions) to treat capacitors and inductors as obeying Ohm’s law, which 
up to now has been limited to resistors.

Since e jω0t = cos(ω 0t) + j  sin(ω 0t), it follows that e− jω0t 
= cos(−ω 0t) + j  sin(−ω 0t) = cos(ω 0t) − j  sin(ω 0t). Thus, cos(ω 0t) 

= 1
2
[e jω0t + e− jω0t ], and sin(ω 0t) =

1
j2
[e jω0t − e− jω0t ], and both of 

these expressions have simple physical interpretations. In 
the complex plane, e jω0t  and e− jω0t  are vectors of unit length 
(because cos2 (ω0t) + sin2 (ω0t) = 1), making angles ω0t and −ω0t 
with the real axis, respectively, as shown in Figure 1.2.1a. Indeed, 
since these two angles increase as t (time) increases, e jω0t  and 
e− jω0t  are counterrotating vectors, both with real part cos(ω0t) 
and with imaginary parts sin (ω0t) and −sin(ω0t), respectively. 
If we sum these two vectors as they rotate, it is obvious their 
imaginary parts cancel and their real parts add, to give an os-
cillating result that always lies along the real axis. If, however, 
we subtract e− jω0t  from e jω0t , we simply multiply e− jω0t by −1 
(which reflects e− jω0t through the origin) and add, as shown in 
Figure 1.2.1b. This addition results in the real parts cancelling 
and the imaginary parts adding, to give us an oscillating result 
that always lies along the imaginary axis.
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FIGURE 1 .2.1 .  Euler’s identity and counterrotating vectors.
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To start our development of the impedance concept, consider Fitz-
Gerald’s series circuit again, but now powered by a complex-valued 
voltage source, as shown in Figure 1.2.2.

We assume there is, most generally, an initial current i(0+) in 
the circuit, as well as an initial charge q(0+) in the capacitor. Thus, 
with i(t) the current for t ≥ 0, the differential equation that describes 
the circuit is, using Kirchhoff ’s voltage loop law (starting at the 
negative terminal of the voltage source and going clockwise around 
the loop),

−v(t) + iR + 1
C 0

t

∫ i(x)dx + q(0+)⎡
⎣⎢

⎤
⎦⎥
+ L di

dt
= 0,

or

Ee jω0t = iR + 1
C 0

t

∫ i(x)dx + q(0+)⎡
⎣⎢

⎤
⎦⎥
+ L di

dt
.

Taking the Laplace transform (see the following box) with a = −jω0 
for the term on the left, we have10

10 ​Notice that on the right we have L q(0+){ }=
0

∞

∫ q(0+)e− stdt = − q(0+)
s

e−st |0∞ = q(0+)
s

, 

where, to evaluate the upper limit, lim
s→∞

e− st = 0, as s is defined to have a positive real part.
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E
s − jω 0

= I (s)R + 1
C

I (s)
s

+ q(0+)
s

⎡
⎣⎢

⎤
⎦⎥
+ L sI (s) − i(0+)[ ]

and it is an easy matter to solve for I(s):

I (s) = 1

sL + R + 1
sC

E
s − jω 0

+ Li(0+) − q(0+)
sC

⎡

⎣
⎢

⎤

⎦
⎥.

In radio theory we will be interested in time functions f (t) 
that vanish for t < 0. Physically, we interpret the instant t = 0 
as when we “turn f (t) on.” The Laplace transform of f (t) is 
L f (t){ }= F(s) =

0

∞

∫ f (t)e− stdt; the variable s is a complex variable 
with a positive real part to ensure convergence of the integral, 
but we can often formally work with the Laplace integral as if s 
is real. The value of the transform lies in its conversion of certain 
“complicated” operations in the time domain (like differentia-
tion and definite integration) into “simple” algebraic ones. Spe-

cifically, L d
dt
f (t)⎧

⎨
⎩

⎫
⎬
⎭
= sF(s) − f (0+), and L

0

t

∫ f (x)dx = 1
s
F(s)⎧

⎨
⎩

⎫
⎬
⎭
. 

