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C H A P T E R 1

Before Euclid

The signature theorem of mathematics is surely the Pythagorean theo-
rem, which was discovered independently in several cultures long before
Euclid made it the first major theorem in his Elements (book 1, propo-
sition 47). All the early roads in mathematics led to the Pythagorean
theorem, no doubt because it reflects both sides of basic mathematics:
number and space, or arithmetic and geometry, or the discrete and the
continuous.

The arithmetic side of the Pythagorean theorem was observed in
remarkable depth as early as 1800 bce, whenBabylonianmathematicians
found many triples ⟨a, b, c⟩ of natural numbers such that a2 + b2 = c2.
Whether they viewed each triple a, b, c as sides of a right-angled triangle
has been questioned; however, the connection was not missed in ancient
India and China, where there were also geometric demonstrations of
particular cases of the theorem.

Nevertheless, the Pythagoreans are rightly associated with the the-
orem because of their discovery that

√
2, the hypotenuse of the triangle

with unit sides, is irrational. This discovery was a turning point in Greek
mathematics, even a “crisis of foundations,” because it forced a reckoning
with infinity and, with it, the need for proof. In India and China, where
irrationality was overlooked, there was no “crisis,” hence no perceived
need to develop mathematics in a deductive manner from self-evident
axioms.

The nature of irrational numbers, as we will see, is a deep problem
that has stimulatedmathematicians formillennia. Even in antiquity, with
Eudoxus’s theory of proportions, the Greeks took the first step from the
discrete toward the continuous.
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1.1 THE PYTHAGOREAN THEOREM

For many people, the Pythagorean theorem is where geometry begins,
and it is where proof begins too. Figure 1.1 shows the pure geometric
form of the theorem: for a right-angled triangle (white), the square on
the hypotenuse (gray) is equal to the sum of the squares on the other two
sides (black).

Figure 1.1 : The Pythagorean theorem

What “equality” and “sum” mean in this context can be explained
immediately with the help of figure 1.2. Each half of the picture shows
a large square with four copies of the triangle inside it. On the left, the
large square minus the four triangles is identical with the square on the
hypotenuse. On the right, the large square minus four triangles is identi-
cal with the squares on the other two sides. Therefore, the square on the
hypotenuse equals the sum of the squares on the other two sides.

Thus we are implicitly assuming some “common notions,” as Euclid
called them:

1. Identical figures are equal.
2. Things equal to the same thing are equal to each other.
3. If equals are added to equals the sums are equal.
4. If equals are subtracted from equals the differences are equal.

These assumptions sound a little like algebra, and they are obviously
true for numbers, but here they are being applied to geometric objects.
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Figure 1.2 : Seeing the Pythagorean theorem

In that sense we have a purely geometric proof of a geometric theorem.
The reasons why the Pythagoreans wanted to keep geometry pure will
emerge in section 1.3 below.

Although figure 1.2 is as convincing as a picture can be, some might
quibble that we have not really explained why the gray and black regions
are squares. The Greeks who came after Pythagoras did indeed quibble
about details like this, due to concerns about the nature of geometric
objects that will also emerge in section 1.3. The result was Euclid’s Ele-
ments, produced around 300 bce, a system of proof that placed geometry
on a firm (but wordy) logical foundation. Chapter 2 expands figure 1.2
into a proof in the style of Euclid. We will see that the saying “a picture
is worth a thousand words” is pretty close to the mark.

Origins of the Pythagorean Theorem

As noted above, the Pythagorean theoremwas discovered independently
in several ancient cultures, probably earlier than Pythagoras himself.
Special cases of it occur in ancient India and China, and perhaps ear-
liest of all in Babylonia (part of modern Iraq). Thus the theorem is a fine
example of the universality of mathematics. As we will see in later chap-
ters, it recurs in different guises throughout the history of geometry, and
also in number theory.

It is not known how it was first proved. The proof above is one sug-
gestion, given by Heath (1925, 1:354) in his edition of the Elements. The
Chinese and Indian mathematicians were more interested in triangles
whose sides had particular numerical values, such as 3, 4, 5 or 5, 12, 13.

As we will see in the next section, the Babylonians developed the the-
ory of numerical right-angled triangles to an extraordinarily high level.
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1.2 PYTHAGOREAN TRIPLES

If the sides of a right-angled triangle are a, b, c, with c the hypotenuse,
then the Pythagorean theorem is expressed by the equation

a2 + b2 = c2,

in the algebraic notation of today. Indeed, we call a2 “a squared” in
memory of the fact that a2 represents a square of side a. We also under-
stand that a2 is found by multiplying a by itself, and the Pythagoreans
would have agreed with us when a is a whole number. What made the
Pythagorean theorem interesting to them are the whole-number triples
⟨a, b, c⟩ satisfying the equation above. Today, such triples are known as
Pythagorean triples. The simplest example is of course ⟨3, 4, 5⟩, because

32 + 42 = 9+ 16= 25= 52,

but there are infinitelymanyPythagorean triples. In fact, the right-angled
triangles whose sides are Pythagorean triples come in infinitely many
shapes because the slopes b/a of their hypotenuses can take infinitely
many values.

The most impressive evidence for this fact appears on a Babylonian
clay tablet from around 1800 bce. The tablet, known as Plimpton 322
(its catalog number in a collection at Columbia University), contains
columns of numbers that Neugebauer and Sachs (1945) interpreted as
values of b and c in a table of Pythagorean triples. Part of the tablet is
broken off, so what remains are pairs ⟨b, c⟩ rather than triples. Some
have questionedwhether the Babylonian compiler of the tablet really had
right-angled triangles in mind. In my opinion, yes, because all the values
c2 − b2 are perfect squares and the pairs ⟨b, c⟩ are listed in order of the
values b/a—the slopes of the corresponding hypotenuses. Figure 1.3 is a
completed table that includes the values of a and b/a and also a fraction
x that I explain below.

The column of a values reveals something else interesting. These
values are all divisible only by powers of 2, 3, and 5, which makes
them particularly “round” numbers in the Babylonian system, which
was based on the number 60 (some of their system survives today, with
60 minutes in a hour and 60 seconds in a minute).

We do not know how the Babylonians discovered these triples. How-
ever, the amazingly complex values of b and c can be generated from the
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a b c b/a x
120 119 169 0.9917 12/5
3456 3367 4825 0.9742 64/27
4800 4601 6649 0.9585 75/32
13500 12709 18541 0.9414 125/54

72 65 97 0.9028 9/4
360 319 481 0.8861 20/9
2700 2291 3541 0.8485 54/25
960 799 1249 0.8323 32/15
600 481 769 0.8017 25/12
6480 4961 8161 0.7656 81/40
60 45 75 0.7500 2

2400 1679 2929 0.6996 48/25
240 161 289 0.6708 15/8
2700 1771 3229 0.6559 50/27
90 56 106 0.6222 9/5

Figure 1.3 : Pythagorean triples in Plimpton 322

fractions x, which are fairly simple combinations of powers of 2, 3, and
5. In terms of x, the whole numbers a, b, and c are denominator and
numerators of the fractions

b
a
=
1
2
(x− 1

x
) and c

a
=
1
2
(x+ 1

x
) .

For example, with x= 12/5 we get

1
2
(x− 1

x
)=

1
2
(
12
5
−

5
12
)=

119
120

and 1
2
(x+ 1

x
)=

1
2
(
12
5
+

5
12
)=

169
120

.

The huge triple ⟨13500, 12709, 18541⟩ is similarly generated from the
fraction 125/54= 53/2 ⋅ 33, which has roughly the same complexity as
13500= 22 ⋅ 33 ⋅ 53. Thus, it is plausible that the Babylonians could have
generated complex Pythagorean triples by relatively simple arithmetic.
At the same time, the link with geometry is hard to deny when the triples
are seen to be arranged in order of the slopes b/a—an order that could
not be guessed from the arrangement of a, b, c, or x values! And when
one sees that these slopes cover a range of angles, roughly equally spaced,
between 30○ and 45○ (figure 1.4), it looks as though the Babylonians were
collecting triangles of different shapes.

It is also conspicuous which shape is missing from this collection of
triangles: the one with equal sides a and b, shown in red in figure 1.4.
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a

b
c

Figure 1.4 : Slopes derived from Plimpton 322

As we now know, because the Pythagoreans discovered it, this shape is
missing because the hypotenuse of this triangle is irrational.

1.3 IRRATIONALITY

Irrationality follows naturally from the Pythagorean theorem, but appar-
ently it was found by the Pythagoreans alone. Like other discoverers of
the theorem, the Pythagoreans knew special cases with whole-number
values of a, b, c. But, apparently they were the only ones to ask, Why do
we find no such triples with a=b? The question points to its own answer:
it is contradictory to suppose there are whole numbers a and c such that
c2 = 2a2.

The argument of the Pythagoreans is not known, but the result must
have been common knowledge by the time of Aristotle (384–322 bce),
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as he apparently assumes his readers will understand the following brief
hint:

The diagonal of the square is incommensurable with the side,
because odd numbers are equal to evens if it is supposed commen-
surable.

(Aristotle, Prior Analytics, bk. 1, chap. 23)

Here “commensurable” means being a whole number multiple of a com-
mon unit of measure, so we are supposing that c2 = 2a2, where the side of
the square is aunits and its diagonal is c units.We reach the contradiction
“odd = even” as follows.

First, by choosing the unit of measure as large as possible, we can
assume that the whole numbers c and a have no common divisor
(except 1). In particular, at most one of them can be even.

Now c2 = 2a2 implies that the number c2 is even. Since the square of
an odd number is odd, cmust also be even, say c= 2d. Substituting 2d for
c gives

(2d)2 = 2a2 so 2d2 =a2.

But then a similar argument shows a is even, which is a contradiction.
So it is wrong to suppose there are whole numbers a and c with

c2 = 2a2.
The usual way to express this fact today is that there are no natural

numbers c and a such that
√
2= c/a or, more simply, that

√
2 is irrational.

