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Surveying the 1920s Research
Landscape

In December 1918, Edward Van Vleck was “crazy to get back into real scien-
tific work.”! The University of Wisconsin mathematician had turned fifty-four
just months after the United States had entered World War Iin 1917 and had
engaged in the war effort as an instructor for the Student Army Training Corps
(SATC) on his home campus in Madison. With his usual nine hours of teach-
ing a week augmented by two additional four-hour classes of freshman algebra
targeted at SATC students, his “war work,” not surprisingly, had “absorbed
all of [his] spare time and energy” He had been completely diverted from
the research in analysis that he had been faithfully pursuing since his days in
Géttingen as a doctoral student of Felix Klein.>

Van Vleck was, in some sense, a member of the “first generation” of research
mathematicians in the United States.> Although he had done graduate work
at the Johns Hopkins University before earning his Géttingen degree, he, like
many other American mathematical aspirants born in the 1860s, had recog-
nized that the kind of training he sought was largely unavailable in the United

1. Edward Van Vleck to George Birkhoff, 9 December, 1918, HUG 4213.2, Box 4, Folder:
Correspondence, 1918-1919, S-Z, Birkhoff Papers. The quotation that follows is from Van
Vleck to Birkhoff, 4 May, 1918, op. cit.

2. Thomas Archibald, Della Dumbaugh, and Deborah Kent treat the involvement of
American mathematicians in the war effort in “A Mobilized Community: Mathematicians in
the United States during World War I,” in The War of Guns and Mathematics: Mathematical Prac-
tices and Communities in France and Its Western Allies around World War I, ed. David Aubin and
Catherine Goldstein, HMATH, vol. 42 (Providence: American Mathematical Society, 2014),
pp- 229-271.

3. David Rowe and I consider that generation in general and Van Vleck in particular in
Emergence.
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States in the early 1890s. He thus went abroad and returned with a personal
mathematical research agenda as well as a dual sense of his academic mission.
He was a teacher of undergraduate as well as graduate students, but he was also
an active researcher. After 1904 and thanks to its then president, the geolo-
gist Charles Van Hise, the University of Wisconsin to which Van Vleck had
moved in 1906 was also coming to share this ethos. It was one of the state uni-
versities that had begun to respond to changes in American higher education
under way at least since 1876 with the founding of Hopkins in Baltimore. In
fits and starts, other institutions followed suit into the opening decades of the
twentieth century.

In many ways, World War I had served as a wake-up call to those in
academe but, perhaps more importantly, to others in newly created philan-
thropies as well as to some within the Federal government. They had begun
to recognize the value of original research for the welfare of the nation; they
increasingly saw the need to support research financially. Savvy university
administrators witnessed and steadily responded to this trend over the course
of the 1920s and 1930s. They followed the money. Maybe the philanthropies
were on to something. Maybe research should be more vigorously encouraged
within the universities. Maybe faculties should be formed and sustained on the
basis of research productivity and graduate training, first, and undergraduate
teaching, second.

The war had also served as a break in business as usual. In its aftermath,
there was a sense within the scientific community more broadly, but within
the mathematical community, in particular, of entering into “a new era in the
development of our science”* “Every nerve should be strained to get our
research back on its feet,” in Roland Richardson’s view.® He was apparently
not alone in this conviction. He and other American mathematicians poured
themselves into their work in the 1920s, but what did that mean? What were
their main research interests? Where were those interests fostered? What, in
short, was the lay of the American mathematical research landscape in the
1920s2

4. Roland Richardson to Oswald Veblen, 19 December, 1923, Box 10, Folder: Richardson,
R.G.D. 1923, Veblen Papers. Daniel Kevles analyzes this attitude among American physicists in
The Physicists: The History of a Scientific Community in Modern America (Cambridge: Harvard
University Press, 1987), especially pp. 75-138.

5. Richardson to George Birkhoff, 31 December, 1918, HUG 4213.2, Box 4, Folder:
Correspondence, 1918-1919, M-R, Birkhoff Papers.
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FIGURE 1.1. Oswald Veblen (1880-1960) (ca. 1915). (Photo from Wikimedia Commons.)

Mathematicians in Colleges and Universities

“Mathematical research is done almost entirely by university and college
teachers,” Princeton’s Oswald Veblen patiently explained in 1924 to Ver-
non Kellogg, an entomologist and the permanent secretary of the National
Research Council (NRC).° Yet, he continued, “[a] mathematics department
in an American university has to deal with an enormous mass of freshmen,
a very large number of sophomores, and with extremely small numbers of
juniors, seniors and graduate students.” Veblen was certainly in a position to
know.

His father had been a professor of mathematics and physics at the Univer-
sity of Iowa, where the young Veblen had pursued his undergraduate studies.
Afterayearat Harvard to earn a second B.A.—and presumably to supplement

6. Veblen to Kellogg, 11 February, 1924, Box 7, Folder: Kellogg, Vernon 1924-28, Veblen

Papers. The next quotation is also from this letter. On the National Research Council and its

role in mathematics, see the next chapter.
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the more limited offerings that had been available to him in Iowa City—he
proceeded to the University of Chicago in 1900, where his uncle, the icono-
clastic economist and sociologist, Thorstein Veblen, happened then to be
on the faculty.” As a graduate student, Veblen imbued an ethos of research,
research, research under his doctoral advisor E. H. Moore. His 1903 Ph.D. was
followed by two years at Chicago as an associate in mathematics and, in 1905,
by a preceptorship at Princeton.® All the while, he churned out new results
in what was then his main field, geometry. Veblen had thus experienced first-
hand American higher mathematics education at levels from the so-so to the
very best and had fully embodied the teacher-researcher mindset.

Moreover, from his highly privileged position as President of the Ameri-
can Mathematical Society from January 1923 through December 1924, he
had become “rather acutely conscious of the fact that the needs of mathe-
matical research have not yet been brought to the attention of those,” like
Kellogg, “whose position enables them to have a view of the strategy of Sci-
ence.”? But if Veblen laid blame for this state of affairs, it was at the feet of the
mathematicians themselves, for they “have too easily assumed that an outside
world which cannot understand the details of their work is not interested in
its success.” In 1924, having embraced the role of mathematical leader in the
research as well as in the political sense, Veblen had many reasons to reject that

7. Thorstein Veblen was best-known for the 1899 book, The Theory of the Leisure Class, in
which he coined the phrase “conspicuous consumption.” In 1918, however, he published The
Higher Learning in America: A Memorandum on the Conduct of Universities by Business Men (New
York: B. W. Huebsch, 1918; reprint ed., New York: The Viking Press, 1935), where he argued
that World War I would leave “American men of learning in a strategic position . . . in that . ..
they command those material resources without which the quest for knowledge can hope to
achieve little along the modern lines of inquiry” (p. 52). As the first part of the present book
will document, Veblen’s nephew, Oswald, and other mathematicians sought to capitalize on
what they viewed as the “strategic position” that the American mathematical community had
gained in the 1920s.

8. Conceived by Princeton University President (from 1902-1910) Woodrow Wilson, the
preceptorial system served as a means of reorienting the Princeton faculty from teaching to
teaching and research through the appointment of talented young scholars to serve as intel-
lectual guides for undergraduate students. The basics were learned in lecture courses, while
preceptors and their charges met in small groups of from two to six to discuss common read-
ings of a more advanced nature. As Wilson described them, preceptors were “men who are older
and more mature and whose studies have touched them with an enthusiasm for the subjects
they are teaching.” See Woodrow Wilson, “The Preceptorial System at Princeton,” Educational
Review 39 (1910), 385-390 on p- 389.

9. Veblen to Kellogg, 11 February, 1924, Box 7, Folder: Kellogg, Vernon 1924-28, Veblen
Papers. The quotation that follows is also from this letter.

For general queries contact webmaster@press.princeton.edu.
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assumption (see the next chapter), but he also appreciated the need clearly to
articulate how mathematicians, as distinct from other types of scientists, fit
into the modern college and university.

Since the beginnings of higher education in the United States, mathematics
had been a key, required component of the undergraduate, liberal arts curri-
culum.!® By the 1920s, however, America’s universities—as opposed to its
four-year colleges—had produced a cadre of college and university professors
who were trained to do original research but who were hired largely to teach
undergraduates. They populated a wide array of institutions.

The colonial colleges—Harvard, Yale, Princeton, Columbia, Pennsyl-
vania, Brown, and others—had, over the course of the final quarter of the
nineteenth century and into the opening decades of the twentieth, begun to
reorient themselves toward undergraduate and graduate instruction. Owing
to their relatively long histories and to their traditionally collegiate focus,
some of these schools experienced more difficulty than others in redefining
themselves as actual universities in which faculties were expected actively
to engage in research and publication. The same was true of some of the
state-supported schools—like the Universities of Michigan, Iowa, Wiscon-
sin, Kansas, Texas, and California at Los Angeles. After the 1862 Morrill Act
provided funding for them, moreover, the Federal land-grant universities—
such as the University of California in Berkeley, the University of Illi-
nois, the Massachusetts Institute of Technology (MIT), and the Ohio State
University—realized their more practical orientation at both the under-
graduate and graduate levels. These types of schools were supplemented,
in the so-called Gilded Age that followed the U.S. Civil War, by privately
endowed women’s colleges—especially Pennsylvania’s Bryn Mawr—and
other institutions—such as Hopkins, Clark University, and the University
of Chicago—that set new standards particularly for graduate education and
the production of original research.!’ Faculty members at both colleges

10. Ubiratan D’Ambrosio, Joseph Dauben, and I consider the place of mathematics in the
seventeenth- and eighteenth-century North American curriculum in our chapter “Mathemat-
ics Education in America in the Premodern Period,” in Handbook on the History of Mathemat-
ics Education, ed. Alexander Karp and Gert Schubring (New York: Springer Verlag, 2014),
pp. 175-199.

11. Cornell University represents an interesting hybrid. Founded in 1865 thanks to the
private benefaction of telegraph tycoon, Ezra Cornell, it was also named New York State’s
land-grant college. For a nice overview of the emergence of the research university per se in
the United States, see Roger Geiger, To Advance Knowledge: The Growth of American Research
Universities, 1900-1940 (New York: Oxford University Press, 1986).

For general queries contact webmaster@press.princeton.edu.
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and universities were coming to define themselves in terms of teaching and
research.

For American mathematicians, this dual personality was both like and
unlike that of their European counterparts. American and European mathe-
maticians strove to do research and to publish the fruits of their labors, but in
Europe—and especially in Germany and France where a system of Gymnasien
and lycées, respectively, provided instruction at the freshman and sophomore
levels—mathematicians were not involved in more introductory teaching.!?
Yet, in the United States, as Veblen explained to Kellogg, “[a] man with good
mathematical gifts and normal personal qualities has little trouble in obtain-
ingas good a position as is available under our system,” “[bJut when he obtains
it he has a teaching schedule of from nine to fifteen hours a week as compared
with three hours a week for his colleague in the Collége de France.”!® “More-
over,” Veblen went on, “he becomes tremendously interested in this teaching;
he sees the manifold ways in which it could be improved, and he plays his part
in the committees and other administrative devices which are trying to do the
obvious tasks of the university in a better way” The American mathematician
was thus able to spend only a relatively “small fraction” of time on research,
given that a certain “sense of responsibility” dictated that he respond “in a
normal way to his environment.”

A contradictory state of affairs had thus resulted in mathematics, although,
atleast as Veblen saw it, not at all in astronomy and much less so in the labora-
tory sciences. In mathematics, he explained, “we recognize ability in scientific
research as a basis for university appointments but not as a primary occupation
for the appointees.” Astronomers, however, were often associated with obser-
vatories where observation and research defined their primary occupations,
and although some physicists taught, they were also often responsible for
maintaining research laboratories, whether in an academic or in an industrial
setting.'* Veblen and many of his contemporaries believed that the time had

12.1 give a comparative look at the situations for mathematicians in “Training Research
Mathematicians circa 1900: The Cases of the United States, Germany, France, and Great
Britain,” in A Global History of Research Education: Disciplines, Institutions, and Nations, ed. Ku-
ming “Kevin” Chang and Alan Rocke, vol. 34(1) (Oxford University Press, 2021), pp. 65-83.

13. Veblen to Kellogg, 11 February, 1924. The quotations that follow in this and the next
two paragraphs are also from this letter (with my emphases).

14. John Lankford treats American astronomy in American Astronomy: Community, Careers,
and Power, 1859-1940 (Chicago: University of Chicago Press, 1997), especially pp. 125-181;
on physics, see Kevles, The Physicists, pp. 60-90.

For general queries contact webmaster@press.princeton.edu.
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come for colleges, but especially universities, to reverse the order of their prio-
rities for mathematics, making research paramount and teaching secondary
although still important.

They envisioned a system—with an implied hierarchy—in which those
“who have shown in their own environments that their impulse to research is
a vital one” would be “freed from all other obligations and thenceforth paid
for devoting their energies to research.” Those whose “impulse to research”
was less “vital” would focus on teaching. Indeed, this tension was already
reflected in the existence of two mathematical societies: the AMS, founded
in 1888, served the needs of the researchers, while the Mathematical Associ-
ation of America, created in 1915, aimed at those engaged in undergraduate
teaching.!> These two sets of mathematicians were by no means disjoint, but
Veblen’s was an idealistic vision of the future of research-level mathematics
that collided with the reality of college and university life at many, if not most,
institutions in the 1920s.

Consider, for example, John Kline’s experiences at Yale following his 1916
Pennsylvania Ph.D. under University of Chicago—trained Robert L. Moore. At
Penn, Kline had internalized the research mantra thanks to Moore—a mentee
of Veblen and fellow student with him of E. H. Moore—and had taken it with
him to Yale as an instructor during the 1918-1919 academic year. He was
shocked by the attitudes he encountered there.

At a faculty meeting early in the second semester, the department chair,
mathematical astronomer Ernest Brown, announced that there would be no
more than one new entering graduate student and that not even that candi-
date was certain. When elder statesman and European-trained James Pierpont
noted that the department used to graduate several first-rate Ph.D.s a year but
that “lately we have had only a few men and they mostly a poor lot,” Brown
replied that, in his view, that “was due to the fact . . . that the money Yale had
to put out in fellowships and scholarships was very small as compared with
Chicago, Harvard, and Princeton.”'® When Pierpont pressed the issue, agree-
ing that that was likely part of the problem but questioning whether it was the
whole of it, Brown constituted a committee of the “younger men” to study the
situation and to make recommendations.

15. AMS-MAA relations at this time are treated in the next chapter as well as in my “The
Stratification of the American Mathematical Community.”

16. John Kline to R. L. Moore, 9 February, 1919, Box 4RM74, Folder: Kline, John Robert
(1918-1921), Moore Papers. The quotations that follow in this and the next two paragraphs

are also from this letter (with my emphases).
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As one of those “younger men,” Kline got right to work canvassing his
colleagues, but his findings dismayed him. William Longley, an assistant pro-
tessor who had earned his Ph.D. at the University of Chicago in 1906 likely
under the mathematical astronomer Forest Moulton, initially “seemed inter-
ested in doing something for [the] encouraging of research here” but then
suggested that “the decline in graduate students was because pure mathe-
matics was a drudge on the market, [that] the pure mathematician had
nothing that anyone else wanted and that perhaps we had been following
false gods in patterning [ourselves] after the Germans in our highly special-
ized mathematics.” Longley also offered the opinion “that most men . .. are
enthusiastic research men when in graduate school but when they got out
into teaching and got away from this influence, they gradually returned to
their normal selves and a correct balance of things” Egbert Miles, another
assistant professor and another Chicago Ph.D. but one who had earned his
degree under Oskar Bolza in 1910, made Kline “still sorer” Miles “felt that
pure mathematics was a subject which had no place in our university life at
present, that we were at present engaged in building up a great industrial
nation and that it was the business of the mathematician not to delve into
pure science but to do effective teaching and apply mathematics to industrial
problems.”

Kline next moved on to the members of what he pejoratively termed “the
teaching gang.” One of that number held “that it is our business to look after
the interests of the men who are going to be primarily interested in teach-
ing, that there has been a false evaluation and that heads of departments have
been unjust in making promotion depend only on research.” In sum, James
Whittenmore, like Kline an instructor but unlike him a European-trained
mathematician who had nevertheless not taken a Ph.D., thought that the two
of them “were the only ones of the younger men who had any interest in doing
research.” In Kline’s view, “if that was the attitude of the rest of the bunch,
I should not be surprised if harm had already been done along the research
lines.”