Tables of transforms have been created over the decades for 

FIGURE 1 .2.2.  FitzGerald’s circuit with a complex-valued voltage source.
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a vast number of time functions, but the one most useful in 

radio analyses is L{e−at } = 1
s + a

, where a is a constant. When 

a = 0, this says L{1} = 1
s

. More precisely, in the a = 0 case we are 

dealing with the function f (t) =
1,  t > 0
0,  t < 0

⎧
⎨
⎪

⎩⎪
,  which is called the 

Heaviside step function, often written as H(t), in honor of Oliver 
Heaviside (see the appendix), who made extensive use of it. 
Of course, there are also other important transform pairs of 
f (t) ↔ F(s), but the exponential time function transform will 
do 95% of the work for us here.

The factor

1

sL + R + 1
sC

= sC
s2LC + RCs + 1

= s

s2L + Rs + 1
 C

= s

L s2 + R
L
s + 1

LC
⎛
⎝⎜

⎞
⎠⎟

can be written in the form

s
L(s − s1 )(s − s2 )

,

where s1 and s2 are each a function of R, L, and C.11 Thus, the Laplace 
transform of the current is

I (s) = s
L(s − s1 )(s − s2 )

E
s − jω 0

+ Li(0+) − q(0+)
sC

⎡

⎣
⎢

⎤

⎦
⎥

=

E
L
s

(s − s1 )(s − s2 )(s − jω 0 )
+ si(0+)
(s − s1 )(s − s2 )

− q(0+) / LC
(s − s1 )(s − s2 )

=

E
L
s + (s − jω 0 )si(0+) − (s − jω 0 )

q(0+)
LC

(s − s1 )(s − s2 )(s − jω 0 )
,

11 ​I’ll leave it for you to confirm (it’s easy!) that s1 and s2 are both either real and 
negative or both complex with negative real parts for any choice of positive values for R, 
L, and C. That’s all we’ll need to know about s1 and s2, as you’ll soon see.
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or

I (s) =

E
L
s + (s − jω 0 ) si(0+) − q(0+)

LC
⎡
⎣⎢

⎤
⎦⎥

(s − s1 )(s − s2 )(s − jω 0 )
.

If you examine I(s), you see it has the form of a fraction with a 
numerator that is quadratic in s divided by a denominator that is 
cubic in s. It is therefore clear that we can write I(s) as the partial-
fraction expansion

I (s) = N1

s − s1
+ N2

 s − s2
+ N3

s − jω 0
,

where N1, N2, and N3 are constants. If we now return to the time do-
main (using the exponential transform pair), this says

i(t) = N1es1t + N2es2t + N3e jω0t .

Since s1 and s2 are either both negative or are both complex with neg-
ative real parts (see note 11), we see that the first two terms go to zero as 
t → ∞. These two terms, which disappear with increasing time, represent 
transient currents. The third term, however, does not vanish as t → ∞ but 
endlessly oscillates (because of Euler’s identity). This persistent term is 
called a steady-state current. We can calculate N3 by multiplying through 
I(s) by the factor s − jω0 and then taking the limit s → jω0. That is,

N3 = lim
s→ jω0

(s − jω 0 )I (s) = lim
s→ jω0

E
L
s

(s − s1 )(s − s2 )
.

Since by definition

(s − s1 )(s − s2 ) = s2 +
R
L
s + 1

LC
,

then

N3 =

E
L
jω 0

( jω 0 )2 +
R
L
jω 0 +

1
LC

=

E
L

jω 0 +
R
L
+ 1
jω 0LC

= E

jω 0L + R + 1
jω 0C

.
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So, the steady-state current (the current after all transients have 
become insignificant) is

i(t) = Ee jω0t

R + jω 0L +
1

jω 0C

,

and this current is in response to the voltage v(t) = Ee jω0t . Thus, for 
the special case of sinusoids, we see that we have a result that “looks 
like” Ohm’s law; that is, if we write

Z( jω 0 ) = R + jω 0L +
1

jω 0C
= R + j ω 0L −

1
ω 0C

⎛
⎝⎜

⎞
⎠⎟

as a sort of “resistance” (radio engineers call the frequency-dependent 
Z(  jω0) the ac impedance at frequency ω0), then for the steady state 
we have (where the symbols for voltage V and current I are written 
in uppercase to emphasize we are considering only sinusoidal time 
functions)

V(  jω0) = Z(  jω0)I(  jω0).

