Contents

Preface xi
1 Before Euclid 1
1.1 The Pythagorean Theorem 2
1.2 Pythagorean Triples 4
1.3 Irrationality 6
1.4 From Irrationals to Infinity 7
1.5 Fear of Infinity 10
1.6 Eudoxus 12
1.7 Remarks 15
2 Euclid 16
2.1 Definition, Theorem, and Proof 17
2.2 The Isosceles Triangle Theorem and SAS 20
2.3 Variants of the Parallel Axiom 22
2.4 The Pythagorean Theorem 25
2.5 Glimpses of Algebra 26
2.6 Number Theory and Induction 29
2.7 Geometric Series 32
2.8 Remarks 36
3 After Euclid 39
3.1 Incidence 40
3.2 Order 41
3.3 Congruence 44
3.4 Completeness 45
3.5 The Euclidean Plane 47
3.6 The Triangle Inequality 50
3.7 Projective Geometry 51
3.8 The Pappus and Desargues Theorems 55
3.9 Remarks 59
4 Algebra 61
4.1 Quadratic Equations 62
4.2 Cubic Equations 64
4.3 Algebra as "Universal Arithmetick" 68
4.4 Polynomials and Symmetric Functions 69
4.5 Modern Algebra: Groups 73
4.6 Modern Algebra: Fields and Rings 77
4.7 Linear Algebra 81
4.8 Modern Algebra: Vector Spaces 82
4.9 Remarks 85
5 Algebraic Geometry 92
5.1 Conic Sections 93
5.2 Fermat and Descartes 95
5.3 Algebraic Curves 97
5.4 Cubic Curves 100
5.5 Bézout's Theorem 103
5.6 Linear Algebra and Geometry 105
5.7 Remarks 108
6 Calculus 110
6.1 From Leonardo to Harriot 111
6.2 Infinite Sums 113
6.3 Newton's Binomial Series 117
6.4 Euler's Solution of the Basel Problem 119
6.5 Rates of Change 122
6.6 Area and Volume 126
6.7 Infinitesimal Algebra and Geometry 130
6.8 The Calculus of Series 136
6.9 Algebraic Functions and Their Integrals 138
6.10 Remarks 142
7 Number Theory 145
7.1 Elementary Number Theory 146
7.2 Pythagorean Triples 150
7.3 Fermat's Last Theorem 154
7.4 Geometry and Calculus in Number Theory 158
7.5 Gaussian Integers 164
7.6 Algebraic Number Theory 171
7.7 Algebraic Number Fields 174
7.8 Rings and Ideals 178
7.9 Divisibility and Prime Ideals 183
7.10 Remarks 186
8 The Fundamental Theorem of Algebra 191
8.1 The Theorem before Its Proof 192
8.2 Early "Proofs" of FTA and Their Gaps 194
8.3 Continuity and the Real Numbers 195
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. CONTENTS ix
8.4 Dedekind's Definition of Real Numbers 197
8.5 The Algebraist's Fundamental Theorem 199
8.6 Remarks 201
9 Non-Euclidean Geometry 202
9.1 The Parallel Axiom 203
9.2 Spherical Geometry 204
9.3 A Planar Model of Spherical Geometry 207
9.4 Differential Geometry 210
9.5 Geometry of Constant Curvature 215
9.6 Beltrami's Models of Hyperbolic Geometry 219
9.7 Geometry of Complex Numbers 223
9.8 Remarks 226
10 Topology 228
10.1 Graphs 229
10.2 The Euler Polyhedron Formula 234
10.3 Euler Characteristic and Genus 239
10.4 Algebraic Curves as Surfaces 241
10.5 Topology of Surfaces 244
10.6 Curve Singularities and Knots 250
10.7 Reidemeister Moves 253
10.8 Simple Knot Invariants 256
10.9 Remarks 261
11 Arithmetization 263
11.1 The Completeness of \mathbb{R} 264
11.2 The Line, the Plane, and Space 265
11.3 Continuous Functions 266
11.4 Defining "Function" and "Integral" 268
11.5 Continuity and Differentiability 273
11.6 Uniformity 276
11.7 Compactness 279
11.8 Encoding Continuous Functions 284
11.9 Remarks 286
12 Set Theory 291
12.1 A Very Brief History of Infinity 292
12.2 Equinumerous Sets 294
12.3 Sets Equinumerous with \mathbb{R} 300
12.4 Ordinal Numbers 303
12.5 Realizing Ordinals by Sets 305
12.6 Ordering Sets by Rank 308
12.7 Inaccessibility 310
12.8 Paradoxes of the Infinite 311
12.9 Remarks 312
13 Axioms for Numbers, Geometry, and Sets 316
13.1 Peano Arithmetic 317
13.2 Geometry Axioms 320
13.3 Axioms for Real Numbers 322
13.4 Axioms for Set Theory 324
13.5 Remarks 327
14 The Axiom of Choice 329
14.1 AC and Infinity 330
14.2 AC and Graph Theory 331
14.3 AC and Analysis 332
14.4 AC and Measure Theory 334
14.5 AC and Set Theory 337
14.6 AC and Algebra 339
14.7 Weaker Axioms of Choice 342
14.8 Remarks 344
15 Logic and Computation 347
15.1 Propositional Logic 348
15.2 Axioms for Propositional Logic 351
15.3 Predicate Logic 355
15.4 Gödel's Completeness Theorem 357
15.5 Reducing Logic to Computation 361
15.6 Computably Enumerable Sets 363
15.7 Turing Machines 365
15.8 The Word Problem for Semigroups 371
15.9 Remarks 376
16 Incompleteness 381
16.1 From Unsolvability to Unprovability 382
16.2 The Arithmetization of Syntax 383
16.3 Gentzen's Consistency Proof for PA 386
16.4 Hidden Occurrences of ε_{0} in Arithmetic 390
16.5 Constructivity 393
16.6 Arithmetic Comprehension 396
16.7 The Weak Kőnig Lemma 399
16.8 The Big Five 400
16.9 Remarks 403
Bibliography 405
Index 419

CHAPTER1

Before Euclid

The signature theorem of mathematics is surely the Pythagorean theorem, which was discovered independently in several cultures long before Euclid made it the first major theorem in his Elements (book 1, proposition 47). All the early roads in mathematics led to the Pythagorean theorem, no doubt because it reflects both sides of basic mathematics: number and space, or arithmetic and geometry, or the discrete and the continuous.

The arithmetic side of the Pythagorean theorem was observed in remarkable depth as early as 1800 BCE, when Babylonian mathematicians found many triples $\langle a, b, c\rangle$ of natural numbers such that $a^{2}+b^{2}=c^{2}$. Whether they viewed each triple a, b, c as sides of a right-angled triangle has been questioned; however, the connection was not missed in ancient India and China, where there were also geometric demonstrations of particular cases of the theorem.

Nevertheless, the Pythagoreans are rightly associated with the theorem because of their discovery that $\sqrt{2}$, the hypotenuse of the triangle with unit sides, is irrational. This discovery was a turning point in Greek mathematics, even a "crisis of foundations," because it forced a reckoning with infinity and, with it, the need for proof. In India and China, where irrationality was overlooked, there was no "crisis," hence no perceived need to develop mathematics in a deductive manner from self-evident axioms.

The nature of irrational numbers, as we will see, is a deep problem that has stimulated mathematicians for millennia. Even in antiquity, with Eudoxus's theory of proportions, the Greeks took the first step from the discrete toward the continuous.

1.1 THE PYTHAGOREAN THEOREM

For many people, the Pythagorean theorem is where geometry begins, and it is where proof begins too. Figure 1.1 shows the pure geometric form of the theorem: for a right-angled triangle (white), the square on the hypotenuse (gray) is equal to the sum of the squares on the other two sides (black).

Figure 1.1 : The Pythagorean theorem

What "equality" and "sum" mean in this context can be explained immediately with the help of figure 1.2. Each half of the picture shows a large square with four copies of the triangle inside it. On the left, the large square minus the four triangles is identical with the square on the hypotenuse. On the right, the large square minus four triangles is identical with the squares on the other two sides. Therefore, the square on the hypotenuse equals the sum of the squares on the other two sides.

Thus we are implicitly assuming some "common notions," as Euclid called them:

1. Identical figures are equal.
2. Things equal to the same thing are equal to each other.
3. If equals are added to equals the sums are equal.
4. If equals are subtracted from equals the differences are equal.

These assumptions sound a little like algebra, and they are obviously true for numbers, but here they are being applied to geometric objects.

Figure 1.2 : Seeing the Pythagorean theorem

In that sense we have a purely geometric proof of a geometric theorem. The reasons why the Pythagoreans wanted to keep geometry pure will emerge in section 1.3 below.

Although figure 1.2 is as convincing as a picture can be, some might quibble that we have not really explained why the gray and black regions are squares. The Greeks who came after Pythagoras did indeed quibble about details like this, due to concerns about the nature of geometric objects that will also emerge in section 1.3. The result was Euclid's Elements, produced around 300 BCE , a system of proof that placed geometry on a firm (but wordy) logical foundation. Chapter 2 expands figure 1.2 into a proof in the style of Euclid. We will see that the saying "a picture is worth a thousand words" is pretty close to the mark.

Origins of the Pythagorean Theorem

As noted above, the Pythagorean theorem was discovered independently in several ancient cultures, probably earlier than Pythagoras himself. Special cases of it occur in ancient India and China, and perhaps earliest of all in Babylonia (part of modern Iraq). Thus the theorem is a fine example of the universality of mathematics. As we will see in later chapters, it recurs in different guises throughout the history of geometry, and also in number theory.

It is not known how it was first proved. The proof above is one suggestion, given by Heath (1925, 1:354) in his edition of the Elements. The Chinese and Indian mathematicians were more interested in triangles whose sides had particular numerical values, such as $3,4,5$ or $5,12,13$.

As we will see in the next section, the Babylonians developed the theory of numerical right-angled triangles to an extraordinarily high level.

1.2 PYTHAGOREAN TRIPLES

If the sides of a right-angled triangle are a, b, c, with c the hypotenuse, then the Pythagorean theorem is expressed by the equation

$$
a^{2}+b^{2}=c^{2}
$$

in the algebraic notation of today. Indeed, we call a^{2} " a squared" in memory of the fact that a^{2} represents a square of side a. We also understand that a^{2} is found by multiplying a by itself, and the Pythagoreans would have agreed with us when a is a whole number. What made the Pythagorean theorem interesting to them are the whole-number triples $\langle a, b, c\rangle$ satisfying the equation above. Today, such triples are known as Pythagorean triples. The simplest example is of course $\langle 3,4,5\rangle$, because

$$
3^{2}+4^{2}=9+16=25=5^{2}
$$

but there are infinitely many Pythagorean triples. In fact, the right-angled triangles whose sides are Pythagorean triples come in infinitely many shapes because the slopes b / a of their hypotenuses can take infinitely many values.

The most impressive evidence for this fact appears on a Babylonian clay tablet from around 1800 все. The tablet, known as Plimpton 322 (its catalog number in a collection at Columbia University), contains columns of numbers that Neugebauer and Sachs (1945) interpreted as values of b and c in a table of Pythagorean triples. Part of the tablet is broken off, so what remains are pairs $\langle b, c\rangle$ rather than triples. Some have questioned whether the Babylonian compiler of the tablet really had right-angled triangles in mind. In my opinion, yes, because all the values $c^{2}-b^{2}$ are perfect squares and the pairs $\langle b, c\rangle$ are listed in order of the values b / a-the slopes of the corresponding hypotenuses. Figure 1.3 is a completed table that includes the values of a and b / a and also a fraction x that I explain below.