Clearly, not all members of the younger generation were of a mind rela-
tive to the desirability and value of doing original research. Yale’s Department
of Mathematics, unlike those at Chicago, Harvard, and Princeton, was thus
not in a position as the 1920s opened to make a strong push into research,
even though Pierpont, for one, hoped to convince the Yale administration
“to strengthen the Department of Mathematics in the sphere of Research
in Pure Mathematics” by making sufficient funds available to lure George

For general queries contact webmaster@press.princeton.edu.
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Birkhoff from Harvard.!” That initiative failed. Birkhoff, then regarded as one
of America’s best mathematicians, spent his career at Harvard. For Yale, as for
numerous other schools, a strong research reorientation had evolved only by
the 1940s.'8

Kline left Yale after one year for an instructorship at the University of Illi-
nois. There, he found a department much different from the one he had left on
the East Coast. There, the geometers Edgar Townsend and Arthur Coble and
the algebraists James Shaw and George Miller, among others, had been fos-
tering what Kline deemed “a good research atmosphere.’!® Although Coble
had just narrowly edged out Kline’s advisor, R. L. Moore, for an Illinois pro-
tessorship, Kline had been “asked for suggestions of good men” and had been
actively campaigning to get Moore’s name back in the running should a new
senior position open up. Kline felt, moreover, that the primacy of research
was fully appreciated at Illinois, whereas it had not been at Yale. As he put it
to Moore, “[c]ouldn’t we make this a centre if you came here”? The University
of Illinois, one of the newer land-grant institutions, had already embraced, at
least in mathematics, a more modern research ethos by 1920.

At another land-grant, the Ohio State University, that transition was prov-
ing a bit more difficult. Kline’s academic brother, Raymond Wilder, had
finished his Ph.D. under Moore at the University of Texas in Austin in 1923
and had accepted an associate professorship at Ohio State a year later. After
settling into the routine there, he wrote to Moore to convey his impressions
of the place. He was candid. “[A]s you no doubt would guess, the dept. needs
new life,” he told Moore. “Outside of Kuhn, Bohannan & Weaver—dead
wood. . .. Of course, I am speaking of the dept. as it stands without MacDuffee.
The latter is a good one—seems to have good ideas, and we’ve already formed

17.E.H. Moore to James Pierpont, 6 April, 1923, Box 2: Correspondence, 1921-1925 J-Z,;
Folder: Pierpont, James, Richardson Papers.

18. Harold Dorwart, who was a graduate student at Yale in the 1920s, reminisced in rosy
terms about his student days there. Still, even his account of the 1920s pointed to the period
from the mid-1930s to the mid-1940s as the epoch when department chair, Oystein Ore,
actually “recruited many fine mathematicians to the department” with support, that had been
lacking earlier, of the higher administration. See Harold L. Dorwart, “Mathematics at Yale in
the Nineteen Twenties,” in A Century of Mathematics in America, ed. Peter Duren etal., 2: 87-97
onp. 94.

19. Kline to R. L. Moore, undated but likely the fall of 1919, Box 4RM?7S5, Folder: Kline,
John Robert, Letters by or to Kline, undated, in Moore Papers. The quotations that follow are
also from this letter.
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a ‘dynamite squad’ or ‘flying wedge’ consisting of our two selves. It’s a case of
stand together or drop into oblivion.”?° Harry Kuhn had earned his doctorate
at Cornellin finite group theory under the direction of George Millerin 1901;
Rosser Bohannan, chair of the department, had taken degrees in engineering
from the University of Virginia in 1876 before proceeding for post-graduate
studies abroad at Cambridge and Géttingen in the 1880s; James Weaver was
a 1916 Ph.D. in geometry under Maurice Babb at Penn; and Cyrus MacDuf-
fee had earned a doctorate in 1921 under Leonard Dickson at Chicago. It
had been under Bohannan that the Ohio State department had begun hiring
Ph.D.s and had started to offer more advanced courses, among them some
graduate-level seminars.”!

Despite the “dead wood,” Wilder thought that the department at Ohio
State did have “some good points, chief of these being freedom.” As a case in
point, he was teaching both a freshman and an advanced course that he could
“run as [he] please[d].” Moreover, he hoped to teach his special field of topol-
ogy in the second quarter and had “two graduate students—likely looking
boys, one an M.A. already—intending to take it.”

All in all, though, the department needed improvement. “MacDuffee
expressed it very well,” Wilder told Moore, “‘T don’t want to say anything
about any members of the dept., but, there aren’t enough vertebrae in Kuhn,
Weaver, & Rasor put together to make one spinal column. 7> He and Mac-
Duffee therefore had “to reform not only the character of the work in the dept.,
but the attitude of the adminstration toward” the group as a whole.

That, in fact, was the self-appointed task of many in the 1920s—
like Veblen, Kline, Wilder, and others—in departments of mathematics in
all manner of colleges and universities around the United States. These

20. Wilder to Moore, 15 October, 1924, Box 86-36/8, Folder 6: General Correspondence
R. L. Moore, Wilder Papers (his emphasis). The quotations in the next paragraph are also from
this letter with his emphasis.

21. For an overview of the history of the Ohio State Mathematics Department, see
https://math.osu.edu/about-us/history.

22. Wilder to Moore, 22 December, 1924, Box 86-36/8, Folder 6: General Correspon-
dence R. L. Moore, Wilder Papers (his emphasis). The next quotation is also from this letter.
A differential geometer interested in the calculus of variations, Samuel Rasor had earned his
M.S. at Ohio State in 1902, and although he had done additional coursework at the University
of Chicago in 1906 and at Berlin during the 1910-1911 academic year, he never took a doctor-
ate. He had nevertheless moved up the ranks at Ohio State, becoming a full professor in 1913
and serving in that post until his retirement in 1943.
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mathematicians sought to convince their administrators to allow the pendu-
lum to swing from teaching to research relative to professional advancement.
Although in the 1920s it was not yet clear whether that swing would occur, a
not insignificant number of America’s mathematicians endeavored to pursue
their research and graduate instruction as they dutifully taught their under-
graduate classes and served their institutions. In so doing, they contributed to
a number of areas that filled the pages of journals at home and appeared side
by side with European research in journals abroad. Veblen captured at work
the “most active and successful investigators” among them in a 1928 snapshot
that well reflected where American mathematicians were deemed, by at least
some of their contemporaries, to be making the most important advances (see
fig. 1.2).23

A Recognized American Specialty: Analysis Situs

Analysis situs, or what would today be called topology, was considered in the
1920s perhaps the most distinctive of the American mathematical research
specialities. In fact, as Gottingen’s Richard Courant saw it in 1927, it was
“[t]he one mathematical field in which America has had perhaps the greatest
success.”?* It came, however, in two flavors. Combinatorial, that is, algebraic,
topology treated space as comprised, in some sense, of “visible” building
blocks that were stuck together in particular ways. It asked just how those
building blocks were “combined,” or, in other words, what were their “com-
binatorial” properties? This type of topology—acknowledged by Courant—
was fostered primarily at Princeton initially under Veblen’s leadership. The
other kind—point-set topology and ignored by Courant—considered space
microscopically as a collection of “invisible” points. It focused largely on con-
tinuity considerations from an axiomatic point of view and was developed
as an American speciality thanks to the efforts principally of R. L. Moore,
at Penn until his move in 1920 to the University of Texas in Austin. Each
of these types of topology sought to isolate those properties of spaces that

23. Oswald Veblen, “Report for Mathematics to the Trustees of the National Research
Fund,” 17-18 June, 1928, part C, Box 26, Folder: NAS National Research Fund (1928), Veblen
Papers. Fig. 1.2 is a retyped version of the original that preserves as much as possible its layout,
spacing, etc.

24. Courant to Augustus Trowbridge, 27 April, 1927, in Siegmund-Schultze, Rockefeller
and the Internationalization of Mathematics between the Two World Wars, pp. 272-274 on p. 272
(Siegmund-Schultze’s translation).
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Table T.

Function Theory.
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E. Dickson (Chicago) W. F. Osgood (Harvard)
H. M. Wedderburn (Princeton) G. D. Birkhoff (Harvard)
T. Bell (C.I.T.) T. H. Gronwall (Columbia)
S. Vandiver (Texas) Norbert Wiener (M.I.T.)
H. Mitchell (Penna.) J. Tamarkin (Brown)
F. Blichfeldt (Stanford) J. F. Ritt (Columbia)
A. Manning (Stanford) Einar Hille (Princeton)
A. Miller (Illinois) O. D. Kellogg (Harvard)
J. Kempner (Colorado) Dunham Jackson (Minnesota)
Or (Yale) J. A. Shohat (Michigan)
C. N. Moore (Univ. of Cincinnati)
W. A. Hurwitz (Cornell)
A. Pell Wheeler (Bryn Mawr)
R. D. Carmichael (Illinois)
J. L. Walsh (Harvard)
M

Calculus of Variations

H. Stone

General Analysis & Theory
of Functionals

A. Bliss (Chicago) E. H. Moore (Chicago)

Morse (Harvard) G. C. Evans (Rice Inst.)
T. H. Hildebrandt (Michigan)
L. M. Graves (Chicago)

Analysis Situs Algebraic Geometry.

W. Alexander (Princeton) S. Lefschetz (Princeton)

Lefschetz (Princeton) A. B. Coble (Illinois)

Veblen (Princeton) V. Snyder (Cornell)

D. Birkhoff (Harvard) F. R. Sharpe (Cornell)

Morse (Harvard) J. L. Coolidge (Harvard)

L. Moore (Texas)

W. Chittenden (Iowa)

R. Kline (Penna.)

Differential Geometry

Dynamics and Relativity

P. Eisenhart (Princeton) G. D. Birkhoff (Harvard)

Veblen (Princeton) L. P. Eisenhart (Princeton)

C. Graustein (Harvard) G. Y. Rainich (Michigan)

Kasner (Columbia) E. W. Brown (Yale)

D. Struik (M.I.T.) H. Bateman (C.I.T.)

Y. Thomas (Princeton) Paul Epstein (C.I.T.)

P. Lane (Chicago) F. D. Murnaghan (Johns Hopkins)
B. Stauffer (Kansas)

FIGURE 1.2. Veblen’s list of America’s “Research Mathematicians” (1928). (Typed Facsimile
of the document in Veblen Papers, Library of Congress.)
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are preserved under homeomorphism, that is, under the action of a continu-
ous, one-to-one and onto map with continuous inverse. Each thus also dealt
with the properties of geometrical figures that remain invariant under such a
map.?® As students in the classes of E. H. Moore at Chicago in the first decade
of the twentieth century, Veblen and Moore had both been influenced by
the foundational, postulate-theoretic agenda that the elder Moore had then
embraced.?% Interestingly, each initially attacked his own brand of topology
from, so to speak, the ground up.

Veblen had come to the field from work, in the opening decade of the twen-
tieth century, on the foundations, first, of geometry in general and, then, of
projective geometry in particular. By 1912, his focus had shifted to an explo-
ration of ideas that Henri Poincaré had only incompletely developed in a
series of papers published between 1895 and 1904 on the concept of the
connectivity of a space and on what Poincaré termed “analysis situs.” With
Princeton student James Alexander, for example, Veblen co-authored a paper
on “Manifolds of N Dimensions” in 1913 that explicitly aimed “to establish
some of the fundamental definitions and theorems as rigorously as possible,
50 as to furnish an introduction to the memoirs of Poincaré.”?” This paper

25. For these general characterizations of algebraic and point-set topology, see Solomon
Lefschetz, Review of Oswald Veblen’s Analysis Situs, Bulletin des sciences mathématiques, ser. 2,
46 (1922),421-424 on pp. 421-422; Oswald Veblen, The Cambridge Colloquium: PartII: Anal-
ysis Situs (New York: American Mathematical Society, 1922; 2d. ed., 1931), p. S; and James
Alexander, “Some Problems in Topology,” in Verhandlungen des Internationalen Mathematiker-
Kongresses Ziirich 1932, ed. Walter Saxer, 2 vols. (Ziirich and Leipzig: Orell Fiissli, 1932), 1:
249-257 on p. 249.

Ioan James provided an idiosyncratic account of the American topological scene in his
essay, “Combinatorial Topology Versus Point-set Topology,” in Handbook of the History of
General Topology, ed. Charles Aull and Robert Lowen, 3 vols. (Dordrecht: Kluwer Academic
Publishers, 1997-2001), 3: 809-834. There, he asserted that “point-set topology seems to
have become separated from the rest of topology around the middle of the twentieth century”
(p- 809). Here, I show that, at least in the United States, the two types of topology were fairly
separate from the start.

26. See the section on algebraic research below. On Moore’s role in American mathematics
in the decades around 1900, see my “E. H. Moore and the Founding of a Mathematical Com-
munity in America: 1892-1902,” Annals of Science 41 (1984), 313-333, reprinted in A Century
of Mathematics in America, ed. Peter Duren et al,, 2: 155-175 and Parshall and Rowe, Emer-
gence, chapters 6, 9, and 10. On the doctoral research of Veblen and R. L. Moore, see Parshall
and Rowe, Emergence, pp. 383-387.

27. Oswald Veblen and James Alexander, “Manifolds of N Dimensions,” AM 14 (1912—
1913), 163178 on p. 164. The quotation that follows is also on this page. For the set-up in the
next paragraph, see pp. 164-165. The quotations in the next paragraph are on p. 164.
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marked Alexander’s publication debut as a topologist and set him on the
research path he would continue to pursue throughout his career.

To fix the ideas and establish some terminology, consider Euclidean n-
space and take n 4 1 points not all in the same (n — 1)-space as well as the 1-,
2-, ..., (n— 1)-dimensional simplexes of which they are the vertices. These
constitute a finite region in n-space called an n-dimensional simplex, that s,
“that one among the regions into which n-space is subdivided by n+ 1 lin-
early independent (n — 1)-spaces which does not contain a point at infinity.”
For example, “the interior of a triangle in a plane is a two-dimensional simplex,
and the linear segment joining two points is a one-dimensional simplex.” The
n+ 1 points are called the vertices, and the points on the boundary are not
part of the simplex.

Now, consider a set of objects in one-to-one correspondence with the
points in an n-dimensional simplex together with its boundary. The objects
corresponding to the points of the simplex constitute an n-cell and the objects
corresponding to the boundary of the simplex form the n-cell's boundary.
Finally, consider the set C, of cells consisting of «; i-cells for 0 <i <n. C,
is called a complex if every i-cell, for i > 0, is made up entirely of cells of
dimensions less than i and if every i-cell, for i < n, is on the boundary of some
(i 4 1)-cell. The ordered set of points in the various cells of a complex C, is
a manifold M, provided: 1) every point is interior to some n-cell, 2) if two n-
cells have a point in common, there is an n-cell contained within each of them,
and 3) for any two points p and g in Cy, there is always a chain of overlapping
n-cells that connects an n-cell about p to an n-cell about g.

As Veblen and Alexander noted, Poincaré had shown that it was possible
to characterize any oriented, n-dimensional manifold M, in terms of certain
matrices from which are derivable a set of n — 1 positive integers P;, which he
called the Betti numbers and which are invariants of M,,.2% The P; satisfy both
the duality relation (now named after Poincaré)

Pi=P,_;

and the so-called generalized Euler theorem
n—1

Y D=1+ (=1"+ Y (=D'(P;— 1),
0 1

28. Veblen and Alexander, pp. 163-164. Jean Dieudonné gives a modern technical dis-
cussion both of Poincaré’s work and of Veblen and Alexander’s 1913 paper in A History of
Algebraic and Differential Topology, 1900-1960 (Boston: Birkhduser Boston, 1989), pp. 15-35
and pp. 41-42, respectively.
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where ; is the number of i-cells into which M,, may be dissected. If, however,
M, is non-oriented, then the numbers P; do not satisfy the duality relation but
do satisfy

n n—1
Y (“Dig=1+ (~D'®—1).
0 1

In their paper, Veblen and Alexander showed how to simplify things so that
“certain systems of linear equations reduced modulo 2” led to matrices in just
zeros and ones. From those matrices, they derived n — 1 constants R; which
satisfied both Poincaré duality and the generalized Euler theorem, regard-
less of whether or not the manifold was oriented. Although more general
than Poincaré’s set-up, theirs, as they realized, unfortunately did not yield
any invariants of the manifold different from those already determined by
Poincaré’s methods.