The unit of impedance is ohms, but unlike a resistance, which is 
purely real, an impedance is generally complex (the imaginary part of 
Z is called the reactance). This result, you’ll notice, holds for any i(0+) 
and any q(0+); that is, while the initial conditions affect the transient 

terms, they play no role in the steady-state term. If ω 0 =
1
LC

, then |Z| 

is minimized (equal to R, with zero reactance), and ω0 is called the 
resonant frequency.

We have the further observation that, at any frequency, the ac im-
pedance of a resistor is R, the ac impedance of L at frequency ω  is 

jωL, and the ac impedance of C at frequency ω is 
1
jωC . (Notice that 

I’m now writing ω , not ω0, since the frequency of the input v(t) is 
arbitrary, and a subscript is not necessary.) When working with ac 
impedances we can treat inductors and capacitors, mathematically, 
just like we treat resistors. So, when impedances are in series (as 
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they are in FitzGerald’s circuit) they add. When impedances are in 
parallel their reciprocals add, a slightly nonobvious result we can see 
as follows with reference to Figure 1.2.3.

We have the impedance “seen” by the voltage source V as

Z = V
I
,

while from Kirchhoff’s current law we have

I = V
Z1

+ V
Z2

+ V
Z3

+…+ V
Zn

,

and so

I
V

= 1
Z
= 1
Z1

+ 1
Z2

+ 1
Z3

+…+ 1
Zn

.

The special case of n = 2 leads to the very useful rule that two im-
pedances in parallel are equivalent to their product divided by their 
sum. When analyzing radio circuits it is helpful to notice that the 
impedance of a capacitor is very large at low frequencies (infinite 
at zero frequency, or direct current (dc)) but tends to zero as the 
frequency increases, while the opposite is true for an inductor. (In 
the next section we’ll use the fact that at ω  = 0 the dc resistance of an 
ideal inductor is zero, while the ac impedance can be quite large for 
any high-frequency energy that may also be present.)

The frequency behaviors of inductors and capacitors can be used 
to construct circuits that are of central importance in radio. As an 
example, consider the circuit of Figure 1.2.4. To emphasize that we 

FIGURE 1 .2.3.  Z is the equivalent impedance of n parallel impedances.

Z3 ZnZ2Z1

Z

I
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are assuming sinusoidal voltages and currents only, I’ve written the 
input and output voltages in uppercase letters showing explicit depen-
dence on the frequency variable ω (and not in lowercase as arbitrary 
functions of the time variable, t). You’ll see this circuit again, later 
in this chapter, where I’ll show you how it can be used to build an 
oscillator. For now, to support that discussion we’ll need to know 
what electrical engineers call the transfer function H(  jω) of the cir
cuit; that is, we’ll now calculate

H ( jω ) = Vo ( jω )
Vi ( jω )

.

A systematic way of calculating H(  jω) is based on the clever idea 
of loop currents, labeled as I1(  jω) and I2(  jω) in Figure 1.2.4. The loop-
current approach to writing Kirchhoff’s voltage loop law was intro-
duced into circuit theory by Maxwell in his 1873 Treatise, and it is now 
a routine part of electrical engineering. The loop currents, individually, 
are fictitious, but they combine to give the actual currents in each com-
ponent. For example, the current in the left C is I1 − I2 downward (or 
I2 − I1 upward), while the current in the right C is I2 (to the right). The 
physical significance of I1 is that it’s the current that must be supplied 
from whatever is the source of the input voltage Vi. Writing Kirchhoff’s 
voltage loop equations for the two loops in Figure 1.2.4, we have

−Vi + I1R + 1
jωC

(I1 − I2 ) = 0,

and

1
jωC

I2 + I2R + 1
jωC

(I2 − I1 ) = 0,

which can be written in the form demanded by Cramer’s rule12 for 
solving these two simultaneous algebraic equations for I1 and I2:

12 ​After the Swiss mathematician Gabriel Cramer (1704–1752). Cramer published the 
rule in 1750, but in fact it had appeared two years earlier in a posthumously published 
work by the Scottish mathematician Colin MacLaurin (1698–1746).
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I1 R + 1
jωC

⎛
⎝⎜

⎞
⎠⎟
+ I2 − 1

jωC
⎛
⎝⎜

⎞
⎠⎟
=Vi

I1 − 1
jωC

⎛
⎝⎜

⎞
⎠⎟
+ I2 R + 2

jωC
⎛
⎝⎜

⎞
⎠⎟
= 0.