The column of a values reveals something else interesting. These values are all divisible only by powers of 2,3 , and 5 , which makes them particularly "round" numbers in the Babylonian system, which was based on the number 60 (some of their system survives today, with 60 minutes in a hour and 60 seconds in a minute).

We do not know how the Babylonians discovered these triples. However, the amazingly complex values of b and c can be generated from the

a	b	c	b / a	x
120	119	169	0.9917	$12 / 5$
3456	3367	4825	0.9742	$64 / 27$
4800	4601	6649	0.9585	$75 / 32$
13500	12709	18541	0.9414	$125 / 54$
72	65	97	0.9028	$9 / 4$
360	319	481	0.8861	$20 / 9$
2700	2291	3541	0.8485	$54 / 25$
960	799	1249	0.8323	$32 / 15$
600	481	769	0.8017	$25 / 12$
6480	4961	8161	0.7656	$81 / 40$
60	45	75	0.7500	2
2400	1679	2929	0.6996	$48 / 25$
240	161	289	0.6708	$15 / 8$
2700	1771	3229	0.6559	$50 / 27$
90	56	106	0.6222	$9 / 5$

Figure 1.3 : Pythagorean triples in Plimpton 322
fractions x, which are fairly simple combinations of powers of 2,3 , and 5. In terms of x, the whole numbers a, b, and c are denominator and numerators of the fractions

$$
\frac{b}{a}=\frac{1}{2}\left(x-\frac{1}{x}\right) \quad \text { and } \quad \frac{c}{a}=\frac{1}{2}\left(x+\frac{1}{x}\right) .
$$

For example, with $x=12 / 5$ we get
$\frac{1}{2}\left(x-\frac{1}{x}\right)=\frac{1}{2}\left(\frac{12}{5}-\frac{5}{12}\right)=\frac{119}{120} \quad$ and $\quad \frac{1}{2}\left(x+\frac{1}{x}\right)=\frac{1}{2}\left(\frac{12}{5}+\frac{5}{12}\right)=\frac{169}{120}$.
The huge triple $\langle 13500,12709,18541\rangle$ is similarly generated from the fraction $125 / 54=5^{3} / 2 \cdot 3^{3}$, which has roughly the same complexity as $13500=2^{2} \cdot 3^{3} \cdot 5^{3}$. Thus, it is plausible that the Babylonians could have generated complex Pythagorean triples by relatively simple arithmetic. At the same time, the link with geometry is hard to deny when the triples are seen to be arranged in order of the slopes b / a-an order that could not be guessed from the arrangement of a, b, c, or x values! And when one sees that these slopes cover a range of angles, roughly equally spaced, between 30° and 45° (figure 1.4), it looks as though the Babylonians were collecting triangles of different shapes.

It is also conspicuous which shape is missing from this collection of triangles: the one with equal sides a and b, shown in red in figure 1.4.

Figure 1.4: Slopes derived from Plimpton 322

As we now know, because the Pythagoreans discovered it, this shape is missing because the hypotenuse of this triangle is irrational.

1.3 IRRATIONALITY

Irrationality follows naturally from the Pythagorean theorem, but apparently it was found by the Pythagoreans alone. Like other discoverers of the theorem, the Pythagoreans knew special cases with whole-number values of a, b, c. But, apparently they were the only ones to ask, Why do we find no such triples with $a=b$? The question points to its own answer: it is contradictory to suppose there are whole numbers a and c such that $c^{2}=2 a^{2}$.

The argument of the Pythagoreans is not known, but the result must have been common knowledge by the time of Aristotle (384-322 BCE),
as he apparently assumes his readers will understand the following brief hint:

The diagonal of the square is incommensurable with the side, because odd numbers are equal to evens if it is supposed commensurable.
(Aristotle, Prior Analytics, bk. 1, chap. 23)
Here "commensurable" means being a whole number multiple of a common unit of measure, so we are supposing that $c^{2}=2 a^{2}$, where the side of the square is a units and its diagonal is c units. We reach the contradiction "odd = even" as follows.

First, by choosing the unit of measure as large as possible, we can assume that the whole numbers c and a have no common divisor (except 1). In particular, at most one of them can be even.

Now $c^{2}=2 a^{2}$ implies that the number c^{2} is even. Since the square of an odd number is odd, c must also be even, say $c=2 d$. Substituting $2 d$ for c gives

$$
(2 d)^{2}=2 a^{2} \quad \text { so } \quad 2 d^{2}=a^{2}
$$

But then a similar argument shows a is even, which is a contradiction.
So it is wrong to suppose there are whole numbers a and c with $c^{2}=2 a^{2}$.

The usual way to express this fact today is that there are no natural numbers c and a such that $\sqrt{2}=c / a$ or, more simply, that $\sqrt{2}$ is irrational.

1.4 FROM IRRATIONALS TO INFINITY

The argument for irrationality of $\sqrt{2}$ is very short and transparent in modern algebraic symbolism. Judging by the excerpt from Aristotle, it was also comprehensible enough when equations were written out in words, as the ancient Greeks did.

But there was also a geometric approach to incommensurable quantities that the Greeks called anthyphaeresis. It gives a different and deeper insight into the nature of $\sqrt{2}$ and, indeed, a different proof that it is irrational. Anthyphaeresis is a process that can be applied to two quantities, such as lengths or natural numbers, by repeatedly subtracting the smaller from the larger. Since it was later used to great effect by Euclid, it is today called the Euclidean algorithm.

More formally, given two quantities a_{1} and b_{1} with $a_{1}>b_{1}$, one forms the new pair of quantities b_{1} and $a_{1}-b_{1}$ and calls the greater of them a_{2}
and the lesser b_{2}. Then one does the same with the pair a_{2}, b_{2}, and so on. For example, if $a_{1}=5, b_{1}=3$ we get

$$
\begin{aligned}
& \left\langle a_{1}, b_{1}\right\rangle=\langle 5,3\rangle \\
& \left\langle a_{2}, b_{2}\right\rangle=\langle 3,2\rangle \\
& \left\langle a_{3}, b_{3}\right\rangle=\langle 2,1\rangle \\
& \left\langle a_{4}, b_{4}\right\rangle=\langle 1,1\rangle
\end{aligned}
$$

at which point the algorithm terminates because $a_{4}=b_{4}$. The Euclidean algorithm always terminates when a_{1} and b_{1} are natural numbers, because subtraction produces smaller natural numbers and natural numbers cannot decrease forever. Conversely, a ratio for which the Euclidean algorithm runs forever is irrational.

In section 2.6 we will see the consequences of the Euclidean algorithm for natural numbers, but for the Greeks before Euclid the process of anthyphaeresis was most revealing for pairs of incommensurable quantities, such as $a_{1}=\sqrt{2}$ and $b_{1}=1$. In this case the numbers a_{n}, b_{n} can and do decrease forever. In fact, we have

$$
\begin{aligned}
& \left\langle a_{1}, b_{1}\right\rangle=\langle\sqrt{2}, 1\rangle \\
& \left\langle a_{2}, b_{2}\right\rangle=\langle 1, \sqrt{2}-1\rangle \\
& \left\langle a_{3}, b_{3}\right\rangle=\langle 2-\sqrt{2}, \sqrt{2}-1\rangle=\langle(\sqrt{2}-1) \sqrt{2},(\sqrt{2}-1) 1\rangle
\end{aligned}
$$

so $\left\langle a_{3}, b_{3}\right\rangle$ is the same as $\left\langle a_{1}, b_{1}\right\rangle$, just scaled down by the factor $\sqrt{2}-1$. Two more steps will give $\left\langle a_{5}, b_{5}\right\rangle$, again the same as $\left\langle a_{1}, b_{1}\right\rangle$ but scaled down by the factor $(\sqrt{2}-1)^{2}$, and so on. Thus the numbers $\left\langle a_{n}, b_{n}\right\rangle$ decrease forever, but they return to the same ratio every other step.

Since this cannot happen for any pair $\langle a, b\rangle$ of natural numbers, it follows that $\sqrt{2}$ and 1 are not in a natural number ratio; that is, $\sqrt{2}$ is irrational. Moreover, we have discovered that the pair $\langle\sqrt{2}, 1\rangle$ behaves periodically under anthyphaeresis, producing pairs in the same ratio every other step. It turns out, though this was not understood until algebra was better developed, that periodicity is a special phenomenon occurring with square roots of natural numbers.

Visual Form of the Euclidean Algorithm

If a and b are lengths, we can represent the pair $\{a, b\}$ by the rectangle with adjacent sides a and b. If, say, $a>b$, then the pair $\{b, a-b\}$ is represented by the rectangle obtained by cutting a square of side b from the
original rectangle, shown in light gray in figure 1.5. The algorithm then repeats the process of cutting off a square in the light gray rectangle, and so on.

Figure 1.5 : First step of the Euclidean algorithm

When $a=\sqrt{2}$ and $b=1$, two steps of the algorithm give the light gray rectangle shown in figure 1.6, which is the same shape as the original rectangle. This is because its sides are again in the ratio $\sqrt{2}: 1$, as we saw in the calculation above. Since the new rectangle is the same shape as the old, it is clear that the process of cutting off a square will continue forever.

Figure 1.6 : After two steps of the algorithm on $\sqrt{2}$ and 1

The Greeks were fascinated by geometric constructions in which the original figure reappears at a reduced size. The simplest example is the so-called golden rectangle (see figure 1.7), in which removal of a square leaves a rectangle the same shape as the original. It follows that the Euclidean algorithm runs forever on the sides a and b of the golden rectangle, and hence these sides are in irrational ratio. This particular ratio is called the golden ratio.

Figure 1.7: The golden rectangle

The golden ratio is also the ratio of the diagonal to the side of the regular pentagon, where the recurrence of the original figure at reduced size can be seen in figure 1.8.

It is believed that the study of the golden ratio and the regular pentagon may go back to the Pythagoreans, in which case they were probably aware of the irrationality of the golden ratio as well as that of $\sqrt{2}$.

Figure 1.8 : Infinite series of pentagrams

1.5 FEAR OF INFINITY

As we have just seen, irrationality brings infinite processes to the attention of mathematicians, albeit processes of a simple and repetitive kind. At an even more primitive level, the natural numbers $0,1,2,3, \ldots$ themselves represent the kind of infinity where a simple process-in this case, adding 1 -is repeated without end. An infinity that involves endless repetition was called by the Greeks a potential infinity. They contrasted it with actual infinity-a somehow completed infinite totality—which was considered unacceptable or downright contradictory.

The legendary opponent of infinity was Zeno of Elea, who lived around 450 все. Zeno posed certain "paradoxes of the infinite," which we know only from Aristotle, who described the paradoxes only to debunk them, so we do not really know what Zeno meant by them or how they
were originally stated. It will become clear, however, that Zeno accepted potential infinity while rejecting actual infinity.

