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Chapter 1

Introduction

“Reflections on life and death of those who in Breslau lived and died” is the title
of a manuscript that Protestant pastor Caspar Neumann sent to mathematician
Gottfried Wilhelm Leibniz in the late seventeenth century. Neumann had spent
years keeping track of births and deaths in his Polish hometown, now called
Wrocław. Unlike sprawling cities like London and Paris, Breslau had a rather
small and stable population with limited migration in and out. The parishes in
town took due record of the newly born and deceased.

Neumann’s goal was to find patterns in the occurrence of births and deaths.
He thereby sought to dispel a persisting superstition that ascribed critical
importance to certain climacteric years of age. Some believed it was at age 63,
others that it was either at the 49th or the 81st year, that particularly critical
events threatened to end the journey of life. Neumann recognized that his data
defied the existence of such climacteric years.

Leibniz must have informed the Royal Society of Neumann’s work. In
turn, the Society invited Neumann in 1691 to provide the Society with the
data he had collected. It was through the Royal Society that British astronomer
Edmund Halley became aware of Neumann’s work. A friend of Isaac Newton’s,
Halley had spent years predicting the trajectories of celestial bodies, but not
those of human lives.

After a few weeks of processing the raw data through smoothing and
interpolation, it was in the spring of 1693 that Halley arrived at what became
known as Halley’s life table.

At the outset, Halley’s table displayed, for each year of age, the number of
people of that age alive in Breslau at the time. Halley estimated that a total of
approximately 34,000 people were alive, of which approximately 1,000 were
between the ages zero and one, 855 were between ages one and two, and so
forth.

Halley saw multiple applications of his table. One of them was to estimate
the proportion of men in a population that could bear arms. To estimate this
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2 Chapter 1

Figure 1.1: Halley’s life table

proportion he computed the number of people between age 18 and 56, and
divided by 2. The result suggested that 26% of the population were men neither
too old nor too young to go to war.

At the same time, King William III of England needed to raise money for
his country’s continued involvement in the Nine Years War, raging from 1688 to
1697. In 1692, William turned to a financial innovation imported from Holland,
the public sale of life annuities. A life annuity is a financial product that pays
out a predetermined annual amount of money while the purchaser of the
annuity is alive. The king had offered annuities at fourteen times the annual
payout, a price too low for the young and too high for the old.

Halley recognized that his table could be used to estimate the odds that
a person of a certain age would die within the next year. Based on this
observation, he described a formula for pricing an annuity that, expressed in
modern language, computes the sum of expected discounted payouts over the
course of a person’s life starting from their current age.

Ambitions of the twentieth century

Halley had stumbled upon the fact that prediction requires no physics. Un-
known outcomes, be they future or unobserved, often follow patterns found in
past observations. This empirical law would become the basis of consequential
decision making for centuries to come.

On the heels of Halley and his contemporaries, the eighteenth century saw
the steady growth of the life insurance industry. The industrial revolution fueled
other forms of insurance sold to a population seeking safety in tumultuous

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



Introduction 3

times. Corporations and governments developed risk models of increasing
complexity with varying degrees of rigor. Actuarial science and financial risk
assessment became major fields of study built on the empirical law.

Modern statistics and decision theory emerged in the late nineteenth and
early twentieth century. Statisticians recognized that the scope of the empirical
law extended far beyond insurance pricing, that it could be a method for both
scientific discovery and decision making writ large.

Emboldened by advances in probability theory, statisticians modeled popu-
lations as probability distributions. Attention turned to what a scientist could
say about a population by looking at a random draw from its probability distri-
bution. From this perspective, it made sense to study how to decide between
one of two plausible probability models for a population in light of available
data. The resulting concepts, such as true positive and false positive, as well
as the resulting technical repertoire, are in broad use today as the basis of
hypothesis testing and binary classification.

As statistics flourished, two other developments around the middle of the
twentieth century turned out to be transformational. The works of Turing,
Gödel, and von Neumann, alongside dramatic improvements in hardware,
marked the beginning of the computing revolution. Computer science emerged
as a scientific discipline. General-purpose programmable computers promised
a new era of automation with untold possibilities.