With the 2 × 2 system determinant D defined as

D =
R + 1

jωC
⎛
⎝⎜

⎞
⎠⎟

− 1
jωC

⎛
⎝⎜

⎞
⎠⎟

− 1
jωC

⎛
⎝⎜

⎞
⎠⎟

R + 2
jωC

⎛
⎝⎜

⎞
⎠⎟

= R2 − 1
ωC

⎛
⎝⎜

⎞
⎠⎟
2

− j 3R
ωC

,

Cramer’s rule says that

I1 =

Vi − 1
jωC

⎛
⎝⎜

⎞
⎠⎟

0 R + 2
jωC

⎛
⎝⎜

⎞
⎠⎟

D
=Vi ( jω )

R + 2
jωC

R2 − 1
ωC

⎛
⎝⎜

⎞
⎠⎟
2

− j 3R
ωC

,

and

FIGURE 1 .2.4.  What is Vo ( jω )
Vi ( jω )

?

R

R C

CVi( jω) Vo( jω)I1( jω) I2( jω)

+

−

+

−
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I2 =

R + 1
jωC

⎛
⎝⎜

⎞
⎠⎟

Vi

− 1
jωC

⎛
⎝⎜

⎞
⎠⎟

0

D
=Vi ( jω )

− j 1
ωC

R2 − 1
ωC

⎛
⎝⎜

⎞
⎠⎟
2

− j 3R
ωC

.

Finally, observing that Vo(  jω) = I2(  jω)R, we see that the transfer func-
tion is

Vo ( jω )
Vi ( jω )

= H ( jω ) =
− j R

ωC

R2 − 1
ωC

⎛
⎝⎜

⎞
⎠⎟
2

− j 3R
ωC

.

We can draw one immediate, quite interesting conclusion from this 
result: H(  jω) is purely real when the real part of the denominator 

vanishes. That is, if ω = 1
RC

, then we have H ( jω ) = + 1
3
. We won’t 

pursue the implications of this (which are profound) until later in 
this chapter except to note for now that this property can be used to 
construct a sinusoidal oscillator. Oscillators are obviously important 
in radio transmitters, but less obvious at this point is that oscillators 
are also used in radio receivers. I’ll remind you of Figure 1.2.4 again 
later in this chapter.

The transfer functions of all but the simplest circuits (for example, 
all resistors) used in radio will be complex. That is, H(  jω) will, in gen-
eral, consist of both amplitude and phase response functions, and so

H(  jω) = |H(  jω)|e jθ(ω),

where θ(ω) is the phase shift that occurs from input to output for a 
sinusoid at frequency ω. I’ll say more about θ(ω) later in this chapter.

You’ll notice that we did not need I1(  jω) to find H(  jω). Knowledge 
of I1(  jω) nevertheless provides important information. Knowing I1(  jω) 

in terms of Vi(  jω) allows us to calculate Vi ( jω )
I1 ( jω )

= Zi ( jω ), the ac 
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impedance “seen” by the signal source that generates Vi(  jω). This is 
important to know because that impedance determines the current 
the signal source has to be able to provide. So,

Zi ( jω ) =
R2 − 1

ωC
⎛
⎝⎜

⎞
⎠⎟
2

− j 3R
ωC

R + 2
jωC

,

which, at the frequency ω = 1
RC

 reduces to

Zi ( jω ) =

− j 3R
1
RC

C

R + 2

j 1
RC

C

= − j3R2

R − j2R
= − j 3R

1 − j2
= R − j 3(1 + j2)

(1 − j2)(1 + j2)
⎡

⎣
⎢

⎤

⎦
⎥

= R − j 3 + j6
1 + 4

⎡

⎣
⎢

⎤

⎦
⎥ = R

6 − j3
5

⎛
⎝⎜

⎞
⎠⎟ = R(1.2 − j0.6).