Three years after the publication of this joint work and just before he joined
the American war effort, Veblen gave the fifth AMS Colloquium Lectures on
his evolving thoughts on analysis situs.>” In particular, he aimed to present
merely “an introduction” for his American audience “to the problem of dis-
covering the n-dimensional manifolds and characterizing them by means of
invariants.”3® He had an even higher aspiration in the published version of
the lectures, which appeared only in 1922 due to his wartime involvement.3!
Ever intent on the clarity and precision he had been honing since his student
days at Chicago, he took on the challenge of providing a “more formal,” “sys-
tematic treatise on the elements of [this type of ] Analysis Situs.” In writing it,
Veblen introduced the ideas by treating the cases of n =1 and n =2 before
tackling the general case.

Veblen’s work initiated a research focus on algebraic topology at Princeton
that flourished beginning in the 1920s.3> Although his own interests shifted
into the not-unrelated area of differential geometry over the course of that
decade (see the next section), Veblen’s student and, beginning in 1916, his
colleague, Alexander, as well as their colleague, after his 1925 move from the
University of Kansas, Solomon Lefschetz, continued to churn out new results

29. On the establishment of the AMS Colloquium Lectures, see the next chapter.

30. Veblen, Analysis Situs, p. vi. The next quotation is also from this page.

31. For more on the latter, see David Alan Grier, “Dr. Veblen Takes a Uniform: Mathematics
in the First World War,” AMM 108 (2001), 922-931.

32. Saunders Mac Lane briefly characterizes this group in “Topology and Logic at Prince-
ton,” in A Century of Mathematics in America, ed. Peter Duren et al., 2: 217-221.
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in the rapidly evolving field. In 1926, for example, Alexander significantly
generalized the results that he and Veblen had obtained (mod 2) in their 1913
paper to results (mod 1), while Lefschetz proved his famous fixed point theo-
rem, a result that provided an actual formula for counting the number of fixed
points of a continuous transformation of manifolds.>® They, but especially
Veblen and Lefschetz, also trained members of a next generation of algebraic
topologists that included, in the decade of the 1920s, Veblen’s student, Philip
Franklin at MIT, and Lefschetz’s student, Paul Smith of Columbia’s Barnard
College.* These young mathematicians were complemented by others like
the University of Iowa’s Edward Chittenden, who had earned his Ph.D. in
1912 at Chicago under E. H. Moore for a thesis on Moore’s brand of general
analysis.>

By 1930, then, the time was already ripe for the new overview of results
that Lefschetz provided on the occasion of his AMS Colloquium Lectures
at Brown University. As he explained, while Poincaré had left “the founda-
tions” of combinatorial analysis situs “in a rather unstable equilibrium,” “[i]t
is largely to Veblen and Alexander that we owe the remedy for this state of
affairs, and the present improved situation.” In fact, as Lefschetz saw it, “[a]
date marks the transition: 1922, when there appeared Veblen’s excellent Cam-
bridge Colloquium Lectures: Analysis Situs, which has deservedly become the
standard work on the subject.’3¢

In his own Colloquium volume, entitled simply Topology, Lefschetz
pushed beyond Veblen’s work to deal with what he termed the “new phases

33. James Alexander, “Combinatorial Analysis Situs,” TAMS 28 (1926), 301-329 and
Solomon Lefschetz, “Intersections and Transformations of Complexes and Manifolds,” TAMS
28 (1926), 1-49, respectively. The AMS awarded its third Bocher Prize to Alexander in 1928
for this paper; Lefschetz had won the second prize in 1924 for an earlier paper in an algebraic-
geometric vein. This prize per se is treated in the next chapter. Dieudonné treats Alexander’s
work in a technical context in A History of Algebraic and Differential Topology, pp. 36-59, while
Robert Brown discusses Lefschetz’s development of the theory of fixed points in “Fixed Point
Theory,” in History of Topology, ed. Ioan James (Amsterdam; Elsevier Science BV,, 1999),
pp- 271-299 on pp. 275-280.

34. The Englishman, Henry Whitehead, also studied at Princeton beginning in 1929 and
earned his Ph.D. there in 1932. See chapter three.

35. Reinhard Siegmund-Schultze provides a historical contextualization of this work in
“Eliakim Hastings Moore’s ‘General Analysis, ” Archive for History of Exact Sciences 52 (1998),
51-89.

36. Solomon Lefschetz, Topology, AMS Colloquium Publications, vol. 12 (New York:
American Mathematical Society, 1930), p. iii. The next quotation is also from this page.
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of the subject” Among those were the fixed point theory that he had been
developing as well as new results on duality. Relative to the latter, there were
then two types of duality relations: “those discovered by Poincaré which
exist between the various connectivity indices of a manifold, and those due
to Alexander in which the invariants of a surrounding residual space also
enter.?” In reviewing his former advisor’s book, Paul Smith highlighted the
fact that Lefschetz’s “discovery that these two types of relations are spe-
cial cases of a third more general type, is revealed in a set of formulas of
striking symmetry and generality.” Smith closed on a boosteristic note that
reflected Courant’s view of the strength of American algebraic topology.
“Analysis situs,” he acknowledged, “is a comparatively young science,” but “[i]t
is pleasant to reflect that much of what has been accomplished has been the
work of American mathematicians, and to that work the present volume is a
distinguished contribution.”

The other branch of topology—point-set analysis situs—grew out of the
set-theoretic work on which Georg Cantor had embarked beginning in the
1870s. Cantor concerned himself with deep, fundamental questions about
the real line that involved concepts like limits, convergence, and continuity.>®
He tackled them through a whole new theory of sets that rested on forma-
lized notions such as open and closed sets and the set of limit points of a
set. At the hands of Maurice Fréchet, Frigyes Riesz, and Felix Hausdorff into
the 1910s, these ideas were extended and developed into a general theory
of topological spaces independent of any particular metric. It was this kind
of analysis situs that ultimately attracted Veblen’s slightly younger colleague,
R. L. Moore.

Moore’s promising start at Chicago was followed by a decade during which
the newly minted Ph.D. cast about for both a productive line of research and

37. Paul Smith, “Lefschetz on Topology,” BAMS 37 (1931), 645-648. The quotations that
follow are on pp. 646 and 648, respectively. Alexander presented what is now called “Alexander
duality” in “A Proof and Extension of the Jordan-Brouwer Theorem,” TAMS 23 (1922), 333~
349. In addition to this important work, Alexander discovered the Alexander horned sphere,
a particular embedding of a sphere in Euclidean three-space that cuts it into two regions, one
of which is not simply connected. He also applied topological methods to the theory of knots.
See James Alexander, “An Example of a Simply Connected Surface Bounding a Region Which
is Not Simply Connected,” PNAS 10 (1924), 8-10 and “Topological Invariants of Knots and
Links,” TAMS 30 (1928), 275-306, respectively.

38. Joseph Dauben treats Cantor and his work in detail in Georg Cantor: His Mathematics
and Philosophy of the Infinite (Cambridge: Harvard University Press, 1979).
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a suitable position.>® After short stints on the faculties at the University of
Tennessee and at Northwestern as well as at Princeton with Veblen, Moore
accepted a call in 1911 to the University of Pennsylvania, where he began to
find his academic and professional footing. By 1916, he had published what
proved to be a seminal paper “On the Foundations of Plane Analysis Situs,”*
and he had directed the thesis research of his first student, John Kline. In a
sense, these two events defined the subsequent course of Moore’s career as a
researcher and teacher.*!

His 1916 paper harkened back philosophically and mathematically both
to David Hilbert’s 1899 Grundlagen der Geometrie and to Cantor’s work in
the 1870s and 1880s on the theory of point sets.*? In it, Moore took the two
notions of “point” and “region” as primitive: if S is a class of elements called
“points,” then a “region” is a class of subclasses of points, that is, a region is a
class of what Moore termed “point-sets.” He then stated a number of axioms
in terms of these primitives and, from them, developed the topology of the
Euclidean plane, giving topological characterizations of such notions as the
simple arc and the simple closed curve. At the same time, he was careful to
provide examples that demonstrated the independence of the axioms one
from the others.*3 This postulate-theoretic mode of reasoning—Ilearned dur-
ing his student days at Chicago—characterized much of Moore’s subsequent
research as well as the eponymous style of teaching that he developed in which
students independently test conjectures and derive mathematical theorems

from a set of axioms.**

39. Raymond Wilder, “The Mathematical Work of R. L. Moore,” Archive for History of Exact
Sciences 26 (1982) 73-97 on p. 77; reprinted in A Century of Mathematics in America, ed. Peter
Duren et al,, 3: 265-291 on pp. 269-270. There is one full-length biography of Moore: John
Parker, R. L. Moore: Mathematician and Teacher (n.p.: Mathematical Association of America,
2005).

40.R. L. Moore, “On the Foundations of Plane Analysis Situs,” TAMS 17 (1916), 131-164.

41. Compare Albert Lewis, “The Beginnings of the R. L. Moore School of Topology,” His-
toria Mathematica 31 (2004), 279-295 and Wilder, “The Mathematical Work of R. L. Moore,”
pp- 79-80 (or pp. 272-273 in the reprinted edition).

42. See, for example, Jerome Manheim, The Genesis of Point Set Topology (London: The
Macmillan Company, 1964).

43. Wilder, “The Mathematical Work of R. L. Moore,” pp. 79-82 (or pp. 272275 in the
reprinted edition.)

44. David Zitarelli discusses this technique and its reception in “The Origin and Early
Impact of the Moore Method,” AMM 111 (2004), 465-486. For more on the role of postulate
theory in the United States in the opening decade of the twentieth century, see the section on

algebra below.
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Like Veblen before him, Moore codified his ideas in the context of AMS
Colloquium Lectures. Speaking in Boulder, Colorado, in 1929, he laid out
his point-set brand of analysis situs. When the printed volume appeared in
1932—two years after Lefschetz’s account of algebraic topology—Moore had
greatly extended the results derivable from the axiomatic set-up for point-set
topology that he had presented in his 1916 paper, among them the Moore-
Kline theorem that gives necessary and sufficient conditions under which a
closed set is a subset of an arc.** As Harry Gehman of the State University
of New York at Buffalo saw it, “this book will undoubtedly be an excellent
text from which to obtain an insight into the nature of the problems con-
sidered by the school of mathematicians headed by Professor Moore.”*® In
addition to Moore, that school ultimately consisted in the 1920s of Moore’s
students—such as Kline at Penn, Raymond Wilder first at Ohio State but then
at Michigan, and Gordon Whyburn ultimately at the University of Virginia—
and students of these students—Ilike Kline’s students, Gehman, Leo Zippin
first at Penn State but later at Queens College in New York, and William Ayres
at Michigan.*”

By the 1920s, then, the United States sustained two largely disjoint schools
of topology. One was associated with Princeton and was actively spearheaded
by Lefschetz after 1925. The other was linked with R. L. Moore especially
after he settled in Austin in 1920. Led by strong-minded advocates, these two
topological camps fairly quickly found themselves in competition. Kline, as
a professor in Philadelphia and a topologist of the point-set variety, felt this

4S. R. L. Moore, Foundations of Point Set Theory, AMS Colloquium Publications, vol. 13
(New York: American Mathematical Society, 1932), pp. 317-322. (Moore and Kline had
proven their theorem in “On the Most General Closed Point-set Through Which It Is Pos-
sible To Pass a Simple Continuous Arc,” AM 20 (1919), 218-223.) A main line of research
that emerged from Moore’s approach in this book was “the search for necessary and suffi-
cient conditions for the metrizability of topological spaces” (Lynn Steen, “Conjectures and
Counterexamples in Metrization Theory,” AMM 79 (1972), 113-132 on p. 113).

46. Harry Gehman, “Moore on Point Sets,” BAMS 39 (1933), 479-483. Gehman did, how-
ever, point out a number of “minor inaccuracies” (p. 481) at the same time that he leveled a
number of criticisms at the book.

47. The Moore school has received much historical consideration, for example, Lewis,
pp. 285-288, as well as Ben Fitzpatrick, “Some Aspects of the Work and Influence of
R. L. Moore” and F. Burton Jones, “The Beginning of Topology in the United States and the
Moore School,” the latter both in Handbook of the History of General Topology, ed. Charles
Aull and Robert Lowen, 1: 41-61 and 97-103, respectively. Fitzpatrick and Jones counted
themselves among the members of the “Moore school”
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rivalry particularly keenly, given that his closest mathematical colleagues were
the combinatorial topologists in Princeton.

In March 1925, for example, Lefschetz ran into Kline and Gehman at the
AMS meeting in New York City and learned that Gehman was applying for an
NRC fellowship to study with his mathematical “grandfather,” R. L. Moore in
Austin.*® As Moore related in a letter to Kline, Lefschetz promptly wrote to
tell him that he had “strongly urged” Gehman to go to Princeton first in order
to “get all he could from the local analysis situs gang before going to you.”*’
As Lefschetz saw it, that “would be a very excellent thing for both gangs, the
local and yours,” since then Gehman could “go down to Texas and thus estab-
lish the bridge, etc.” Lefschetz’s query—“What do you think of it?”—drew a
sharp rebuke from Moore. “As to what I think of it,” Moore sniped to Kline,
“it doesn’t sound sincere to me. If Gehman wants to go into the Princeton line
of analysis situs—let him go, with his eyes open. But don’t let him go with his
eyes half-shut, led by some pretense that in that way he will be better prepared
to come down here. He has started on a definite line of work. If he wants to
continue that line let him do it. If he doesn't, let him do that”

Kline could not have agreed more. “This whole matter makes me mad,”
he told Moore.>® Lefschetz and others had recognized a strong student in
Gehman and were trying to win him over to their point of view. As Kline
put it to Moore, the Princetonians hoped to convince Gehman “that our
line was ... highly specialized,” while theirs was less so. Moreover, they
announced that they “did not appreciate our type of Analysis Situs,” so “it was
for our good to have the two bridged etc. etc”>! The rivalry inherent in this

48. These fellowships and the role that they played in mathematics are considered in the
next chapter.

49. Moore to Kline, 7 March, 1925, Box 4RM74, Folder: Kline, John Robert (1925-1928),
Moore Papers. The quotations that follow are also from this letter with Moore’s emphases.

50. Kline to Moore, 10 March, 1925, Box 4RM74, Folder: Kline, John Robert (1925-
1928), Moore Papers. The quotations that follow are also from this letter.

51. Indeed, this perception of the point-set approach was not limited to members of the
combinatorial camp. Albert Bennett, for example, was a Princeton-trained algebraist who took
aposition at Brown in 1927 after stints at the University of Texas and Lehigh University. When
John Kline’s student, William Ayres, was on the job market following an International Edu-
cation Board fellowship year in Vienna, Bennett mentioned him to Roland Richardson as a
possible hire, but with a caveat: “as with a number of people working on R. L. Moore’s form of
analysis situs, his interests are probably rather narrow.” See Bennett to Richardson, 21 March,
1929, Box 3: Correspondence, 1926-1930 ‘A-B, Folder: Bennett, Albert Arnold, Richardson
Papers.
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exchange continued unabated into the 1930s and served to spur the further
development of both camps in the interwar period (see chapter six).

Geometries, Differential and Algebraic

Americans also pursued two types of geometry in the 1920s—differential
and algebraic—but, in this instance, there was no rivalry and little overlap
between the respective practitioners. By and large, the differential geome-
ters were motivated by the still-recent discovery and ongoing development
of Einstein’s general theory of relativity, while the algebraic geometers drew
primarily from a nineteenth-century tradition imported to American shores
by students of Felix Klein as well as by James Joseph Sylvester and his friend
and mathematical confidant, Arthur Cayley.>> As characterized by Harvard’s
self-described “modern” geometer, Julian Coolidge, the differential geometers
studied the properties of figures as revealed by the differential calculus and
worked more abstractly in terms of groups of one-to-one, analytic transfor-
mations. The algebraic geometers, on the other hand, were concerned with
uncovering the properties of figures in terms of algebraic relations that linked
their coordinates or their equations and worked with birational groups of
one-to-one, algebraic transformations.>3

Although differential geometry had adherents at Chicago in Ernest Lane,
at Columbia in Edward Kasner, and at Harvard in William Graustein, the
American center in the field in the 1920s was Princeton where Veblen and
Luther Eisenhart attracted both graduate students and postdoctoral fellows
to their vibrant intellectual environment. That Veblen was also a leader in
algebraic topology attests to how closely related that flavor of topology is

52. Samson Duran treats American geometrical research in the period from 1888 to 1920,
that is, in the period immediately preceding the one considered here, in “Des géométries état-
suniennes & partir de I'étude de I'American Mathematical Society: 18881920 (unpublished
doctoral dissertation, Université Paris-Sud (Orsay), 2019).