1.4 FROM IRRATIONALS TO INFINITY

The argument for irrationality of
√
2 is very short and transparent in

modern algebraic symbolism. Judging by the excerpt from Aristotle, it
was also comprehensible enough when equations were written out in
words, as the ancient Greeks did.

But there was also a geometric approach to incommensurable quan-
tities that the Greeks called anthyphaeresis. It gives a different and deeper
insight into the nature of

√
2 and, indeed, a different proof that it is irra-

tional. Anthyphaeresis is a process that can be applied to two quantities,
such as lengths or natural numbers, by repeatedly subtracting the smaller
from the larger. Since it was later used to great effect by Euclid, it is today
called the Euclidean algorithm.

More formally, given two quantities a1 and b1 with a1 >b1, one forms
the new pair of quantities b1 and a1 − b1 and calls the greater of them a2
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and the lesser b2. Then one does the same with the pair a2, b2, and so on.
For example, if a1 = 5, b1 = 3 we get

⟨a1, b1⟩ = ⟨5, 3⟩
⟨a2, b2⟩ = ⟨3, 2⟩
⟨a3, b3⟩ = ⟨2, 1⟩
⟨a4, b4⟩ = ⟨1, 1⟩,

at which point the algorithm terminates because a4 =b4. The Euclidean
algorithm always terminates when a1 and b1 are natural numbers,
because subtraction produces smaller natural numbers andnatural num-
bers cannot decrease forever. Conversely, a ratio for which the Euclidean
algorithm runs forever is irrational.

In section 2.6 we will see the consequences of the Euclidean algo-
rithm for natural numbers, but for theGreeks before Euclid the process of
anthyphaeresis was most revealing for pairs of incommensurable quan-
tities, such as a1 =

√
2 and b1 = 1. In this case the numbers an, bn can and

do decrease forever. In fact, we have

⟨a1, b1⟩ = ⟨
√
2, 1⟩

⟨a2, b2⟩ = ⟨1,
√
2− 1⟩

⟨a3, b3⟩ = ⟨2−
√
2,
√
2− 1⟩ = ⟨(

√
2− 1)

√
2, (
√
2− 1)1⟩,

so ⟨a3, b3⟩ is the same as ⟨a1, b1⟩, just scaled down by the factor
√
2− 1.

Two more steps will give ⟨a5, b5⟩, again the same as ⟨a1, b1⟩ but scaled
down by the factor (

√
2− 1)2, and so on. Thus the numbers ⟨an, bn⟩

decrease forever, but they return to the same ratio every other step.
Since this cannot happen for any pair ⟨a, b⟩ of natural numbers, it

follows that
√
2 and 1 are not in a natural number ratio; that is,

√
2 is

irrational. Moreover, we have discovered that the pair ⟨
√
2, 1⟩ behaves

periodically under anthyphaeresis, producing pairs in the same ratio
every other step. It turns out, though this was not understood until
algebra was better developed, that periodicity is a special phenomenon
occurring with square roots of natural numbers.

Visual Form of the Euclidean Algorithm

If a and b are lengths, we can represent the pair {a, b} by the rectangle
with adjacent sides a and b. If, say, a>b, then the pair {b, a− b} is rep-
resented by the rectangle obtained by cutting a square of side b from the
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original rectangle, shown in light gray in figure 1.5. The algorithm then
repeats the process of cutting off a square in the light gray rectangle, and
so on.

b

a
b a − b

b

Figure 1.5 : First step of the Euclidean algorithm

When a=
√
2 and b= 1, two steps of the algorithm give the light gray

rectangle shown in figure 1.6, which is the same shape as the original
rectangle. This is because its sides are again in the ratio

√
2 ∶ 1, as we saw

in the calculation above. Since the new rectangle is the same shape as
the old, it is clear that the process of cutting off a square will continue
forever.

Figure 1.6 : After two steps of the algorithm on
√
2 and 1

The Greeks were fascinated by geometric constructions in which the
original figure reappears at a reduced size. The simplest example is the
so-called golden rectangle (see figure 1.7), in which removal of a square
leaves a rectangle the same shape as the original. It follows that the
Euclidean algorithm runs forever on the sides a and b of the golden rect-
angle, and hence these sides are in irrational ratio. This particular ratio
is called the golden ratio.

Figure 1.7 : The golden rectangle
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The golden ratio is also the ratio of the diagonal to the side of the
regular pentagon, where the recurrence of the original figure at reduced
size can be seen in figure 1.8.

It is believed that the study of the golden ratio and the regular pen-
tagonmay go back to the Pythagoreans, inwhich case theywere probably
aware of the irrationality of the golden ratio as well as that of

√
2.

Figure 1.8 : Infinite series of pentagrams

1.5 FEAR OF INFINITY

As we have just seen, irrationality brings infinite processes to the atten-
tion of mathematicians, albeit processes of a simple and repetitive kind.
At an even more primitive level, the natural numbers 0, 1, 2, 3, . . . them-
selves represent the kind of infinity where a simple process—in this case,
adding 1—is repeated without end. An infinity that involves endless rep-
etition was called by the Greeks a potential infinity. They contrasted it
with actual infinity—a somehow completed infinite totality—which was
considered unacceptable or downright contradictory.

The legendary opponent of infinity was Zeno of Elea, who lived
around 450 bce. Zeno posed certain “paradoxes of the infinite,” whichwe
know only from Aristotle, who described the paradoxes only to debunk
them, so we do not really know what Zeno meant by them or how they
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were originally stated. It will become clear, however, that Zeno accepted
potential infinity while rejecting actual infinity.

A typical Zeno paradox is his first, the paradox of the dichotomy, in
which he argues that motion is impossible because

before any distance can be traversed, half the distance must be tra-
versed [and so on], that these half distances are infinite in number,
and that it is impossible to traverse distances infinite in number.
(Aristotle, Physics, bk. 8, chap. 8, 263a)

Apparently, Zeno is arguing that the infinite sequence of events

reaching 1/2 way
reaching 1/4 way
reaching 1/8 way

⋯

cannot be completed. Aristotle answers, a few lines below this statement,
that

the element of infinity is present in the time no less than in the
distance.

In other words, if one can conceive an infinite sequence of places

1/2 way, 1/4 way, 1/8 way, . . . .

then one can conceive an infinite sequence of times at which

1/2 way is reached, 1/4 way is reached, 1/8 way is reached, . . . .

Thus if Zeno is willing to admit the potential infinity of places, he has
to admit the potential infinity of times. It is not a question of completing
an infinity but only of correlating one potential infinity with another.We
claim only that each of the places can be reached at a certain time; we do
not have to consider the totality of places or the totality of times.

At any rate, after Zeno, Greek mathematicians handled questions
about infinity by this style of argument—dealing with members of a
potential infinity one by one rather than in their totality. The “actual
infinity scare” was nevertheless productive, because it led to a very
subtle understanding of the relation between the continuous and the
discrete.
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1.6 EUDOXUS

Eudoxus of Cnidus, who lived from approximately 390 bce to 330 bce,
was a student of Plato and is believed to have taught Aristotle. His
most important accomplishments are the theory of proportions and the
method of exhaustion. Together, they form the summit of the Greek
treatment of infinity, and they come down to us mainly through the
exposition in book 5 of Euclid’s Elements. In particular, the theory of
proportions was the best treatment of rational and irrational quanti-
ties available until the nineteenth century. Indeed, it is probably the
best treatment possible as long as one rejects actual infinity, which most
mathematicians did until the 1870s.

The theory of proportions dealswith “magnitudes” (typically lengths)
and their relation to “numbers,” which are natural numbers. It thereby
builds a bridge between the two worlds separated by the Pythagore-
ans: the world of magnitudes, which vary continuously, and the world
of counting, where numbers jump discretely from each number to its
successor.

The theory is complicated somewhat because the Greeks thought in
terms of ratios of magnitudes and ratios of numbers, without having the
algebraicmachinery of fractions thatmakes ratios easy to handle.We can
understand the ratio of natural numbersm and n as the fractionm/n, so
wewill write the ratio of lengths a and b as the fraction a/b.1 The key idea
of Eudoxus is that ratios of lengths, a/b and c/d, are equal if and only if,
for each natural number ratiom/n,

m
n
<
a
b

if and only if m
n
<
c
d
.

Equivalently (and this is how Eudoxus put it), for each natural number
pairm and n,

mb<na if and only if md<nc.

Thus the infinity of natural number pairs m,n is behind the defini-
tion of equality of length ratios, but only potentially so, because equality

1. It may seem unwieldy to work with ratios of lengths rather than just lengths, but
in fact length is a relative concept and only the ratio of lengths is absolute. When we
say length a= 3, for example, we really mean that 3 is the ratio of a to the unit length.
In chapter 9 we will see that the relative concept of length is a specific characteristic of
Euclidean geometry.
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depends on a single (though arbitrary) pair m,n. In defining unequal
length ratios, infinity can be avoided completely, because one particular
pair can witness inequality. Namely, if a/b< c/d then there is a particular
m/n such that a

b
<
m
n
<
c
d
,

and likewise, if c/d<a/b then there is a particularm/n between c/d and
a/b. Today we would say that ratios of lengths are separable by ratios of
natural numbers.

The Archimedean Axiom

The assumption that natural number ratios separate ratios of lengths is
equivalent to a property later called the Archimedean property: if a/b> 0
then a/b>m/n> 0 for some natural numbers m and n. It follows, obvi-
ously, that in fact a/b> 1/n, so na>b. This gives the usual statement of
theArchimedean axiom: if a and b are any nonzero lengths, then there is
a natural number n such that na>b.

Another statement of the Archimedean axiom is: there is no ratio a/b
so small that 0<a/b< 1/n for each natural number n, or more concisely,
there are no infinitesimals. This property was assumed by Euclid and
Archimedes (hence the name), but some later mathematicians, such as
Leibniz, thought that infinitesimals exist.Wewill see in chapter 4 that the
existence of infinitesimals was a big issue in the development of calculus.

