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Radio Mathematics, Oscillators,
and Transmitters

What is the soul of mathematics, and to what wavelength must
our souls be tuned to catch its message?

—David Eugene Smith (1860-1944), speaking in 1921 as the retiring president of the
American Mathematical Society. Just a few years earlier, this metaphor would
have been meaningless to almost everybody.1

1.1 Kirchhoff's Laws and FitzGerald's Oscillating Circuit

Asyou start reading this first chapter (or at any time as you read this
book), take a parallel look at the appendix. That will give you an ap-
preciation for the central role high-frequency? sinusoidal oscillations
play in radio, starting at the transmitter. (Oscillators are in receivers,
too, as you’ll see in subsequent chapters.) It was understood, right
from the moment Maxwell published his Treatise (when all that he
had written was still pretty much theory) that the crucial next step to
elevate speculative theory to hard fact was to actually generate the
oscillating electromagnetic waves the field equations predict. How
to do that?

The key idea for the first (and eventually successful) approach to
generating radio frequency (rf) waves came in 1883 from the Irish

1 Smith’s address is reprinted under the title “Religio Mathematici” in the October 1921
issue of the American Mathematical Monthly.
2 “High-frequency” is dictated by the quarter- wavelength (7 /l) requirement (discussed

in the appendix) for the transmitter antenna. To make —/1 a physically reasonable value,

the frequency has to be “high.” For example, to build a radlo antenna transmitting at the
power-line frequency of 60 Hz would be ridiculous, as the wavelength at that frequency

1
is 5 million meters. A Z/l antenna at 60 Hz would be 777 miles high, more than three

times the orbital height of the International Space Station!
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FIGURE 1.1.1. Kirchhoff’s two circuit laws.

physicist George Francis FitzGerald (1851-1901). FitzGerald suggested
charging a capacitor (with the aid of a static electricity generator)
to a high voltage and then letting it discharge through an inductive
circuit. (This is actually only slightly more complicated than the cir-
cuits of Professors Twombly and Tweedle in the preface.) FitzGerald
suggested that oscillations with a wavelength of 10 m (meters) might
be achieved (a frequency of 30 MHz (megahertz)—30 million cycles
per second. To understand what FitzGerald was talking about requires
us first to establish the two fundamental laws obeyed by the electrical
circuits you’ll find in all radio electronics. These are Kirchhoff’s laws—
after the German physicist Gustav Robert Kirchhoff (1824-1887) who
formulated them in 1845—which are simply the laws of conservation
of energy and the conservation of electric charge. With reference to
Figure 1.1.1, we have

Kirchhoff’s current law: The sum of the currents into any node
(a point where components are connected together) is zero. This is
conservation of electric charge. In other words, charge transported
into any node by a current is transported out of the node by another
current.

Kirchhoff’s voltage law: The sum of the voltage drops (or of the
voltage increases) around any closed-loop path in a circuit is zero. This
is conservation of energy. You can see this by recalling that voltage
is energy per unit charge, and a voltage drop is the energy required
to transport a unit charge through the electric field that exists in a
component, and so the law says the total energy to go around a closed

For general queries, contact info@press.princeton.edu
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FIGURE 1.1.2. FitzGerald’s oscillating circuit.

loop is zero. If it were not zero, then we could endlessly transport
charge around a closed loop in the sense for which the energy required
is negative and so become rich selling the gained energy to the local
power company! (You’ll believe that only if you believe in the possi-
bility of a perpetual motion machine.)

Now we can understand what FitzGerald was suggesting. Fig-
ure 1.1.2 shows his circuit, with the capacitor C charged to V, volts.
At t=0 we close the switch, and so now there is a path through the
resistor R and the inductor L in which the current i(t) can flow.

Just before we close the switch, the stored energy in the circuit is
just the energy in the electric field of C (i(¢) =0 for t<0, and so, as
Professor Tweedle states at the end of the preface, initially there is no
stored energy in the magnetic field of L, because there is no magnetic
field in L for t<0).

If W(t) is the total energy in the circuit, then in general we have

W(t)= %Cez(t) + %Liz(t),

and if we differentiate with respect to ¢,

dW:C d€+L.dl

—_— e— .
dt dt dt

For general queries, contact info@press.princeton.edu
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4 CHAPTER1
But since
de
i(t)y=—C—,
(t) ol
then

d—W = Ce(—i) Liﬂ: —i(e — Lﬂj
dt () dt dt

Now, as the inductor voltage v(t) is

di
v(t)=L—,
() 5
we have
aw .
—=—i(e—v).
ol (e—v)
Since Ohm’s law says
. e—v
(t)=——-o,
() R
we have (e —v) =iR, and therefore,
aw _ —i?R <0,
dt

N aw . o
because no matter what i(¢) is, i?= 0. Thus, y is always negative if

we assume R =0. This may appear to be a trivial assumption, as of
course R is positive, right? After all, just go into a store selling electrical
parts and ask for a box of negative resistors, and see what the clerk
says! But, in fact, as we’ll get to soon when we discuss how Hardy’s
friend Littlewood tackled the Van der Pol equation, there is such a
thing as negative resistance, and, in fact, the entire development of
modern electronics is based on that fact.