World War II spending fueled massive research and development programs
on radar, electronics, and servomechanisms. Established in 1940, the United
States National Defense Research Committee included a division devoted to
control systems. The division developed a broad range of control systems,
including gun directors, target predictors, and radar-controlled devices. The
agency also funded theoretical work by mathematician Norbert Wiener, in-
cluding plans for an ambitious anti-aircraft missile system that used statistical
methods for predicting the motion of enemy aircraft.

In 1948, Wiener published his influential book Cybernetics around the same
time as Shannon published A Mathematical Theory of Communication. Both
proposed theories of information and communication, but their goals were
different. Wiener’s ambition was to create a new science, called cybernetics,
that unified communications and control in one conceptual framework. Wiener
believed that there was a close analogy between the human nervous system and
digital computers. He argued that the principles of control, communication,
and feedback could be a way not only to create mind-like machines, but also to
understand the interaction of machines and humans. Wiener even went so far
as to posit that the dynamics of entire social systems and civilizations could be
understood and steered through the organizing principles of cybernetics.

The zeitgeist that animated cybernetics also drove ambitions to create artifi-
cial neural networks, capable of carrying out basic cognitive tasks. Cognitive
concepts such as learning and intelligence had entered research conversations
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4 Chapter 1

about computing machines and with them came the quest for machines that
learn from experience.

The 1940s were a decade of active research on artificial neural networks,
often called connectionism. A 1943 paper by McCulloch and Pitts formalized
artificial neurons and provided theoretical results about the universality of
artificial neural networks as computing devices. A 1949 book by Donald Hebb
pursued the central idea that neural networks might learn by constructing
internal representations of concepts.

Pattern classification

Around the mid 1950s, it seemed that progress on connectionism had started
to slow and would have perhaps tapered off had psychologist Frank Rosenblatt
not made a striking discovery.

Rosenblatt had devised a machine for image classification. Equipped with
400 photosensors, the machine could read an image composed of 20 by 20 pixels
and sort it into one of two possible classes. Mathematically, the perceptron
computes a linear function of its input pixels. If the value of the linear function
applied to the input image is positive, the perceptron decides that its input
belongs to class 1, otherwise class −1. What made the perceptron so successful
was the way it could learn from examples. Whenever it misclassified an image,
it would adjust the coefficients of its linear function via a local correction.

Rosenblatt observed in experiments what would soon be a theorem. If a
sequence of images could at all be perfectly classified by a linear function,
the perceptron would only make so many mistakes on the sequence before it
correctly classified all images it encountered.

Rosenblatt developed the perceptron in 1957 and continued to publish on
the topic in the years that followed. The perceptron project was funded by
the US Office of Naval Research, which jointly announced the project with
Rosenblatt at a press conference in 1958 that led the New York Times to exclaim:

The Navy revealed the embryo of an electronic computer that it
expects will be able to walk, talk, see, write, reproduce itself and be
conscious of its existence.1

This development sparked significant interest in perceptrons and reinvig-
orated neural network research throughout the 1960s. By all accounts, the
research in the decade that followed Rosenblatt’s work had essentially all the
ingredients of what is now called machine learning, specifically, supervised
learning.

Practitioners experimented with a range of different features and model
architectures, moving from linear functions to perceptrons with multiple layers,
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Introduction 5

the equivalent of today’s deep neural networks. A range of variations of the
optimization method and different ways of propagating errors came and went.

Theory followed closely behind. Not long after the invention came a
theorem, called mistake bound, that gave an upper bound on the number of
mistakes the perceptron would make in the worst case on any sequence of
labeled data points that can be fit perfectly with a linear separator.

Today, we recognize the perceptron as an instance of the stochastic gradient
method applied to a suitable objective function. The stochastic gradient method
remains the optimization workhorse of modern machine learning applications.

Shortly after the well-known mistake bound came a lesser known theorem.
The result showed that when the perceptron succeeded in fitting training data,
it would also succeed in classifying unseen examples correctly provided that
these were drawn from the same distribution as the training data. We call
this generalization: finding rules consistent with available data that apply to
instances we have yet to encounter.