Mathematical practice today has translated Eudoxus’s theory into our
concept of the real number system R. The ratios of lengths are the non-
negative real numbers, and among them lie the nonnegative rational
numbers, which are the ratios m/n of natural numbers. Any two dis-
tinct real numbers are separated by a rational number, so there are no
infinitesimals in R. Conversely, each real number is determined by the
rational numbers less than it and the rational numbers greater than it.
Exactly how this came about, andwhat the real numbers are, is explained
in chapter 11. It turns out that separation by rational numbers is the key
to answering this question.

The Method of Exhaustion

We discuss the method of exhaustion only briefly here, because it is a
generalization of the theory of proportions. Also, the best examples of
the method occur in the work of Euclid and Archimedes, discussed in
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chapter 2. The basic idea is to approximate an “unknown quantity,” such
as the area or volume of a curved region, by “known quantities” such
as areas of triangles or volumes of prisms. This generalizes the idea of
approximating a ratio of lengths by ratios of natural numbers. Generally,
there is a potential infinity of approximating objects, but as long as they
come “arbitrarily close” to the unknown quantity it is possible to draw
conclusions without appealing to actual infinity.

An example is approximation of the circle by polygons, shown in fig-
ure 1.9, which allows us to draw the conclusion that the area of the circle
is proportional to the square of its radius.

Figure 1.9 shows polygons approximating the circle from inside and
outside. Only the first two approximations are shown, but one can imag-
ine a continuation of the sequence by repeatedly doubling the number of
sides. It is clear that the area of the gap between inner and outer polygons
becomes arbitrarily small in the process, and hence both inner and outer
polygons come arbitrarily close to the circle in area.

Figure 1.9 : Approximating the circle by polygons

Also, the area of each polygon Pn is a sum of triangles, whose area
Pn(R) for radiusR is known and proportional toR2. Now comes a typical
example of reasoning “by exhaustion”: suppose that the area C(R) of the
circle of radius R is not proportional to R2. Thus, if we compare circles
of radius R and R′ we have either

C(R)/C(R′)<R2/R′2

or

C(R)/C(R′)>R2/R′2.
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If C(R)/C(R′)<R2/R′2, then by choosing n so that Pn(R) is sufficiently
close to C(R) and Pn(R′) is sufficiently close to C(R′), we will get

Pn(R)/Pn(R′)<R2/R′2,

which is a contradiction. IfC(R)/C(R′)<R2/R′2 we get a similar contra-
diction. Therefore the only possibility is that C(R)/C(R′)=R2/R′2.

We have established what we want by exhausting all other possibili-
ties. This is what “exhaustion”means in themethod of exhaustion.Notice
also that we used only the potential infinity of polygons by going only far
enough to contradict a given inequality. This is typical of the method.

1.7 REMARKS

We have seen in the development of Greek mathematics many topics
considered tricky in undergraduate mathematics today, such as proof by
contradiction, the use of infinity, and the idea of choosing a “sufficiently
close” approximation. This just goes to show, in my opinion, that ancient
mathematics is good training in the art of proof.

At the same time, we have seen that ancient arguments can often be
streamlined by the use of algebraic symbolism, and the art of algebra was
missing in ancient times.

The other thing missing, in what we know of this early stage, was the
systematic deduction of theorems from axioms. The art of axiomatics
also began in ancient times, as we will see in the next chapter.
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3-sphere, 253

An see alternating group
abacus, 64
Abel’s theorem, 243
Abel, Niels Henrik, 160

introduced genus concept, 187
in integral calculus, 243

AC see axiom of choice
ACA0, 397

minimal model, 397
accumulation point, 332
Adams, John, 125
Adams, John Quincy, 125
addition formula for sine, 116
adequality, 125
al-Haytham, Hasan ibn, 129, 203
al-Khwārizm̄i, Muh. ammad ibn Mūsā, 63
al-Qūh̄i, Abū Sahl Wayjan ibn Rustam, 107
Alberti, Leon Battista, 52

method of perspective drawing, 52
alephs, 313
Alexander, James, 256
algebra, 61

and AC, 339
as “universal arithmetick,” 68
as method of proof, 68
axioms, 69
Boolean, 347
fundamental theorem, 70, 73, 191

needed for Bézout’s theorem, 104
homological, 261
in Euclid’s common notions, 19
invaded by continuum, 191
linear, 81
modern, 73
of logic, 347
origin of word, 63
powered calculus, 110
real fundamental theorem, 192

algebraic
axioms, 317
closure, 329
curve, 92, 97

as Riemann surface, 240, 241
tangent, 98

function, 138
Dedekind-Weber theory, 187,

262
field, 187
integral of, 244
with nonelementary integral, 139

geometry, 85, 92
integer, 81, 178

definition, 178
number, 61, 81, 164

definition, 175
field, 174, 177
minimal polynomial, 175

number theory, 84, 171
structure

from incidence axioms, 40, 59
topology, 261

algorithm
defined by Post, 361
Dehn’s, 250
Euclidean, 7, 29
origin of word, 63

alternating group, 88
alternative field, 91
altitude concurrence theorem, 107
analysis

and AC, 332
arithmetization of, 263
as second-order arithmetic, 393
commonality with logic, 380
constructive, 393, 395
foundations of, 263
nonstandard, 328
tree arguments in, 358
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angle
equality, 44
in spherical geometry, 204
measure, 48

anthyphaeresis, 7
antiderivative, 133
Apollonius of Perga, 93
arc length, 97

by calculus, 133
formula, 134
of cubic curves, 135
of ellipse

as elliptic integral, 140
of equiangular spiral, 97, 112
of hyperbola

as elliptic integral, 140
of lemniscate, 141, 160

Archimedean axiom, 13, 45
implies no infinitesimals, 13, 45

Archimedes, 13
area of parabolic segment, 126

by rectangle approximation, 129
Method, 143
volume of sphere, 126

by comparing with cylinder, 127
area, 27

by rectangle approximation, 128,
269

equality, 27
of parabolic segment, 126

via geometric series, 126
of spherical triangle, 204

and angle sum, 205
of triangle, 28

Argand, Jean-Robert, 194
Aristotle, 10, 12
arithmetic

comprehension, 396, 397
not constructive, 397
not provable in RCA0, 397

mod 2, 347, 349
of cardinal numbers, 312
second order, 393
transfinite recursion, 402

arithmetization, 263
of analysis, 263

depends on sets, 291
of continuity, 263
of geometry, 263, 266
of syntax, 327, 383

Artin, Emil, 250
Aryabhata, 122
Aryabhata II, 147

ASA, 21
associative law, 76

for addition, 77
for multiplication, 77

asymptoptic lines, 203
ATR0, 401
Aubrey, John, 25
automorphism, 176
axiom see also axioms

Archimedean, 13, 45
arithmetic comprehension, 397
countable choice, 342
Dedekind, 46
dependent choice, 343
empty set, 324
extensionality, 324
first order, 319
foundation, 324, 325
induction, 186

in PA, 317
of choice, 231, 313, 329
of infinity, 294, 310, 324, 325
pairing, 324
parallel, 18, 22, 203

and non-Euclidean geometry, 39
equivalents, 203

Pasch’s, 41, 42
Playfair’s, 19, 24, 25
power set, 310, 325
recursive comprehension, 396
replacement, 310, 325

due to Fraenkel, 325
SAS, 20
second order, 319
union, 324

axiom of choice, 231, 313, 329
and algebra, 339
and analysis, 332
and existence

of spanning tree, 234, 331
and graph theory, 331
and infinity, 330
and measure theory, 334
and set theory, 337
equivalent to

existence of basis, 340
existence of spanning tree, 331
well-ordering theorem, 337
Zorn’s lemma, 339

gives nonmeasurable set, 329
introduced by Zermelo, 329
orders sets by cardinality, 329

axiomatics, 15
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axioms
congruence, 44
define structure, 226
field, 40
for arithmetic, 316
for geometry, 320
for open sets, 289
for predicate logic, 347
for probability theory, 144
for propositional logic, 351
formerly theorems, 80
group, 76
incidence, 39, 40
linear order, 41
models of, 226
of algebra, 69
of equality, 77
of Euclid, 17

gaps, 39
of predicate logic, 357
of weaker choice, 330, 342
ordered field, 41
Peano arithmetic, 317
projective plane, 57
ring, 80
set existence, 393
set theory, 316, 324
vector space, 83
Zermelo-Fraenkel, 324
ZF minus infinity, 326

Banach, Stefan, 329
Banach-Tarski paradox, 329, 336
Basel problem, 120
basis

Hamel, 340
of vector space, 83, 187, 329

by Zorn’s lemma, 340
Beltrami, Eugenio, 202

conformal models, 221
mapped surfaces to plane, 217
models of non-Euclidean geometry,

219, 316
in ordinary mathematics, 220

projective disk model, 222
validity of non-Euclidean geometry, 220

Berkeley, George, 110
ghosts of departed quantities, 130

Bernoulli, Daniel, 268
on modes of vibration, 268

Bernoulli, Jakob, 120
arc length of lemniscate, 141, 160
integral for π, 138

posed catenary problem, 211
related integration to Diophantus, 142
thought

√

1− x4 cannot be rationalized,
156

Bernoulli, Johann, 120
solved catenary problem, 211

Bézout’s theorem, 103
concepts required, 104

big five, 400
binary tree, 301, 380

in analysis, 399
in weak Kőnig lemma, 358, 380

binomial
coefficient, 118
series, 117, 119
theorem, 117

for fractional exponent, 119
Bolyai, Farkas, 203
Bolyai, Janos, 202

published hyperbolic geometry, 219
Bolzano, Bernard, 191

and foundations of calculus, 201
continuous nondifferentiable function,

274
definition of continuity, 196
noticed intermediate value theorem, 196
Paradoxes of the Infinite, 311

Bolzano-Weierstrass theorem
provable in ACA0, 398
unprovable in constructive analysis, 393