For now, however, in FitzGerald’s preelectronic 1883 circuit R has
a positive value, and so we see the initial stored energy in the C con-
tinuously decreases once the switch is closed. The central issue raised

For general queries, contact info@press.princeton.edu
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by FitzGerald, however, was not that the energy decreases but rather
how that decrease occurs. To answer that question, let’s look in more
detail at i(¢). Starting at the ground node (which, by definition is at a
voltage of zero) in Figure 1.1.2, let’s write Kirchhoff’s voltage law as
we go around the loop in a clockwise sense (the sum of the voltage
drops? is zero):

di
—e(t)+i(t)R+L—=0.
e(t)+i() o

Differentiating with respect to time,

. 2
_de gdl, i,
dt dt dt?
or, as we observed before, since
de 1
da C’
we have
. . 9
Logdl, &g
C dt dt?
or
d?i R di 1

—=

—+=—+
dt? Ldt LC

The standard method for solving this second-order differential equa-
tion is to assume the solution

i(t)=1Ie*,
where s is some constant to be determined. Substituting this assump-

tion back into the differential equation, we get

3 Aswe travel through the C we experience a voltage rise from zero to e, which explains
why we write —e as the voltage drop.

For general queries, contact info@press.princeton.edu
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R 1
Is?e’ + —Ise™ + —Ie® =0,
L LC

and so, making the obvious cancellations (which explains why this
method works!), we get

s2+5s+L:0,
L LC

a result that lets us solve for what the constant s actually is (in fact,
there are two such values):

Now, notice that for given values of L and C, if we have R sufficiently

small so that
1) <%
—_ < _’
L LC

then with j=+/-1 we have®

S=

I+
—~

_R
L

N | =

or, more compactly, our two values of s are

R R
S :_£+on’ S, :_i_]wm

Thus, the most general solution for i(¢) is

4 Mathematicians almost always write i=+/-1 and like to joke that electrical engi-
neers write j =<1 because otherwise they’ll confuse V-1 with electrical currents in
their circuits (which are usually written with the symbol i). This, of course, is nonsense
of a near-libelous nature—but, I have to admit, it is less confusing not to use i for both
concepts. So, if mathematicians will let me write j = V=1 and reserve i for currents, T will,
in turn, promise not to tell any silly mathematician jokes in this book.

For general queries, contact info@press.princeton.edu
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i(t)=Lex + Le™'.

To calculate what I, and I, are, we start with the following impor-
tant fact about inductors: the current in an inductor cannot change
instantly, which follows immediately from its mathematical descrip-
tion. That is, if the current i in inductor could change instantly, then

the voltage drop across the inductor would be infinite (because %

would be infinite). Engineers and physicists reject the possibility of a
physical infinity as nonsense, and so the current in FitzGerald’s circuit
at t = 0+ (immediately after the switch closes) must equal the current
at t = 0- (immediately before the switch closes).® Since i(0-) = 0, then
i(0+) =0, too, and we have

i(0+)=0=1,+1I,
and so [, =-I, =1, which gives us
i(t)y=1I(ent —e%t).
To determine what I is, we again use the fact that i(0+) = 0, which
means (because of Ohm’s law) that the voltage drop across R is zero.

That means, because of Kirchhoff’s voltage law, that the initial ca-
pacitor voltage V|, appears across L at t =0+, and so

di
V0=LE|1=0+’
or
di V.
E|z:o+:TOZI(Sleslt_szeszt)h:m:I(Sl_sz),
or
w W
- L _ L

515, ijO'

5 According to the same sort of argument, it follows that the voltage drop across a
capacitor cannot change instantly, as that would require an infinite current.

For general queries, contact info@press.princeton.edu
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That is,
Vo [(Eeio)  (Eoj)] vpear
i(t)z .20L el 2L ) o2 ) |2 .02 L[ejwot_e—jwot]
J2@, J 2@,
_R
Vee 2L
=" j 2 sin(w,t),
Jj2w,L

where I've used Euler’s identity.® Thus,

R

t
2L
i)=Yt 2

0

L
assuming that R < 2\/2 . The current i(t) is said to be an alternating

current, popularly known as “ac.”

So, FitzGerald was correct in saying his circuit will, if R is suffi-
ciently small, oscillate sinusoidally at a particular frequency deter-
mined by the values of the circuit components.” Does that, however,
mean the circuit will generate rf waves? We can explore that question
by re-doing the calculation done by Professors Tweedle and Twombly
in the Preface: the evaluation of the heat energy integral

- 2 . R
j iZRdt=[ Yo j Rj e Ltsinz(wot)dt.
0 wOL 0

This is a straightforward (if slightly messy) freshman calculus calcu-

lation, and I'll let you confirm that its value is %CVZ, precisely the

6 Euler’s identity, e/* = cos(x) +j sin(x), (due to the Swiss-born mathematician Leon-
hard Euler (1707-1783), is at the very heart of AM, FM, and SSB radio theory, and we will
use it repeatedly in this book.

7 The oscillations are a manifestation of the circuit’s stored energy sloshing back
and forth between the electric field of the C and the magnetic field of the L. Electrical
engineers demonstrate the poetic nature of their souls by picturesquely calling the LC
combination a tank circuit, a reference to the sloshing of water waves back and forth in
a disturbed water tank.

For general queries, contact info@press.princeton.edu
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value of the initial stored energy in the capacitor. FitzGerald’s circuit,
therefore, as it stands, is no better than Twombly’s in generating radio
waves. But, unlike Twombly’s, all FitzGerald’s circuit needs is one
final touch—the addition of an antenna! (This is where you really
need to read the appendix, particularly the end of it.)