3. Julian Coolidge, A History of Geometrical Methods (Oxford: University Press, 1940;
reprint ed., New York: Dover Publications, Inc., 1963), p. viii. Coolidge also isolated two other
types of geometry in his book: synthetic geometry, as exemplified by Euclid’s Elements, and
topology. Coolidge’s characterization of himself as a “modern” geometer reflected his broad
interests: in non-Euclidean geometry, which he categorized as synthetic geometry, as well as in
algebraic geometry. See Jaques Cattell, ed., American Men of Science: A Biographical Dictionary,
7th ed. (Lancaster: The Science Press, 1944), p. 357 and Dirk Struik, “Julian Lowell Coolidge,”
AMM 62, (1955), 669-682, especially pp. 674-682.
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to the differential flavor of geometry. As for algebraic geometry, it was fos-
tered somewhat more diffuselyin the 1920s by, among others, Klein’s students
Virgil Snyder at Cornell and Henry White at Vassar,>* Cambridge-trained
Frank Morley at Hopkins and Charlotte Angas Scott at Bryn Mawr, Morley’s
student, Arthur Coble, at both Hopkins and the University of Illinois, and
Julian Coolidge at Harvard. Of these, only White at Vassar, an undergraduate
women’s college, trained no doctoral students in the field, although that made
him no less of a research participant. While still in Kansas, moreover, Lef-
schetz also engaged in geometric research of an algebraic bent prior to turning
his attentions more exclusively to topology.

Of these two geometric research streams, differential geometry was
unquestionably the more exciting and the more avant-garde in the 1920s,
as leading mathematicians in Europe and the United States tried effectively
to mathematize the general theory of relativity.>> Yet, it also came in dif-
terent flavors. The more classical versions, which extended and developed
late-nineteenth-century work, also had their representatives in the United
States.

For example, in 1906, Ernest Wilczynski published the first American text
on projective differential geometry, a subarea that had grown out of work
particularly by Gaston Darboux and Georges Halphen in France.*® After he
assumed the professorship at the University of Chicago in 1910 that he would
hold until ill health forced him from the classroom in 1923, Wilczynski not
only actively pursued his own research in this area but also produced almost
two dozen Ph.D.s in it. Among them, Ernest Lane took over for his advisor

54. Parshall and Rowe discuss Snyder’s and White’s training under Klein in Emergence,
pp. 202-229.

55. Tracy Thomas gives an overview of work in this field in the 1920s to 1938 in “Recent
Trends in Geometry,” in Semicentennial Addresses of the American Mathematical Society, ed. The
Committee on Publications (New York: American Mathematical Society, 1938), pp. 98-135.
Other efforts to mathematize the general theory of relativity as well as quantum mechanics had
their roots in mathematical physics. Among the American contributors to these research strains
were two Russian-born Americans, Paul Epstein at the California Institute of Technology and
George Rainich at the University of Michigan. See, for example, Paul Epstein, “On the Evalu-
ation of Certain Integrals in the Theory of Quanta,” PNAS 12 (1926), 629-633 and George
Rainich, “Electrodynamics in General Relativity,” TAMS 17 (1925), 106-136.

56.Ernest Wilczynski, Projective Differential Geometry of Curves and Ruled Surfaces (Leipzig:
B. G. Teubner Verlag, 1906). Duran treats Wilczynski’s work in some detail in chapter six of his
dissertation.
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in 1923 and continued to churn out graduate students.’” As Saunders Mac
Lane pejoratively characterized it, “Chicago had become in part a Ph.D. mill
in mathematics” in the 1920s.% Moreover, what Mac Lane termed its “inher-
itance principle” in hiring—that is, the replacement of faculty members by
their former students without particular regard for the evolution of newer
and more exciting mathematical ideas—resulted in a certain stagnation there
in geometry as well as in the calculus of variations (see below) despite a
prodigious output of new Ph.D.s in these fields. Those doctorate holders nev-
erthelessleft Chicago to populate American colleges and universities desirous
of ostensibly better credentialed, more research-oriented faculties.

At Columbia, Edward Kasner also worked in differential geometry
along more classical lines, exploring the purely geometric properties of the
trajectories—defined in terms of certain differential equations—of particles
moving in general positional fields of force. When 1919 brought the con-
firmation of Einstein’s prediction that light rays bend when passing close to
a large gravitational mass like the Sun, Kasner redirected his techniques to
the problem of teasing out the more “purely mathematical aspects of . . . rel-
ativity theory, based as it is, on regarding the space-time continuum as a
four-dimensional Riemannian manifold”” In particular, in a flurry of work
presented to the AMS in 1921 (some of which was not actually published until
1925), Kasner studied the mathematical ramifications of Einstein’s cosmolog-
ical equations, finding, for example, that an Einstein space that was not itself

Euclidean could not be embedded in a five-dimensional Euclidean space.®

S7. At the University of Kansas, Ellis Stouffer had also been a student of Wilczynski and
pursued his advisor’s brand of differential geometry there. See, for example, Ellis Stouffer, “Sin-
gular Ruled Surfaces in Space of Five Dimensions,” TAMS 29 (1927), 80-95. Stouffer, however,
had few students compared to his academic “brother,” Lane.

58. Saunders Mac Lane, “Mathematics at the University of Chicago: A Brief History,” in A
Century of Mathematics in America, ed. Peter Duren et al., 2: 127-154 on p. 138. The quotation
that follows is on p. 141. Mac Lane was a graduate student at Chicago for one year, 1930-
1931, but left to earn his doctorate at Géttingen. He returned to Chicago as an instructor for
the 1937-1938 academic year, moved to Harvard, and then returned to the Chicago faculty in
1947 thanks to the efforts of Marshall Stone (see chapter nine).

59. Jesse Douglas, “Edward Kasner, 1878-195S,” Biographical Memoirs, vol. 31 (Washing-
ton, D.C.: National Academy of Sciences, 1958), pp. 179-209 on p. 195. Douglas gives a nice
technical overview of Kasner’s work in this tribute.

60. Edward Kasner, “The Impossibility of Einstein Fields Immersed in Flat Space of Five
Dimensions,” AJM 43 (1921), 126-129.
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William Graustein at Harvard also pursued differential geometry from a
classical point of view and, in the 1920s, drew on that background to treat
questions arising from the mathematization of Einstein’s theory. Graustein
was intrigued by the implications of the application to differential geome-
try of the tensor calculus that Italians Gregorio Ricci-Cubastro and Tullio
Levi-Civita had developed in the opening years of the twentieth century
and that the physicists were then employing.%! As his colleague and biogra-
pher, Julian Coolidge, explained, while “[m]any geometers threw themselves
entirely into the new work,” “Graustein was more cautious.” “[H]e recog-
nized the advantages in the new notations, new points of view and new
techniques, especially when more than three dimensions were involved. But
what attracted him most was the invariant or covariant character of the new
processes, and that led him to the idea of developing methods on the more
classical lines.”®? Graustein’s efforts resulted in the paper “Méthodes invari-
antes dans la géométrie infinitésimale,” which, although published only in
1929, won the Royal Academy of Belgium’s 1925 prize “for an important
contribution to infinitesimal [that is, differential] geometry.”63 Graustein had
succeeded in producing fruitful, new techniques for determining “what sort of
things are invariant under the transformations of differential geometry,” and
he laid them out, this time in English by invitation of the AMS, at its meeting
in April 1930.%*

It was at Princeton, however, that Luther Eisenhart bridged the old and
the new differential geometry and, with Veblen, inspired novel research

61. The same was true of Graustein’s mathematical neighbor, Dirk Struik. Struik, later
perhaps better known for his work as a historian of mathematics, had been a student of Jan
Schouten at Delft and had done postdoctoral work with Levi-Civita in Rome before settling
in the United States at MIT. There, he was a colleague and collaborator (in differential geom-
etry) of Norbert Wiener in addition to pursuing his own differential geometric work. See, for
example, Dirk Struik and Norbert Wiener, “A Relativistic Theory of Quanta,” JMP 7 (1927-
1928), 1-23 and Dirk Struik, “On Sets of Principle Directions in a Riemannian Manifold of
Four Dimensions,” op. cit., 193-197.

62. Julian Coolidge, “William Caspar Graustein-In Memoriam,” BAMS 47 (1941), 343
349 on p. 34S.

63. William Graustein, “Méthodes invariantes dans la géométrie infinitésimale,” Mémoires
de I'Académie royale de Belgique (Classe des Sciences) 11 (1929), 1-96. For the quotation, see
“Notes,” BAMS 32 (1926), 176186 on p. 177.

64. William Graustein, “Invariant Methods in Classical Differential Geometry,” BAMS
36 (1930), 489-521. The quotation appears in Coolidge, “William Caspar Graustein-In
Memoriam,” p. 345.
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directions. Prior to Einstein’s work, Eisenhart had continued to pursue the
research line stemming from the doctoral work on the “Infinitesimal Defor-
mation of Surfaces” that he had completed in 1900 at Hopkins under the
guidance of Sylvester’s student, Thomas Craig.65 This had culminated, in
some sense, in 1923 with the publication of Transformations of Surfaces, in
which Eisenhart gave the first unified, book-length treatment of the research
that had been done up to that time on the generalization of three-dimensional
differential geometry to n dimensions.®® Interestingly, this was one of the first
mathematical monographs to be published through a subvention provided by
the National Research Council (see the next chapter).

Three years earlier, Eisenhart, with his graduate-level background in math-
ematics, physics, and astronomy, had already begun embracing the new Ein-
steinian physics from a mathematical point of view. He was thus the obvious
person to introduce American mathematicians to those ideas at a special,
afternoon-long symposium held in conjunction with the April 1920 meeting
of the AMS at Columbia. Eisenhart, who spoke on the “Geometric Aspects
of the Einstein Theory,” shared the stage with physicist Leigh Page of Yale,
who discussed “The Physical and Philosophical Significance of the Principle
of Relativity and Einstein’s Theory of Gravitation.” Some fifty mathematicians
were present to hear their remarks.%”

By October, Eisenhart had written to Einstein himself, inviting him to
come to Princeton to lecture for a semester on his evolving ideas. Although
that initial invitation was declined, Einstein did visit Princeton the follow-
ing May to give the Stafford Little Lectures. Their published English version

65. When Eisenhart was a student at Hopkins, Craig was hard at work on abook on the the-
ory of surfaces, and Eisenhart consistently took his courses. Eisenhart also took a number of
physics and astronomy courses as a graduate student, although astronomer Simon Newcomb
was not teaching at the time. Eisenhart’s doctoral committee consisted, however, of Craig and
Newcomb. It seems safe to say that Craig was Eisenhart’s doctoral advisor, although, unfortu-
nately, Craig died on 8 May, 1900, just a month before Eisenhart officially graduated. See Johns
Hopkins University Circulars 17-19 (1897-1900), especially, “Degrees Conferred June 12,
1900,” 19 (June 1900), 84-85 on p. 84. Eisenhart published his dissertation as “Infinitesimal
Deformation of Surfaces,” AJM 24 (1902), 173-204.

66. Luther Eisenhart, Transformations of Surfaces (Princeton: Princeton University Press,
1923) was favorably reviewed by William Graustein in “Eisenhart’s Transformation of Sur-
faces,” BAMS 30 (1924), 454-460.

67. Frank Cole, “The April Meeting of the American Mathematical Society in New York,”
BAMS 26 (1920), 433-444 on p. 43S. Eisenhart published his remarks in “The Permanent
Gravitational Field in the Einstein Theory,” AM 22 (1920), 86-94.
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“became the classic Einsteinian introduction to general relativity in the
English-speaking world and served as an implicit declaration by Princeton
University of its claim to be the center of relativity research in America.”®®
Eisenhart and Veblen began to set up that center as early as the 1921-
1922 academic year when they offered their joint seminar on “The Theory
of Relativity” and began to publish papers on their emergent ideas. In the
first of those, joint work on “The Riemannian Geometry and Its General-
izations,” they laid the groundwork for what they termed the geometry of
paths. As they explained, “[0]ne of the simplest ways of generalizing Euclidean
Geometry is to start by assuming (1) that the space to be considered is an n-
dimensional manifold in the sense of Analysis Situs, and (2) that in this space
there exists a system of curves called paths which, like the straight lines in a
euclidean space, serve as a means of finding one’s way about.”®® These paths,
defined as the solutions of a particular system of differential equations, gen-
erated, in Eisenhart and Veblen’s view, “a more natural” geometry in terms of
which to mathematize space than that then-recently developed by Hermann
Weyl and Arthur Eddington because, under certain conditions, it reduces to
Riemannian geometry. One problem then became to determine “under what
conditions the geometry of paths is Riemannian.” The exploration of that and
other questions launched Eisenhart and Veblen on a research agenda in the
geometry of paths, in particular, and in differential geometry, more generally,
that occupied not only them but also a string of students and postdoctoral
fellows—Tracy Thomas, Harry Levy, Morris Knebelman, Joseph Thomas,
Aristotle Michal, Jesse Douglas, and Henry Whitehead, among others—as
well as new faculty members—Howard “Bob” Robertson and beginning in
1930 John von Neumann and Eugene Wigner—throughout the 1920s and
into the 1930s.”° In particular, Michal engendered a so-called “Pasadena
school” of differential geometry applied to physics on the West Coast at the

68. Jim Ritter, “Geometry as Physics: Oswald Veblen and the Princeton School,” in Math-
ematics Meets Physics: A Contribution to Their Interaction in the 19th and the First Half of the
20th Century, ed. Karl-Heinz Schlote and Martina Schneider (Frankfurt: Verlag Harri Deutsch,
2011), pp. 146-179 on p. 153.

69. Luther Eisenhart and Oswald Veblen, “The Riemannian Geometry and Its Generaliza-
tions,” PNAS 8 (1922), 19-23 on p. 19. The next two quotations appear on pp. 20 and 20-21,
respectively.

70. For more on the work particularly of Joseph Thomas and Jesse Douglas in the 1920s,
see chapter three. Ritter gives the full story of the Princeton research center in the geometry of
paths in the article cited above.
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California Institute of Technology (Caltech) beginning in 1929 (see chapter
six).71

To promote their agenda, Eisenhart published two more synthetic texts in
the 1920s. His Riemannian Geometry of 1926 provided an advanced introduc-
tion to the subject that incorporated an exposition of recent results including
some of his own, while Non-Riemannian Geometry, the topic of his 1925 AMS
Colloquium Lectures, gave a systematic treatment of the new mathematics
that was evolving, especially at Princeton, from the geometry of paths.”?
Veblen, too, contributed to the codification of this work in his 1927 treat-
ment of Invariants of Quadratic Differential Forms as well as in the Foundations
of Differential Geometry that he co-authored with his Ph.D. student, Henry
Whitehead, in 1932.73

Veblen had conceived of creating within Princeton’s Department of Mathe-
matics a mathematical research group that, in pooling the individual strengths
ofits members and working collaboratively, would serve to focus international
attention on mathematics in the United States and to “advance the position
and role of American mathematics in the new post-war world””# Together
with Eisenhart, he achieved that goal in the 1920s with the generation of a
new brand of differential geometry that found itselfin active competition with
rival schools in the Netherlands under Jan Schouten and in France under Elie
Cartan.

The 1920s also witnessed the continued development of algebraic geome-
try on American shores. As Veblen explained in a 1926 sketch of the contours
of the American mathematical landscape, again for the NRC’s Vernon Kel-
logg, “[t]he development of mathematics on [an] extensive scale in this
country was brought about by a series of waves of interest in new subjects,”
and the first of those, thanks to the influence of Sylvester and Cayley, had
been algebraic geometry.”> By the 1920s, however, much of that work was

71. Tracy Thomas, “Recent Trends in Geometry,” p. 120.

72. Luther Eisenhart, Riemannian Geometry (Princeton: Princeton University Press, 1926)
and Non-Riemannian Geometry, AMS Colloquium Publications, vol. 8 (New York: American
Mathematical Society, 1927).