A typical Zeno paradox is his first, the paradox of the dichotomy, in which he argues that motion is impossible because
before any distance can be traversed, half the distance must be traversed [and so on], that these half distances are infinite in number, and that it is impossible to traverse distances infinite in number. (Aristotle, Physics, bk. 8, chap. 8, 263a)

Apparently, Zeno is arguing that the infinite sequence of events

> reaching $1 / 2$ way
> reaching $1 / 4$ way
> reaching $1 / 8$ way
cannot be completed. Aristotle answers, a few lines below this statement, that
the element of infinity is present in the time no less than in the distance.

In other words, if one can conceive an infinite sequence of places

$$
1 / 2 \text { way, } 1 / 4 \text { way, } 1 / 8 \text { way, }
$$

then one can conceive an infinite sequence of times at which
$1 / 2$ way is reached, $1 / 4$ way is reached, $1 / 8$ way is reached, \ldots.
Thus if Zeno is willing to admit the potential infinity of places, he has to admit the potential infinity of times. It is not a question of completing an infinity but only of correlating one potential infinity with another. We claim only that each of the places can be reached at a certain time; we do not have to consider the totality of places or the totality of times.

At any rate, after Zeno, Greek mathematicians handled questions about infinity by this style of argument-dealing with members of a potential infinity one by one rather than in their totality. The "actual infinity scare" was nevertheless productive, because it led to a very subtle understanding of the relation between the continuous and the discrete.

1.6 EUDOXUS

Eudoxus of Cnidus, who lived from approximately 390 все to 330 все, was a student of Plato and is believed to have taught Aristotle. His most important accomplishments are the theory of proportions and the method of exhaustion. Together, they form the summit of the Greek treatment of infinity, and they come down to us mainly through the exposition in book 5 of Euclid's Elements. In particular, the theory of proportions was the best treatment of rational and irrational quantities available until the nineteenth century. Indeed, it is probably the best treatment possible as long as one rejects actual infinity, which most mathematicians did until the 1870s.

The theory of proportions deals with "magnitudes" (typically lengths) and their relation to "numbers," which are natural numbers. It thereby builds a bridge between the two worlds separated by the Pythagoreans: the world of magnitudes, which vary continuously, and the world of counting, where numbers jump discretely from each number to its successor.

The theory is complicated somewhat because the Greeks thought in terms of ratios of magnitudes and ratios of numbers, without having the algebraic machinery of fractions that makes ratios easy to handle. We can understand the ratio of natural numbers m and n as the fraction m / n, so we will write the ratio of lengths a and b as the fraction $a / b .{ }^{1}$ The key idea of Eudoxus is that ratios of lengths, a / b and c / d, are equal if and only if, for each natural number ratio m / n,

$$
\frac{m}{n}<\frac{a}{b} \text { if and only if } \frac{m}{n}<\frac{c}{d} .
$$

Equivalently (and this is how Eudoxus put it), for each natural number pair m and n,

$$
m b<n a \text { if and only if } m d<n c
$$

Thus the infinity of natural number pairs m, n is behind the definition of equality of length ratios, but only potentially so, because equality

[^0]depends on a single (though arbitrary) pair m, n. In defining unequal length ratios, infinity can be avoided completely, because one particular pair can witness inequality. Namely, if $a / b<c / d$ then there is a particular m / n such that
$$
\frac{a}{b}<\frac{m}{n}<\frac{c}{d},
$$
and likewise, if $c / d<a / b$ then there is a particular m / n between c / d and a / b. Today we would say that ratios of lengths are separable by ratios of natural numbers.

The Archimedean Axiom

The assumption that natural number ratios separate ratios of lengths is equivalent to a property later called the Archimedean property: if $a / b>0$ then $a / b>m / n>0$ for some natural numbers m and n. It follows, obviously, that in fact $a / b>1 / n$, so $n a>b$. This gives the usual statement of the Archimedean axiom: if a and b are any nonzero lengths, then there is a natural number n such that na>b.

Another statement of the Archimedean axiom is: there is no ratio a / b so small that $0<a / b<1 / n$ for each natural number n, or more concisely, there are no infinitesimals. This property was assumed by Euclid and Archimedes (hence the name), but some later mathematicians, such as Leibniz, thought that infinitesimals exist. We will see in chapter 4 that the existence of infinitesimals was a big issue in the development of calculus.

Mathematical practice today has translated Eudoxus's theory into our concept of the real number system \mathbb{R}. The ratios of lengths are the nonnegative real numbers, and among them lie the nonnegative rational numbers, which are the ratios m / n of natural numbers. Any two distinct real numbers are separated by a rational number, so there are no infinitesimals in \mathbb{R}. Conversely, each real number is determined by the rational numbers less than it and the rational numbers greater than it. Exactly how this came about, and what the real numbers are, is explained in chapter 11. It turns out that separation by rational numbers is the key to answering this question.

The Method of Exhaustion

We discuss the method of exhaustion only briefly here, because it is a generalization of the theory of proportions. Also, the best examples of the method occur in the work of Euclid and Archimedes, discussed in
chapter 2 . The basic idea is to approximate an "unknown quantity," such as the area or volume of a curved region, by "known quantities" such as areas of triangles or volumes of prisms. This generalizes the idea of approximating a ratio of lengths by ratios of natural numbers. Generally, there is a potential infinity of approximating objects, but as long as they come "arbitrarily close" to the unknown quantity it is possible to draw conclusions without appealing to actual infinity.

An example is approximation of the circle by polygons, shown in figure 1.9, which allows us to draw the conclusion that the area of the circle is proportional to the square of its radius.

Figure 1.9 shows polygons approximating the circle from inside and outside. Only the first two approximations are shown, but one can imagine a continuation of the sequence by repeatedly doubling the number of sides. It is clear that the area of the gap between inner and outer polygons becomes arbitrarily small in the process, and hence both inner and outer polygons come arbitrarily close to the circle in area.

Figure 1.9 : Approximating the circle by polygons
Also, the area of each polygon P_{n} is a sum of triangles, whose area $P_{n}(R)$ for radius R is known and proportional to R^{2}. Now comes a typical example of reasoning "by exhaustion": suppose that the area $C(R)$ of the circle of radius R is not proportional to R^{2}. Thus, if we compare circles of radius R and R^{\prime} we have either

$$
C(R) / C\left(R^{\prime}\right)<R^{2} / R^{\prime 2}
$$

or

$$
C(R) / C\left(R^{\prime}\right)>R^{2} / R^{\prime 2}
$$

If $C(R) / C\left(R^{\prime}\right)<R^{2} / R^{\prime 2}$, then by choosing n so that $P_{n}(R)$ is sufficiently close to $C(R)$ and $P_{n}\left(R^{\prime}\right)$ is sufficiently close to $C\left(R^{\prime}\right)$, we will get

$$
P_{n}(R) / P_{n}\left(R^{\prime}\right)<R^{2} / R^{\prime 2},
$$

which is a contradiction. If $C(R) / C\left(R^{\prime}\right)<R^{2} / R^{\prime 2}$ we get a similar contradiction. Therefore the only possibility is that $C(R) / C\left(R^{\prime}\right)=R^{2} / R^{\prime 2}$.

We have established what we want by exhausting all other possibilities. This is what "exhaustion" means in the method of exhaustion. Notice also that we used only the potential infinity of polygons by going only far enough to contradict a given inequality. This is typical of the method.

1.7 REMARKS

We have seen in the development of Greek mathematics many topics considered tricky in undergraduate mathematics today, such as proof by contradiction, the use of infinity, and the idea of choosing a "sufficiently close" approximation. This just goes to show, in my opinion, that ancient mathematics is good training in the art of proof.

At the same time, we have seen that ancient arguments can often be streamlined by the use of algebraic symbolism, and the art of algebra was missing in ancient times.

The other thing missing, in what we know of this early stage, was the systematic deduction of theorems from axioms. The art of axiomatics also began in ancient times, as we will see in the next chapter.

Index

3-sphere, 253
A_{n} see alternating group
abacus, 64
Abel's theorem, 243
Abel, Niels Henrik, 160
introduced genus concept, 187
in integral calculus, 243
AC see axiom of choice
$\mathrm{ACA}_{0}, 397$
minimal model, 397
accumulation point, 332
Adams, John, 125
Adams, John Quincy, 125
addition formula for sine, 116
adequality, 125
al-Haytham, Hasan ibn, 129, 203
al-Khwārizmī, Muhammad ibn Mūsā, 63
al-Qūhī, Abū Sahl Wayjan ibn Rustam, 107
Alberti, Leon Battista, 52
method of perspective drawing, 52
alephs, 313
Alexander, James, 256
algebra, 61
and AC, 339
as "universal arithmetick," 68
as method of proof, 68
axioms, 69
Boolean, 347
fundamental theorem, 70, 73, 191
needed for Bézout's theorem, 104
homological, 261
in Euclid's common notions, 19
invaded by continuum, 191
linear, 81
modern, 73
of logic, 347
origin of word, 63
powered calculus, 110
real fundamental theorem, 192
algebraic
axioms, 317
closure, 329
curve, 92,97
as Riemann surface, 240, 241
tangent, 98
function, 138
Dedekind-Weber theory, 187, 262
field, 187
integral of, 244
with nonelementary integral, 139
geometry, 85,92
integer, 81,178
definition, 178
number, 61, 81, 164
definition, 175
field, 174,177
minimal polynomial, 175
number theory, 84,171
structure
from incidence axioms, 40, 59
topology, 261
algorithm
defined by Post, 361
Dehn's, 250
Euclidean, 7, 29
origin of word, 63
alternating group, 88
alternative field, 91
altitude concurrence theorem, 107
analysis
and AC, 332
arithmetization of, 263
as second-order arithmetic, 393
commonality with logic, 380
constructive, 393, 395
foundations of, 263
nonstandard, 328
tree arguments in, 358
angle
equality, 44
in spherical geometry, 204
measure, 48
anthyphaeresis, 7
antiderivative, 133
Apollonius of Perga, 93
arc length, 97
by calculus, 133
formula, 134
of cubic curves, 135
of ellipse
as elliptic integral, 140
of equiangular spiral, 97, 112
of hyperbola
as elliptic integral, 140
of lemniscate, 141, 160
Archimedean axiom, 13, 45
implies no infinitesimals, 13, 45
Archimedes, 13
area of parabolic segment, 126
by rectangle approximation, 129
Method, 143
volume of sphere, 126
by comparing with cylinder, 127
area, 27
by rectangle approximation, 128, 269
equality, 27
of parabolic segment, 126
via geometric series, 126
of spherical triangle, 204
and angle sum, 205
of triangle, 28
Argand, Jean-Robert, 194
Aristotle, 10, 12
arithmetic
comprehension, 396, 397
not constructive, 397
not provable in $\mathrm{RCA}_{0}, 397$
$\bmod 2,347,349$
of cardinal numbers, 312
second order, 393
transfinite recursion, 402
arithmetization, 263
of analysis, 263
depends on sets, 291
of continuity, 263
of geometry, 263, 266
of syntax, 327, 383
Artin, Emil, 250
Aryabhata, 122
Aryabhata II, 147