From the oscillating current in FitzGerald’s circuit, the resulting
oscillating magnetic field of the L can be coupled via Faraday’s elec-
tromagnetic induction (as shown in Figure 1.1.3) into the antenna, to
serve as the oscillating voltage that drives the conduction electrons in
the antenna back and forth. That motion, as explained in the appen-
dix, creates kinks in the electric field in the space around the antenna,
kinks which in turn give rise to a Poynting energy-flow vector always
directed away from the antenna.

As it stands in Figure 1.1.3, FitzGerald’s circuit won’t transmit for
long, because the initial energy in the Cis quickly dissipated as heat in
the R and as 1f waves from the antenna. The early radio experimenters
attempted to keep the oscillations going by periodically injecting new
energy into the circuit, by incorporating a repeatedly operating spark
gap, reaching speeds of up to 20,000 sparks per second. With each
new spark a pulse of energy was injected, and such radio transmitters
sounded like machine guns! This was okay for Morse code wireless
telegraphy but totally inadequate for use in what would become mod-
ern voice-and-music radio, and I’ll not pursue that approach to radio
in this book.?

A much different approach was to introduce a negative resistance
into the oscillator circuit, to counter the energy loss caused by the
positive R and the rf radiation. This was achieved, most importantly,
with the invention in 1906-1907 of the triode electronic vacuum
tube that so captured Einstein’s imagination, but it was preceded
in the nineteenth century by the electric arc. We’ll briefly discuss
the arc once we have established more mathematical results in the
next section.

8 You can find a detailed mathematical discussion of spark-gap radio in my book
The Science of Radio, Springer 2001. Such radios are now mostly of historical interest, as
spark-gap radio has been illegal since 1923, for reasons based on the mathematics (which
itself remains quite interesting).

For general queries, contact info@press.princeton.edu
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rf wavevs\k M

rf waves

~J. Magnetic coupling
é\\ using Faraday’s
) discovery of
Y’ electromagnetic
induction

\”+
\
1

FIGURE 1.1.3. FitzGerald’s circuit as a transmitter (the oscillating current i(¢f) in L creates an
oscillating magnetic field that, in turn, creates an oscillating voltage in the antenna which
drives conduction electrons in the antenna back-and-forth, creating electric field kinks.

1.2 Laplace Transforms, AC Impedance, and Transfer Functions

We will be concerned in all our discussions of radio with electri-
cal signals that vary sinusoidally with time, that is, with signals like
cos(w,t) and sin (w,t), where w, is the angular frequency (in radians
per second). (As used here, w, is an arbitrary frequency and is not the
particular w, of the previous section.) If f; is the frequency in hertz
(what used to be called cycles per second), then w, =2xf,. AM radio
frequencies are in the interval 540 to 1600 kHz (kilohertz),® while
FM radio operates in the interval 83 to 108 MHz (megahertz). We
will find that the differential equations that describe how numerous
radio circuits work are linear, which means that the sum of two solu-

9 The first radio program Hardy heard was almost certainly broadcast by the BBC
London-based station 2LO, which began operating in 1922 at 842 kHz (that is, at 842
kilocycles).

For general queries, contact info@press.princeton.edu
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tions to the differential equations is also a solution. Thus, rather than
studying the behavior of a circuit in response to, say, a voltage signal
like cos(wyt) or sin(w,t), we can do both problems simultaneously
by studying the solution to the complex voltage signal e/, because
Euler’s identity says e/ = cos(@,t) + j sin(w,t).

This is because the solution for the signal e/® is the sum of the
solution to the signal cos(w,t) and the solution to the signal j sin(w,t).
The solution to the signal j sin(w,t) will be the solution to sin(w,t)
multiplied by the constant j (again, by linearity), and so the solution
to the signal cos(w,t) will be the real part of the solution to e/,
and the solution to the signal sin(w,t) will be the imaginary part of
the solution to e/, This simple idea leads to the enormously useful
concept of ac impedance, which allows us (for sinusoidal time func-
tions) to treat capacitors and inductors as obeying Ohm’s law, which
up to now has been limited to resistors.

Since e/ =cos(w,t)+ j sin(wyt), it follows that e /o
=cos(—wyt) + j sin(—w,t) = cos(w,t) — j sin(w,t).Thus,cos(m,t)

1. . . 1 . :
= E[ef“’of +e~/®!], and sin(w,t) = _—Z[eﬂ"O‘ — e~ /@], and both of
J

these expressions have simple physical interpretations. In
the complex plane, e/®' and e~/®* are vectors of unit length
(because cos? (w,t) + sin? (w,t) =1), making angles w,t and —w,t
with the real axis, respectively, as shown in Figure 1.2.1a. Indeed,
since these two angles increase as ¢ (time) increases, e/?' and
e~ are counterrotating vectors, both with real part cos(wt)
and with imaginary parts sin (w,t) and —sin(w,t), respectively.
If we sum these two vectors as they rotate, it is obvious their
imaginary parts cancel and their real parts add, to give an os-
cillating result that always lies along the real axis. If, however,
we subtract e=/® from e/®f, we simply multiply e~/® by -1
(which reflects e~/ through the origin) and add, as shown in
Figure 1.2.1b. This addition results in the real parts cancelling
and the imaginary parts adding, to give us an oscillating result
that always lies along the imaginary axis.