Thus, while the transfer function of the circuit of Figure 1.2.4 is purely 

real at ω = 1
RC

, the input impedance is complex (the negative imagi-

nary part of Zi(  jω) means the input impedance “acts like” a capacitor 
(which, given the components in the circuit, should be no surprise!).

Be particularly careful to notice this important conclusion from 
our result for Zi(  jω): while we can vary either R or C (actually either 
both of the matched R’s together or both of the matched C’s together, 
because the two resistors are assumed to be equal, and the two ca-
pacitors are assumed to be equal13) to vary the frequency at which 
H(  jω) is purely real, if we choose to vary the two R’s we will also 
vary Zi(  jω). If we choose to vary the two C’s, however, then we can 
vary the frequency at which H(  jω) is purely real while keeping the 
input impedance fixed. In that case, the Vi signal source “sees” an 

13 ​To simultaneously vary multiple matched-value components, radio engineers use a 
“ganged shaft” that allows turning a single control-panel knob to rotate a shaft on which 
all the variable components are mechanically mounted.
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unchanging current demand, a property of great importance in build-
ing the variable-frequency oscillator circuits we will later encounter 
in radio receivers.

To end this discussion of transfer functions, let me show you one 
more thing we can do with them. Suppose we apply a sinusoid at 
frequency α as the input. That is, suppose vi(t) = sin(αt). What is the 
resulting output vo(t)? From Euler’s identity we have

vi (t) =
1
j2
(e jαt − e− jαt ).

The output of a circuit is simply the sum of each complex exponential 
term of vi(t) multiplied by the transfer function of the circuit evaluated 
at the frequency of the input term.14 So, for the circuit of Figure 1.2.4,

vo (t) =
1
j2

e jαtH ( jα ) − e− jαtH (− jα )⎡⎣ ⎤⎦

= 1
j2

e jαt
− j R

αC

R2 − 1
αC

⎛
⎝⎜

⎞
⎠⎟
2

− j 3R
αC

− e− jαt
− j R

−αC

R2 − 1
−αC

⎛
⎝⎜

⎞
⎠⎟
2

− j 3R
−αC

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

There are a lot of j’s in this expression, but since the input vi(t) is 
real-valued, and since the circuit of Figure 1.2.4 is made from real 
hardware, we know that vo(t) has to be real, too. Is it? Yes, and you 
can see that by inspection if you write

vo (t) =
1
j2

e jαt
− j R

αC

R2 − 1
αC

⎛
⎝⎜

⎞
⎠⎟
2

− j 3R
αC

− e− jαt
j R
αC

R2 − 1
αC

⎛
⎝⎜

⎞
⎠⎟
2

+ j 3R
αC

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

14 ​Note, carefully, that there are two frequencies here: +α and −α. The concept of a 
negative frequency might seem a bit “science fictiony,” but we have already encountered 
a simple physical interpretation, namely, the clockwise-rotating vector in the box that 
opens this section. Later in the book, when we get to the sidebands of a modulated rf 
carrier wave, in both AM and FM radio, you’ll see that “negative” frequencies possess an 
undeniable physical reality.
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The expression inside the square brackets is the difference of conju-
gates and so is equal to the imaginary part of the first term times j2 

(which is cancelled by the 
1
j2  in front of the brackets). Specifically,

vo (t) = Im e jαt
− j R

αC

R2 − 1
αC

⎛
⎝⎜

⎞
⎠⎟
2

− j 3R
αC

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= Im e jαt
− j R

αC
R2 − 1

αC
⎛
⎝⎜

⎞
⎠⎟
2

+ j 3R
αC

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

R2 − 1
αC

⎛
⎝⎜

⎞
⎠⎟
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

+ 3R
αC

⎛
⎝⎜

⎞
⎠⎟
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,

or

vo (t) = Im

cos(αt) + j  sin(αt){ } − j R
αC

R2 − 1
αC

⎛
⎝⎜

⎞
⎠⎟
2

+ j 3R
αC

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

R2 − 1
αC

⎛
⎝⎜

⎞
⎠⎟
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

+ 3R
αC

⎛
⎝⎜

⎞
⎠⎟
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

Thus,

vo (t) =

3R2

(αC)2
sin(αt) − R

αC  
R2 − 1

αC
⎛
⎝⎜

⎞
⎠⎟
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
cos(αt)

R2 − 1
αC

⎛
⎝⎜

⎞
⎠⎟
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

+ 3R
αC

⎛
⎝⎜

⎞
⎠⎟
2

.