Bombelli, Rafael, 61, 67, 68
and equation x3 = 15x+ 4, 67
calculated with i, 68

Boole, Geoge, 347
Boolean algebra, 347, 349
Boolean function, 348
Borel, Émile, 280

encoded continuous functions by reals,
286

Bosse, Abraham, 55
frontispiece to Hobbes’s Leviathan, 293

Brahmagupta, 64
branch point, 241

picture, 242
Bring, Erland, 193
Brouwer, Luitzen Egbertus Jan, 303

fixed point theorem, 394
intuitionism, 394
invariance of dimension, 303, 315, 394
invariance of domain, 394
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Brouwer, Luitzen Egbertus Jan (continued)
rejected existence without construction,

394
rejected own fixed point theorem, 394
rejected standard theorems of analysis,

394
topological theorems

equivalent to weak Kőnig lemma, 400
are nonconstructive, 400

C see complex numbers
calculus, 110

and infinitesimals, 13
foundations of, 201
fundamental theorem, 132
infinitesimal, 130
of series, 136

Calcut, Jack, 170
Cantor, Georg

assumed well-ordering of every set, 313
continuum hypothesis, 313
discovered there is no largest set, 291
discovered uncountability, 291
downplayed uncountability at first, 296
generalized the diagonal argument, 299
introduced ordinal numbers, 303
new way to transcendental numbers,

296
theorems about closed and perfect sets,

401
Cantor-Bendixson theorem, 401

not provable in ATR0, 402
provable inΠ1

1-CA0, 401
Cantor-Bernstein theorem, 314
Cardano, Gerolamo

Ars magna, 65
formula, 66

cardinal number, 312
arithmetic, 312

cardinality, 294, 329
of unit square, 301

Cartesian product, 313
casting out nines, 147
category theory, 261, 311
catenary, 210
Cauchy convergence criterion

provable in ACA0, 398
Cauchy, Augustin-Louis

and foundations of calculus, 201
convergence criterion, 265
definition of limit, 268
mistake about continuity, 276

Cavalieri, Bonaventura, 127

Cayley, Arthur
groups as permutation groups, 76
projective maps of the disk, 221

Ceitin, G. S., 376
cellular automaton, 377
central projection, 217
CH see continuum hypothesis
chord construction, 152
Church, Alonzo

defined computability, 367
system of propositional logic, 351
unsolved Entscheidungsproblem, 371

Church-Turing thesis, 367, 383
circle

division by rational points, 170
parametric equations, 153
rational points on, 151

circumference on the sphere, 216
Clebsch, Alfred, 163
closed path, 231
closed set, 288, 401
Cohen, Paul

invented forcing, 345
model of ZF+AC but not CH, 345
models of ZF, 331

combinatorics, 146
commutative law

for Euclid’s product, 28
of multiplication, 78

compactness, 279
defined by Heine-Borel property, 280

in topological space, 290
definition, 281

completeness
as convergence property, 264
as least upper bound property, 198,

264
as nested interval property, 264
of line, 45
of predicate logic

proved by Gödel, 357
of propositional logic

proved by Post, 352
of real numbers, 198

completing the square, 62
complex numbers, 78

are noncontradictory, 78
geometry of, 165, 223
Hamilton definition, 78

comprehension
arithmetic, 396
Π1

1, 402
recursive, 396
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computable function, 369
unrecognizability, 369

computable set, 364
computably enumerable induction, 395
computably enumerable set, 363

but not computable, 364
computation, 347
Con(PA)

expressible in PA, 386
not provable in PA, 386
provable in ATR0, 402
proved by Gentzen, 386

configuration word, 373
congruence

axioms, 44
class, 148, 175, 185
has properties of equality, 146
modulo a prime, 149
modulo an ideal, 185
modulo an integer, 146
modulo an irreducible polynomial, 175

definition, 175
conic sections, 93

degenerate, 96
in model of RP

2, 100
points at infinity, 100
same in projective view, 100

connected graph, 232
connectives, 348
consistency, 47

of algebraic axioms, 317
of complex numbers, 78
of Euclidean geometry, 323
of non-Euclidean geometry, 220
of PA, 386

proved by ε0-induction, 381
proved by Gentzen, 386

of predicate logic, 347, 360
of propositional logic

proved by Post, 352
of R, 49
of real number axioms, 323
of set theory, 312
proof

for propositional logic, 355
reduced to question in PA, 386
unprovability of, 381

constructible sets, 344
construction

by computation, 393
by straightedge and compass, 17, 45,

85
defines constructible numbers, 227

constructive analysis, 393, 395
theorems not provable in, 393

constructivity, 393
and intuitionism, 394

continuity, 195
and topology, 241
Bolzano definition, 196, 266

quantifiers in, 356
Cauchy’s mistake, 276
does not imply differentiability, 273
Hausdorff definition, 196
in terms of open sets, 289
of function

at a point, 269
over an interval, 269

sequential, 333
uniform, 269

continuous function, 196, 254, 263, 266
almost everywhere, 273
and integral, 267–270
as a trigonometric series, 268
encoded by real number, 284
from sequence of real numbers, 285
not uniformly so, 271, 279
nowhere differentiable, 274
on closed interval, 281

has Riemann integral, 282
takes extreme values, 283

continuum, 291
hypothesis, 313, 346

consistent with ZF+AC, 346
problem, 308, 313

convergence
Cauchy criterion, 265
monotonic, 397
nonuniform, 277
of sequence of numbers, 264
uniform, 278

coordinates, 92
Cartesian, 95
complex, 104
in calculus, 110

cosine
power series, 115
rate of change, 123

countable additivity, 272
countable choice, 342
countable ordinal, 308

ε0, 381, 389
countable set, 294, 295

examples, 295
has Lebesgue measure zero, 272

counting board, 82
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covering
branched, 242
by plane, 246

tiled with hyperbolic polygons, 247
tiled with polygons, 246

motion group, 248
of genus 2 surface, 247
of nonorientable surface, 246
of real projective plane by sphere, 245
of torus, 246
unbranched, 246

Cramer’s rule, 82
crisis of foundations, 1

provoked by calculus, 111
provoked by irrationality, 39
provoked by set theory, 291

cube, 86
symmetry group, 86

isomorphic to S4, 88
cubic curves, 100

arc length, 135
in Diophantus, 162
Newton classification, 102
nonsingular, 102
projective view, 102
with crossing, 102
with cusp, 102
with isolated point, 102

curvature, 210, 212
center of, 212
constant, 212
Gaussian, 212
geodesic, 215
of a plane curve, 212
of space, 220
of surfaces, 212
principal, 212
radius of, 212

curve
y2 = 1− x4, 157

parametric equations, 161
algebraic, 92, 97, 266
complex, 104
cubic, 100, 162
defined by formula, 266
elliptic, 160, 161
genus, 187
homotopy of, 247
in real projective plane, 100
mechanical, 97, 110
nonalgebraic, 97, 110
of constant curvature, 212
projective, 104

singularities, 102
snowflake, 274
space-filling, 263, 287
transcendental, 210, 267

cusp, 102
picture, 250

cut
elimination, 352
rule of inference, 352

d’Alembert, Jean le Rond, 192, 194
Dandelin, Germinal Pierre, 94
Darboux, Gaston, 274

function, 274
de la Vallée Poussin, Charles, 190
Dedekind axiom, 46
Dedekind, Richard, 46

and invariance of dimension, 303
arithmetized the line, 263
axioms for arithmetic, 316
countability of algebraic numbers, 295

proof, 296
cuts, 46, 198
defined product of ideals, 181
definition of infinite set, 294

depends on AC, 330
definition of R, 191, 197

implies least upper bound property,
191

dimension theorem, 85
nonunique prime factorization, 179
on induction, 319, 338
proof of infinity, 294
realized “ideal numbers” by ideals, 179
treated infinite sets as objects, 148
used vector spaces, 84

definitions
as abbreviations, 36
by recursion or induction, 319, 338
impredicative, 402

degree
of algebraic curve, 95
of algebraic number, 175
of field

as vector space over Q, 84
of polynomial, 164

Dehn, Max
algorithm, 250
and polygonal Jordan curve theorem,

237
and polyhedral volumes, 29
introduced word problem for groups,

249
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knot theory, 250
solved word problem for surface groups,

249
del Ferro, Scipione, 65, 66
dependent choice, 343

and measurability, 344
derivative as rate of change, 122
Desargues, Girard, 56

on points at infinity, 100
Desargues theorem, 55, 88

spatial proof, 56
Descartes, René, 61, 68

algebraic geometry, 92, 95
factor theorem, 70, 73

and FTA, 192
folium, 99
on arc length, 97, 135
rejected nonalgebraic curves, 97

determinant, 82
of knot, 260

diagonal argument
disrupts axiomatics, 394
for computable functions, 369
for computably enumerable sets, 363,

382
for general sets, 299
for uncountability of P(N), 298
for uncountability of R, 298
introduced by du Bois-Reymond,

299
paradoxes arising, 312

differentiability, 273, 274
differential geometry, 210
differentiation

operation, 131
rule, 131

chain, 131
for inverse function, 131
for product, 131

dimension, 302
invariance for vector space, 83
invariance under homeomorphisms,

303, 315
of R and R

2, 315
of field as vector space over Q, 84
of vector space, 83

over a field, 84
Diophantus, 142

and cubic curves, 162
and the equation y3 = x2 + 2,

171
chord construction, 163
in the light of algebra, 153

style of proof, 153
sum of squares identity, 169
tangent construction, 162

Dirichlet function, 270
discontinuous everywhere, 273
has Lebesgue integral zero, 273
not Riemann-integrable, 270

disk area and circumference, 111
distance

defines “inside” and “outside,” 45
in Euclidean plane, 48, 265
in R

n, 266
on curved surfaces, 215

distributive law, 77
for quaternions, 79
in Euclid, 28

division
of Gaussian integers, 168
of ideals, 183
property, 164

for Gaussian integers, 167
for polynomials, 164
for Z[

√

−2], 173
with remainder, 164

dodecahedron, 86
symmetry group, 86

isomorphic to A5, 88
duplicating the cube, 84

edge
directed, 231
of graph, 230, 231

Eilenberg, Samuel, 261
Einstein, Albert, 144
Eisenstein, Gotthold, 193
elementary functions, 139
ellipse, 93

arc length, 140
equation, 96
focal property, 94
tangent and foci, 123

elliptic
curve, 160, 161

as torus, 161
rational points, 162

function, 160
double periodicity, 160
geometry, 163

integral, 140, 160
embedding

finite tree in plane, 236
of graph in plane, 235
Riemannian manifold in R

n, 227
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Entscheidungsproblem, 347
posed by Hilbert, 371
unsolvability via semigroup, 376
unsolved by Church and Turing, 371