For general queries, contact info@press.princeton.edu
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imaginary imaginary
_oTo| e
et e/i iﬁ)l
™
Wt —wot [ N\wol
ot real real
<
e*/w‘)t
(a) (b)

FIGURE 1.2.1. Euler’s identity and counterrotating vectors.

To start our development of the impedance concept, consider Fitz-
Gerald’s series circuit again, but now powered by a complex-valued
voltage source, as shown in Figure 1.2.2.

We assume there is, most generally, an initial current i(0+) in
the circuit, as well as an initial charge q(0+) in the capacitor. Thus,
with i(£) the current for ¢t = 0, the differential equation that describes
the circuit is, using Kirchhoff’s voltage loop law (starting at the
negative terminal of the voltage source and going clockwise around
the loop),

oA di
—v(z)+zR+EUOI(x)dx+ q(O+)]+LE—O,
or

Eeioot = iR+%U;i(x)dx+ q(o+)}+L%.

Taking the Laplace transform (see the following box) with a =-jw,
for the term on the left, we have'©

10 Notice thaton therightwehave £{q(0+)} = J. q(0+)estdt =— @e’“ o= M,
0

where, to evaluate the upper limit, lim e~* =0, as s is defined to have a positive real part.
S0
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+

C) v(f) = Ee/v o

Ground/ -

(voltage is zero)

FIGURE 1.2.2. FitzGerald’s circuit with a complex-valued voltage source.

E. =1(s)R+l{@+M}rL[sI(s)—i(0+)]
s—jo, CL s s

and it is an easy matter to solve for I(s):

1

I(s)=

+ Li(0+) - —Q(Sog) }

sL+R+1L_jw0
sC

In radio theory we will be interested in time functions f(t)
that vanish for ¢t < 0. Physically, we interpret the instant t=0
as when we “turn f(t) on.” The Laplace transform of f(t) is
L{f(t)}=F(s)= j f(£)e~*dt; the variable s is a complex variable
0
with a positive real part to ensure convergence of the integral,
but we can often formally work with the Laplace integral as if s
isreal. The value of the transform lies in its conversion of certain
“complicated” operations in the time domain (like differentia-
tion and definite integration) into “simple” algebraic ones. Spe-

cifically, £{%f(t)} =sF(s)— f(0+),and£{J.;f(x)dx = %F(s)}.

Tables of transforms have been created over the decades for

For general queries, contact info@press.princeton.edu
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a vast number of time functions, but the one most useful in
. . 1 .
radio analyses is £{e~%}=——, where a is a constant. When
s+

a =0, this says £{1} =—. More precisely, in the a = 0 case we are
s

1, t>0
dealing with the function f(t)= 0 1<0 which is called the

Heaviside step function, often written as H(t), in honor of Oliver
Heaviside (see the appendix), who made extensive use of it.
Of course, there are also other important transform pairs of
f(¢) <= F(s), but the exponential time function transform will
do 95% of the work for us here.

The factor
1 _ sC _ S _ s
1 g2 a 1
sL+R+ - SLC+RCs+1 op pey b fe R 1
sC c L LC

can be written in the form

s
L(S—Sl)(S—SZ)’

where s, and s, are each a function of R, L, and C." Thus, the Laplace
transform of the current is

- s . _q(0+4)
I(s)—L(S_Sl)(S_SZ)L_ij+Ll(o+) o }
E
_ L’ L si00) _ q+)/IC
(5=5)(=8,)s—jw,) (s=s)(s—5,) (s—s)(s—5,)

E Ny (o i y1O0F)
_Ls+(s Jjy)si(0+)—(s— jw,) o

- (s=8)(s=5,)(s— jw,)

>

11 T'll leave it for you to confirm (it’s easy!) that s, and s, are both either real and
negative or both complex with negative real parts for any choice of positive values for R,
L, and C. That’s all we’ll need to know about s, and s,, as you’ll soon see.
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or

LC
(s=5)(s=8,)(s— jw,)

Es +(s— jwo)[si(0+) - _q(0+)}
I(s)=

If you examine I(s), you see it has the form of a fraction with a
numerator that is quadratic in s divided by a denominator that is
cubic in s. It is therefore clear that we can write I(s) as the partial-
fraction expansion

N N. N
I()=——+—"—+—2—,
s—§ Ss—s5, S—jo,

where N;, N,, and N; are constants. If we now return to the time do-
main (using the exponential transform pair), this says

i(t)= Ne% + N,e%! + N,e/®ot,

Since s, and s, are either both negative or are both complex with neg-
ative real parts (see note 11), we see that the first two terms go to zero as
t— o, These two terms, which disappear with increasing time, represent
transient currents. The third term, however, does not vanish as t — o« but
endlessly oscillates (because of Euler’s identity). This persistent term is
called a steady-state current. We can calculate N; by multiplying through
I(s) by the factor s - jw, and then taking the limit s — jw,. That is,

E
—s

N, = lim (s— jwy)I(s)= lim — L
5= joo s joo (s =8, )(s—5,)

Since by definition

R 1
S—8)s—8,)=8+—5s+—,
(s=5)(s-5,) TR

then

|t

— .w
TR, 1. R 1
(Jo ) +—jog+——  jog+—+———  jo,L+R+-

L LC L jo,LC Jja,C

E
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So, the steady-state current (the current after all transients have
become insignificant) is

E Jjoot
i(t):e—ol,
R+ jo,L+ -

J@oC

and this current is in response to the voltage v(t) = Ee/®. Thus, for
the special case of sinusoids, we see that we have a result that “looks
like” Ohm’s law; that is, if we write

Z(jo,)=R+ jo,L+— ! :R+j(a)0L—ij
Jjo,C w,C

0 0

asasort of “resistance” (radio engineers call the frequency-dependent
Z(jw,) the ac impedance at frequency w,), then for the steady state
we have (where the symbols for voltage V and current I are written
in uppercase to emphasize we are considering only sinusoidal time
functions)

V(jwy) = Z(jw)I(jo,).