As a partial check on our calculations, notice that if α = 1
RC

, then 

this expression reduces to vo (t) =
1
3
sin t

RC
⎛
⎝⎜

⎞
⎠⎟  when vi (t) = sin

t
RC

⎛
⎝⎜

⎞
⎠⎟ , 

giving H j 1
RC

⎛
⎝⎜

⎞
⎠⎟ = + 1

3
, which we found earlier.
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1.3	 Van der Pol’s Negative Resistance Oscillator Equation

Almost from the invention of the electric battery in 1799–1800, by the 
Italian physical chemist Alessandro Volta (1745–1827), it was known 
that a low-voltage source (a few tens of volts) able to supply a contin-
uous large current (hundreds of amperes) could generate an electrical 
arc of intense brilliance.15 That is, if two electrodes in contact, carry
ing this current, are slowly pulled apart to form a gap, the electrode 
current can continue to flow across the gap, appearing as a flame of 
ionized atmospheric gases and vaporized electrode material. By the 
1890s it was known that a plot of the gap current versus the gap volt-
age drop had the surprising behavior shown in Figure 1.3.1.

The surprising feature of Figure 1.3.1 is, of course, that the current-
voltage curve of the electric arc has a kink, that is, an interval where 
a decrease in gap current is associated with an increase in gap voltage 
drop, behavior certainly not at all like the Ohm’s law linear behavior 
of a resistor. The total voltage drop divided by the total gap current 

is always positive, but in the kink the dynamic ratio di
dv

 is negative 

(the slope of the kink is negative), and for that reason the electric 
arc was said to have a negative ac resistance. With some very clever 
engineering, this feature of the electric arc was used to neutralize the 
energy-dissipating positive R of FitzGerald’s oscillating circuit, allow-
ing the construction of very powerful radio transmitters. Arc radio16 
itself is of only historical interest today, but the mathematical theory 
of negative resistance is of continuing interest, as it also appears in 
the electronics of modern radio.

15 ​The Cornish chemist Humphry Davy (1778–1829), mentor to the young Faraday, 
invented the arc lamp in 1809.

16 ​Not to be confused with the biblical Ark of the Covenant, said (in the first Indiana 
Jones movie, the 1981 Raiders of the Lost Ark) to be “a radio for speaking to God.” The 
Ark, built by Moses according to detailed instructions from God (Exodus 25) to hold the 
stone tablets of the Ten Commandments, is described in various ancient Jewish legends 
as being surrounded by sparks and so was perhaps electrical in nature. Further, when 
Uzzah touched the Ark (2 Samuel 6:67) he instantly died (electrocuted?). In Exodus 25:22 
the Lord tells Moses he will speak to him from the Ark, and this was the motivation for the 
movie line claiming the Ark to be a radio. Well, I have to admit it’s a thought-provoking 
assertion, but we’ll find our inspiration for radio in this book to be more from Maxwell’s 
Treatise than we will from the Bible.
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In Figure 1.3.2 we see FitzGerald’s circuit connected in parallel with 
an arc which is powered by a low-voltage, high-current dc energy 
source (which is itself in series with an inductor called the choke 
coil, a name that will be explained in just a moment). To understand 
what is happening in this enhanced FitzGerald circuit, you have to 
visualize two distinct current loops. First, there is the dc loop formed 
by the energy source, the choke coil (with a small ohmic resistance 
important at dc but presenting a relatively high ac impedance at 
the frequency at which the circuit oscillates), and the arc. Second, 
there is an ac current loop formed by the R, L, C, and again, the 
arc. The total ac resistance in this second loop is the sum of R and 
the dynamic ac resistance of the arc (which, being negative, can 
result in a net ac resistance of zero). Because of the choke coil, the 
oscillations in the ac loop cannot “leak back” through the dc source, 
which typically has a very low resistance. Such leakage would result 
in energy loss via heating of the dc source.