ε0, 389
hidden occurrences in arithmetic, 390
is “inaccessible” in PA, 389

ε0-induction, 389
equality

axioms, 77
of angles, 44, 49
of areas, 27
of distances, 49
of line segments, 44
of rectangle and parallelogram, 27
of volume, 29

equation
cubic, 61, 64

solution, 65
of degree 45, 68
polynomial, 95
quadratic, 61, 62
quartic, 69
quintic, 69, 75

infinite series solution, 193
not solvable by radicals, 76

equiangular spiral, 97, 204
arc length, 112
is transcendental, 97, 210

equinumerous sets, 294
Euclid

assumed Archimedean axiom, 13
aware of induction, 29, 146
common notions, 2

resemble algebra, 19, 26
concept of area, 27
definitions, 36
distributive law, 28
Elements, 1

admired by Lincoln, 16
axioms, 17
book 1, 19
book 5, 12, 45
books 7–9, 146
Byrne edition, 36
imitated by Spinoza, 16
model of proof, 16
regular polyhedra, 86

formula for Pythagorean triples, 150
found volume of tetrahedron, 29
geometric series, 32
infinitude of primes, 30
number theory, 29, 146

perfect numbers, 33
volume of tetrahedron, 33, 126

Euclidean
algorithm, 7, 29

and irrationality, 8, 30
by division with remainder, 164
by repeated subtraction, 164
consequences, 31
for Gaussian integers, 164
for gcd, 146
for polynomials, 156
periodic on

√

2, 8
visual form, 8

line, 46
plane, 47

minimal model, 227
model, 48

space, 106
Eudoxus of Cnidus, 1, 12

method of exhaustion, 12
theory of proportions, 12

Euler characteristic, 239
and genus, 240
is a topological invariant, 241
of surface, 240

Euler, Leonhard
even perfect numbers, 34
integer solution of y3 = x2 + 2, 171

justification, 172
launched graph theory, 229
on elliptic integrals, 160
polyhedron formula, 234, 236
product formula, 188
solution of Basel problem, 119
solved Königsberg bridges problem, 229
used algebraic numbers, 164
zeta function, 188

existence
according to Hilbert, 379
and construction, 17, 199, 394
and freedom from contradiction, 379
depending on AC, 329, 330
of algebraic closure, 329
of maximal ideal, 329
of spanning tree, 233

depends on AC, 331
of vector space basis, 329

exponential function, 137
is elementary, 139
is nonalgebraic, 139

extreme value theorem, 191, 201, 282
implies FTA, 283
unprovable in constructive analysis, 393
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face
of graph on surface, 239
of plane graph, 235
of polyhedron, 235

factor theorem, 70
Fagnano, Giulio, 160
falsification rules, 352
falsification tree, 353
Fano plane, 59
Fermat, Pierre de, 95

adequality, 125
and the equation y3 = x2 + 2, 171
found rational points on curves, 153
four-square conjecture, 188
infinite descent, 154, 186
last theorem, 154

for fourth powers, 155
proved by Wiles, 188

little theorem, 149
on tangent to parabola, 124

Ferrari, Lodovico, 69
Fibonacci

Liber abaci, 64
Liber quadratorum, 64
proved sum of squares identity, 169
used casting out nines, 147

field, 40, 61, 77
algebraic function, 187
algebraic number, 174

as field of congruence classes, 176
as vector space, 177

as vector space over Q, 84
dimension, 84

automorphism, 176
axioms, 40, 80

from incidence axioms, 89
finite, 148
of congruence classes, 149
ordered, 41

finite
field, 148
group, 75
ring, 148

first order, 319
induction, 320

admits “alien intruders,” 320
logic, 320
theorems of ACA0 are those of PA, 401

focus, 94
folium of Descartes, 99
forcing, 345
foundations

of analysis, 263

of calculus, 201
of geometry, 263
of mathematics, 316
of real numbers, 322

Fourier, Joseph, 268
Fox, Ralph, 256
Fraenkel, Abraham, 316
Fréchet, Maurice

introduced compactness, 279
nested sequence theorem, 290

Frege, Gottlob, 347
Begriffschrifft, 355
had complete predicate logic, 357

Friedman, Harvey
reverse mathematics, 394

FTA see fundamental theorem of algebra
function, 139

algebraic, 138
as set of ordered pairs, 270
Boolean, 348
characteristic, 298
computable, 369
concept, 267

and integral concept, 268
continuous, 196, 254, 263, 266

and integral, 267–270
as a trigonometric series, 268
but not uniformly, 271
encoded by real number, 284
from sequence of real numbers, 285
nowhere differentiable, 274

Darboux, 274, 276
differentiable, 224
Dirichlet, 270
discontinuous, 270
elementary, 139
elliptic, 160
exponential, 137
Lebesgue integrable, 273
lemniscatic sine, 160
modular, 225
nonalgebraic, 139

defined by integral, 139
polynomial, 196
rational, 139

has elementary integral, 139
Riemann-integrable, 269

is continuous almost everywhere, 273
successor, 145, 317

for ordinals, 307
Thomae, 270
zeta, 188

fundamental group, 248
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fundamental region, 225
fundamental theorem

of algebra, 70, 73, 104, 191
and integration, 140
depends on continuity, 195
gaps in early proofs, 194
Laplace’s attempted proof, 200
proof via d’Alembert’s lemma, 194

of arithmetic, 31
of calculus, 132, 133
of general arithmetic, 199

as algebraist’s FTA, 200
reduces FTA to odd-degree case, 200

of symmetric polynomials, 71
fusible numbers, 392

have order type ε0, 392

Galois, Evariste, 61, 74
theory, 74

Gauss, Carl Friedrich
1799 attempt to prove FTA, 195
1816 attempt to prove FTA, 191, 195,

200
circumference in hyperbolic geometry,

216
discovered lemniscatic sine function,

160
dissertation, 193
introduced Gaussian integers, 164
inverted elliptic integrals, 160
prime number conjecture, 189
proof that (nk) is an integer, 118
research on hyperbolic geometry,

219
sphere rotations as complex functions,

210, 223
Gaussian curvature, 212

constant, 213
Gaussian elimination, 81
Gaussian integers, 164

are algebraic integers, 164
associates, 170
division property, 167
Euclidean algorithm, 164
norm, 168

multiplicative property, 168
unique prime factorization, 164, 170
units, 170

Gaussian prime, 168
divisor property, 170
factorization

existence, 169
uniqueness, 170

gcd
ideal, 181
of Gaussian integers, 170
of polynomials, 156

gcd see greatest common divisor
Gentzen, Gerhard

on the role of ordinal numbers
in consistency proofs, 386

proved consistency of PA, 381,
386

by ε0-induction, 389
second theorem on ε0, 389
sought cut elimination in logic, 352

genus, 187, 228
and Euler characteristic, 240
by Riemann-Hurwitz formula, 262
of surface, 239
same as Abel’s number p, 243

geodesic, 215
curvature, 215
mapped to straight line, 217
triangle

geometric algebra, 109
geometric group theory, 250
geometric series, 32, 119

for area of parabolic segment,
126

for volume of tetrahedron, 34
in Euclid, 32

geometry
algebraic, 85, 92
arithmetization of, 263
axioms, 320
differential, 210
Euclidean

line of, 46
model, 92

foundations, 3
linear, 105, 109
n-dimensional Euclidean, 266
non-Euclidean, 39, 202
of complex numbers, 165, 223
of constant curvature, 215
projective, 39, 51, 55
Riemannian, 227, 266
spherical, 202, 266

Girard, Albert, 71
Gödel, Kurt

first incompleteness theorem, 384
letter to von Neumann, 378
model of ZF+AC+CH, 344
proved incompleteness by

arithmetization, 381, 383
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proved predicate logic complete, 347,
357

second incompleteness theorem, 385
golden ratio, 9

in regular pentagon, 10
is irrational, 10

golden rectangle, 9
Goodstein’s theorem, 390

not provable in ACA0, 401
not provable in PA, 392
provable in ATR0, 402

graph, 229
connected, 232
definition, 231
multigraph, 230
of regular polyhedron, 235
plane, 235

definition, 235
simple, 230
vertices and edges, 231

graph minor theorem, 402
not provable inΠ1

1-CA0, 402
graph theory, 229

and AC, 331
origin of, 229

Grassmann inner product, 321
gives Pythagorean length, 321

Grassmann, Hermann
based arithmetic on induction, 80, 186
influenced Peano and Dedekind, 317
introduced inner product, 106
introduced vector spaces, 82
Lehrbuch der Arithmetik, 80
proved field properties of Q, 80

by induction, 318
vector space geometry, 105

Graves, John, 78
octonions, 78, 89

great circle, 202
as “line,” 204

greatest common divisor, 29
ideal, 181
of Gaussian integers, 170
of polynomials, 156

Gregory, James
arc length formula, 134
knew fundamental theorem of calculus,

136
Grothendieck, Alexandre, 187

used transfinite induction, 340
group, 73, 74

alternating, 88
axioms, 76

cohomology, 261
cyclic, 75
finite permutation, 75
fundamental, 248

of the torus, 248
homology, 261
of motions, 248
of quadratic equation, 75
of quintic equation, 75
permutation, 75
quotient, 74
symmetric, 75
word problem for, 249

group theory, 61
geometric, 250

H see quaternion
Hadamard, Jacques, 190
halting problem, 370
Hamel, Georg, 187, 339

basis, 339
Hamilton, William Rowan, 78

definition of complex numbers, 78
highlighted associativity, 79
quaternions, 78, 89

harmonic series, 113
Harriot, Thomas, 68, 111

length of equiangular spiral, 97, 112
on area of spherical triangle, 204

Hausdorff, Felix
defined topological space, 289
definition of continuity, 196, 290
nonmeasurable sets, 329, 336