ASA, 21
associative law, 76
for addition, 77
for multiplication, 77
asymptoptic lines, 203
ATR $_{0}, 401$
Aubrey, John, 25
automorphism, 176
axiom see also axioms
Archimedean, 13, 45
arithmetic comprehension, 397
countable choice, 342
Dedekind, 46
dependent choice, 343
empty set, 324
extensionality, 324
first order, 319
foundation, 324, 325
induction, 186
in PA, 317
of choice, 231, 313, 329
of infinity, 294, 310, 324, 325
pairing, 324
parallel, 18, 22, 203
and non-Euclidean geometry, 39
equivalents, 203
Pasch's, 41, 42
Playfair's, 19, 24, 25
power set, 310, 325
recursive comprehension, 396
replacement, 310, 325
due to Fraenkel, 325
SAS, 20
second order, 319
union, 324
axiom of choice, $231,313,329$
and algebra, 339
and analysis, 332
and existence
of spanning tree, 234, 331
and graph theory, 331
and infinity, 330
and measure theory, 334
and set theory, 337
equivalent to
existence of basis, 340
existence of spanning tree, 331
well-ordering theorem, 337
Zorn's lemma, 339
gives nonmeasurable set, 329
introduced by Zermelo, 329
orders sets by cardinality, 329
axiomatics, 15
axioms
congruence, 44
define structure, 226
field, 40
for arithmetic, 316
for geometry, 320
for open sets, 289
for predicate logic, 347
for probability theory, 144
for propositional logic, 351
formerly theorems, 80
group, 76
incidence, 39,40
linear order, 41
models of, 226
of algebra, 69
of equality, 77
of Euclid, 17
gaps, 39
of predicate logic, 357
of weaker choice, 330, 342
ordered field, 41
Peano arithmetic, 317
projective plane, 57
ring, 80
set existence, 393
set theory, 316, 324
vector space, 83
Zermelo-Fraenkel, 324
ZF minus infinity, 326
Banach, Stefan, 329
Banach-Tarski paradox, 329, 336
Basel problem, 120
basis
Hamel, 340
of vector space, $83,187,329$
by Zorn's lemma, 340
Beltrami, Eugenio, 202
conformal models, 221
mapped surfaces to plane, 217
models of non-Euclidean geometry, 219, 316
in ordinary mathematics, 220
projective disk model, 222
validity of non-Euclidean geometry, 220
Berkeley, George, 110
ghosts of departed quantities, 130
Bernoulli, Daniel, 268
on modes of vibration, 268
Bernoulli, Jakob, 120
arc length of lemniscate, 141, 160
integral for $\pi, 138$
posed catenary problem, 211
related integration to Diophantus, 142
thought $\sqrt{1-x^{4}}$ cannot be rationalized, 156
Bernoulli, Johann, 120
solved catenary problem, 211
Bézout's theorem, 103
concepts required, 104
big five, 400
binary tree, 301, 380
in analysis, 399
in weak Kőnig lemma, 358, 380
binomial
coefficient, 118
series, 117, 119
theorem, 117
for fractional exponent, 119
Bolyai, Farkas, 203
Bolyai, Janos, 202
published hyperbolic geometry, 219
Bolzano, Bernard, 191
and foundations of calculus, 201
continuous nondifferentiable function, 274
definition of continuity, 196
noticed intermediate value theorem, 196
Paradoxes of the Infinite, 311
Bolzano-Weierstrass theorem
provable in $\mathrm{ACA}_{0}, 398$
unprovable in constructive analysis, 393
Bombelli, Rafael, 61, 67, 68
and equation $x^{3}=15 x+4,67$
calculated with $i, 68$
Boole, Geoge, 347
Boolean algebra, 347, 349
Boolean function, 348
Borel, Émile, 280
encoded continuous functions by reals, 286
Bosse, Abraham, 55
frontispiece to Hobbes's Leviathan, 293
Brahmagupta, 64
branch point, 241
picture, 242
Bring, Erland, 193
Brouwer, Luitzen Egbertus Jan, 303
fixed point theorem, 394
intuitionism, 394
invariance of dimension, 303, 315, 394
invariance of domain, 394
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical In甲em without prior written permission of the publisher.

Brouwer, Luitzen Egbertus Jan (continued)
rejected existence without construction, 394
rejected own fixed point theorem, 394
rejected standard theorems of analysis, 394
topological theorems
equivalent to weak Kőnig lemma, 400
are nonconstructive, 400
\mathbb{C} see complex numbers
calculus, 110
and infinitesimals, 13
foundations of, 201
fundamental theorem, 132
infinitesimal, 130
of series, 136
Calcut, Jack, 170
Cantor, Georg
assumed well-ordering of every set, 313
continuum hypothesis, 313
discovered there is no largest set, 291
discovered uncountability, 291
downplayed uncountability at first, 296
generalized the diagonal argument, 299
introduced ordinal numbers, 303
new way to transcendental numbers, 296
theorems about closed and perfect sets, 401
Cantor-Bendixson theorem, 401
not provable in $\mathrm{ATR}_{0}, 402$
provable in $\Pi_{1}^{1}-\mathrm{CA}_{0}, 401$
Cantor-Bernstein theorem, 314
Cardano, Gerolamo
Ars magna, 65
formula, 66
cardinal number, 312
arithmetic, 312
cardinality, 294, 329
of unit square, 301
Cartesian product, 313
casting out nines, 147
category theory, 261, 311
catenary, 210
Cauchy convergence criterion
provable in $\mathrm{ACA}_{0}, 398$
Cauchy, Augustin-Louis
and foundations of calculus, 201
convergence criterion, 265
definition of limit, 268
mistake about continuity, 276
Cavalieri, Bonaventura, 127

Cayley, Arthur
groups as permutation groups, 76
projective maps of the disk, 221
Ceitin, G. S., 376
cellular automaton, 377
central projection, 217
CH see continuum hypothesis
chord construction, 152
Church, Alonzo
defined computability, 367
system of propositional logic, 351
unsolved Entscheidungsproblem, 371
Church-Turing thesis, 367, 383
circle
division by rational points, 170
parametric equations, 153
rational points on, 151
circumference on the sphere, 216
Clebsch, Alfred, 163
closed path, 231
closed set, 288, 401
Cohen, Paul
invented forcing, 345
model of $\mathrm{ZF}+\mathrm{AC}$ but not CH, 345
models of ZF, 331
combinatorics, 146
commutative law
for Euclid's product, 28
of multiplication, 78
compactness, 279
defined by Heine-Borel property, 280
in topological space, 290
definition, 281
completeness
as convergence property, 264
as least upper bound property, 198, 264
as nested interval property, 264
of line, 45
of predicate logic
proved by Gödel, 357
of propositional logic
proved by Post, 352
of real numbers, 198
completing the square, 62
complex numbers, 78
are noncontradictory, 78
geometry of, 165, 223
Hamilton definition, 78
comprehension
arithmetic, 396
$\Pi_{1}^{1}, 402$
recursive, 396
computable function, 369
unrecognizability, 369
computable set, 364
computably enumerable induction, 395
computably enumerable set, 363
but not computable, 364
computation, 347
Con(PA)
expressible in PA, 386
not provable in PA, 386
provable in $\mathrm{ATR}_{0}, 402$
proved by Gentzen, 386
configuration word, 373
congruence
axioms, 44
class, $148,175,185$
has properties of equality, 146
modulo a prime, 149
modulo an ideal, 185
modulo an integer, 146
modulo an irreducible polynomial, 175
definition, 175
conic sections, 93
degenerate, 96
in model of $\mathbb{R} \mathbb{P}^{2}, 100$
points at infinity, 100
same in projective view, 100
connected graph, 232
connectives, 348
consistency, 47
of algebraic axioms, 317
of complex numbers, 78
of Euclidean geometry, 323
of non-Euclidean geometry, 220
of PA, 386
proved by ε_{0}-induction, 381
proved by Gentzen, 386
of predicate logic, 347, 360
of propositional logic
proved by Post, 352
of $\mathbb{R}, 49$
of real number axioms, 323
of set theory, 312
proof
for propositional logic, 355
reduced to question in PA, 386
unprovability of, 381
constructible sets, 344
construction
by computation, 393
by straightedge and compass, 17,45 , 85
defines constructible numbers, 227
constructive analysis, 393, 395
theorems not provable in, 393
constructivity, 393
and intuitionism, 394
continuity, 195
and topology, 241
Bolzano definition, 196, 266
quantifiers in, 356
Cauchy's mistake, 276
does not imply differentiability, 273
Hausdorff definition, 196
in terms of open sets, 289
of function
at a point, 269
over an interval, 269
sequential, 333
uniform, 269
continuous function, 196, 254, 263, 266
almost everywhere, 273
and integral, 267-270
as a trigonometric series, 268
encoded by real number, 284
from sequence of real numbers, 285
not uniformly so, 271, 279
nowhere differentiable, 274
on closed interval, 281
has Riemann integral, 282
takes extreme values, 283
continuum, 291
hypothesis, 313, 346
consistent with ZF+AC, 346
problem, 308, 313
convergence
Cauchy criterion, 265
monotonic, 397
nonuniform, 277
of sequence of numbers, 264
uniform, 278
coordinates, 92
Cartesian, 95
complex, 104
in calculus, 110
cosine
power series, 115
rate of change, 123
countable additivity, 272
countable choice, 342
countable ordinal, 308
$\varepsilon_{0}, 381,389$
countable set, 294, 295
examples, 295
has Lebesgue measure zero, 272
counting board, 82
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical In甲em without prior written permission of the publisher.
covering
branched, 242
by plane, 246
tiled with hyperbolic polygons, 247
tiled with polygons, 246
motion group, 248
of genus 2 surface, 247
of nonorientable surface, 246
of real projective plane by sphere, 245
of torus, 246
unbranched, 246
Cramer's rule, 82
crisis of foundations, 1
provoked by calculus, 111
provoked by irrationality, 39
provoked by set theory, 291
cube, 86
symmetry group, 86
isomorphic to $S_{4}, 88$
cubic curves, 100
arc length, 135
in Diophantus, 162
Newton classification, 102
nonsingular, 102
projective view, 102
with crossing, 102
with cusp, 102
with isolated point, 102
curvature, 210, 212
center of, 212
constant, 212
Gaussian, 212
geodesic, 215
of a plane curve, 212
of space, 220
of surfaces, 212
principal, 212
radius of, 212
curve
$y^{2}=1-x^{4}, 157$
parametric equations, 161
algebraic, 92, 97, 266
complex, 104
cubic, 100, 162
defined by formula, 266
elliptic, 160, 161
genus, 187
homotopy of, 247
in real projective plane, 100
mechanical, 97, 110
nonalgebraic, 97, 110
of constant curvature, 212
projective, 104
singularities, 102
snowflake, 274
space-filling, 263, 287
transcendental, 210, 267
cusp, 102
picture, 250
cut
elimination, 352
rule of inference, 352
d'Alembert, Jean le Rond, 192, 194
Dandelin, Germinal Pierre, 94
Darboux, Gaston, 274
function, 274
de la Vallée Poussin, Charles, 190
Dedekind axiom, 46
Dedekind, Richard, 46
and invariance of dimension, 303
arithmetized the line, 263
axioms for arithmetic, 316
countability of algebraic numbers, 295 proof, 296
cuts, 46, 198
defined product of ideals, 181
definition of infinite set, 294
depends on AC, 330
definition of $\mathbb{R}, 191,197$
implies least upper bound property, 191
dimension theorem, 85
nonunique prime factorization, 179
on induction, 319,338
proof of infinity, 294
realized "ideal numbers" by ideals, 179
treated infinite sets as objects, 148
used vector spaces, 84
definitions
as abbreviations, 36
by recursion or induction, 319,338
impredicative, 402
degree
of algebraic curve, 95
of algebraic number, 175
of field
as vector space over $\mathbb{Q}, 84$
of polynomial, 164
Dehn, Max
algorithm, 250
and polygonal Jordan curve theorem, 237
and polyhedral volumes, 29
introduced word problem for groups, 249
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