The arc current consists, then, of two components: a large, steady 
dc current, on top of which is superimposed an oscillating (that is, 
an ac) component. This is indicated in Figure 1.3.1 by the dashed 
axes centered on the midpoint of the negative resistance kink. If we 
imagine the arc operates at that midpoint (i = v = 0) when there are 
no oscillations, then when we say the circuit of Figure 1.3.2 oscillates, 
we mean we are interested in the current/voltage deviations around 

FIGURE 1 .3.1 .  Current versus voltage for an electric arc.
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that dc midpoint. Now, be sure to understand that all this business 
about the electric arc itself is not the central issue. What is important 
is the negative resistance of the arc; I use the arc here simply to give 
you a physical model.to envision. When we get to the superregener-
ative radio receiver in chapter 3, you’ll again see negative resistance 
mentioned in connection with oscillatory behavior.

In any case, such arc-enhanced versions of FitzGerald’s circuit 
were unable to oscillate at frequencies beyond about 60 kHz or so,17 

17 ​Because of engineering difficulties that are discussed in The Science of Radio (note 
8), none of which I’ll pursue here because Hardy couldn’t have cared less about such 
things. If I really wanted to drive Hardy into a coma, I could next tell him that these same 
difficulties (and their solutions) appear in the physics of circuit breakers with superfast 
tripping times. But I wouldn’t actually want to do that, and so I won’t do it here, either.

FIGURE  1 .3.2.  The ac current and voltage (i, v) in FitzGerald’s series circuit, in parallel 
with an electric arc.
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and by the early 1920s the use of arc transmitters in radio was com-
mercially dead. Van der Pol, however (see the box in the preface) 
studied a mathematically equivalent18 parallel version (as shown in 
Figure 1.3.3) of FitzGerald’s series circuit while retaining the idea 
of a negative resistance kink in the ac voltage/current behavior of 
whatever nonlinear technology (present or future) was under study.

As stated in note 18, from Kirchhoff ’s current law Van der Pol 
immediately wrote

i + v
R
+C dv

dt
+ 1
L
∫ v dt = 0,

and he modeled the kink in the negative resistance technology box 
at the far left of Figure 1.3.3 with the equation

i = −av + bv3,

18 ​Here’s what mathematically equivalent means. If we write Kirchhoff’s voltage law 

for the ac loop in Figure 1.3.2, we have v + L di
dt

+ 1
C
∫ i dt + iR = 0.

If we write Kirchhoff’s current law for Figure 1.3.3, we have i + v
R
+C dv

dt
+ 1
L
∫ v dt = 0, 

which is the voltage loop equation with v and i swapped, with R and 1/R swapped, and 
with L and C swapped. With those trivial symbol changes, FitzGerald’s original series ac 
circuit becomes Van der Pol’s parallel ac circuit. Electrical engineers say that each circuit 
is the dual of the other; the behavior of i in Figure 1.3.2 is the behavior of v in Figure 1.3.3.

FIGURE 1 .3.3.  Van der Pol’s parallel version of FitzGerald’s oscillating series circuit.
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vR C L
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where a and b are positive constants. Differentiating both equations, 
we get

di
dt

+ 1
R
dv
dt

+C d
2v
dt2

+ 1
L
v = 0,

and

di
dt

= −a dv
dt

+ 3bv2 dv
dt
.

I’ll leave it to you to confirm that substituting the second equation 
into the first one and doing a little algebra gives the result

LC d
2v
dt2

+ L 1
R
− a⎛

⎝⎜
⎞
⎠⎟ + 3bLv

2⎡
⎣⎢

⎤
⎦⎥
dv
dt

+ v = 0.

Next, we change the variable to x = ω0t, where ω 0 =
1
LC

. Then, 

dx = ω0dt, or dt = dx
ω 0

, and so

dv
dt

= dv
dx
ω 0

=ω 0
dv
dx
.

Thus,

d2v
dt2

= d
dt

dv
dt

⎛
⎝⎜

⎞
⎠⎟ =

d
dt

ω 0
dv
dx

⎛
⎝⎜

⎞
⎠⎟ =

d
dx
ω 0

ω 0
dv
dx

⎛
⎝⎜

⎞
⎠⎟ =ω 0

d
dx

ω 0
dv
dx

⎛
⎝⎜

⎞
⎠⎟

=ω 0
2 d2v
dx2

= 1
LC

d2v
dx2

.