The unit of impedance is ohms, but unlike a resistance, which is
purely real, an impedance is generally complex (the imaginary part of
Z is called the reactance). This result, you’ll notice, holds for any i(0+)
and any q(0+); that is, while the initial conditions affect the transient

1
terms, they play no role in the steady-state term. If @, = ﬁ’ then |Z|

is minimized (equal to R, with zero reactance), and w, is called the
resonant frequency.

We have the further observation that, at any frequency, the ac im-
pedance of a resistor is R, the ac impedance of L at frequency w is

1
jowL, and the ac impedance of C at frequency w is ]w—C (Notice that

I'm now writing w, not w,, since the frequency of the input v(¢) is
arbitrary, and a subscript is not necessary.) When working with ac
impedances we can treat inductors and capacitors, mathematically,
just like we treat resistors. So, when impedances are in series (as
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FIGURE 1.2.3. Z is the equivalent impedance of n parallel impedances.

they are in FitzGerald’s circuit) they add. When impedances are in
parallel their reciprocals add, a slightly nonobvious result we can see
as follows with reference to Figure 1.2.3.

We have the impedance “seen” by the voltage source V as

Z==,
I

while from Kirchhoff’s current law we have

Vv Vv Vv 14
I=—+—+—+...+—,
Zl ZZ Z3 Zn
and so
I 1 1 1 1 1
—=—=—t—t—F ..+ —.
v Z Z, Z, Z, Z,

The special case of n=2 leads to the very useful rule that two im-
pedances in parallel are equivalent to their product divided by their
sum. When analyzing radio circuits it is helpful to notice that the
impedance of a capacitor is very large at low frequencies (infinite
at zero frequency, or direct current (dc)) but tends to zero as the
frequency increases, while the opposite is true for an inductor. (In
the next section we’ll use the fact that at w = 0 the dc resistance of an
ideal inductor is zero, while the ac impedance can be quite large for
any high-frequency energy that may also be present.)

The frequency behaviors of inductors and capacitors can be used
to construct circuits that are of central importance in radio. As an
example, consider the circuit of Figure 1.2.4. To emphasize that we
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are assuming sinusoidal voltages and currents only, I've written the
input and output voltages in uppercase letters showing explicit depen-
dence on the frequency variable @ (and not in lowercase as arbitrary
functions of the time variable, t). You’ll see this circuit again, later
in this chapter, where I'll show you how it can be used to build an
oscillator. For now, to support that discussion we’ll need to know
what electrical engineers call the transfer function H(jw) of the cir-
cuit; that is, we’ll now calculate

H(jw)= —V"(].w)-

Vi(jw)

A systematic way of calculating H(jw) is based on the clever idea
of loop currents, labeled as I(jw) and L(jw) in Figure 1.2.4. The loop-
current approach to writing Kirchhoff’s voltage loop law was intro-
duced into circuit theory by Maxwell in his 1873 Treatise, and it is now
aroutine part of electrical engineering. The loop currents, individually,
are fictitious, but they combine to give the actual currents in each com-
ponent. For example, the current in the left C is I, - I, downward (or
L, - I, upward), while the current in the right Cis I, (to the right). The
physical significance of I, is that it’s the current that must be supplied
from whatever is the source of the input voltage V. Writing Kirchhoff’s
voltage loop equations for the two loops in Figure 1.2.4, we have

-V +IlR+.L(I1 -1,)=0,
joC
and
oC

.LIz +12R+.L(Iz _Il):()a
j joC

which can be written in the form demanded by Cramer’s rule® for
solving these two simultaneous algebraic equations for I, and I,;

12 After the Swiss mathematician Gabriel Cramer (1704-1752). Cramer published the
rule in 1750, but in fact it had appeared two years earlier in a posthumously published
work by the Scottish mathematician Colin MacLaurin (1698-1746).
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Ko 1o | =e(nie  Zr Vo)
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FIGURE 1.2.4. What is M?
Vi(jw)
L Re—— |+ L) |=
joC joC
I, —,L +1, R+_L =0.
joC joC
With the 2 x 2 system determinant D defined as
0] 0]
1 2 wC woC
N R+ —
joC joC
Cramer’s rule says that
joC
2
0 |R+— 2
( joC ) R+= ¢
I= =V, (jo) < ,
D 1 .3R
EESEE
oC oC

and
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(R+;] v
joC
(‘U ’ i
jo o=
L= - =V,(jo) wc

Finally, observing that V,(jw) = L,(jw)R, we see that the transfer func-
tion is

. R

. —j—
LD _ ()= o
i(jo) Rz_(lj _]ﬁ
oC oC

We can draw one immediate, quite interesting conclusion from this
result: H(jw) is purely real when the real part of the denominator

1 1
vanishes. That is, if o= R’ then we have H(jw)= +§. We won’t

pursue the implications of this (which are profound) until later in
this chapter except to note for now that this property can be used to
construct a sinusoidal oscillator. Oscillators are obviously important
in radio transmitters, but less obvious at this point is that oscillators
are also used in radio receivers. I'll remind you of Figure 1.2.4 again
later in this chapter.