73. Oswald Veblen, Invariants of Quadratic Differential Forms, Cambridge Tracts in Math-
ematics and Mathematical Physics, no. 24 (Cambridge: University Press, 1927) and (with
Henry Whitehead) The Foundations of Differential Geometry, Cambridge Tracts in Mathematics
and Mathematical Physics, no. 29 (Cambridge: University Press, 1932).

74. Ritter, p. 152.

75. Veblen to Kellogg, 7 April, 1926, Box 7, Folder: Kellogg, Vernon 1924-28, Veblen Papers.
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beginning tolook dated in comparison with what was coming out of Germany
informed by the algebraic insights of Emmy Noether and others. Still, from
their more shielded vantage point, America’s algebraic geometers felt that the
time was ripe to survey their field, and they did so in 1928 under the auspices
of no less than the National Academy of Sciences. Their aim? To aid “investi-
gators in this field” as well as to serve “a wider circle””® As the 1920s came to
a close, they had no reason to doubt that their approach would have anything
but a bright future.

The survey’s authors—Virgil Snyder, Arthur Coble, Arnold Emch,
Solomon Lefschetz, Francis Sharpe, and Charles Sisam—reflected the chang-
ing demographics of American algebraic geometry. Snyder had returned from
Gottingen to take up, in 1895, the teaching position at Cornell that he would
hold for his entire career. There, he taught many in his classrooms—among
whom was his future Cornell colleague, Francis Sharpe—and trained in his
style of geometric research almost forty graduate students, one of whom was
Colorado College’s Charles Sisam. Coble, who, as noted, had done his doc-
toral work under Morley at Hopkins in 1902, taught with his colleague Emch
at the University of Illinois for all but one year of the 1920s. Together he and
Emch, like Snyder, produced like-minded graduate students throughout their
long careers. Finally, Lefschetz earned his Ph.D. at Clark University under
Sylvester’s student and successor at Hopkins, William Story, leaving Kansas
for Princeton in 1925. Whereas in many regards his co-authors on the sur-
vey perpetuated algebraic geometry’s past, he reflected its future with his dual
interests in algebraic geometry and algebraic topology.

Readers of the collaborative survey that these men wrote found lengthy
lists of results and extensive bibliographies of mostly nineteenth-century
works, at least in the first fourteen of the volume’s seventeen chapters. Those
were the chapters written by Snyder, Coble, Emch, Sharpe, and Sisam. The
largely nineteenth-century mathematicians who inspired them and their
fellow American algebraic geometers into the 1920s were men like Julius
Pliicker, Felix Klein, Max Noether, Alexander von Brill, and Alfred Clebsch
in Germany, Cayley, Sylvester, and George Salmon in the British Isles, Luigi
Cremona, Guido Castelnuovo, Federigo Enriques, and Gino Fano in Italy, and
Gaston Darboux and Georges Halphen in France. Theirs were the techniques

76. Virgil Snyder, Arthur Coble, Arnold Emch, Solomon Lefschetz, Francis Sharpe, and
Charles Sisam, Selected Topics in Algebraic Geometry, Bulletin of the National Research Council,
no. 63 (Washington, D.C.: National Research Council of the National Academy of Sciences,
1928),p. 3.
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that the Americans continued to employ. Theirs was the approach that the
Americans continued to play out.

For example, Charlotte Angas Scott, an 1885 D.Sc. from the University of
London who actually did her doctoral work under Cayley at Cambridge,””
moved to the United States to take a position on the first faculty at Bryn Mawr
in 188S. Modeled on Hopkins, Bryn Mawr was the only women’s college in
the United States that offered graduate training, albeit in a limited number of
subjects deemed key.78 One of those, however, was mathematics, and Scott
crafted and animated a program in the field until her retirement in 1924. At the
same time, she continued to pursue algebraic geometric research that focused
on such matters as the intersections and singularities of plane algebraic curves.
As fellow Briton Francis Macaulay described her, Scott was “an enthusias-
tic searcher and propounder of new ideas” as well as a gifted “interpreter of
the work of others, adding simplifications and extensions of her own.””® She
shared those insights in the course of training seven graduate students, two in
the 1920s. One of the latter, Marguerite Lehr, ultimately succeeded Scott on
the Bryn Mawr faculty.

Among Scott’s “interpretations” was Max Noether’s so-called Fundamen-
tal Theorem: “Given two algebraic curves in the same plane, f =0, ¢ =0.
Every curve which has at least the multiplicity r; 4+s; — 1 at every point, dis-
tinct or clustering, common to the two curves, where f has the multiplicity
r; and ¢ the multiplicity s;, has an equation of the form F=¢'f 4+ f'¢ =0,
where f’ has the multiplicity r; — 1 at least, and ¢’ the multiplicity s; — 1 at
least.”%" Although Noether had given a justification of this in 1873, it had

77.Scott had been an undergraduate at all-female Girton College, Cambridge and had even
come in eighth on the infamous Mathematical Tripos after being given permission, as a woman,
to take it. Since Cambridge did not officially grant degrees to women in the 1880s, she took
both her 1882 B.Sc. and her 1885 D.Sc. at London (Patricia Kenschaft, “Charlotte Angas Scott
(1858-1931),” in Women in Mathematics: A Biobibliographic Sourcebook, ed. Louise Grinstein
and Paul Campbell (Westport: Greenwood Press, 1982), pp. 193-203).

78. For more on that program, see my “Training Women in Mathematical Research: The
First Fifty Years of Bryn Mawr College (1885-1935),” MI 37 (2) (2015), 71-83 as well as
Jemma Lorenat’s “ ‘Actual Accomplishments in This World’: The Other Students of Charlotte
Angas Scott,” MI 42 (2020), 56-65.

79. Francis Macaulay, “Dr. Charlotte Angas Scott,” Journal of the London Mathematical
Society 7 (1932),230-240 on p. 232.

80. Max Noether, “Uber einen Satz aus der Theorie der algebraischen Funktionen,” Math-
ematische Annalen 6 (1873), 351-359 on p. 351. Coolidge gives an English treatment of the
theorem in A History of Geometrical Methods, p. 205.
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not been deemed particularly satisfying. This motivated Scott to provide in
a paper published in 1899 what was later termed the theorem’s “best proof.’!

Twenty-six years later, Vassar’s Henry White was still working along these
lines. In Plane Curves of the Third Order, a book like Eisenhart’s Transforma-
tions of Surfaces published with an NRC subvention, he aimed to provide
an introduction to what he viewed as the “rich and attractive field” of cubic
curves and, in so doing, to provide “a stepping-stone to many extensive and
beautiful treatises on special themes, and a stimulus to further exploration.”$?
The book mainly treated the invariant theory of the cubic—in the style of
Clebsch and Gordan that White had studied and reported on as a graduate
student in Klein's seminar at the end of the 1880s%—-but it also explored
the explicitly geometrical properties of cubic curves from an algebraic point
of view. What are their inflection points? Describe and analyze their tangents.
“Can a pentagon be inscribed in a cubic so that every point where a side
meets the opposite diagonal shall be a point on the curve?” White dealt with
these and other questions in what Charles Sisam appreciatively termed “the
most natural and logical manner,” that is, “by establishing and using Noether’s
fundamental theorem.”3*

This example—from Noether’s 1873 result to Scott’s turn-of-the-twenti-
eth-century reproving of it to White’s 1925 continued exploration of it in the
particular context of cubic curves—illustrates well not only the nineteenth-
century inspiration for much of American algebraic geometry in the 1920s but
also the perpetuation of that classical style by an active community of prac-
titioners. Harvard’s Julian Coolidge also continued in this vein in his 1931
text, A Treatise on Algebraic Plane Curves, although Snyder criticized the work
for its effort to treat “[a] great many, perhaps too many, points of view> In

exasperation, Snyder described “[t]he expansion of the field during the last

81. Charlotte Angas Scott, “A Proof of Noether’s Fundamental Theorem,” Mathematische
Annalen 52 (1899), 593-597. Coolidge gives the characterization in A History of Geometrical
Methods, p. 205 (note ).

82. Henry White, Plane Curves of the Third Order (Cambridge: Harvard University Press,
1925), pp. vi-vii. The quotation that follows is on p. 136.

83. Parshall and Rowe detail White’s presentations in Klein’s seminar in Emergence, pp. 223~
229 and 255-257.

84. Charles Sisam, “White on Cubic Curves,” BAMS 32 (1926), 555-556 on p. 555.

8S. Julian Coolidge, A Treatise on Algebraic Plane Curves (Oxford: Clarendon Press, 1931)
as reviewed by Virgil Snyder, “Coolidge on Algebraic Curves,” BAMS 38 (1932), 163-16S on
p. 163. The quotation that follows is also on this page.
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half-century” as “simply appalling” He thus gave expression to an insider’s
view of an epoch in the history of algebraic geometry much later character-
ized by mathematician Jean Dieudonné as that of “development and chaos,”
namely, the period from the mid-nineteenth century to 1920.%¢ That was pre-
cisely the era among the last representatives of which were Coolidge, Scott,
White, Snyder and his survey co-authors, and others like Morley.

At the same time that it contributed to the cacophony characteristic of
this pre-1920 period, Solomon Lefschetz’s work also suggested some of the
new research directions of what Dieudonné styled a next epoch of “new struc-
tures in algebraic geometry.” In, for example, the influential 1924 monograph,
Lanalysis situs et la géométrie algébrique, that he wrote just before leaving
Kansas, Lefschetz applied the evolving techniques of algebraic topology to
classical algebraic geometry and thereby revealed the latter’s “essentially topo-
logical nature.”®” In a 1926 letter to Hermann Weyl, he had confessed his hope
of having atleast begun the process of “bring[ing ] the theory of Algebraic Sur-
faces under the fold of Analysis and An[alysis] Situs.” As he saw it, “[t]here is
a great need to unify mathematics and cast off to the wind all unnecessary
parts leaving only a skeleton that an average mathematician may more or less
absorb. Methods that are extremely special should be avoided.”3® Lefschetz
thus foresaw a future for algebraic geometry in which new and very different
techniques would supplant those of the past. His work, in fact, influenced one
of that future’s European shapers.

The Dutchman Bartel van der Waerden had studied algebra at the feet of
Emmy Noether in Géttingen in the early 1920s. By the middle of the decade,
he had begun a project of “algebraizing algebraic geometry d la” Noether that
had ultimately and interestingly led him to Lefschetz’s 1924 work.®? Classical
algebraic geometry had dealt with the analysis of equations with coeflicients

86. Jean Dieudonné, History of Algebraic Geometry (Monterey: Wadsworth, Inc., 1985),
pp- 27-58. Dieudonné deals with the next period in the subject’s development on pp. 59-90.

87. Solomon Lefschetz, Lanalysis situs et la géométrie algébrique (Paris: Gauthier-Villars et
Cie, 1924) and compare Dieudonné, History of Algebraic Geometry, p. 70 for the quotation.

88. Lefschetz to Weyl, 30 November, 1926, Archiv der ETH Ziirich, HS 91:659 as quoted
in Norbert Schappacher, “A Historical Sketch of B. L. van der Waerden’s Work in Algebraic
Geometry: 1926-1946,” in Episodes in the History of Modern Algebra (1800-1950), ed. Jeremy
Gray and Karen Hunger Parshall, HMATH, vol. 32 (Providence: American Mathematical Soci-
ety and London: London Mathematical Society, 2007), pp. 245-283 on p. 262 (Schappacher’s
translation).

89. Schappacher, pp. 250-261 on p. 250.
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in the fields of rational, real, or complex numbers. With the advent of modern
algebra in the opening decades of the twentieth century—and its emphasis in
the work of Noether and others on structures like groups, rings, and fields—
it became natural to ask whether the results of the classical theory could be
extended to equations with coefficients in an arbitrary field. As Dieudonné
explained, “to be able to develop algebraic geometry over an arbitrary field
in the same manner” that Lefschetz had developed the classical version, “it
was necessary to invent purely algebraic tools” to replace those topological
tools honed to treat such topological concepts as continuity and connectiv-
ity.”® Van der Waerden did just that, especially in his famous series of papers
entitled “Zur algebraischen Geometrie” that ran to some twenty installments
over the almost four decades from 1933 to 1971.°! His work suggested a new
approach to algebraic geometry that drew on both algebraic and topological
ideas and methods and that was developed in parallel by Oscar Zariski in the
United States (see chapter six).

The American geometrical scene of the 1920s, like its topological coun-
terpart, was thus both subdivided and lively. Yet, whereas the two topologies
were, in some sense, young, the two geometries had much longer histories.
Work from their nineteenth-century classical periods continued to attract the
attention and to define the agendas of active twentieth-century researchers
especially in the Northeast and Midwest. Yet, as Harvard’s Birkhoft saw it in
his assessment of “Fifty Years of American Mathematics” on the occasion of
the AMS’s semicentennial in 1938, the areas of algebraic and classical differ-
ential geometry actually “seemed most vital fifty years ago” and were more
than somewhat spent by the 1920s.”% Be that as it may, in differential as well
as in algebraic geometry, American mathematicians like Eisenhart, Veblen,
and Lefschetz were taking their fields in fresh, new directions and were being
recognized for their efforts on the international stage.

Algebraic Research

If work in algebraic geometry had represented a first wave of serious math-
ematical research in the United States in the late nineteenth century, “finite
group theory and its applications to algebraic equations,” according to Veblen,

90. Dieudonné, History of Algebraic Geometry, p. 70.

91. Schappacher considers this work in detail on pp. 264-278.

92. George Birkhoff, “Fifty Years of American Mathematics,” in Semicentennial Addresses of
the American Mathematical Society, ed. The Committee on Publications, pp. 270-315 on p. 308.
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had come in on a second, “even more intense wave” that had originated in
Europe and had come ashore on the other side of the Atlantic beginning in
the 1880s.”® Frank Nelson Cole, a student in Klein’s classes in Leipzig who
returned to take his doctorate at Harvard in 1886, was initially inspired in his
group-theoretic work by Klein’s innovative approach to the icosahedron and
fifth-degree polynomial equations.”* He returned to the United States to pur-
sue those interests from positions first at Michigan and then at Columbia from
1895 until his retirement in 1926. Klein also directed the doctoral work of two
German students, Oskar Bolza and Heinrich Maschke, following his move
to Gottingen in 188S. They both ultimately landed jobs in 1892 at Chicago,
where Bolza reprised the course on the theory of substitution groups that
he had earlier taught at Hopkins, and where Maschke continued his work
on the theory of finite linear groups. Their example may well have spurred
their colleague, E. H. Moore, actively to take up research in finite group the-
oryin the 1890s. Moore promptly directed the dissertation research of his first
Ph.D. student, Leonard Dickson, in that area.”®

Also in Germany, but in Leipzig, Sophus Lie attracted the Danish stu-
dent Hans Blichfeldt, as well as George Miller, who had already studied with
Cole at Michigan. Both young men attended Lie’s lectures, but Blichfeldt
actually earned his doctoral degree under the Norwegian’s supervision, while
Miller continued his mathematical peregrinations in order to take advantage
of Camille Jordan’s presence in Paris. Miller followed his European sojourn
with posts first at Cornell, then at Stanford, and finally at Illinois in 1906. For
his part, Blichfeldt settled at Stanford and spent a long career there that ended
only with his retirement in 1938.%6

These and other Americans made significant contributions to finite group
theory in the 1890s through the 1910s that culminated, in some sense, with

93. Veblen to Kellogg, 7 April, 1926.

94. Felix Klein, Vorlesungen iiber das Ikosaeder und die Auflosung der Gleichungen vom fiinften
Grade (Leipzig: B. G. Teubner Verlag, 1884) as well as Parshall and Rowe, Emergence, pp. 192—
196,203-204, and 349-350.

9S. Parshall and Rowe treat this early group-theoretic work at Chicago in Emergence,
pp- 374-382. See also Karen Hunger Parshall, “Defining a Mathematical Research School: The
Case of Algebra at the University of Chicago, 1892-194S,” Historia Mathematica 31 (2004),
263-278.