Heine, Eduard, 279
Heine-Borel theorem, 280
Heron, 50, 123
Hilbert, David, 39

and consistency of R, 49
congruence axioms, 44
derived R from geometric axioms, 227,

287, 316
geometry axioms, 39

are categorical, 320
incidence axioms, 40

imply field axioms, 89
no complete hyperbolic surface in R

3,
216

on mathematical existence, 379
on projective plane axioms, 59
order axioms, 41
posed the Entscheidungsproblem, 347
problems, 323
program, 226, 323, 385
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Hilbert, David (continued)
put continuum problem first, 308, 346
second problem, 323
sought axioms for physics, 144

Hobbes, Thomas, 110
denounced algebraic geometry, 101
in love with geometry, 25
Leviathan, 293

homeomorphism, 234, 290
invariance under, 241
local, 246

homological algebra, 261
homology

groups, 261
theory, 261

homotopic curves, 247
homotopy type theory, 262
horizon, 54

as line at infinity, 55
HP

2 see quaternion projective plane
Huygens, Christiaan

on tractrix and pseudosphere, 210
solved catenary problem, 211

hyperbola, 93
arc length, 140
equation, 96
parametric equations, 154
points at infinity, 100

hyperbolic
geometry, 216
plane, 204, 223, 266

conformal models, 221
hyperboloid model, 322
model based on pseudosphere, 220
smoothly embeds in R

5, 227
trigonometry, 216

discovered by Minding, 216
hyperboloid, 321

model
and conformal model, 322
of hyperbolic plane, 322

icosahedron, 86
symmetry group, 86

isomorphic to A5, 88
ideal, 178, 179

as set of multiples, 179
definition, 180
maximal, 184, 329

by transfinite induction, 187
by Zorn’s lemma, 341

nonprincipal, 180
in Z[

√

−5], 180

prime, 183
definition, 184

principal, 180
product, 181

identity element, 76
impredicative definitions, 402
inaccessibility, 310

definition, 310
inaccessible set, 310

existence not provable, 311
needed for Solovay model, 344

incidence, 40
of circles, 45

incidence axioms, 39, 40
give algebraic structure, 40
in Euclid, 40
in Hilbert, 40

incompleteness, 381
for computably enumerable sets,

383
of Principia Mathematica, 381

induction, 145
as infinite descent, 30, 186
definition by, 317, 338
from well-ordering, 187, 305
history of, 186
in Euclid, 29, 146, 186
in graph theory, 233
in Grassmann, 80
in set theory, 324
Peano axiom, 186, 317
transfinite, 187, 326, 386
via base step, induction step, 30,

317
inequality

of length, 45
triangle, 50

infinite
decimal, 110
geometric series, 113
ordinal, 307
polynomial, 110
product, 120

for π, 121
for sine, 121

series, 113
for π, 115
solution of quintic equation, 193

set
as mathematical object, 198
Dedekind definition, 294
with no countable subset, 331

sum, 113
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infinite descent, 30
characterization of well-ordering, 343
in Fermat, 154

infinitesimals, 13, 110, 130
and adequality, 125
and calculus, 13, 46
as ghosts of departed quantities, 130
consistent with PA, 380
contradict Archimedean axiom, 45
criticized by Hobbes and Berkeley, 110
in first calculus textbook, 126

infinity, 10
actual, 10, 291, 293
axiom of, 294
has no ceiling, 300
history of, 292
horizon line at, 293
in art, 292
potential, 10, 291, 292

infinity axiom, 310
inner product, 93

Grassmann, 321
introduced by Grassmann, 106
Minkowski, 109
replaces Pythagorean theorem, 93, 107
space, 321

integers, 80
algebraic, 81, 178

definition, 178
from natural numbers, 284
of algebraic number field, 178
of Q(i), 178
of Q(

√

−2), 178
integral, 132

concept, 268
defining nonalgebraic function, 139
definite, 132, 269
elliptic, 140
Lebesgue, 271
lemniscatic, 141
of algebraic function, 138
of rational function, 139
Riemann, 268

definition, 269
integral domain, 185

if finite, is a field, 185
integration and FTA, 140
intermediate value theorem, 191, 196

proof using completeness of R, 199
proves R and R

2 not homeomorphic,
315

intuitionism, 394
invariance of dimension

for vector space, 83
under homeomorphisms, 303

proved by Brouwer, 303
inverse element, 76
inverse sine power series, 137
inverse tangent

is elementary function, 139
power series, 115, 138

inversion of power series, 137
irrational numbers, 1, 6

include golden ratio, 10
include

√

2, 7
irreducible, 157
isometry, 109, 215

conditions for, 224
of the disk, 221

isomorphic
fields, 46, 49
groups, 86, 88
orderings, 305
well-orderings, 308

isosceles triangle theorem, 20
Pappus proof, 20

Jacobi, Carl Gustav Jacob, 160
Fundamenta nova, 188
geometry of elliptic functions, 163

Jordan curve theorem, 237
polygonal, 237

Klein, Felix, 248
images of constant curvature, 218
viewed hyperbolic geometry

projectively, 221
knot, 250

3-colorability, 256
atlas, 261
determinant, 260
diagram, 255
invariants, 256
p-colorability, 256

definition, 258
theory, 250
trefoil, 252

Koch curve, 274
Kolmogorov, Andrey, 144
Kőnig, Dénes

book on graph theory, 231
infinity lemma, 313

provable in ACA0, 398
Königsberg bridges problem, 229
Kreisel, Georg, 380

computable binary tree, 400
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Kronecker, Leopold
proved algebraist’s FTA, 199
rejected existence without construction,

199
rejected FTA, 191
used vector spaces, 84

Krull, Wolfgang, 187
Kummer, Ernst Eduard, 178

sought “ideal numbers,” 179

Lagrange, Joseph-Louis
inversion, 193
used algebraic numbers, 164

Lambert, Johann Heinrich
series solution of equation, 193
sphere of imaginary radius, 321

Laplace, Pierre-Simon, 200
law of excluded middle, 394
least action, 50
least upper bound

and nested intervals, 264
of set of ordinals, 308

least upper bound property, 191
of real numbers, 197
proof by Dedekind cuts, 198

Lebesgue integral, 271
Lebesgue measure, 271

definition, 272
of countable set, 272
translation invariance, 335

Lebesgue, Henri
integral, 271
measure, 271

definition, 272
Legendre, Adrien-Marie, 189, 203
Leibniz, Gottfried Wilhelm, 13

computational logic, 347
concept of tangent, 134
discovered determinants, 82
related integration to Diophantus, 142,

153
solved catenary problem, 211
thought in function terms, 139
used infinitesimals, 110, 130

lemniscate, 141, 160
arc length, 141, 160

lemniscatic sine, 160
Leonardo da Vinci, 111
Levi ben Gershon, 186
l’Hopital, Marquis de, 125
lifting a curve, 246
limit, 110

argument, 116

of function, 268
of sequence of numbers, 264
ordinal, 303, 307

line
at infinity

for central projection, 217
of hyperbolic plane, 287
of projective plane, 55

completeness of, 46
complex projective, 104
defined by linear equation, 49
of Euclidean geometry, 46
projective, 57
real number, 46
segment equality, 44
separates the plane, 42

linear algebra, 62, 81
matches Euclidean geometry, 92, 105

linear equations, 81
linear independence, 83
linear ordering, 41, 387
little Desargues theorem, 91
Llull, Ramon, 347
Lobachevsky, Nikolai, 202

published hyperbolic geometry, 219
logic, 347

first order, 320
predicate, 347
propositional, 347

MacLane, Saunders, 261
Mādhava, 115

series for π, 115, 130
rediscovered by calculus, 138

Mandelbrot set, 288
Markoff, Andrey, 371
measure theory, 271

and AC, 334
mechanics, 143
Mercator, Nicolas, 136, 142
Mersenne, Marin, 34
method of exhaustion, 12

in Archimedes, 13
in Euclid, 13
used to justify calculus, 110

Minding, Ferdinand
hyperbolic trigonometry, 216
negative curvature surfaces, 213

Minkowski inner product, 321
Minkowski space, 321

contains sphere of imaginary radius, 321
Minkowski, Hermann, 321
Möbius band, 244
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Möbius, August Ferdinand, 245
model, 47

finite, 58, 226
guarantees consistency, 48
minimal

of ACA0, 397
of Euclidean plane, 227
of RCA0, 396

of abstract graph, 235
of axioms, 226
of Euclidean geometry, 92
of Euclidean plane, 48, 95, 265
of hyperbolic geometry, 219
of hyperbolic plane

based on pseudosphere, 220
conformal, 222
conformal disk, 222
half plane, 222
hemisphere, 222
projective, 222

of non-Euclidean geometry, 202
of projective geometry, 57, 202
of projective plane axioms, 58
of real projective plane, 213, 217
of the line, 265
of ZF

plus AC and CH, 344
plus AC but CH false, 345, 346
plus AC false, 331
plus DC and all sets measurable, 344

planar
of spherical geometry, 207

uniqueness
for Euclidean plane, 49

modes of vibration, 113
and Fourier series, 143
as sums of sine waves, 268
picture, 114

modus ponens, 352, 361
monotonic convergence theorem, 397

not constructive, 397
not provable in RCA0, 397
provable in ACA0, 398

Moufang, Ruth, 90
on projective planes, 91

multigraph, 230
multiplication, 27

nonassociative, 79, 89
noncommutative, 61, 89
of n-tuples, 82
of octonions, 79
of quaternions, 79

multiplicative property of Gaussian norm,
168

multiplicity, 104

Nash, John, 227
embedding theorem, 227

natural logarithm
defined by integral, 136
inverted by Newton, 137
is elementary function, 139
power series, 136

natural numbers, 12, 145
neighborhood, 289
nested interval property, 264

and Cauchy criterion, 265
Newton, Isaac

anticipated Bézout’s theorem, 103
based calculus on power series, 136
binomial series, 117, 119
calculus of power series, 110
ideas on continuous motion, 267
introduced tractrix, 210
inversion of power series, 137
knew fundamental theorem of calculus,