INDEX
knot theory, 250
solved word problem for surface groups, 249
del Ferro, Scipione, 65, 66
dependent choice, 343
and measurability, 344
derivative as rate of change, 122
Desargues, Girard, 56
on points at infinity, 100
Desargues theorem, 55, 88
spatial proof, 56
Descartes, René, 61, 68
algebraic geometry, 92, 95
factor theorem, 70, 73
and FTA, 192
folium, 99
on arc length, 97,135
rejected nonalgebraic curves, 97
determinant, 82
of knot, 260
diagonal argument
disrupts axiomatics, 394
for computable functions, 369
for computably enumerable sets, 363 , 382
for general sets, 299
for uncountability of $\mathscr{P}(\mathbb{N}), 298$
for uncountability of $\mathbb{R}, 298$
introduced by du Bois-Reymond, 299
paradoxes arising, 312
differentiability, 273, 274
differential geometry, 210
differentiation
operation, 131
rule, 131
chain, 131
for inverse function, 131
for product, 131
dimension, 302
invariance for vector space, 83
invariance under homeomorphisms, 303, 315
of \mathbb{R} and $\mathbb{R}^{2}, 315$
of field as vector space over $\mathbb{Q}, 84$
of vector space, 83
over a field, 84
Diophantus, 142
and cubic curves, 162
and the equation $y^{3}=x^{2}+2$, 171
chord construction, 163
in the light of algebra, 153
style of proof, 153
sum of squares identity, 169
tangent construction, 162
Dirichlet function, 270
discontinuous everywhere, 273
has Lebesgue integral zero, 273
not Riemann-integrable, 270
disk area and circumference, 111
distance
defines "inside" and "outside," 45
in Euclidean plane, 48, 265
in $\mathbb{R}^{n}, 266$
on curved surfaces, 215
distributive law, 77
for quaternions, 79
in Euclid, 28
division
of Gaussian integers, 168
of ideals, 183
property, 164
for Gaussian integers, 167
for polynomials, 164
for $\mathbb{Z}[\sqrt{-2}], 173$
with remainder, 164
dodecahedron, 86
symmetry group, 86
isomorphic to $A_{5}, 88$
duplicating the cube, 84
edge
directed, 231
of graph, 230, 231
Eilenberg, Samuel, 261
Einstein, Albert, 144
Eisenstein, Gotthold, 193
elementary functions, 139
ellipse, 93
arc length, 140
equation, 96
focal property, 94
tangent and foci, 123
elliptic
curve, 160, 161
as torus, 161
rational points, 162
function, 160
double periodicity, 160
geometry, 163
integral, 140, 160
embedding
finite tree in plane, 236
of graph in plane, 235
Riemannian manifold in $\mathbb{R}^{n}, 227$
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

Entscheidungsproblem, 347
posed by Hilbert, 371
unsolvability via semigroup, 376
unsolved by Church and Turing, 371
$\varepsilon_{0}, 389$
hidden occurrences in arithmetic, 390
is "inaccessible" in PA, 389
ε_{0}-induction, 389
equality
axioms, 77
of angles, 44,49
of areas, 27
of distances, 49
of line segments, 44
of rectangle and parallelogram, 27
of volume, 29
equation
cubic, 61,64
solution, 65
of degree 45,68
polynomial, 95
quadratic, 61,62
quartic, 69
quintic, 69, 75
infinite series solution, 193
not solvable by radicals, 76
equiangular spiral, 97, 204
arc length, 112
is transcendental, 97, 210
equinumerous sets, 294
Euclid
assumed Archimedean axiom, 13
aware of induction, 29, 146
common notions, 2
resemble algebra, 19, 26
concept of area, 27
definitions, 36
distributive law, 28
Elements, 1
admired by Lincoln, 16
axioms, 17
book 1, 19
book 5, 12, 45
books 7-9, 146
Byrne edition, 36
imitated by Spinoza, 16
model of proof, 16
regular polyhedra, 86
formula for Pythagorean triples, 150
found volume of tetrahedron, 29
geometric series, 32
infinitude of primes, 30
number theory, 29, 146
perfect numbers, 33
volume of tetrahedron, 33, 126
Euclidean
algorithm, 7, 29
and irrationality, 8,30
by division with remainder, 164
by repeated subtraction, 164
consequences, 31
for Gaussian integers, 164
for gcd, 146
for polynomials, 156
periodic on $\sqrt{2}, 8$
visual form, 8
line, 46
plane, 47
minimal model, 227
model, 48
space, 106
Eudoxus of Cnidus, 1, 12
method of exhaustion, 12
theory of proportions, 12
Euler characteristic, 239
and genus, 240
is a topological invariant, 241
of surface, 240
Euler, Leonhard
even perfect numbers, 34
integer solution of $y^{3}=x^{2}+2,171$
justification, 172
launched graph theory, 229
on elliptic integrals, 160
polyhedron formula, 234, 236
product formula, 188
solution of Basel problem, 119
solved Königsberg bridges problem, 229
used algebraic numbers, 164
zeta function, 188
existence
according to Hilbert, 379
and construction, 17, 199, 394
and freedom from contradiction, 379
depending on AC, 329,330
of algebraic closure, 329
of maximal ideal, 329
of spanning tree, 233
depends on AC, 331
of vector space basis, 329
exponential function, 137
is elementary, 139
is nonalgebraic, 139
extreme value theorem, 191, 201, 282
implies FTA, 283
unprovable in constructive analysis, 393
face
of graph on surface, 239
of plane graph, 235
of polyhedron, 235
factor theorem, 70
Fagnano, Giulio, 160
falsification rules, 352
falsification tree, 353
Fano plane, 59
Fermat, Pierre de, 95
adequality, 125
and the equation $y^{3}=x^{2}+2,171$
found rational points on curves, 153
four-square conjecture, 188
infinite descent, 154, 186
last theorem, 154
for fourth powers, 155
proved by Wiles, 188
little theorem, 149
on tangent to parabola, 124
Ferrari, Lodovico, 69
Fibonacci
Liber abaci, 64
Liber quadratorum, 64
proved sum of squares identity, 169
used casting out nines, 147
field, 40, 61, 77
algebraic function, 187
algebraic number, 174
as field of congruence classes, 176
as vector space, 177
as vector space over $\mathbb{Q}, 84$
dimension, 84
automorphism, 176
axioms, 40, 80
from incidence axioms, 89
finite, 148
of congruence classes, 149
ordered, 41
finite
field, 148
group, 75
ring, 148
first order, 319
induction, 320
admits "alien intruders," 320
logic, 320
theorems of ACA_{0} are those of PA, 401
focus, 94
folium of Descartes, 99
forcing, 345
foundations
of analysis, 263
of calculus, 201
of geometry, 263
of mathematics, 316
of real numbers, 322
Fourier, Joseph, 268
Fox, Ralph, 256
Fraenkel, Abraham, 316
Fréchet, Maurice
introduced compactness, 279
nested sequence theorem, 290
Frege, Gottlob, 347
Begriffschrifft, 355
had complete predicate logic, 357
Friedman, Harvey
reverse mathematics, 394
FTA see fundamental theorem of algebra
function, 139
algebraic, 138
as set of ordered pairs, 270
Boolean, 348
characteristic, 298
computable, 369
concept, 267
and integral concept, 268
continuous, 196, 254, 263, 266
and integral, 267-270
as a trigonometric series, 268
but not uniformly, 271
encoded by real number, 284
from sequence of real numbers, 285
nowhere differentiable, 274
Darboux, 274, 276
differentiable, 224
Dirichlet, 270
discontinuous, 270
elementary, 139
elliptic, 160
exponential, 137
Lebesgue integrable, 273
lemniscatic sine, 160
modular, 225
nonalgebraic, 139
defined by integral, 139
polynomial, 196
rational, 139
has elementary integral, 139
Riemann-integrable, 269
is continuous almost everywhere, 273
successor, 145, 317
for ordinals, 307
Thomae, 270
zeta, 188
fundamental group, 248
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical In甲em without prior written permission of the publisher.
fundamental region, 225
fundamental theorem
of algebra, 70, 73, 104, 191
and integration, 140
depends on continuity, 195
gaps in early proofs, 194
Laplace's attempted proof, 200
proof via d'Alembert's lemma, 194
of arithmetic, 31
of calculus, 132, 133
of general arithmetic, 199
as algebraist's FTA, 200
reduces FTA to odd-degree case, 200
of symmetric polynomials, 71
fusible numbers, 392
have order type $\varepsilon_{0}, 392$
Galois, Evariste, 61, 74
theory, 74
Gauss, Carl Friedrich
1799 attempt to prove FTA, 195
1816 attempt to prove FTA, 191, 195, 200
circumference in hyperbolic geometry, 216
discovered lemniscatic sine function, 160
dissertation, 193
introduced Gaussian integers, 164
inverted elliptic integrals, 160
prime number conjecture, 189
proof that $\binom{n}{k}$ is an integer, 118
research on hyperbolic geometry, 219
sphere rotations as complex functions, 210, 223
Gaussian curvature, 212
constant, 213
Gaussian elimination, 81
Gaussian integers, 164
are algebraic integers, 164
associates, 170
division property, 167
Euclidean algorithm, 164
norm, 168
multiplicative property, 168
unique prime factorization, 164,170
units, 170
Gaussian prime, 168
divisor property, 170
factorization
existence, 169
uniqueness, 170
gcd
ideal, 181
of Gaussian integers, 170
of polynomials, 156
gcd see greatest common divisor
Gentzen, Gerhard
on the role of ordinal numbers in consistency proofs, 386
proved consistency of PA, 381, 386
by ε_{0}-induction, 389
second theorem on $\varepsilon_{0}, 389$
sought cut elimination in logic, 352
genus, 187, 228
and Euler characteristic, 240
by Riemann-Hurwitz formula, 262
of surface, 239
same as Abel's number $p, 243$
geodesic, 215
curvature, 215
mapped to straight line, 217
triangle
geometric algebra, 109
geometric group theory, 250
geometric series, 32, 119
for area of parabolic segment, 126
for volume of tetrahedron, 34
in Euclid, 32
geometry
algebraic, 85,92
arithmetization of, 263
axioms, 320
differential, 210
Euclidean
line of, 46
model, 92
foundations, 3
linear, 105, 109
n-dimensional Euclidean, 266
non-Euclidean, 39, 202
of complex numbers, 165,223
of constant curvature, 215
projective, $39,51,55$
Riemannian, 227, 266
spherical, 202, 266
Girard, Albert, 71
Gödel, Kurt
first incompleteness theorem, 384
letter to von Neumann, 378
model of $\mathrm{ZF}+\mathrm{AC}+\mathrm{CH}, 344$
proved incompleteness by arithmetization, 381, 383
proved predicate logic complete, 347, 357
second incompleteness theorem, 385
golden ratio, 9
in regular pentagon, 10
is irrational, 10
golden rectangle, 9
Goodstein's theorem, 390
not provable in $\mathrm{ACA}_{0}, 401$
not provable in PA, 392
provable in $\mathrm{ATR}_{0}, 402$
graph, 229
connected, 232
definition, 231
multigraph, 230
of regular polyhedron, 235
plane, 235
definition, 235
simple, 230
vertices and edges, 231
graph minor theorem, 402
not provable in $\Pi_{1}^{1}-\mathrm{CA}_{0}, 402$
graph theory, 229
and AC, 331
origin of, 229
Grassmann inner product, 321
gives Pythagorean length, 321
Grassmann, Hermann
based arithmetic on induction, 80, 186
influenced Peano and Dedekind, 317
introduced inner product, 106
introduced vector spaces, 82
Lehrbuch der Arithmetik, 80
proved field properties of $\mathbb{Q}, 80$ by induction, 318
vector space geometry, 105
Graves, John, 78
octonions, 78,89
great circle, 202
as "line," 204
greatest common divisor, 29
ideal, 181
of Gaussian integers, 170
of polynomials, 156
Gregory, James
arc length formula, 134
knew fundamental theorem of calculus, 136
Grothendieck, Alexandre, 187
used transfinite induction, 340
group, 73, 74
alternating, 88
axioms, 76
cohomology, 261
cyclic, 75
finite permutation, 75
fundamental, 248
of the torus, 248
homology, 261
of motions, 248
of quadratic equation, 75
of quintic equation, 75
permutation, 75
quotient, 74
symmetric, 75
word problem for, 249
group theory, 61
geometric, 250
\mathbb{H} see quaternion
Hadamard, Jacques, 190
halting problem, 370
Hamel, Georg, 187, 339
basis, 339
Hamilton, William Rowan, 78
definition of complex numbers, 78
highlighted associativity, 79
quaternions, 78,89
harmonic series, 113
Harriot, Thomas, 68, 111
length of equiangular spiral, 97,112
on area of spherical triangle, 204
Hausdorff, Felix
defined topological space, 289
definition of continuity, 196, 290
nonmeasurable sets, 329,336
Heine, Eduard, 279
Heine-Borel theorem, 280
Heron, 50, 123
Hilbert, David, 39
and consistency of $\mathbb{R}, 49$
congruence axioms, 44
derived \mathbb{R} from geometric axioms, 227,
287, 316
geometry axioms, 39
are categorical, 320
incidence axioms, 40
imply field axioms, 89
no complete hyperbolic surface in \mathbb{R}^{3}, 216
on mathematical existence, 379
on projective plane axioms, 59
order axioms, 41
posed the Entscheidungsproblem, 347
problems, 323
program, 226, 323, 385
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical In甲em without prior written permission of the publisher.