96. For more on the life and work of Blichfeldt and Miller, see Leonard Dickson, “Hans
Frederik Blichfeldt, 1873-1945,” BAMS 53 (1947), 882-883 and Henry Brahana, “George
Abram Miller,” Biographical Memoirs, vol. 30 (Washington, D.C.: National Academy of Sci-
ences, 1957), pp. 257-312, respectively.
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the book, Theory and Applications of Finite Groups, co-authored by Miller,
Blichfeldt, and Dickson and published in 1916 just before the United States’
entry into World War 157 By the 1920s, however, it was perceived that the field
no longer “occup[ied] the whole horizon” of American mathematical research
“as it once did”*® Although by then it shared the stage with both topology
and differential geometry, it continued to represent a well-defined sphere of
American research thanks largely to Miller’s efforts.”

Miller’s approach to group theory was, despite his direct exposure to Euro-
pean ideas, most influenced by the lessons he had learned over the course of
the two years he had spent as an instructor at Michigan under Cole’s tute-
lage. In the fall of 1893, Miller had just arrived in Ann Arbor, and Cole had
just returned from the Mathematical Congress held in conjunction with the
World’s Columbian Exposition in Chicago. There, he had essentially laid out
the research program of determining and classifying all finite simple groups,
that is, all nontrivial finite groups that contain as normal subgroups only the
trivial group and the group itself. Cole had acknowledged that “in the absence
of a general method, something may be accomplished by the tentative, step-
by-step process, especially within moderate limits where the labor involved is
not incommensurate with the value of the result.”1%° “Step by step” character-
ized well the approach to finite groups of Miller, his students, and others into
and through the 1920s.

For example, in 1900, thanks to the work of Otto Holder in Germany, Cole
in the United States, and William Burnside in England, all of the finite simple
groups of order up to 1092 had been determined. In that year, however, Miller
together with George Ling, then an instructor at Wesleyan, extended those
results. By fully exploiting the numerology of the theorems that Ludwig Sylow

97. George Miller, Hans Blichfeldt, and Leonard Dickson, Theory and Applications of Finite
Groups (New York: John Wiley & Sons, 1916).

98. Veblen to Kellogg, 7 April, 1926.

99. Miller’s collected works run to almost 2,500 pages in five quarto volumes. Volume four
covers the years from 1916 to 1929 and comprises some 450 pages. In all, Miller published over
130 papers during this fourteen-year period. See George Miller, The Collected Works of George
Abram Miller, 5 vols. (Urbana: University of Illinois, 1935-1959).

100. Frank Cole, “On a Certain Simple Group,” in Mathematical Papers Read at the Interna-
tional Mathematical Congress Held in Conjunction with the World's Columbian Exposition, Chicago
1893, ed. E. H. Moore et al. (New York: Macmillan & Co., 1896), pp. 40-43 on p. 40. Par-
shall and Rowe discuss this congress and the mathematics expounded there in Emergence,
pp- 309-327 as well as in “Embedded in the Culture: Mathematics at the World’s Columbian
Exposition,” MI 15 (2) (1993), 40-45.
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had established in 1872, they demonstrated that there are no other simple
groups of order less than or equal to 2000.1%!

By 1922, Miller was revisiting the question of low-order simple groups. It
had long been known that the alternating group on 7 letters, that is, the group
A7 of even permutations of a set with seven elements, is a simple group of
order 2520. Yet, in the search for all finite simple groups, it was natural to ask
whether A7 was the only finite simple group of that order. In a letter to Cole,
an extract of which appeared in the AMS’s Bulletin, Miller gave a proof by con-
tradiction that, indeed, no other simple group of order 2520 besides A7 could
exist.102

Another natural, big-picture question was, what makes one group essen-
tially different from another? Or, in other words, what types of elements or
internal structures do individual groups have that fundamentally differenti-
ate them? Step by step, Miller approached this question, too, in the 1920s. He
considered such cases as “subgroups of index p? contained in a group of order
p™,” “groups generated by two operators of order three whose product is of
order three,” “groups generated by two operators of order three whose prod-
uctis of order six,” etc., etc. 103 By 1929, he had also determined all the abstract
groups of order 72.1%% Perhaps not surprisingly, these types of questions
characterized the work of those who came under Miller’s group-theoretic
sway.

Among those was his colleague at Illinois, Henry Brahana. Although Bra-
hana had earned his Ph.D. under Veblen at Princeton for a thesis in topology
in 1920, his move to Urbana in that year prompted a shift in his research
direction thanks to the presence there of both Coble, the algebraic geome-
ter, and Miller, the group theorist. By the end of the decade, Brahana was
writing papers like “Certain Perfect Groups Generated by Two Operators of
Orders Two and Three” that clearly reflected Miller’s influence.!% So, too,

101. George Miller and George Ling, “Proof That There Is No Simple Group Whose Order
Lies Between 1092 and 2001,” AJM 22 (1900), 13-26.

102. George Miller, “The Simple Group of Order 2520,” BAMS 28 (1922), 98-102.

103. George Miller, “Subgroups of Index p? Contained in a Group of Order p™,” AJM 48
(1926), 253-256; “Groups Generated by Two Operators of Order Three Whose Product Is of
Order Three,” PNAS 13 (1927), 24-26; and “Groups Generated by Two Operators of Order
Three Whose Product Is of Order Six,” op. cit. 13 (1927), 170-174, respectively.

104. George Miller, “Determination of All the Abstract Groups of Order 72,” AJM 51
(1929), 491-494.

10S. Henry Brahana, “Certain Perfect Groups Generated by Two Operators of Orders Two
and Three,” AJM 50 (1928), 345-356.
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were Miller’s Illinois graduate students. Harry Bender, for example, wrote a
1923 doctoral dissertation on the “Sylow Subgroups in the Group of Isomor-
phisms of Prime Power Abelian Groups” and continued to push these sorts
of group-theoretic ideas at his alma mater under Miller’s watchful eye for five
more years, first as an instructor and then as an associate, !0

And, Miller had trained a number of graduate students even before his
move to Illinois. At Stanford, he supervised the 1904 doctoral work of
William Manning, who, although a member of Stanford’s Department of
Applied Mathematics after earning his Ph.D., continued to maintain his
group-theoretic interests. Manning focused on particular classes of primitive
permutation groups, that is, groups G (initially identified by Evariste Galois)
that act on a set X (where |X| > 2) such that G preserves no nontrivial parti-
tion of X.1%7 He was still thinking about such groups more than twenty years
later.!%® When Stanford’s two mathematics departments merged under Blich-
feldt as department chair in 1927, Manning began to train students in the
theory of primitive groups, making Stanford an American group-theoretic
focal point in the late 1920s and into the 1930s.!%° His first student, Marie
Weiss, followed closely in her advisor’s footsteps, working on “Primitive
Groups Which Contain Substitutions of Prime Order p and of Degree 6p or
7p” before winning NRC fellowships for the two academic years 1928-1930
and ultimately taking a position in 1935 on the faculty at H. Sophie Newcomb

College, the women’s branch of Tulane University.' 10

106. Harry Bender, “Sylow Subgroups in the Group of Isomorphisms of Prime Power
Abelian Groups,” AJM 45 (1923), 223-250. “Associate” was a then not uncommon category
of temporary employment. Bender left Illinois for an actual assistant professorship at the
University of Akron in 1928.

107. To get the flavor of Manning’s work, see, for example, these two papers which com-
prised the results in his dissertation: “The Primitive Groups of Class 2p Which Contain a
Substitution of Order p and Degree 2p,” TAMS 4 (1903), 351-357 and “On the Primitive
Groups of Class 3p,” TAMS 6 (1905), 42-47.

108. William Manning, “The Primitive Groups of Class 14,” AJM 51 (1929), 619-652 is
just one example.

109. For more on the history of Stanford mathematics, see Halsey Royden, “A History of
Mathematics at Stanford,” in A Century of Mathematics in America, ed. Peter Duren et al., 2:
237-277.

110. Marie Weiss, “Primitive Groups Which Contain Substitutions of Prime Order p and of
Degree 6p or 7p,” TAMS 30 (1928), 333-359. Judy Green and Jeanne LaDuke discuss her life
and career in Pioneering Women in American Mathematics: The Pre-1940 PhD’s, HMATH, vol. 34
(Providence: American Mathematical Society and London: London Mathematical Society,
2009), p. 310.
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The work of Weiss, Bender, Manning, Brahana, and others reflected a
group-theoretic program introduced to the United States by Frank Cole in
the 1890s and perpetuated, particularly by Miller, after the First World War.
As the description above might suggest and, in fact, as E. T. Bell character-
ized it with tongue in cheek in his retrospective on “Fifty Years of Algebra in
America, 1888-1938,” that program already seemed “to have been pushed to
the limit of human endeavor and even slightly beyond” by the mid-1920s.11!
Americans nevertheless continued to pursue research and to train graduate
students in this vein through the 1920s and into the 1930s.

Another American algebraic focal point in the 1920s—the theory of lin-
ear associative algebras—had been defined largely via the program at Chicago
just after the turn of the twentieth century.'!? As an assistant professor back
at his alma mater by 1900, and following a European mathematical tour
as well as positions in Berkeley and Austin, Leonard Dickson had briefly
embraced the postulate-theoretic agenda of his former advisor and then col-
league, E. H. Moore. In 1902, Moore had discovered that the axioms for
geometry that Hilbert had presented in his Grundlagen der Geometrie three
years earlier were not actually independent, despite the German’s claim to the
contrary. This discovery briefly led Moore and Dickson as well as Moore’s
students, Veblen and R. L. Moore, and Moore’s brother-in-law, the Cornell-
trained John Wesley Young, down the postulate-theoretic path of determining
systems of axioms for various mathematical constructs that were both mutu-
ally independent and consistent, that is, not mutually contradictory. Moore
considered groups; Veblen, R. L. Moore, and Young reconsidered geometry;
and Dickson thought about fields and linear associative algebras.!!3

In particular, in his 1903 paper on “Definitions of a Linear Associative
Algebra by Independent Postulates,” Dickson considered a set A of elements

111. E. T. Bell, “Fifty Years of Algebra in America, 1888-1938,” in Semicentennial Addresses
of the American Mathematical Society, ed. The Committee on Publications, pp. 1-34.

112. Strong hints of it had appeared earlier: in the 1870s at Harvard in the work of Ben-
jamin Peirce and in the 1880s at Hopkins owing to James Joseph Sylvester and Charles Peirce.
On this earlier history, see Karen Hunger Parshall, “Joseph H. M. Wedderburn and the Struc-
ture Theory of Algebras,” Archive for History of Exact Sciences 32 (198S), 223349, especially
pp. 241-261.

113. Parshall and Rowe, Emergence, pp. 382-387. Christopher Hollings gives a techni-
cal analysis of (mostly) American postulate-theoretic work on groups per se in “‘Nobody
Could Possibly Misunderstand What a Group Is: A Study in Early Twentieth-Century Group
Axiomatics,” Archive for History of Exact Sciences 71 (2017), 409-481.
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consisting of linear combinations a=7_"_, a;e; of linearly independent
quantities e¢; and scalars g; in some field F, where the ¢;s are assumed
to satisfy the multiplication e;e; = Zzzl Yikek, for Y € Fand 1 <i, j <n.
Given this set-up, the sum and difference of two elements—a as above and
b= Z;’:l b;e;—are defined to be a = b= Z:’:l (a; = b;)e;, and their (asso-
ciative) product is given by ab= szzl aibjeiej = D ik ukek, where ug =
ZZI-: | Vijkaibj. Such a set A is called a linear associative algebra (or a hyper-
complex number system if the field of scalars is restricted to the real numbers
R or to the complex numbers C), and Dickson formulated a defining set of
four independent axioms.'!#

Shortly after Dickson did this work, the young Scots mathematician Joseph
Wedderburn brought a Carnegie fellowship to Chicago. There, he not only
spurred Dickson to do additional work on linear associative algebras but also
produced ground-breaking research on their structure theory. In particular,
Wedderburn proved his so-called “principal theorem,” namely, every linear
associative algebra A (over a field F of characteristic zero like R and C) can
be expressed as the direct sum of a semi-simple subalgebra S and a maximal
nilpotent invariant subalgebra N. He also showed that a semi-simple algebra
is the direct sum of simple algebras and that a simple algebra can be real-
ized as the tensor product of a full matrix algebra and a division algebra, that
is, a linear associative algebra in which division by any nonzero element is
possible.!'> Wedderburn thus demonstrated that the classification of linear
associative algebras ultimately reduces to the classification of division alge-
bras. Both he and Dickson were still at work developing this area of mutual
interest in the 1920s.

After earning his doctorate at Edinburgh University in 1908, Wedderburn
was lured back to the United States by a call to Princeton to serve—like

Veblen whom he had met at Chicago and who became his lifelong friend and

114. Leonard Dickson, “Definitions of a Linear Associative Algebra by Independent Pos-
tulates,” TAMS 4 (1903), 21-26.

115. Joseph Wedderburn, “On Hypercomplex Number Systems,” Proceedings of the London
Mathematical Society, 2d ser., 6 (November 1907), 77-118 and compare Parshall, “Wedder-
burn and the Structure Theory of Algebras” as well as “In Pursuit of the Finite Division Algebra
Theorem and Beyond: Joseph H. M. Wedderburn, Leonard E. Dickson, and Oswald Veblen,”
Archives internationales d’Histoires des Sciences 35 (1983), 274-299. Wedderburn stated his
results in general, that is, regardless of the underlying base field F. As would soon become clear
thanks to the work of Ernst Steinitz, F, in fact, has to be at least perfect. Today, the hypothesis
is that F be separable, but that notion was not at Wedderburn’s disposal in 1907.
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colleague—as a preceptor. Wedderburn’s algebra-theoretic work was inter-
rupted, however, by Great Britain’s entry into World War I and his service
from 1914 to 1919 as an officer in the British Army.'!® That he managed to
pick up his research thread almost immediately on his return is evidenced by
the paper “On Division Algebras” that he presented to the AMS in February
0f1920.17

As early as 1905, Dickson had defined the notion of a cyclic algebra,
that is, an algebra A “defined by the relations xy = y6 (x) and y" = g, where
0(x) is a polynomial in x which is rational” in the base field F over which
A is defined and where g € F is not the norm of any rational polynomial
in x.!18 These algebras have dimension n? over F, and, for suitable choices
of 0 and g, Dickson had noted that they are division algebras. In 1914,
Wedderburn established a sufficient condition for a cyclic algebra to be a
division algebra, a result he had extended by 1920 to central division alge-
bras, that is, division algebras with center equal to F. In particular, he showed
that every central division algebra of dimension 9 over its base field F is
cyclic and that Dickson’s cyclic algebras are actually special cases of an even
more general type of algebra, a so-called crossed product algebra.!'® By the
mid-1920s, Wedderburn had also had some success in extending his struc-
ture theory to infinite-dimensional algebras, and he had begun work on
what would ultimately be his 1934 AMS Colloquium volume, Lectures on
Matrices.'?°

Dickson was even more prolific. After the completion of his book on the
theory of groups with Miller and Blichfeldt, he poured himself into what

116. Karen Hunger Parshall, “New Light on the Life and Work of Joseph Henry Maclagan
Wedderburn (1882-1948),” in Amphora: Festschrift fiir Hans Wussing zu seinem 6S. Geburtstag,
ed. Menso Folkerts et al. (Basel: Birkhiuser Verlag, 1992), pp. $23-537.

117. Joseph Wedderburn, “On Division Algebras,” TAMS 22 (1921), 129-135.

118. Joseph Wedderburn, “A Type of Primitive Algebra,” TAMS 15 (1914), 162-166 on
p- 162. Dickson originally defined these algebras in the abstract of a talk that he gave at the sum-
mer meeting of the AMS in Williamstown, Massachusetts, in 1905 (Frank Cole, “The Twelfth
Summer Meeting of the American Mathematical Society,” BAMS 12 (1906), 53-63 on p. 61).

119. Wedderburn, “On Division Algebras,” pp. 133-134. The definition of a crossed prod-
uct algebra is somewhat involved; see, for example, Israel Herstein, Noncommutative Rings,
Carus Mathematical Monographs, no. 15 (n.p.: Mathematical Association of America, 1968),
pp. 107-108.