136
on chord and tangent constructions,

163
on cubic curves, 101
on spirals, 97
on symmetric functions, 71
physical intuition, 123
power series

for exponential, 137
for inverse sine, 137
for sine, 137
likened to infinite decimals,

142
sine formula, 116
Universal Arithmetick, 68

Noether, Emmy, 81, 261
non-Euclidean geometry, 202
nonmeasurable set, 329
norm

in Z[
√

−2], 172
links algebraic integers to ordinary

integers, 169
of Gaussian integers, 168

number line, 45
number theory, 145

algebraic, 84, 171
analytic, 188
elementary, 146
in Euclid, 29
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numbers
algebraic, 61, 81, 164

definition, 175
form countable set, 295

cardinal, 312
complex, 78

Hamilton definition, 78
constructible, 227, 323
fusible, 392
hypercomplex, 78
integral, 80
irrational, 1, 6
natural, 12, 145
ordinal, 303
perfect, 33
rational, 13
real, 13, 46

form uncountable set, 291

O see octonion
octahedron, 86

symmetry group, 86
isomorphic to S4, 88

octonion, 78
multiplication

is nonassociative, 79, 89
is noncommutative, 78, 79, 89

projective plane, 90
satisfies little Desargues, 91

projective space
does not exist, 90

OP
2 see octonion projective plane

open ball, 289
open set, 288, 401

axioms, 289
order, 41

axioms, 41
ordered field

axioms, 41
complete Archimedean, 46
rationals of, 44

ordered pair, 48, 324
ordering

linear, 304
of sets by rank, 308
partial, 304
total, 304
well-ordering, 304

ordinal numbers, 303
countable, 308
exponential, 388
finite, 307
infinite, 307

introduced by Cantor, 303
limit of, 307
product, 388
realized by sets, 305
sum, 388
transfinite, 386
von Neumann definition, 306,

308
well-ordered by ∈, 308

Oresme, Nicole, 114
and harmonic series, 114

orthogonality, 107

P and NP, 377
PA see Peano arithmetic 317
Pappus, 20

configuration, 56
theorem, 55, 88

parabola, 93
equation, 94, 96
point at infinity, 100
tangent, 98

parallel axiom, 18, 203
and non-Euclidean geometry, 39
equivalents, 203
variants, 22

parallelogram, 24
parametric equations

for circle, 153
using circular functions, 158

for curve y2 = 1− x4, 161
for curve y2 = p(x), 159
for curve y2 = x3, 251
for hyperbola, 154
for quadratic curve, 153, 154
found by calculus, 159
rational, 154

Pascal’s triangle, 117
Pascal, Blaise, 186

induction, 186
Pasch, Moritz, 41
path

closed, 231
definition, 231
polygonal, 235
simple, 231

path-connected, 235, 315
Peano arithmetic, 317

axioms, 317
can arithmetize syntax, 384
same as ZF−Infinity, 326

Peano axioms
are categorical, 319
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first order, 320
admit “alien intruders,” 327

in reverse mathematics, 395
Peano, Giuseppe

axioms for arithmetic, 316
induction axiom, 186
space-filling curve, 287
symbolism adopted by Russell, 355
vector space axioms, 83, 316

are categorical, 320
perfect number, 33
perfect set, 401
perfect set theorem, 401

provable in ATR0, 401
periodicity, 160

fundamental region, 225
of modular function, 225

permutation, 75
even, 88
group, 75

in geometry, 85
odd, 88
product, 75

perspective drawing, 51
Alberti method, 52
horizon, 54
without measurement, 53

physical intuition, 123
π

infinite series, 115
Wallis product, 121

Π1
1-CA0, 401

plane
Euclidean, 47
Fano, 59
hyperbolic, 204
projective, 57

real, 57
Plato, 12, 65
Playfair, John, 24
Poincaré, Henri

applied hyperbolic geometry
to group theory, 226
to linear fractional functions, 226
to topology, 226, 248

founded algebraic topology, 261
hyperboloid model, 322
introduced fundamental group, 248, 261
on arithmetization, 263
on topological reasoning, 165

points at infinity, 58, 100
of hyperbola, 100
of parabola, 100

of parallels, 100
used by Desargues, 100

Polthier, Konrad, 322
polyhedron

face, 235
formula, 234
regular, 86

graph of, 235
polynomial, 69

division property, 164
function, 196
irreducible, 157
minimal, 175
real

has conjugate roots, 192
ring, 175
unique prime factorization, 157

Post, Emil
aware of incompleteness, 381
discovered algorithmic unsolvability,

365
discovered incompleteness, 365
formalized concept of algorithm, 361
generalized idea of rule of inference, 361
mechanized Principia Mathematica,

347, 361
normal system, 362
production rules, 362
proved completeness and consistency

for propositional logic, 352, 361
recursive sets, 364
recursively enumerable sets, 363
unsolved word problem for semigroups,

371
power series, 110

behave like polynomials, 120
definition, 119
for binomial, 119
for circular functions, 115
for cosine, 115
for exponential function, 137
for inverse sine, 137
for inverse tangent, 115, 138
for natural logarithm, 136
for sine, 115, 120, 137
fundamental for Newton, 136

power set, 299, 325
is larger than the set, 299
of N as binary tree, 301

power set axiom, 310
predicate logic, 347, 355

axioms, 357
completeness, 357, 381
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predicate logic (continued)
completeness proof, 359

is nonconstructive, 360
consistency proof, 360
constants, 357
falsification rules, 357
language, 355
rules of inference, 357

predicates, 356
prime divisor property, 31
prime factorization

existence, 146
uniqueness, 146

prime number theorem, 189
primes, 30

Gaussian, 168
ideal, 183
infinitely many, 146

Euclid proof, 30
Euler proof, 189

Mersenne, 34
of Z[

√

−2], 173
primitive recursive arithmetic, 389
Principia Mathematica, 347
prism, 35
probability theory, 144, 328

Kolmogorov axioms, 144
product

Cartesian, 313
of ideals, 181
of permutations, 75
of principal curvatures, 212

projective geometry, 39, 51, 55,
202

finite model, 58
model, 202
real model, 58

projective line, 57
complex, 104, 208, 241

projective plane
axioms, 57

additional, 58
and algebra, 88

finite, 58
line at infinity, 55
octonion, 90
quaternion, 89
real, 55

is one sided, 244
models axioms, 58

projective space, 56
quaternion, 90
satisfies Desargues, 90

proof
by algebra, 68
by induction, 317
cut-free, 352
expanded by algebra, 92
has tree shape, 352
in Diophantus, 153
tree, 353
with computer assistance, 403

proposition, 348
propositional logic, 347, 348

axioms, 351, 355
completeness, 352
consistency, 352
consistency proof, 355
falsification rules, 353
rules of inference, 355
satisfiability, 350
validity, 350

pseudosphere, 210
has constant curvature, 213
used to model hyperbolic plane, 220

Ptolemy
Almagest, 167
Planisphere, 208

Pythagorean theorem, 1, 25
and arc length formula, 134
and area concept, 27
depends on parallel axiom, 203
impressed Hobbes, 25
motivates definition of distance, 48
origins, 3
proof, 26
replaced by inner product, 93,

107
visualized, 2

Pythagorean triples, 1, 4, 150
in Euclid, 150
in Plimpton 322, 4–6
in proof by Fermat, 155
primitive, 150
via rational points on circle, 153

Q see rational numbers
Q(i), 178
Q(
√

−2), 178
Q[x], 175
quadratic curve

curve
is conic section, 96
parameterization, 153, 154

equation, 61, 62
quantifier-free property, 395
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quantifiers, 356
defining continuity, 356
defining uniform continuity, 356

quaternion, 78
definition, 79
multiplication, 79

is noncommutative, 78, 89
projective plane, 89

satisfies Desargues, 90
projective space, 90

quintic equation, 69, 75
infinite series solution, 193
not solvable by radicals, 76

quotient
by maximal ideal, 185
by prime ideal, 185
cyclic, 75
in division with remainder, 164
of groups, 74
of ring by ideal, 185

Qurra, Thābit ibn, 203

R see real numbers
radical, 74
rank ordering of sets, 308
rate of change, 122

as quotient of infinitesimals, 130
of cosine, 123
of sine, 123

rational functions, 139
analogous to rational numbers, 153
integration of, 139
parameterization by, 154

impossible for y2 = 1− x4, 156, 157
rational numbers, 13

from integers, 284
in ordered field, 44

rational points
are countable, 272
have measure zero, 272
on circle, 151
on elliptic curves, 162

RCA0, 395
minimal model, 396

real numbers, 13
algebraic characterization, 46, 287
and continuity, 195
as decimal expansions, 285
axioms for, 47
completeness, 198, 264
Dedekind definition, 197
equinumerous with

branches of binary tree, 301

closed interval, 301
open interval, 300
power set of N, 301
unit square, 301

form uncountable set, 212
proof, 297

foundations of, 322
from rational numbers, 285
least upper bound property, 197
model the line, 265

real projective plane, 55, 57, 89
curves in, 100
has constant curvature, 213
includes point at infinity, 100
is one-sided, 244
models projective plane axioms, 57
sphere model, 213

rectangle as product of sides, 27
recursive see computable
recursive comprehension, 396
reflection

of sphere, 223
shortest path property, 50

regular polyhedra, 86
Reidemeister, Kurt, 250

knot invariants, 256
moves, 253, 254

and p-colorability, 256, 258
I, II, and III, 255

relativity, 109, 144
remainder, 164
replacement axiom, 310
reverse mathematics, 394

base system, 394
big five, 400
highlights role of trees, 399
seeks right axioms, 395

rhumb lines, 204
Riemann hypothesis, 190
Riemann-integrability, 282
Riemann surface, 228

as covering of sphere, 241
Riemann, Bernhard

argument for invariance of genus, 239
concept of geometry, 227
continuous nondifferentiable function,