Hilbert, David (continued)
put continuum problem first, 308, 346
second problem, 323
sought axioms for physics, 144
Hobbes, Thomas, 110
denounced algebraic geometry, 101
in love with geometry, 25
Leviathan, 293
homeomorphism, 234, 290
invariance under, 241
local, 246
homological algebra, 261
homology
groups, 261
theory, 261
homotopic curves, 247
homotopy type theory, 262
horizon, 54
as line at infinity, 55
\mathbb{H}^{2} see quaternion projective plane
Huygens, Christiaan
on tractrix and pseudosphere, 210
solved catenary problem, 211
hyperbola, 93
arc length, 140
equation, 96
parametric equations, 154
points at infinity, 100
hyperbolic
geometry, 216
plane, 204, 223, 266
conformal models, 221
hyperboloid model, 322
model based on pseudosphere, 220
smoothly embeds in $\mathbb{R}^{5}, 227$
trigonometry, 216
discovered by Minding, 216
hyperboloid, 321
model
and conformal model, 322
of hyperbolic plane, 322
icosahedron, 86
symmetry group, 86
isomorphic to $A_{5}, 88$
ideal, 178, 179
as set of multiples, 179
definition, 180
maximal, 184, 329
by transfinite induction, 187
by Zorn's lemma, 341
nonprincipal, 180
in $\mathbb{Z}[\sqrt{-5}], 180$
prime, 183
definition, 184
principal, 180
product, 181
identity element, 76
impredicative definitions, 402
inaccessibility, 310
definition, 310
inaccessible set, 310
existence not provable, 311
needed for Solovay model, 344
incidence, 40
of circles, 45
incidence axioms, 39, 40
give algebraic structure, 40
in Euclid, 40
in Hilbert, 40
incompleteness, 381
for computably enumerable sets, 383
of Principia Mathematica, 381
induction, 145
as infinite descent, 30, 186
definition by, 317, 338
from well-ordering, 187, 305
history of, 186
in Euclid, 29, 146, 186
in graph theory, 233
in Grassmann, 80
in set theory, 324
Peano axiom, 186, 317
transfinite, 187, 326, 386
via base step, induction step, 30 , 317
inequality
of length, 45
triangle, 50
infinite
decimal, 110
geometric series, 113
ordinal, 307
polynomial, 110
product, 120
for $\pi, 121$
for sine, 121
series, 113
for $\pi, 115$
solution of quintic equation, 193
set
as mathematical object, 198
Dedekind definition, 294
with no countable subset, 331
sum, 113
infinite descent, 30
characterization of well-ordering, 343
in Fermat, 154
infinitesimals, 13, 110, 130
and adequality, 125
and calculus, 13, 46
as ghosts of departed quantities, 130
consistent with PA, 380
contradict Archimedean axiom, 45
criticized by Hobbes and Berkeley, 110
in first calculus textbook, 126
infinity, 10
actual, 10, 291, 293
axiom of, 294
has no ceiling, 300
history of, 292
horizon line at, 293
in art, 292
potential, 10, 291, 292
infinity axiom, 310
inner product, 93
Grassmann, 321
introduced by Grassmann, 106
Minkowski, 109
replaces Pythagorean theorem, 93, 107
space, 321
integers, 80
algebraic, 81, 178
definition, 178
from natural numbers, 284
of algebraic number field, 178
of $\mathbb{Q}(i), 178$
of $\mathbb{Q}(\sqrt{-2}), 178$
integral, 132
concept, 268
defining nonalgebraic function, 139
definite, 132, 269
elliptic, 140
Lebesgue, 271
lemniscatic, 141
of algebraic function, 138
of rational function, 139
Riemann, 268
definition, 269
integral domain, 185
if finite, is a field, 185
integration and FTA, 140
intermediate value theorem, 191, 196
proof using completeness of $\mathbb{R}, 199$
proves \mathbb{R} and \mathbb{R}^{2} not homeomorphic, 315
intuitionism, 394
invariance of dimension
for vector space, 83
under homeomorphisms, 303
proved by Brouwer, 303
inverse element, 76
inverse sine power series, 137
inverse tangent
is elementary function, 139
power series, 115, 138
inversion of power series, 137
irrational numbers, 1,6
include golden ratio, 10
include $\sqrt{2}, 7$
irreducible, 157
isometry, 109, 215
conditions for, 224
of the disk, 221
isomorphic
fields, 46,49
groups, 86, 88
orderings, 305
well-orderings, 308
isosceles triangle theorem, 20
Pappus proof, 20
Jacobi, Carl Gustav Jacob, 160
Fundamenta nova, 188
geometry of elliptic functions, 163
Jordan curve theorem, 237
polygonal, 237
Klein, Felix, 248
images of constant curvature, 218
viewed hyperbolic geometry projectively, 221
knot, 250
3-colorability, 256
atlas, 261
determinant, 260
diagram, 255
invariants, 256
p-colorability, 256
definition, 258
theory, 250
trefoil, 252
Koch curve, 274
Kolmogorov, Andrey, 144
Kőnig, Dénes
book on graph theory, 231
infinity lemma, 313
provable in $\mathrm{ACA}_{0}, 398$
Königsberg bridges problem, 229
Kreisel, Georg, 380
computable binary tree, 400
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical IN甲qes without prior written permission of the publisher.

Kronecker, Leopold
proved algebraist's FTA, 199
rejected existence without construction, 199
rejected FTA, 191
used vector spaces, 84
Krull, Wolfgang, 187
Kummer, Ernst Eduard, 178
sought "ideal numbers," 179

Lagrange, Joseph-Louis
inversion, 193
used algebraic numbers, 164
Lambert, Johann Heinrich
series solution of equation, 193
sphere of imaginary radius, 321
Laplace, Pierre-Simon, 200
law of excluded middle, 394
least action, 50
least upper bound
and nested intervals, 264
of set of ordinals, 308
least upper bound property, 191
of real numbers, 197
proof by Dedekind cuts, 198
Lebesgue integral, 271
Lebesgue measure, 271
definition, 272
of countable set, 272
translation invariance, 335
Lebesgue, Henri
integral, 271
measure, 271
definition, 272
Legendre, Adrien-Marie, 189, 203
Leibniz, Gottfried Wilhelm, 13
computational logic, 347
concept of tangent, 134
discovered determinants, 82
related integration to Diophantus, 142, 153
solved catenary problem, 211
thought in function terms, 139
used infinitesimals, 110, 130
lemniscate, 141,160
arc length, 141, 160
lemniscatic sine, 160
Leonardo da Vinci, 111
Levi ben Gershon, 186
l'Hopital, Marquis de, 125
lifting a curve, 246
limit, 110
argument, 116
of function, 268
of sequence of numbers, 264
ordinal, 303, 307
line
at infinity
for central projection, 217
of hyperbolic plane, 287
of projective plane, 55
completeness of, 46
complex projective, 104
defined by linear equation, 49
of Euclidean geometry, 46
projective, 57
real number, 46
segment equality, 44
separates the plane, 42
linear algebra, 62, 81
matches Euclidean geometry, 92, 105
linear equations, 81
linear independence, 83
linear ordering, 41, 387
little Desargues theorem, 91
Llull, Ramon, 347
Lobachevsky, Nikolai, 202
published hyperbolic geometry, 219
logic, 347
first order, 320
predicate, 347
propositional, 347
MacLane, Saunders, 261
Mādhava, 115
series for $\pi, 115,130$
rediscovered by calculus, 138
Mandelbrot set, 288
Markoff, Andrey, 371
measure theory, 271
and AC, 334
mechanics, 143
Mercator, Nicolas, 136, 142
Mersenne, Marin, 34
method of exhaustion, 12
in Archimedes, 13
in Euclid, 13
used to justify calculus, 110
Minding, Ferdinand
hyperbolic trigonometry, 216
negative curvature surfaces, 213
Minkowski inner product, 321
Minkowski space, 321
contains sphere of imaginary radius, 321
Minkowski, Hermann, 321
Möbius band, 244
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. INDEX