120. Joseph Wedderburn, “Algebras Which Do Not Possess a Finite Basis,” TAMS 26
(1924), 395-426 as well as Lectures on Matrices, AMS Colloquium Publications, vol. 17 (New
York: American Mathematical Society, 1934).
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was ultimately his three-volume compilation of number-theoretic results,
the History of the Theory of Numbers.'?! The insights he gained in doing
this encyclopedic work, together with his algebra-theoretic research, inspired
two book-length forays in the 1920s: Algebras and Their Arithmetics (1923)
and the substantially extended Algebren und ihre Zahlentheorie (1927). In
these studies, Dickson considered linear associative algebras A (with iden-
tity) over the field of rational numbers. He aimed to develop “for the first
time a general theory of the arithmetics of algebras, which furnishes a direct
generalization of the classic theory of algebraic numbers” of such nineteenth-
century German greats as Peter Lejeune Dirichlet, Ernst Kummer, and
Richard Dedekind.'?? To that end, he exploited Wedderburn’s structure the-
ory, which, as Dickson recognized, implied that to study the arithmetic of an
algebra A is to study the arithmetic of its semi-simple part S. Dickson pro-
ceeded to show how to construct the integral elements and the units in A as
well as how to determine the properties of unique factorization from the anal-
ogous elements in S.!%3 Indicative of his sense of the importance of this work,
he lectured on it in 1924 in a venue no less auspicious than the International
Congress of Mathematicians in Toronto (see chapter three).

121. Leonard Dickson, History of the Theory of Numbers, 3 vols. (Washington, D.C.:
Carnegie Institution of Washington, 1919, 1920, 1923; reprint ed., New York: Chelsea Pub-
lishing Company, 1992). See also Della Dumbaugh Fenster, “Leonard Dickson, History of
the Theory of Numbers,” in Landmark Writings in Western Mathematics, 16401940, ed. Ivor
Grattan-Guinness (Amsterdam: Elsevier Press, 2005), pp. 833-843 and “Why Dickson Left
Quadratic Reciprocity Out of His History of the Theory of Numbers,” AMM 106 (1999),
618-627.

122. Leonard Dickson, Algebras and Their Arithmetics (Chicago: University of Chicago
Press, 1923; reprint ed., New York: Dover Publications, Inc., 1960), p. vii. See also Leonard
Dickson, Algebren und ihre Zahlentheorie (Ziirich: Orell Fiissli Verlag, 1927). For a concise
account of the nineteenth-century number-theoretic analog, see Victor Katz and Karen Hunger
Parshall, Taming the Unknown: A History of Algebra from Antiquity to the Early Twentieth Century
(Princeton: Princeton University Press, 2014), pp. 388-399. Dickson’s work on the arithmetics
of algebras was honored by the AMS with the first Frank Nelson Cole Prize in Algebra in 1928.
See the next chapter for more on this prize.

123. Della Dumbaugh Fenster contextualizes this research historically in “Leonard Eugene
Dickson and His Work in the Arithmetics of Algebras,” Archive for History of Exact Sciences 52
(1998), 119-159 and “American Initiatives toward Internationalization: The Case of Leonard
Dickson,” in Mathematics Unbound: The Evolution of an International Mathematical Research
Community, 1800-1945, ed. Karen Hunger Parshall and Adrian Rice, HMATH, vol. 23 (Prov-
idence: American Mathematical Society and London: London Mathematical Society, 2002),
pp. 311-333.
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Dickson was also more prolific than Wedderburn in the production of
new researchers who actively added to the store of knowledge about linear
associative algebras in the 1920s. For example, Olive Hazlett, one of his
numerous women students, earned her Chicago Ph.D. in 1915 for a classifica-
tion of all (not necessarily associative) nilpotent algebras of dimension four or
less over the field of complex numbers.'?* From positions at Mount Holyoke
College beginning in 1918 and then at Illinois starting in 1925, she not only
considered questions associated with division algebras but also followed her
advisor into the theory of the arithmetics of algebras. Like him, she spoke
on her ideas about the latter at the Toronto Congress. There, in a postulate-
theoretic spirit, she offered a definition for the notion of an integral element
in an algebra A different from the one Dickson had given in Algebras and
Their Arithmetics and explored the ramifications of her new formulation.!
Like her advisor, too, she had the distinction of being “starred” in American
Men of Science, in her case in the fourth edition of 1927, the second female
mathematician so recognized.!26

Another of Dickson’s students, the same Cyrus MacDuftee who had
impressed Raymond Wilder at Ohio State, steadily pursued into the 1920s
the panoply of ideas he had identified in his 1921 dissertation on the theory
of algebras as well as in his related research on the theory of matrices. Like his

124. Olive Hazlett, “On the Classification and Invariantive Characterization of Nilpotent
Algebras,” AJM 38 (1916), 109-110. On Dickson as a mentor of doctoral students, see Della
Dumbaugh Fenster, “Role Modeling in Mathematics: The Case of Leonard Eugene Dick-
son (1874-1954),” Historia Mathematica 24 (1997), 7-24. Of Dickson’s sixty-seven doctoral
students, eighteen or 27% were women.

125. Olive Hazlett, “On the Arithmetic of a General Associative Algebra,” Proceedings of the
International Mathematical Congress Held in Toronto, August 11-16, 1924, ed. John Fields, 2 vols.
(Toronto: University of Toronto Press, 1928), 1: 185-191 and “The Arithmetic of a General
Algebra,” AM 28 (1926), 92-102.

126. Some 1,000 natural and exact scientists received this designation in recognition of the
importance of their work, with the 1,000 stars being distributed proportionally among the dif-
ferent sciences based on the total number of scientists in each of the given fields. In the first
edition of 1906, for example, of the 1,000 stars, 175 went to chemists, 150 each to physicists
and zoologists, 100 each to botanists and geologists, 80 to mathematicians, etc. See James McK-
een Cattell, ed., American Men of Science, 2d ed. (Lancaster: The Science Press, 1910), pp. vi-vii.
See also Stephen Visher, Scientists Starred, 1903-1943, in American Men of Science: A Study of
Collegiate and Doctoral Training, Birthplace, Distribution, Background, and Developmental Influ-
ences (Baltimore: Johns Hopkins University Press, 1947). The first female mathematician to be
“starred” was analyst Anna Pell Wheeler of Bryn Mawr, in the 1921 third edition.
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FIGURE 1.3. Olive Hazlett (1890-1974). (Photo courtesy of the private
collection of Judy Green.)
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academic “sister,” Hazlett, he, too, found interesting his advisor’s work on the
arithmetics of algebras and sought to push it further. In “An Introduction to
the Theory of Ideals in Linear Associative Algebras,” for example, MacDuffee
noted that “[w]ith the development of the number theory of linear algebras,
it was natural that attempts should be made to extend to these domains of
integrity the theory of ideal numbers.”'?” Still, it was a hard problem.

The German mathematician, Adolph Hurwitz, had “investigated the num-
ber theory of quaternions by using right and left ideals, and ha[d] found that
they are powerless to introduce unique factorization into this algebra.” Simi-
larly, his Swiss contemporary, Andreas Speiser, had explored “the properties
of right, left and two-sided ideals in semi-simple algebras” but had ruefully
remarked “that some of the most remarkable properties of ideals are ‘but for-
eign adjuncts which are essentially restricted to algebraic number fields. ” As
MacDuffee explained, “[a]lthough it is historically true that ideals were intro-
duced into algebraic number theory to establish unique factorization,” that
was only their “secondary function.” “Primarily they establish the property
that every two numbers have a greatest common divisor expressible linearly
in terms of the numbers. In algebraic fields this property implies unique fac-
torization but in the general linear algebra it does not—hence the success of
the ideal theory in algebraic fields and its partial failure in the more general
domain.” It was in the context of that “more general domain” that MacDuffee
developed “a correspondence between ideals and matrices whose elements
are rational integers” in order that the multiplication of ideals, “which causes
so much difficulty in non-commutative domains,” could be replaced by matrix
multiplication.

Perhaps Dickson’s strongest student, however, was Adrian Albert. In his
1928 doctoral dissertation, Albert followed directly in the footsteps of both
Wedderburn and Dickson in considering the classification of division alge-
bras. He first pushed Wedderburn’s immediately postwar results to the next
dimension, showing that every central division algebra of dimension 16 over
its base field F, while not necessarily cyclic, is a crossed product algebra.!?8
This was the first of a flurry of papers in 1929 and 1930 in which Albert

127. Cyrus MacDuffee, “An Introduction to the Theory of Ideals in Linear Associative Alge-
bras,” TAMS 31 (1929), 71-90 on p. 71. The quotations that follow in the next paragraph are
also on this page.

128. Adrian Albert, “A Determination of All Normal Division Algebras in Sixteen Units,”
TAMS 31 (1929), 253-260.
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considered successively higher square dimensions in his quest for the general
result.

If group theory as practiced in the United States was more than somewhat
old-fashioned in the 1920s, the theory of algebras was anything but. In fact, in
Birkhoff’s assessment, “there ha[d] been a great algebraic advance in the direc-
tion of a unified theory of linear associative algebra and their arithmetics” in
the United States in the immediately postwar years.!?” That advance was due,
in no small part, to the work of Wedderburn and Dickson as well as of Dick-

son’s students, especially Albert.!3

These mathematicians actively engaged
in research that also attracted the attention of some of the best algebraists
on the other side of the Atlantic and that would, in the 1930s, bring Amer-
ican mathematicians even more fully into competition internationally (see

chapter six).

Research in Analysis

Americans also pursued atleast one other major area of mathematical research
in the 1920s—analysis—and as with other areas, the principal loci of activ-
ity were widely recognized. At Harvard, William Osgood, Maxime Bocher,
“and their followers” like George Birkhoft had “created a function-theoretic
current,” in Veblen’s view, that “is one of the most important elements in the
mathematical stream,” while at Chicago, work on the calculus of variations was
“initiated by Bolza and continued by Bliss."!3! Osgood had received graduate

129. Birkhoff, “Fifty Years of American Mathematics,” p. 292.

130. Prolific in students though Dickson undoubtedly was, not all of his contemporaries
viewed him as an enlightened advisor. Derrick Norman Lehmer, a number theorist who, like
Dickson had been a student of E. H. Moore at Chicago, took his 1900 Ph.D. to Berkeley where
he was ultimately promoted to a full professorship in 1918. When his son, Derrick Henry
Lehmer, the future number theorist and computing pioneer, was trying to decide on graduate
schools, Lehmer pére confided to Roland Richardson that “from what I hear of the methods of
turning out doctors [at Chicago] . . . itis no place for a man with ideas of his own. Dickson does
not want him to think his own thoughts apparently. He will be required to drop all the problems
which have interested him and work out a special case of some of Dickson’s researches. Thus
[sic], I will confess, seems to me to be a very stupid attitude to take toward any show of origi-
nality” Lehmer to Richardson, 4 February, 1928, Box 5: Correspondence, 1926-1930 ‘H-M,
Folder: Lehmer, Derrick Norman, Richardson Papers.

131. Veblen to Kellogg, 7 April, 1926. Another of these “followers” was Charles Moore, who
earned his Ph.D. under Bocher in 1905 and who worked from his position at the University of
Cincinnati on, among other things, the summability of series. See, for example, Charles Moore,
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training in Germany under Klein and Max Noether, ultimately earning his
Erlangen doctorate under the latter in 1890; Bocher was also German-trained
and took his degree under Klein in 1891; Bolza, as noted, a German student
of Klein, ultimately found a position at Chicago in 1892. The tradition of
analysis in the United States was thus directly imported from Germany in
the early 1890s, and it was carried into the twentieth century by members—
like Birkhoff and Gilbert Bliss—of America’s second mathematical research
generation.l"’2

Birkhoft had had the best mathematical training that the United States
could offer at the turn of the twentieth century. Born in Michigan into a
doctor’s family, he began his undergraduate training at Chicago, but moved
to complete both his B.A. and M.A. degrees at Harvard before returning to
Chicago to take his Ph.D. under E. H. Moore in 1907. Influenced especially by
Bocher and Moore, in many regards Birkhoff, who would not venture across
the Atlantic until 1926 (on this first trip, see chapter three), was just as much
a student of Poincaré, owing to his avid mathematical reading. Indeed, it was
in 1912, the year that he left a preceptorship at Princeton for a beginning
professorship at Harvard, that Birkhoft proved Poincaré’s so-called “Last” or
“Geometric Theorem”: consider “a continuous one-to-one transformation T
[that] takes the ring [that is, the annulus] R, formed by concentric circles C,
and C;, of radii a and b respectively (a > b > 0), into itself in such a way as to
advance the points of C, in a positive sense, and the points of Cy, in the nega-
tive sense, and at the same time to preserve areas. Then there are at least two
invariant points.”!33 His proof of this special case of the three-body problem
in dynamical systems cemented his reputation as an American mathematical
force to be reckoned with.

By the 1920s, Birkhoft was actively pursuing a wide range of analytic top-
ics as well as training graduate students across the field. One of his interests
stemmed from the doctoral dissertation he had written at Chicago, inspired

“On the Application of Borel's Method to the Summation of Fourier’s Series,” PNAS 11 (1925),
284-287. By 1938, Moore had codified his work in Summable Series and Convergence Factors,
AMS Colloquium Publications, vol. 22 (New York: American Mathematical Society, 1938).

132. Parshall and Rowe examine the work of students in the so-called “Wanderlust genera-
tion” of the 1880s and 1890s in Emergence, pp. 189-259.

133. George Birkhoff, “Proof of Poincaré’s Geometric Theorem,” TAMS 14 (1913), 14-22
on p. 14. Birkhoff presented his result before the AMS on 26 October, 1912, his first fall on
the Harvard faculty. Compare Marston Morse, “George David Birkhoff and His Mathematical
Work,” BAMS 52 (1946), 357-391.
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by the work of his Harvard professor, Bocher, on the asymptotic behavior of
solutions of ordinary linear differential equations, boundary-value problems,
and Sturm-Liouville theory.!3* He lectured on these ideas at Harvard in the
fall of 1920 to an audience that included his 1922 Ph.D. student, Rudolph
Langer.

Langer published two papers in 1923 that had constituted his disserta-
tion and that drew on results that Birkhoff had presented in his own doctoral
work. One considered a class of differential equations different from that ini-
tially studied by Birkhoftf and explored the expansion problem associated with
that class.!3® The other, “The Boundary Problems and Developments Asso-
ciated with a System of Linear Differential Equations of the First Order,” was
joint with Birkhoff. As the co-authors explained, roughly three-quarters of
the material in their paper stemmed directly from Birkhoft’s 1920 course,
although it had been reorganized to a large extent by Langer and aimed to
lay a matrix-theoretic foundation for the theory as a whole. In the paper’s
closing quarter, Langer, working within that framework, considered a sys-
tem composed of a homogeneous differential vector equation, together with
appropriate boundary conditions, and demonstrated convergence under suit-
able constraints. In so doing, he provided an interesting generalization of the
expansions that Birkhoff had given some fifteen years earlier.!3¢

Atessentially the same time that Birkhoff and Langer were producing these
classical results, Birkhoff was also engaged in functional-analytic research of

134. George Birkhoff, “On the Asymptotic Character of the Solutions of Certain Linear Dif-
ferential Equations Containing a Parameter,” TAMS 9 (1908), 219-231 and “Boundary Value
and Expansion Problems of Ordinary Linear Differential Equations,” TAMS 9 (1908), 373~
395. Parshall and Rowe give more details in Emergence, p. 392. Birkhoff followed this work in
1911 with a paper on the “General Theory of Linear Difference Equations,” TAMS 12 (1911),
243-284, that influenced the 1911 doctoral research in analysis of his first Ph.D. student,
Robert Carmichael. Carmichael continued his mathematical explorations from the position
at the University of Illinois that he held from 1915 until his retirement in 1947. See, for exam-
ple, Robert Carmichael, “On the Expansion of Certain Analytic Functions in Series,” AM 22
(1920), 29-34. By the 1930s, however, Carmichael had become better known for his work in
number theory and group theory than for his research in analysis.

13S. Rudolph Langer, “Developments Associated with a Boundary Problem not Linear in
the Parameter,” TAMS 25 (1923), 155-172.

136. George Birkhoff and Rudolph Langer, “The Boundary Problems and Developments
Associated with a System of Linear Differential Equations of the First Order,” PAAAS S8
(1923), 49-128. Langer continued working in this and related areas from positions first at
Dartmouth and Brown and then, from 1927 on, at the University of Wisconsin.

For general queries contact webmaster@press.princeton.edu.



© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

SURVEYING THE 1920S RESEARCH LANDSCAPE 49

a more abstract nature with his relatively new Harvard colleague, Oliver Kel-
logg. Their paper, “Invariant Points in Function Space,” was inspired both by
the axiomatic approach of Kellogg’s advisor, David Hilbert, and by the general
analysis that Birkhoft’s mentor, E. H. Moore, had begun to develop in 1906.
As Moore had put it, “[t]he existence of analogies between central features of
various theories implies the existence of a general theory which underlies the
particular theories and unifies them with respect to those central features.”!3”
For their part, Birkhoff and Kellogg proposed a “general program of func-
tional analysis concerning existence theorems” that seemed “more effective
than the obvious treatment by direct abstraction” that Moore, for example,
had advocated.!3® As Birkhoff later explained, “[t]he ordinary implicit equa-
tions of analysis can be written in the form of f = T'(f) where f is the ‘point’
in function space whose existence is to be established and g = T'(f) forany f is
a transformed point in the same functional space. The desired existence the-
orem merely affirms that the transformation T of the space into a subspace
admits of a fixed point”! Birkhoff and Kellogg established the existence
both “of invariant points in a region of n-space which is convex toward an
interior point, under a continuous, one-valued transformation which carries
points of the region into points of the region” and “of the inverses of points
on the hypersphere in n-space (n odd) with respect to a parametric transfor-
mation containing the identity”!4? This then allowed them to infer analogous
theorems for function spaces, “first by a method of interpolation, and second,
by a transition through a Hilbert space.”

One Harvard student who drew inspiration from both the abstract and
the more classically oriented strains of analysis was Birkhoft’s 1926 Ph.D,,
Marshall Stone. Like Langer, Stone initially generalized some of Birkhoft’s

141

dissertation results'** and continued to mine that vein from the instructor-

ship at Columbia that he accepted in 1925. By 1929, he had not only returned
to take up an instructorship at his alma mater, but his interests had also shifted

137. E. H. Moore, “Introduction to a Form of General Analysis,” in The New Haven
Mathematical Colloquium (New Haven: Yale University Press, 1910), pp. 1-150 on p. 1.

138. George Birkhoft and Oliver Kellogg, “Invariant Points in Function Space,” TAMS 23
(1922),96-115. For the quotation, see Birkhoff, “Fifty Years of American Mathematics,” p.297.

139. Birkhoff, “Fifty Years of American Mathematics,” p. 297.

140. Roland Richardson, “The February Meeting of the American Mathematical Society,”
BAMS 28 (1922), 233-244 on p. 236. The quotation that follows is also on this page.

141. See, for instance, Marshall Stone, “A Comparison of the Series of Fourier and Birkhoff,”
TAMS 28 (1926), 695-761.
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to more properly functional-analytic considerations motivated by then-recent
mathematical discussions of the new quantum theory by Hermann Weyl,
John von Neumann, and others. In a series of three short notes published
between 1929 and 1930 in the Proceedings of the National Academy of Sciences,
Stone developed the kernel of what would become his 600-page, 1932 AMS
Colloquium volume on Linear Transformations in Hilbert Space and Their
Applications to Analysis.!** That book, described as “one of the great classics of

twentieth-century mathematics,”**3

was initially inspired by Stone’s exposure
to some of von Neumann’s “early and still incomplete work” on self-adjoint
operators on Hilbert space, that is, linear operators T from a complex Hilbert
space into itself such that T equals its adjoint T*.!** As Stone explained,
he then developed “independently” and “without further knowledge of [von
Neumann’s] progress along the same or similar lines” the ideas he presented in
his massive tome.*® In particular, it extended from the context of bounded to
unbounded operators Hilbert’s spectral theorem, a result that, loosely speak-
ing, provides conditions under which an operator or its associated matrix can
be diagonalized, thatis, represented as a diagonal matrix relative to some basis.

If Stone’s functional-analytic work may be seen to have stemmed directly
from Moore’s general analysis, so, too, did the research of his older contem-
porary, Theophil Hildebrandt. A 1910 Chicago Ph.D. under Moore, Hilde-
brandst, like Birkhoff, took his advisor’s work in general analysis as a starting
point from which he explored both functional analysis and the theory of inte-
gration over the course of along career at the University of Michigan. In 1923,
for example, and drawing directly from contemporaneous work of Moore

142. Marshall Stone, “Linear Transformations in Hilbert Space. I. Geometrical Aspects,”
PNAS 15 (1929), 198-200; “Linear Transformations in Hilbert Space. II. Analytical Aspects,”
op.cit,, 15 (1929),423-425; “Linear Transformations in Hilbert Space. III. Operational Meth-
ods and Group Theory,” op. cit., 16 (1930), 172-175, and Linear Transformations in Hilbert
Space and Their Applications to Analysis, AMS Colloquium Publications, vol. 15 (New York:
American Mathematical Society, 1932).

143. George Mackey, “Marshall Harvey Stone 1903-1989,” NAMS 36 (3) (1989), 221~
223 onp.221.

144. See, specifically, John von Neumann, “Mathematische Begriindung der Quanten-
mechanik,” Nachrichten von der Gesellschaft der Wissenschaften zu Géttingen, Mathematisch-
Physikalische Klasse (1927), 1-57 or John von Neumann, Collected Works, ed. Abraham Taub,
6 vols. (New York: Pergamon Press, 1961), 1: 151-207.

143. Stone, Linear Transformations in Hilbert Space, pp. iv-v. Jean Dieudonné discusses the
work of von Neumann (and to a much lesser extent Stone) in historical context in History of
Functional Analysis (Amsterdam: North-Holland Publishing Company, 1981), pp. 172-183.
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and another of his students, Herman Smith, Hildebrandt gave the first gen-
eral proof of the principle of uniform boundedness for what would come to
be called Banach spaces, a special kind of vector space (with complete met-
ric) named in honor of the Polish mathematician Stefan Banach.!#¢ By 1925,
Hildebrandt’s continuing exploration of general spaces had led him to a con-
sideration and exposition of the (Heine-)Borel Theorem: given a subset S of
Euclidean n-space, S is closed and bounded if and only if S is compact. As
he saw it, “[t]he attempts to derive th[is] theorem in increasingly general sit-
uations has [sic] led to interesting new properties and characterizations of
spaces.”!#” Likely for that reason, he chose it as the topic of the invited address
he gave before the joint meeting of the AMS and the American Association for
the Advancement of Science in Kansas City in December 1925. In 1929, the
resulting paper won the second Chauvenet Prize of the Mathematical Asso-
ciation of America, an award then given once every three years for the best
expository article appearing in an American mathematical publication.!*®
Another strand of research in analysis that occupied American mathemati-
cians in the 1920s was potential theory or, broadly speaking, the study of har-
monic functions.!*® Also imported into the United States from Germany—
largely by Bocher and Kellogg—it was championed by Kellogg following
his move from the University of Missouri to fill the potential-theoretic void
created by Bocher’s death in 1918. In the 1920s, one of the questions that
particularly intrigued Kellogg—as well as his contemporaries like MIT’s Nor-
bert Wiener and Bdcher’s student, Griffith Evans, then at the Rice Institute

146. Theophil Hildebrandt, “On Uniform Limitedness of Sets of Functional Operations,”
BAMS 29 (1923),309-31S. The theorem was proven independently four years later by Banach
and Hugo Steinhaus in “Sur le principe de la condensation de singularités,” Fundamenta mathe-
maticae9 (1927), 50-61. Compare also E. H. Moore and Herman Smith, “A General Theory of
Convergence,” AJM 44 (1922), 102-121, where they defined the notions—that Hildebrandt
used to great advantage in his proof—of what are now called Moore-Smith sequences and
Moore-Smith convergence.

147. Theophil Hildebrandt, “The Borel Theorem and Its Generalizations,” BAMS 32
(1926), 423-474 on p. 454.

148. For more on this prize in the context of infrastructure-building for the American
mathematical endeavor in the 1920s, see the next chapter.

149. A function u(xy,x), . . ., x,) defined in some region R of Euclidean n-space is called
harmonic in R if it is 1) continuous, 2) has, considered as a function of each variable «; singly,
continuous first derivatives du/dx; and finite second derivatives 3%u/dax;2, and 3) if the expres-
{,?:1“2 +--+ % vanishes identically on R. See Constantin Carathéodory, “On
Dirichlet’s Problem,” AJM 59 (1937), 709-731 on p. 710.
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in Houston—was the so-called Dirichlet problem, that is, given a particular
partial differential equation, find a (harmonic) function that solves it in the
interior of a given region while taking on prescribed values on that region’s
boundary. By 1926, there was such a strong sense that the subject was under-
going “a period of remarkable development” that the AMS invited Kellogg
to speak on “Recent Progress on the Dirichlet Problem” at its January meet-
ing.!>% There, he aimed both to contextualize the myriad contributions of
American and European mathematicians to the problem’s solution and to
indicate open problems that might spur further American research. This was
followed by the advanced overview of the entire area that he gave in his 1929
book, Foundations of Potential Theory.!S!

Although much more analytic work could be singled out for mention—
the algebraic approach to function theory of Columbia’s Joseph Ritt, work
in approximation theory by Minnesota’s Dunham Jackson and Harvard’s
Joseph Walsh, results of UCLA’s Earle Hedrick on partial differential equa-
tions and on functions of complex variables, research on the theories of real
and complex functions as well as on special functions by Columbia’s Thomas
Gronwall, and results on ordinary differential equations by Bryn Mawr’s Anna

152

Pell Wheeler, among others >“—perhaps the final, major research focus of

American analysts to consider in some detail is the calculus of variations, that

150. Oliver Kellogg, “Recent Progress on the Dirichlet Problem,” BAMS 32 (1926), 601~
625 on p. 624. See Birkhoff, “Fifty Years of American Mathematics,” pp. 300-301 for a brief
technical discussion of the potential-theoretic work of Kellogg, Wiener, and Evans and com-
pare Marcel Brelot, “Norbert Wiener and Potential Theory,” BAMS 72 (1966), 39-41 and
Norbert Wiener, “The Dirichlet Problem,” JMP 3 (1924), 127-146.

151. Oliver Kellogg, Foundations of Potential Theory (New York: Frederick Ungar Publish-
ing Company, 1929). Kellogg died prematurely of a heart attack while climbing in 1932 thus
cutting his mathematical career short. For a heartfelt look at the man and his work, see George
Birkhoff, “The Mathematical Work of Oliver Dimon Kellogg,” BAMS 39 (1933), 171-177.

152. See, for example, Joseph Ritt, “Elementary Functions and Their Inverses,” TAMS
27 (1925), 68-90; Dunham Jackson, The Theory of Approximation, AMS Colloquium Pub-
lications, vol. 11 (New York: American Mathematical Society, 1930); Joseph Walsh, “The
Approximation of Harmonic Functions by Harmonic Polynomials and by Harmonic Rational
Functions,” BAMS 35 (1929), 499-544 and “On Approximation by Rational Functions to an
Arbitrary Function of a Complex Variable,” TAMS 31 (1929), 477-502; Earle Hedrick, “On
the Derivatives of Non-analytic Functions,” PNAS 14 (1928), 649-654; Thomas Gronwall,
“On the Zeros of the Function 8(z) Associated with the Gamma Function,” TAMS 28 (1926),
391-399; and Anna Pell Wheeler, “Linear Ordinary Self-adjoint Differential Equations of
the Second Order,” AJM 49 (1927), 309-320. Alan Gluchoff highlights Gronwall’s particu-
larly interesting career in “Pure Mathematics Applied in Early Twentieth-Century America:
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is, the study of the conditions under which a given integral takes on a maxi-
mum or a minimum. Indeed, if Harvard was one American center of analysis
in the 1920s, another was the University of Chicago precisely in this subfield.
Inaugurated there by Oskar Bolza, it was perpetuated after Bolza’s departure
for Germany in 1910 by Gilbert Bliss, Bolza’s first and most prominent stu-
dent and his successor—after stints at Minnesota, Missouri, Chicago, and
Princeton—on the Chicago faculty. As he pursued the research agenda he
had begun in his 1900 doctoral dissertation, Bliss also populated the Amer-
ican mathematical research community with over twenty new researchers in
the calculus of variations in the years from 1920 through 1930, among whom
were Lawrence Graves, ultimately Bliss’s colleague and successor at Chicago,
and Edward J. “Jimmy” McShane, who transplanted the field to the University
of Virginia after his move there in 1938.

In the 1920s, one of Bliss’s research foci concerned the second variation of
an integral along a curve. The problem was to determine a curve Cjoining the
points (x1, y1) and (x2, y2) defined by y = y(x) for x; < x < x; in the xy-plane
that minimizes an integral

J(©) = / £ y(0), ¥ ().

1

As Bliss explained, “[i]n order to obtain conditions which must be satisfied by
a minimizing arc,”!%3 it was necessary to “consider the values of the integral

along the curves of a family of the form

y=y) +an(x), (¥ <x=<wx),

where « is a constant to be varied at pleasure and 7(x) is a function which
vanishes at x; and x.” Since all of the curves of this family pass through the
endpoints of C, it is clear that

Jo) = f o y+an,y +an')dx

The Case of T. H. Gronwall, Consulting Mathematician,” Historia Mathematica 32 (2005),
312-357.

In his list (see fig. 1.2), Veblen also singled out the analytic work of Einar Hille at Yale and
Jacob Tamarkin at Brown (principally on integral equations and Fourier series), Wallie Hurwitz
at Cornell (on divergent series, among other topics), and James Shohat at Michigan (on the
so-called moment problem).

153. Gilbert Bliss, “Some Recent Developments in the Calculus of Variations,” BAMS 26
(1920), 343-361 on p. 345.
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“must have a minimum for o = 0, so that by the usual theory of maxima and
minima the conditions

7= / (n+fym)dx =0, (L1)

X2
J"(0) = f (hyn® + 2y’ +fyyn ) dx =0, (12)
X1

must be satisfied for every choice of the function 1 (x) vanishing at x; and x,.”
Equations (1.1) and (1.2) are the first and second variations, respectively, of
the integral J along the curve C. Bliss argued that “the theory of the second
variation in its entirety could be viewed with success from the standpoint of
the minimum problem of the second variation, a minimum problem within
a minimum problem,” and he explored that claim especially in the lecture he
gave in 1924 at the Toronto International Congress.154

Not all work on the calculus of variations in the 1920s had a Chicago
connection, though. Roland Richardson, Secretary of the AMS from 1921
to 1940 and indefatigable proponent of mathematics in the United States,
reprised in the 1920s questions in the area that had occupied him as early
as 1910. Richardson had earned his Ph.D. under James Pierpont at Yale in
1906, had accepted a position at Brown the next year, and had spent the
1908-1909 academic year studying in Géttingen with Klein and especially
Hilbert. On the latter’s recommendation, he turned his attention to a conjec-
ture that the German master had made involving the calculus of variations
in the context of certain boundary-value problems with a finite number of
isoperimetric conditions.!>> By 1928, he had extended this work (although
somewhat imperfectly) to consider “properties enjoyed by the individual
proper functions as extrema for variational problems involving an infinite
number of isoperimetric conditions.”!3¢ In the 1920s, through the 1930s, and
into the 1940s, although he tried to keep his hand in mathematics per se,

154. For the quotation, see ibid. p. 358. For the lecture, see Gilbert Bliss, “The Transfor-
mation of Clebsch in the Calculus of Variations,” Proceedings of the International Mathematical
Congress Held in Toronto, August 11-16, 1924, ed. John Fields, 1: 589-603.

155. Raymond Archibald, “R.G.D. Richardson 1878-1949,” BAMS 56 (1950), 256265
on pp. 257-258.

156. Roland Richardson, “A Problem in the Calculus of Variations with an Infinite Num-
ber of Auxiliary Conditions,” TAMS 30 (1928), 155-189. For the quotation, see Archibald,
“R.G.D. Richardson,” p. 259.
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SURVEYING THE 1920S RESEARCH LANDSCAPE §§

FIGURE 1.4. Roland Richardson (1878-1949) in 1940 on the occasion of his “retirement”
after nineteen years as AMS Secretary. He is holding his copy of the testimonial he
received from the AMS and standing beside the silver tea set given to him by his
grateful colleagues. (Photo courtesy of Brown University Digital Depository.)

Richardson was almost exclusively focused on mathematical institution-
building both within the AMS and at Brown (on the latter, in particular, see
chapter eight).

Also outside the immediate circle defined by Bliss and his colleagues at
Chicago, Birkhoft was active in the calculus of variations like he 