274
described space curvature, 220
found Abel’s p in topology, 244
genus, 187
integral, 268

definition, 269
of discontinuous function, 270
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Riemann, Bernhard (continued)
mapping theorem, 143
zeta function, 189

Riemann-Hurwitz formula, 262
Riemannian manifold, 221

smoothly embeds in some R
n, 227

ring, 61, 77
axioms, 80
finite, 148
ideal of, 178
of congruence classes, 149
polynomial, 175

Rosenbloom, Paul C., 362
RP

2 see real projective plane
rules of inference, 347

for propositional logic, 351
from falsification rules, 352

Russell, Bertrand
read Frege and Peano, 355

S
2 see sphere

S2, 75
S5, 75
Sn see symmetric group
Saccheri, Girolamo, 202

tried to prove parallel axiom, 203
SAS, 20, 44

in Byrne’s Elements, 38
satisfiability, 350

in propositional logic, 350
scalar multiple, 83
Schwarz, Hermann Amandus, 224
second order, 319
Seki, Takakazu, 82
self-reference, 384
self-similarity, 275
semigroup, 372

word problem, 371
sequence

of continuous functions, 276
with discontinuous limit, 276

of numbers, 264
convergence of, 264
limit of, 264

uniformly convergent, 278
series

binomial, 117
geometric, 32
harmonic, 113
infinite, 113
of continuous functions, 277

with discontinuous sum,
277

power, 110
uniformly convergent, 278

set
actually infinite, 291
closed, 288, 401
computable, 364
computably enumerable, 363
constructible, 344
countable, 294, 295
embodiment of, 293
existence axioms, 393
hereditarily finite, 309
inaccessible, 310
infinite, 212

Dedekind definition, 294
Mandelbrot, 288
nonmeasurable, 335
of real numbers, 286
open, 288, 401

axioms, 289
perfect, 401
potentially infinite, 291
power, 299
rank of, 308
representing ordinal number,

305
uncountable, 291, 297

set theory, 261, 291
and AC, 337
as arithmetic plus infinity, 327
axioms, 316, 324
Zermelo-Fraenkel, 324

Shelah, Saharon, 344
simple

graph, 230
path, 231

sine, 115
addition formula, 116, 122
as function of arc length, 120
infinite product, 120, 121
limit property, 122
power series, 115, 120

by Newton, 137
rate of change, 122, 123

singularities, 102, 250
described by knots, 250

skew field, 91
Skolem, Thoralf, 357
Solovay, Robert, 344
solution

by Cardano formula, 67
by radicals, 74
of cubic equation, 65
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space
Euclidean, 106
inner product, 321
Minkowski, 321
projective, 56
topological, 261, 281, 289

space-filling curve, 263
span of vectors, 83
spanning tree

by Zorn’s lemma, 341
existence, 233

sphere
definition, 266
of imaginary radius, 321
volume, 126

spherical geometry, 202, 204
planar model, 207

spherical triangle, 204
angle sum, 204
area, 204

and angle sum, 205
spherical trigonometry, 216
stereographic projection, 208
Stevin, Simon, 68

Euclidean algorithm for polynomials,
156

infinite decimals, 143
strong Bolzano-Weierstrass theorem

depends on AC, 332
successor function, 145

for ordinals, 307
in PA, 317

sum of vectors, 83
surface

as polygon
by cutting, 245
with identified edges, 245

complete, 219
covering, 246
incomplete, 216
nonorientable, 178

classification, 245
of constant curvature, 155

mapped to plane, 157
one sided, 244
orientable, 244

classified by genus, 245
picture, 245

Riemann, 228
topology, 244
two sided, 244

surface of constant curvature, 213
mapped to plane, 217

symmetric function, 69
elementary, 70, 71

symmetric group, 75
symmetric polynomials, 70

fundamental theorem, 71
symmetry, 61, 74, 86

breaking, 74
group

of cube, 86
of dodecahedron, 86
of icosahedron, 86
of octahedron, 86
of tetrahedron, 86

tangent, 98
detected algebraically, 98
in calculus, 123
to algebraic curve, 98
to circle, 123
to cubic curve, 162, 163
to ellipse, 123
to parabola, 98, 124

Tarski, Alfred, 329
on consistency of geometry, 323

Tartaglia, 66
tetrahedron, 86

symmetry group, 86
isomorphic to A4, 88

volume, 29, 33, 113, 126
by geometric series, 34

Thales, theorem 105
theorem

Abel’s, 243
altitude concurrence, 107
Bézout’s, 103
binomial, 117
Cantor-Bendixson, 401
Cantor-Bernstein, 314
Dedekind dimension, 85
Desargues, 55
extreme value, 191, 201, 282
factor, 70
Fermat’s last, 154
Fermat’s little, 149
fundamental

of algebra, 70, 73, 191
of arithmetic, 31
of calculus, 132, 133
of general arithmetic, 199
of symmetric polynomials, 71

Gödel’s first incompleteness, 384
Gödel’s second incompleteness, 385
Goodstein’s, 390
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theorem (continued)
graph minor, 402
Heine-Borel, 280
intermediate value, 191, 196
isosceles triangle, 20
Jordan curve, 237
little Desargues, 91
monotonic convergence, 397
of Thales, 106
Pappus, 55
perfect set, 401
prime number, 189
proved by algebra, 68
Pythagorean, 1
strong Bolzano-Weierstrass, 332
well-ordering, 329

theory of equations, 73
theory of proportions, 1, 12
Thomae function, 270

continuous at irrational points, 273
is Riemann integrable, 270

Thue, Axel, 371
Tietze, Heinrich, 250

proved trefoil is knotted, 254
tiling

as diagram of fundamental group, 249
of conformal disk, 224
of half plane, 225
of hyperbolic plane, 224
of projective plane, 218
of sphere, 205, 207

topological invariant, 228, 241
topological space, 261

Hausdorff definition, 289
topology, 228, 231

advanced by Brouwer, 394
algebraic, 261
began as discrete geometry, 228
of surfaces, 244
one-dimensional, 229
point set, 261, 288
really about continuity, 241

Torricelli, Evangelista, 97
torus, 161, 243

covered by plane, 246
fundamental group, 248
has Euler characteristic 0, 240
has genus 1, 240

tractrix, 210
is involute of catenary, 211

transfinite induction, 326, 386
in algebra, 339
up to ε0, 381

transfinite ordinal, 386

translation invariance, 335
tree, 231

binary, 301, 380
definition, 232
end vertices of, 232
finite

as plane graph, 236
shape of proof, 352
spanning

existence, 233
vertex and edge numbers, 232

trefoil knot, 252
3-colored, 257
on torus, 252
picture, 253

triangle, 24
angle sum, 25
area, 28
geodesic, 216
inequality, 50
isosceles, 20
spherical, 204

trigonometry, 48
hyperbolic, 216
spherical, 216

truth tables, 348
truth value, 348
Turing, Alan

defined computability, 367
formalized concept of algorithm, 348
machine, 365

computing successor function, 368
description, 367
enumeration, 369
halting configuration, 368
reading head, 366
standard description, 369
universal, 370, 375

unsolved Entscheidungsproblem, 348,
365

uncountable set, 291, 297
uniform continuity, 269, 279

and Riemann integrability, 282
definition, 279

quantifiers in, 356
on closed interval, 281

uniformity, 276, 277
of convergence

of sequence, 278
of series, 278

unique prime factorization, 31, 32
failure, 178
failure in Z[

√

−5], 179
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for Gaussian integers, 164
for polynomials, 157
in Z[

√

−2], 173
unit, 170
unit square cardinality, 301
unknot, 256
unprovability

of AC in ZF, 393
of consistency, 381
of parallel axiom in neutral geometry,

393
of second-order sentences, 401

unsolvability, 363, 370
of a membership problem, 365, 382
of Entscheidungsproblem, 376
of halting problem, 370
of word problem, 375
to unprovability, 382

valency
definition, 232
of vertex, 231

validity, 350
in predicate logic, 357
in propositional logic, 350

van Roomen, Adrien, 68
vector

scalar multiple, 83
space, 82

approach to geometry, 105
axioms, 83
basis, 83, 187, 329, 340
dimension, 83
over a field, 84
over Q, 177
real, 82

sum, 83
vertex

of graph, 230, 231
valency, 231

vibrating string, 267
Viète, Francois, 61, 68

found rational points on the circle,
153

on roots and coefficients, 69
solved 45th-degree equation, 68

Vitali, Giuseppe, 329
nonmeasurable set, 335

Voevodsky, Vladimir, 403
volume

of sphere, 126
by comparing with cylinder, 127

of tetrahedron, 33, 34, 126

von Koch, Helge, 274
snowflake curve, 274

von Neumann, John
definition of ordinal numbers, 306
letter to Gödel, 385

Wallis, John, 92, 203
found rational points on curves, 153
product for π, 121

weak Kőnig lemma, 358, 399
equivalents in RCA0, 399
in reverse mathematics, 395
not provable in RCA0, 400
ubiquity, 380

Weierstrass, Karl, 191
and foundations of calculus, 201
continuous nondifferentiable function,

274
proved extreme value theorem, 201, 284
proved intermediate value theorem, 284

well-foundedness, 304
well-ordering, 187, 304

has no infinite descent, 343
of hyperbolic 3-manifolds, 306
of ordinals, 326
theorem, 329, 337
underlies induction, 305

Wiles, Andrew, 188
Wirtinger, Wilhelm, 250
WKL0, 400

lies between RCA0 and ACA0, 400
word problem

for groups, 249
geometric equivalent, 249

for semigroups, 371
and the halting problem, 372
reduced to halting problem, 375

for specific semigroup, 375, 376

Z see integers
Z[x], 175
Zeno of Elea, 10

paradoxes, 10, 32
Zermelo, Ernst, 316
Zermelo-Fraenkel axioms, 324
ZF see Zermelo-Fraenkel axioms
Z[i] see Gaussian integers
Zorn’s lemma, 339, 340
Z[
√

−2], 173
division property, 173
primes of, 173
unique prime factorization, 173

Z[
√

−5], 179