Möbius, August Ferdinand, 245
model, 47
finite, 58, 226
guarantees consistency, 48
minimal
of $\mathrm{ACA}_{0}, 397$
of Euclidean plane, 227
of $\mathrm{RCA}_{0}, 396$
of abstract graph, 235
of axioms, 226
of Euclidean geometry, 92
of Euclidean plane, 48, 95, 265
of hyperbolic geometry, 219
of hyperbolic plane
based on pseudosphere, 220
conformal, 222
conformal disk, 222
half plane, 222
hemisphere, 222
projective, 222
of non-Euclidean geometry, 202
of projective geometry, 57, 202
of projective plane axioms, 58
of real projective plane, 213, 217
of the line, 265
of ZF
plus AC and CH, 344
plus AC but CH false, 345, 346
plus AC false, 331
plus DC and all sets measurable, 344
planar
of spherical geometry, 207
uniqueness
for Euclidean plane, 49
modes of vibration, 113
and Fourier series, 143
as sums of sine waves, 268
picture, 114
modus ponens, 352, 361
monotonic convergence theorem, 397
not constructive, 397
not provable in $\mathrm{RCA}_{0}, 397$
provable in $\mathrm{ACA}_{0}, 398$
Moufang, Ruth, 90
on projective planes, 91
multigraph, 230
multiplication, 27
nonassociative, 79, 89
noncommutative, 61, 89
of n-tuples, 82
of octonions, 79
of quaternions, 79
multiplicative property of Gaussian norm, 168
multiplicity, 104
Nash, John, 227
embedding theorem, 227
natural logarithm
defined by integral, 136
inverted by Newton, 137
is elementary function, 139
power series, 136
natural numbers, 12, 145
neighborhood, 289
nested interval property, 264
and Cauchy criterion, 265
Newton, Isaac
anticipated Bézout's theorem, 103
based calculus on power series, 136
binomial series, 117, 119
calculus of power series, 110
ideas on continuous motion, 267
introduced tractrix, 210
inversion of power series, 137
knew fundamental theorem of calculus, 136
on chord and tangent constructions, 163
on cubic curves, 101
on spirals, 97
on symmetric functions, 71
physical intuition, 123
power series
for exponential, 137
for inverse sine, 137
for sine, 137
likened to infinite decimals, 142
sine formula, 116
Universal Arithmetick, 68
Noether, Emmy, 81, 261
non-Euclidean geometry, 202
nonmeasurable set, 329
norm
in $\mathbb{Z}[\sqrt{-2}], 172$
links algebraic integers to ordinary integers, 169
of Gaussian integers, 168
number line, 45
number theory, 145
algebraic, 84, 171
analytic, 188
elementary, 146
in Euclid, 29
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical unequ without prior written permission of the publisher.
numbers
algebraic, 61, 81, 164
definition, 175
form countable set, 295
cardinal, 312
complex, 78
Hamilton definition, 78
constructible, 227, 323
fusible, 392
hypercomplex, 78
integral, 80
irrational, 1, 6
natural, 12, 145
ordinal, 303
perfect, 33
rational, 13
real, 13, 46
form uncountable set, 291
(1) see octonion
octahedron, 86
symmetry group, 86
isomorphic to $S_{4}, 88$
octonion, 78
multiplication
is nonassociative, 79,89
is noncommutative, $78,79,89$
projective plane, 90
satisfies little Desargues, 91
projective space does not exist, 90
$\mathbb{O} \mathbb{P}^{2}$ see octonion projective plane
open ball, 289
open set, 288, 401
axioms, 289
order, 41
axioms, 41
ordered field
axioms, 41
complete Archimedean, 46
rationals of, 44
ordered pair, 48,324
ordering
linear, 304
of sets by rank, 308
partial, 304
total, 304
well-ordering, 304
ordinal numbers, 303
countable, 308
exponential, 388
finite, 307
infinite, 307
introduced by Cantor, 303
limit of, 307
product, 388
realized by sets, 305
sum, 388
transfinite, 386
von Neumann definition, 306, 308
well-ordered by $\epsilon, 308$
Oresme, Nicole, 114
and harmonic series, 114
orthogonality, 107

P and NP, 377
PA see Peano arithmetic 317
Pappus, 20
configuration, 56
theorem, 55, 88
parabola, 93
equation, 94,96
point at infinity, 100
tangent, 98
parallel axiom, 18, 203
and non-Euclidean geometry, 39
equivalents, 203
variants, 22
parallelogram, 24
parametric equations
for circle, 153
using circular functions, 158
for curve $y^{2}=1-x^{4}, 161$
for curve $y^{2}=p(x), 159$
for curve $y^{2}=x^{3}, 251$
for hyperbola, 154
for quadratic curve, 153, 154
found by calculus, 159
rational, 154
Pascal's triangle, 117
Pascal, Blaise, 186
induction, 186
Pasch, Moritz, 41
path
closed, 231
definition, 231
polygonal, 235
simple, 231
path-connected, 235, 315
Peano arithmetic, 317
axioms, 317
can arithmetize syntax, 384
same as ZF-Infinity, 326
Peano axioms
are categorical, 319
first order, 320
admit "alien intruders," 327
in reverse mathematics, 395
Peano, Giuseppe
axioms for arithmetic, 316
induction axiom, 186
space-filling curve, 287
symbolism adopted by Russell, 355
vector space axioms, 83,316
are categorical, 320
perfect number, 33
perfect set, 401
perfect set theorem, 401
provable in $\mathrm{ATR}_{0}, 401$
periodicity, 160
fundamental region, 225
of modular function, 225
permutation, 75
even, 88
group, 75
in geometry, 85
odd, 88
product, 75
perspective drawing, 51
Alberti method, 52
horizon, 54
without measurement, 53
physical intuition, 123
π
infinite series, 115
Wallis product, 121
$\Pi_{1}^{1}-\mathrm{CA}_{0}, 401$
plane
Euclidean, 47
Fano, 59
hyperbolic, 204
projective, 57
real, 57
Plato, 12, 65
Playfair, John, 24
Poincaré, Henri
applied hyperbolic geometry
to group theory, 226
to linear fractional functions, 226
to topology, 226, 248
founded algebraic topology, 261
hyperboloid model, 322
introduced fundamental group, 248, 261
on arithmetization, 263
on topological reasoning, 165
points at infinity, 58, 100
of hyperbola, 100
of parabola, 100
of parallels, 100
used by Desargues, 100
Polthier, Konrad, 322
polyhedron
face, 235
formula, 234
regular, 86
graph of, 235
polynomial, 69
division property, 164
function, 196
irreducible, 157
minimal, 175
real
has conjugate roots, 192
ring, 175
unique prime factorization, 157
Post, Emil
aware of incompleteness, 381
discovered algorithmic unsolvability, 365
discovered incompleteness, 365
formalized concept of algorithm, 361
generalized idea of rule of inference, 361
mechanized Principia Mathematica, 347, 361
normal system, 362
production rules, 362
proved completeness and consistency for propositional logic, 352, 361
recursive sets, 364
recursively enumerable sets, 363
unsolved word problem for semigroups, 371
power series, 110
behave like polynomials, 120
definition, 119
for binomial, 119
for circular functions, 115
for cosine, 115
for exponential function, 137
for inverse sine, 137
for inverse tangent, 115, 138
for natural logarithm, 136
for sine, 115, 120, 137
fundamental for Newton, 136
power set, 299, 325
is larger than the set, 299
of \mathbb{N} as binary tree, 301
power set axiom, 310
predicate logic, 347, 355
axioms, 357
completeness, 357, 381
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical In甲em without prior written permission of the publisher.
predicate logic (continued)
completeness proof, 359
is nonconstructive, 360
consistency proof, 360
constants, 357
falsification rules, 357
language, 355
rules of inference, 357
predicates, 356
prime divisor property, 31
prime factorization
existence, 146
uniqueness, 146
prime number theorem, 189
primes, 30
Gaussian, 168
ideal, 183
infinitely many, 146
Euclid proof, 30
Euler proof, 189
Mersenne, 34
of $\mathbb{Z}[\sqrt{-2}], 173$
primitive recursive arithmetic, 389
Principia Mathematica, 347
prism, 35
probability theory, 144,328
Kolmogorov axioms, 144
product
Cartesian, 313
of ideals, 181
of permutations, 75
of principal curvatures, 212
projective geometry, $39,51,55$, 202
finite model, 58
model, 202
real model, 58
projective line, 57
complex, 104, 208, 241
projective plane
axioms, 57
additional, 58
and algebra, 88
finite, 58
line at infinity, 55
octonion, 90
quaternion, 89
real, 55
is one sided, 244
models axioms, 58
projective space, 56
quaternion, 90
satisfies Desargues, 90
proof
by algebra, 68
by induction, 317
cut-free, 352
expanded by algebra, 92
has tree shape, 352
in Diophantus, 153
tree, 353
with computer assistance, 403
proposition, 348
propositional logic, 347, 348
axioms, 351, 355
completeness, 352
consistency, 352
consistency proof, 355
falsification rules, 353
rules of inference, 355
satisfiability, 350
validity, 350
pseudosphere, 210
has constant curvature, 213
used to model hyperbolic plane, 220
Ptolemy
Almagest, 167
Planisphere, 208
Pythagorean theorem, 1, 25
and arc length formula, 134
and area concept, 27
depends on parallel axiom, 203
impressed Hobbes, 25
motivates definition of distance, 48
origins, 3
proof, 26
replaced by inner product, 93 , 107
visualized, 2
Pythagorean triples, 1, 4, 150
in Euclid, 150
in Plimpton 322, 4-6
in proof by Fermat, 155
primitive, 150
via rational points on circle, 153
\mathbb{Q} see rational numbers
$\mathbb{Q}(i), 178$
$\mathbb{Q}(\sqrt{-2}), 178$
$\mathbb{Q}[x], 175$
quadratic curve
curve
is conic section, 96
parameterization, 153, 154
equation, 61,62
quantifier-free property, 395
quantifiers, 356
defining continuity, 356
defining uniform continuity, 356
quaternion, 78
definition, 79
multiplication, 79
is noncommutative, 78,89
projective plane, 89
satisfies Desargues, 90
projective space, 90
quintic equation, 69,75
infinite series solution, 193
not solvable by radicals, 76
quotient
by maximal ideal, 185
by prime ideal, 185
cyclic, 75
in division with remainder, 164
of groups, 74
of ring by ideal, 185
Qurra, Thābit ibn, 203
\mathbb{R} see real numbers
radical, 74
rank ordering of sets, 308
rate of change, 122
as quotient of infinitesimals, 130
of cosine, 123
of sine, 123
rational functions, 139
analogous to rational numbers, 153
integration of, 139
parameterization by, 154
impossible for $y^{2}=1-x^{4}, 156,157$
rational numbers, 13
from integers, 284
in ordered field, 44
rational points
are countable, 272
have measure zero, 272
on circle, 151
on elliptic curves, 162
$R C A_{0}, 395$
minimal model, 396
real numbers, 13
algebraic characterization, 46, 287
and continuity, 195
as decimal expansions, 285
axioms for, 47
completeness, 198, 264
Dedekind definition, 197
equinumerous with
branches of binary tree, 301
closed interval, 301
open interval, 300
power set of $\mathbb{N}, 301$
unit square, 301
form uncountable set, 212
proof, 297
foundations of, 322
from rational numbers, 285
least upper bound property, 197
model the line, 265
real projective plane, $55,57,89$
curves in, 100
has constant curvature, 213
includes point at infinity, 100
is one-sided, 244
models projective plane axioms, 57
sphere model, 213
rectangle as product of sides, 27
recursive see computable
recursive comprehension, 396
reflection
of sphere, 223
shortest path property, 50
regular polyhedra, 86
Reidemeister, Kurt, 250
knot invariants, 256
moves, 253, 254
and p-colorability, 256, 258
I, II, and III, 255
relativity, 109, 144
remainder, 164
replacement axiom, 310
reverse mathematics, 394
base system, 394
big five, 400
highlights role of trees, 399
seeks right axioms, 395
rhumb lines, 204
Riemann hypothesis, 190
Riemann-integrability, 282
Riemann surface, 228
as covering of sphere, 241
Riemann, Bernhard
argument for invariance of genus, 239
concept of geometry, 227
continuous nondifferentiable function, 274
described space curvature, 220
found Abel's p in topology, 244
genus, 187
integral, 268
definition, 269
of discontinuous function, 270
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