The transfer functions of all but the simplest circuits (for example,
all resistors) used in radio will be complex. That is, H(jw) will, in gen-
eral, consist of both amplitude and phase response functions, and so

H(jw)=|H(jw)|e/™,

where 6(w) is the phase shift that occurs from input to output for a
sinusoid at frequency w. I'll say more about 6(w) later in this chapter.

You’ll notice that we did not need I,(jw) to find H(jw). Knowledge
of I,(jw) nevertheless provides important information. Knowing I,(jw)

in terms of V(jw) allows us to calculate M_w;:zi(jw), the ac

1
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impedance “seen” by the signal source that generates Vi(jw). This is
important to know because that impedance determines the current
the signal source has to be able to provide. So,

2_[1)2_ 3R
. oC oC
Zi(.]w)= 2 >
joC
which, at the frequency @ = Rl_C reduces to
. 3R
2cC i3R? 3R 3(1+ j2)
: -Jj3R ; .
Z(joy=—2RE =~ j =% =R{— I }
R+ : R-j2R 1-j2 1-j2)a+j2)
j—C
TRe

3+ j6 6—j3 .
=R|- =R| —£2 |=R(1.2- j0.6).
{Jl+4} ( 5 ] (1.2-j06)

Thus, while the transfer function of the circuit of Figure 1.2.4 is purely
1
real at w = RC’ the input impedance is complex (the negative imagi-

nary part of Z,( jw) means the input impedance “acts like” a capacitor
(which, given the components in the circuit, should be no surprise!).

Be particularly careful to notice this important conclusion from
our result for Z,( jw): while we can vary either R or C (actually either
both of the matched R’s together or both of the matched C’s together,
because the two resistors are assumed to be equal, and the two ca-
pacitors are assumed to be equal®) to vary the frequency at which
H(jw) is purely real, if we choose to vary the two R’s we will also
vary Z( jw). If we choose to vary the two C’s, however, then we can
vary the frequency at which H(jw) is purely real while keeping the
input impedance fixed. In that case, the V, signal source “sees” an

13 To simultaneously vary multiple matched-value components, radio engineers use a
“ganged shaft” that allows turning a single control-panel knob to rotate a shaft on which
all the variable components are mechanically mounted.
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unchanging current demand, a property of great importance in build-
ing the variable-frequency oscillator circuits we will later encounter
in radio receivers.

To end this discussion of transfer functions, let me show you one
more thing we can do with them. Suppose we apply a sinusoid at
frequency « as the input. That is, suppose v{(t) = sin(at). What is the
resulting output v (£)? From Euler’s identity we have

1 . .
v (£)=—(eJer - i),
Jj2

The output of a circuit is simply the sum of each complex exponential
term of v(f) multiplied by the transfer function of the circuit evaluated
at the frequency of the input term.** So, for the circuit of Figure 1.2.4,

Vo(t)=J.l—z[ef“‘H(ja)—e’f“‘H(—jO!)]

R R
— L elot aC — e Jat —-aC .
20 e (1Y 3R e [ 1 Y_.3R
J J
oC oC -oC -oC

There are a lot of j’s in this expression, but since the input v,(¢) is
real-valued, and since the circuit of Figure 1.2.4 is made from real
hardware, we know that v (t) has to be real, too. Is it? Yes, and you
can see that by inspection if you write

j R j R
1 . Voo . O
Vo(t) =— ejat azc —ejat OCC; .
j2 Rz_(l) T Rz_(l) L 3R
aC J(xC aC J(xC

14 Note, carefully, that there are two frequencies here: +a and —a. The concept of a
negative frequency might seem a bit “science fictiony,” but we have already encountered
a simple physical interpretation, namely, the clockwise-rotating vector in the box that
opens this section. Later in the book, when we get to the sidebands of a modulated rf
carrier wave, in both AM and FM radio, you'll see that “negative” frequencies possess an
undeniable physical reality.
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The expression inside the square brackets is the difference of conju-
gates and so is equal to the imaginary part of the first term times j2

1
(which is cancelled by the ]—2 in front of the brackets). Specifically,

v, (t)=Im| e/

=Im| e/

or
. SR, LZ 3R
oo {cos(at)+]sm(at)}{—]aC|:R (aC) +]0¢C}
v,(t)=Im — . .
T
oC oC
Thus,
3R> R, (1Y
(aC)Zsm(at)_aC{R (ac) }COS@“)

vo (t) = 2
2 2
oC oC
As a partial check on our calculations, notice that if o = %, then

this expression reduces to v, (t) = lsin(L) when v,;(t)= sin(i),
3 RC RC

giving H ( j L) = +l, which we found earlier.
RC 3
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1.3 Vander Pol's Negative Resistance Oscillator Equation

Almost from the invention of the electric battery in 1799-1800, by the
Italian physical chemist Alessandro Volta (1745-1827), it was known
that a low-voltage source (a few tens of volts) able to supply a contin-
uous large current (hundreds of amperes) could generate an electrical
arc of intense brilliance.” That is, if two electrodes in contact, carry-
ing this current, are slowly pulled apart to form a gap, the electrode
current can continue to flow across the gap, appearing as a flame of
ionized atmospheric gases and vaporized electrode material. By the
1890s it was known that a plot of the gap current versus the gap volt-
age drop had the surprising behavior shown in Figure 1.3.1.