Substituting these two results for dv
dt

 and d
2v
dt2

 into the equation just 

before we change the variable to x, we have

d2v
dx2

+ L 1
R
− a⎛

⎝⎜
⎞
⎠⎟ + 3bv

2⎡
⎣⎢

⎤
⎦⎥
ω 0

dv
dx

+ v = 0,
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or after just two or three more easy steps, we arrive at

d2v
dx2

− L
C

1
R
− a⎛

⎝⎜
⎞
⎠⎟ − 3b

L
C

+ v2
⎡

⎣
⎢

⎤

⎦
⎥
dv
dx

+ v = 0.

Now, to finish, we write ε = L
C

1
R
− a⎛

⎝⎜
⎞
⎠⎟  and make the change of 

variable v = hu, where h is the constant such that h2 = ε

3b L
C

. In just a 

couple more easy steps of algebra we arrive at Van der Pol’s equation:

d2u
dx2

− ε (1 − u2 ) du
dx

+ u = 0.

In this equation u is a normalized v as a function of x (which, in turn, 
is a normalized time). The parameter ε has absorbed the values of a, 
R, L, and C, while h (which is an amplitude-scaling parameter relating 
u and v) has absorbed b. Van der Pol’s nonlinear differential equation 
is not “easy” to solve, and he was able to find analytical solutions 
only for the case of ε  ≪ 1, for which he found the remarkable result 
that the solutions are periodic with a normalized amplitude of 2. 
In The Science of Radio (note 8) I work through, in detail, how Van 
der Pol did this. It’s elementary, but pretty tricky. Van der Pol was a 
very clever engineering analyst (and I think even Hardy would have 
concluded that).

Hardy’s friend Littlewood came to his study of Van der Pol’s equa-
tion in response to a January 1938 memorandum from the British 
Radio Research Board asking for “really expert guidance” from pure 
mathematicians in helping engineers understand the behavior of 
“certain types of non-linear differential equations involved in radio 
engineering.” A copy of the memorandum was sent to the London 
Mathematical Society, where it caught the eye of Mary Cartwright 
(1900–1998), an English mathematician who started her doctoral stud-
ies at Oxford under Hardy (but finished with a different thesis advisor 
when Hardy left Oxford for a sabbatical leave at Princeton University 
and Caltech, 1928–1929). Cartwright knew Littlewood (who had, in 
June 1930, traveled to Oxford to supervise her doctoral examination), 
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she got him interested in Van der Pol’s equation, and the two of them 
decided to jointly respond to the 1938 memorandum.19

Their starting point was a 1934 paper published by Van der Pol 
that included “graphically integrated” solutions for various values 
of ε. Littlewood was able to show that the oscillation amplitude 
was not exactly 2 for ε “small,” but later Cartwright and Littlewood 
further showed that as ε → ∞ the oscillation amplitude did approach 
2 from above. With a modern home computer and powerful soft-
ware (I use MATLAB), it is today easy to confirm these results. 
Figure 1.3.4, for example, shows a computer solution for one of the 
values of ε in Van der Pol’s paper,20 and it is virtually identical with 
Van der Pol’s graphical solution (see the following box for how this 
figure was created). To quote from Van der Pol’s paper, the solution 
“represents the slow building up of an approximately sinusoidal 
oscillation.” The final amplitude of those oscillations does appear 
to be pretty close to 2. For ε ≫ 1 the oscillations are decidedly not 
sinusoidal.

The computer-generated solution to Van der Pol’s differential 
equation was obtained by the standard method of writing an 
nth-order differential equation as a system of n first-order dif-
ferential equations. That is, we start by defining

	 u1 (x) = u(x), u2 (x) =
du1
dx

.

Then,

	 du1
dx

= du
dx

= u2,
du2
dx

= d
2u1
dx2

= d
2u
dx2

= (1 − u12 )u2 − u1.

19 ​See Shawnee L. McMurran and James J. Tattersall, “The Mathematical Collabo-
ration of M. L. Cartwright and J. E. Littlewood,” American Mathematical Monthly, De-
cember 1996, pp. 837–845.

20 ​B. van der Pol, “The Nonlinear Theory of Electric Oscillations,” Proceedings of the 
IRE (Institute of Radio Engineers), September 1934, pp. 1051–1086.

(continued...)
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