Riemann, Bernhard (continued)
mapping theorem, 143
zeta function, 189
Riemann-Hurwitz formula, 262
Riemannian manifold, 221
smoothly embeds in some $\mathbb{R}^{n}, 227$
ring, 61, 77
axioms, 80
finite, 148
ideal of, 178
of congruence classes, 149
polynomial, 175
Rosenbloom, Paul C., 362
$\mathbb{R P}^{2}$ see real projective plane
rules of inference, 347
for propositional logic, 351
from falsification rules, 352
Russell, Bertrand
read Frege and Peano, 355
\mathbb{S}^{2} see sphere
$S_{2}, 75$
$S_{5}, 75$
S_{n} see symmetric group
Saccheri, Girolamo, 202
tried to prove parallel axiom, 203
SAS, 20, 44
in Byrne's Elements, 38
satisfiability, 350
in propositional logic, 350
scalar multiple, 83
Schwarz, Hermann Amandus, 224
second order, 319
Seki, Takakazu, 82
self-reference, 384
self-similarity, 275
semigroup, 372
word problem, 371
sequence
of continuous functions, 276
with discontinuous limit, 276
of numbers, 264
convergence of, 264
limit of, 264
uniformly convergent, 278
series
binomial, 117
geometric, 32
harmonic, 113
infinite, 113
of continuous functions, 277 with discontinuous sum, 277
power, 110
uniformly convergent, 278
set
actually infinite, 291
closed, 288, 401
computable, 364
computably enumerable, 363
constructible, 344
countable, 294, 295
embodiment of, 293
existence axioms, 393
hereditarily finite, 309
inaccessible, 310
infinite, 212
Dedekind definition, 294
Mandelbrot, 288
nonmeasurable, 335
of real numbers, 286
open, 288, 401
axioms, 289
perfect, 401
potentially infinite, 291
power, 299
rank of, 308
representing ordinal number, 305
uncountable, 291, 297
set theory, 261, 291
and AC, 337
as arithmetic plus infinity, 327
axioms, 316, 324
Zermelo-Fraenkel, 324
Shelah, Saharon, 344
simple
graph, 230
path, 231
sine, 115
addition formula, 116, 122
as function of arc length, 120
infinite product, 120, 121
limit property, 122
power series, 115,120
by Newton, 137
rate of change, 122, 123
singularities, 102, 250
described by knots, 250
skew field, 91
Skolem, Thoralf, 357
Solovay, Robert, 344
solution
by Cardano formula, 67
by radicals, 74
of cubic equation, 65
space
Euclidean, 106
inner product, 321
Minkowski, 321
projective, 56
topological, 261, 281, 289
space-filling curve, 263
span of vectors, 83
spanning tree
by Zorn's lemma, 341
existence, 233
sphere
definition, 266
of imaginary radius, 321
volume, 126
spherical geometry, 202, 204
planar model, 207
spherical triangle, 204
angle sum, 204
area, 204
and angle sum, 205
spherical trigonometry, 216
stereographic projection, 208
Stevin, Simon, 68
Euclidean algorithm for polynomials, 156
infinite decimals, 143
strong Bolzano-Weierstrass theorem
depends on AC, 332
successor function, 145
for ordinals, 307
in PA, 317
sum of vectors, 83
surface
as polygon
by cutting, 245
with identified edges, 245
complete, 219
covering, 246
incomplete, 216
nonorientable, 178
classification, 245
of constant curvature, 155
mapped to plane, 157
one sided, 244
orientable, 244
classified by genus, 245
picture, 245
Riemann, 228
topology, 244
two sided, 244
surface of constant curvature, 213
mapped to plane, 217
symmetric function, 69
elementary, 70, 71
symmetric group, 75
symmetric polynomials, 70
fundamental theorem, 71
symmetry, $61,74,86$
breaking, 74
group
of cube, 86
of dodecahedron, 86
of icosahedron, 86
of octahedron, 86
of tetrahedron, 86
tangent, 98
detected algebraically, 98
in calculus, 123
to algebraic curve, 98
to circle, 123
to cubic curve, 162, 163
to ellipse, 123
to parabola, 98, 124
Tarski, Alfred, 329
on consistency of geometry, 323
Tartaglia, 66
tetrahedron, 86
symmetry group, 86
isomorphic to $A_{4}, 88$
volume, $29,33,113,126$
by geometric series, 34
Thales, theorem 105
theorem
Abel's, 243
altitude concurrence, 107
Bézout's, 103
binomial, 117
Cantor-Bendixson, 401
Cantor-Bernstein, 314
Dedekind dimension, 85
Desargues, 55
extreme value, 191, 201, 282
factor, 70
Fermat's last, 154
Fermat's little, 149
fundamental
of algebra, 70, 73, 191
of arithmetic, 31
of calculus, 132, 133
of general arithmetic, 199
of symmetric polynomials, 71
Gödel's first incompleteness, 384
Gödel's second incompleteness, 385
Goodstein's, 390
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical unequ without prior written permission of the publisher.
theorem (continued)
graph minor, 402
Heine-Borel, 280
intermediate value, 191, 196
isosceles triangle, 20
Jordan curve, 237
little Desargues, 91
monotonic convergence, 397
of Thales, 106
Pappus, 55
perfect set, 401
prime number, 189
proved by algebra, 68
Pythagorean, 1
strong Bolzano-Weierstrass, 332
well-ordering, 329
theory of equations, 73
theory of proportions, 1, 12
Thomae function, 270
continuous at irrational points, 273
is Riemann integrable, 270
Thue, Axel, 371
Tietze, Heinrich, 250
proved trefoil is knotted, 254
tiling
as diagram of fundamental group, 249
of conformal disk, 224
of half plane, 225
of hyperbolic plane, 224
of projective plane, 218
of sphere, 205, 207
topological invariant, 228, 241
topological space, 261
Hausdorff definition, 289
topology, 228, 231
advanced by Brouwer, 394
algebraic, 261
began as discrete geometry, 228
of surfaces, 244
one-dimensional, 229
point set, 261, 288
really about continuity, 241
Torricelli, Evangelista, 97
torus, 161, 243
covered by plane, 246
fundamental group, 248
has Euler characteristic 0,240
has genus 1, 240
tractrix, 210
is involute of catenary, 211
transfinite induction, 326, 386
in algebra, 339
up to $\varepsilon_{0}, 381$
transfinite ordinal, 386
translation invariance, 335
tree, 231
binary, 301, 380
definition, 232
end vertices of, 232
finite
as plane graph, 236
shape of proof, 352
spanning
existence, 233
vertex and edge numbers, 232
trefoil knot, 252
3-colored, 257
on torus, 252
picture, 253
triangle, 24
angle sum, 25
area, 28
geodesic, 216
inequality, 50
isosceles, 20
spherical, 204
trigonometry, 48
hyperbolic, 216
spherical, 216
truth tables, 348
truth value, 348
Turing, Alan
defined computability, 367
formalized concept of algorithm, 348
machine, 365
computing successor function, 368
description, 367
enumeration, 369
halting configuration, 368
reading head, 366
standard description, 369
universal, 370, 375
unsolved Entscheidungsproblem, 348, 365
uncountable set, 291, 297
uniform continuity, 269, 279
and Riemann integrability, 282
definition, 279
quantifiers in, 356
on closed interval, 281
uniformity, 276, 277
of convergence
of sequence, 278
of series, 278
unique prime factorization, 31,32
failure, 178
failure in $\mathbb{Z}[\sqrt{-5}], 179$
for Gaussian integers, 164
for polynomials, 157
in $\mathbb{Z}[\sqrt{-2}], 173$
unit, 170
unit square cardinality, 301
unknot, 256
unprovability
of AC in ZF, 393
of consistency, 381
of parallel axiom in neutral geometry, 393
of second-order sentences, 401
unsolvability, 363, 370
of a membership problem, 365, 382
of Entscheidungsproblem, 376
of halting problem, 370
of word problem, 375
to unprovability, 382
valency
definition, 232
of vertex, 231
validity, 350
in predicate logic, 357
in propositional logic, 350
van Roomen, Adrien, 68
vector
scalar multiple, 83
space, 82
approach to geometry, 105
axioms, 83
basis, $83,187,329,340$
dimension, 83
over a field, 84
over $\mathbb{Q}, 177$
real, 82
sum, 83
vertex
of graph, 230, 231
valency, 231
vibrating string, 267
Viète, Francois, 61, 68
found rational points on the circle, 153
on roots and coefficients, 69
solved 45th-degree equation, 68
Vitali, Giuseppe, 329
nonmeasurable set, 335
Voevodsky, Vladimir, 403
volume
of sphere, 126
by comparing with cylinder, 127
of tetrahedron, $33,34,126$
von Koch, Helge, 274
snowflake curve, 274
von Neumann, John
definition of ordinal numbers, 306
letter to Gödel, 385
Wallis, John, 92, 203
found rational points on curves, 153
product for $\pi, 121$
weak Kőnig lemma, 358, 399
equivalents in RCA 0,399
in reverse mathematics, 395
not provable in $\mathrm{RCA}_{0}, 400$
ubiquity, 380
Weierstrass, Karl, 191
and foundations of calculus, 201
continuous nondifferentiable function, 274
proved extreme value theorem, 201, 284
proved intermediate value theorem, 284
well-foundedness, 304
well-ordering, 187, 304
has no infinite descent, 343
of hyperbolic 3-manifolds, 306
of ordinals, 326
theorem, 329, 337
underlies induction, 305
Wiles, Andrew, 188
Wirtinger, Wilhelm, 250
$\mathrm{WKL}_{0}, 400$
lies between RCA_{0} and $\mathrm{ACA}_{0}, 400$
word problem
for groups, 249
geometric equivalent, 249
for semigroups, 371
and the halting problem, 372
reduced to halting problem, 375
for specific semigroup, 375,376
\mathbb{Z} see integers
$\mathbb{Z}[x], 175$
Zeno of Elea, 10
paradoxes, 10, 32
Zermelo, Ernst, 316
Zermelo-Fraenkel axioms, 324
ZF see Zermelo-Fraenkel axioms
$\mathbb{Z}[i]$ see Gaussian integers
Zorn's lemma, 339, 340
$\mathbb{Z}[\sqrt{-2}], 173$
division property, 173
primes of, 173
unique prime factorization, 173
$\mathbb{Z}[\sqrt{-5}], 179$

[^0]: 1. It may seem unwieldy to work with ratios of lengths rather than just lengths, but in fact length is a relative concept and only the ratio of lengths is absolute. When we say length $a=3$, for example, we really mean that 3 is the ratio of a to the unit length. In chapter 9 we will see that the relative concept of length is a specific characteristic of Euclidean geometry.