The surprising feature of Figure 1.3.1is, of course, that the current-
voltage curve of the electric arc has a kink, that is, an interval where
a decrease in gap current is associated with an increase in gap voltage
drop, behavior certainly not at all like the Ohm’s law linear behavior
of a resistor. The total voltage drop divided by the total gap current

. - ; . . . odi, .
is always positive, but in the kink the dynamic ratio W is negative
v

(the slope of the kink is negative), and for that reason the electric
arc was said to have a negative ac resistance. With some very clever
engineering, this feature of the electric arc was used to neutralize the
energy-dissipating positive R of FitzGerald’s oscillating circuit, allow-
ing the construction of very powerful radio transmitters. Arc radio'®
itself is of only historical interest today, but the mathematical theory
of negative resistance is of continuing interest, as it also appears in
the electronics of modern radio.

15 The Cornish chemist Humphry Davy (1778-1829), mentor to the young Faraday,
invented the arc lamp in 1809.

16 Not to be confused with the biblical Ark of the Covenant, said (in the first Indiana
Jones movie, the 1981 Raiders of the Lost Ark) to be “a radio for speaking to God.” The
Ark, built by Moses according to detailed instructions from God (Exodus 25) to hold the
stone tablets of the Ten Commandments, is described in various ancient Jewish legends
as being surrounded by sparks and so was perhaps electrical in nature. Further, when
Uzzah touched the Ark (2 Samuel 6:67) he instantly died (electrocuted?). In Exodus 25:22
the Lord tells Moses he will speak to him from the Ark, and this was the motivation for the
movie line claiming the Ark to be a radio. Well, I have to admit it’s a thought-provoking
assertion, but we’ll find our inspiration for radio in this book to be more from Maxwell’s
Treatise than we will from the Bible.
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ac current

ac voltage

arc gap current

arc gap voltage

FIGURE 1.3.1. Current versus voltage for an electric arc.

In Figure 1.3.2 we see FitzGerald’s circuit connected in parallel with
an arc which is powered by a low-voltage, high-current dc energy
source (which is itself in series with an inductor called the choke
coil, a name that will be explained in just a moment). To understand
what is happening in this enhanced FitzGerald circuit, you have to
visualize two distinct current loops. First, there is the dc loop formed
by the energy source, the choke coil (with a small ohmic resistance
important at dc but presenting a relatively high ac impedance at
the frequency at which the circuit oscillates), and the arc. Second,
there is an ac current loop formed by the R, L, C, and again, the
arc. The total ac resistance in this second loop is the sum of R and
the dynamic ac resistance of the arc (which, being negative, can
result in a net ac resistance of zero). Because of the choke coil, the
oscillations in the ac loop cannot “leak back” through the dc source,
which typically has a very low resistance. Such leakage would result
in energy loss via heating of the dc source.

The arc current consists, then, of two components: a large, steady
dc current, on top of which is superimposed an oscillating (that is,
an ac) component. This is indicated in Figure 1.3.1 by the dashed
axes centered on the midpoint of the negative resistance kink. If we
imagine the arc operates at that midpoint (i=v=0) when there are
no oscillations, then when we say the circuit of Figure 1.3.2 oscillates,
we mean we are interested in the current/voltage deviations around
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choke coil

NI

_—
dcarc current

+

dc
T energy
source

+ ac current loop
= C
+ +
! v arc

FIGURE 1.3.2. The ac current and voltage (i, v) in FitzGerald’s series circuit, in parallel
with an electric arc.

that dc midpoint. Now, be sure to understand that all this business
about the electric arc itselfis not the central issue. What is important
is the negative resistance of the arc; I use the arc here simply to give
you a physical model.to envision. When we get to the superregener-
ative radio receiver in chapter 3, you’ll again see negative resistance
mentioned in connection with oscillatory behavior.

In any case, such arc-enhanced versions of FitzGerald’s circuit
were unable to oscillate at frequencies beyond about 60 kHz or so,”

17 Because of engineering difficulties that are discussed in The Science of Radio (note
8), none of which I'll pursue here because Hardy couldn’t have cared less about such
things. If I really wanted to drive Hardy into a coma, I could next tell him that these same
difficulties (and their solutions) appear in the physics of circuit breakers with superfast
tripping times. But I wouldn't actually want to do that, and so I won’t do it here, either.
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E

Negative

resistance 1 v
technology R § ¢ = L

FIGURE 1.3.3. Van der Pol’s parallel version of FitzGerald’s oscillating series circuit.

and by the early 1920s the use of arc transmitters in radio was com-
mercially dead. Van der Pol, however (see the box in the preface)
studied a mathematically equivalent!® parallel version (as shown in
Figure 1.3.3) of FitzGerald’s series circuit while retaining the idea
of a negative resistance kink in the ac voltage/current behavior of
whatever nonlinear technology (present or future) was under study.

As stated in note 18, from Kirchhoff’s current law Van der Pol
immediately wrote

i+— +C@+ J dt=0,
R dt

and he modeled the kink in the negative resistance technology box
at the far left of Figure 1.3.3 with the equation

i=-av+ b,

18 Here’s what mathematically equivalent means. If we write Kirchhoff’s voltage law

for the ac loop in Figure 1.3.2, we have v+ L%‘F Ji dt+iR=0.
dv

If we write Kirchhoff’s current law for Figure 1.3.3, we have i + — R Y+cC el +— J vdt=
which is the voltage loop equation with v and i swapped, with R and 1I/R swapped, and
with L and C swapped. With those trivial symbol changes, FitzGerald’s original series ac
circuit becomes Van der Pol’s parallel ac circuit. Electrical engineers say that each circuit
is the dual of the other; the behavior of i in Figure 1.3.2 is the behavior of v in Figure 1.3.3.
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where a and b are positive constants. Differentiating both equations,
we get

di 1dv dv 1
S 4C—+-v=0,
dt Rdt dt? L
and
ﬂ:—a@+3bv2@.
dt dt dt

I'll leave it to you to confirm that substituting the second equation
into the first one and doing a little algebra gives the result

2
rcdv, L(l—a)+3va2 oo
dr? R dt

1
Next, we change the variable to x= w,t, where @, = ﬁ Then,

dx=w,dt, or dt = ﬁ, and so

@y
d_dv _ dv
dt dx  Odx’
@,
Thus,
Do) [, d) A (@), d[,0)
drr dt\dt ) dt\ Cdx) dx\ %dx O\ dx
(o
v _ 1 dv
% dx? LCdx?’

dv d?v
Substituting these two results for @ and el into the equation just

before we change the variable to x, we have

2
ﬂJrL (l—a)+3bv2 woﬂw:o,
dx? R dx
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or after just two or three more easy steps, we arrive at
2 L1 L
v _ \/:(——a —3b\/:+v2 ﬂ+v=0.
dx? C\R C dx
. . L(1
Now, to finish, we write £ = \/g (E - a) and make the change of

&€
W
C

couple more easy steps of algebra we arrive at Van der Pol’s equation:

variable v = hu, where h is the constant such that h? =

.Injusta

2
%—e(l—uz)%+u=0.

In this equation u is a normalized v as a function of x (which, in turn,
is a normalized time). The parameter ¢ has absorbed the values of a,
R, L,and C,while h (which is an amplitude-scaling parameter relating
u and v) has absorbed b. Van der Pol’s nonlinear differential equation
is not “easy” to solve, and he was able to find analytical solutions
only for the case of ¢ <1, for which he found the remarkable result
that the solutions are periodic with a normalized amplitude of 2.
In The Science of Radio (note 8) I work through, in detail, how Van
der Pol did this. It’s elementary, but pretty tricky. Van der Pol was a
very clever engineering analyst (and I think even Hardy would have
concluded that).

Hardy’s friend Littlewood came to his study of Van der Pol’s equa-
tion in response to a January 1938 memorandum from the British
Radio Research Board asking for “really expert guidance” from pure
mathematicians in helping engineers understand the behavior of
“certain types of non-linear differential equations involved in radio
engineering.” A copy of the memorandum was sent to the London
Mathematical Society, where it caught the eye of Mary Cartwright
(1900-1998), an English mathematician who started her doctoral stud-
ies at Oxford under Hardy (but finished with a different thesis advisor
when Hardy left Oxford for a sabbatical leave at Princeton University
and Caltech, 1928-1929). Cartwright knew Littlewood (who had, in
June 1930, traveled to Oxford to supervise her doctoral examination),
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she got him interested in Van der Pol’s equation, and the two of them
decided to jointly respond to the 1938 memorandum.

Their starting point was a 1934 paper published by Van der Pol
that included “graphically integrated” solutions for various values
of &. Littlewood was able to show that the oscillation amplitude
was not exactly 2 for ¢ “small,” but later Cartwright and Littlewood
further showed that as ¢ — oo the oscillation amplitude did approach
2 from above. With a modern home computer and powerful soft-
ware (I use MATLAB), it is today easy to confirm these results.
Figure 1.3.4, for example, shows a computer solution for one of the
values of ¢in Van der Pol’s paper,?® and it is virtually identical with
Van der Pol’s graphical solution (see the following box for how this
figure was created). To quote from Van der Pol’s paper, the solution
“represents the slow building up of an approximately sinusoidal
oscillation.” The final amplitude of those oscillations does appear
to be pretty close to 2. For £>>1 the oscillations are decidedly not
sinusoidal.

The computer-generated solution to Van der Pol’s differential
equation was obtained by the standard method of writing an
nth-order differential equation as a system of n first-order dif-
ferential equations. That is, we start by defining

w()=u), ()=,

du, du du, d*u, d*u
dxl_dx U, d;:dlezwz(l_ulz)uz_ul-

19 See Shawnee L. McMurran and James J. Tattersall, “The Mathematical Collabo-
ration of M. L. Cartwright and J. E. Littlewood,” American Mathematical Monthly, De-
cember 1996, pp. 837-845.

20 B.van der Pol, “The Nonlinear Theory of Electric Oscillations,” Proceedings of the
IRE (Institute of Radio Engineers), September 1934, pp. 1051-1086.

(continued...)
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