By the late 1960s, these ideas from perceptrons had solidified into a broader
subject called pattern recognition that encompassed most of the concepts we
consider core to machine learning today. In 1939, Wald formalized the basic
problem of classification as one of optimal decision making when the data
is generated by a known probabilistic model. Researchers soon realized that
pattern classification could be achieved using data alone to guide prediction
methods such as perceptrons, nearest neighbor classifiers, and density esti-
mators. The connections with mathematical optimization including gradient
descent and linear programming also took shape during the 1960s.

Pattern classification—today more popularly known as supervised learning—
built on statistical tradition in how it formalized the idea of generalization.
We assume observations come from a fixed data generating process, such as
samples drawn from a fixed distribution. In a first optimization step, called
training, we fit a model to a set of data points labeled by class membership. In
a second step, called testing, we judge the model by how well it performs on
newly generated data from the very same process.

This notion of generalization as performance on fresh data can seem mun-
dane. After all, it simply requires the classifier to do, in a sense, more of the
same. We require consistent success on the same data generating process as
encountered during training. Yet the seemingly simple question of what theory
underwrites the generalization ability of a model has occupied the machine
learning research community for decades.

Pattern classification, once again

Machine learning as a field, however, is not a straightforward evolution of the
pattern recognition of the 1960s, at least not culturally and not historically.
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6 Chapter 1

After a decade of perceptron research, a group of influential researchers,
including McCarthy, Minsky, Newell, and Simon, put forward a research
program by the name of artificial intelligence. The goal was to create human-
like intelligence in a machine. Although the goal itself was in many ways not
far from the ambitions of connectionists, the group around McCarthy fancied
entirely different formal techniques. Rejecting the numerical pattern fitting
of the connectionist era, the proponents of this new discipline saw the future
in symbolic and logical manipulation of knowledge represented in formal
languages.

Artificial intelligence became the dominant academic discipline to deal
with cognitive capacities of machines within the computer science community.
Pattern recognition and neural networks research continued, albeit largely
outside artificial intelligence. Indeed, journals on pattern recognition flourished
during the 1970s.

During this time, artificial intelligence research led to a revolution in expert
systems, logic- and rule-based models that had significant industrial impact.
Expert systems were hard coded and left little room for adapting to new
information. AI researchers interested in such adaptation and improvement—
learning, if you will—formed their own subcommunity, beginning in 1981

with the first International Workshop on Machine Learning. The early work
from this community reflects the logic-based research that dominated artificial
intelligence at the time; the papers read as if of a different field than what we
now recognize today as machine learning research. It was not until the late
1980s that machine learning began to look more like pattern recognition, once
again.

Personal computers had made their way from research labs into home
offices across wealthy nations. Internet access, if slow, made email a popular
form of communication among researchers. File transfer over the internet
allowed researchers to share code and datasets more easily.

Machine learning researchers recognized that in order for the discipline
to thrive it needed a way to more rigorously evaluate progress on concrete
tasks. Whereas in the 1950s it had seemed miraculous enough if training errors
decreased over time on any nontrivial task, it was clear now that machine
learning needed better benchmarks.

In the late 1980s, the first widely used benchmarks emerged. Then grad-
uate student David Aha created the UCI machine learning repository that
made several datasets widely available via FTP. Aiming to better quantify the
performance of AI systems, the Defense Advanced Research Projects Agency
(DARPA) funded a research program on speech recognition that led to the
creation of the influential TIMIT speech recognition benchmark.

These benchmarks had the data split into two parts, one called training
data, one called testing data. This split elicits the promise that the learning
algorithm will only access the training data when it fits the model. The testing
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Introduction 7

data is reserved for evaluating the trained model. The research community can
then rank learning algorithms by how well the trained models perform on the
testing data.

Splitting data into training and testing sets was an old practice, but the idea
of reusing such datasets as benchmarks was novel and transformed machine
learning. The dataset-as-benchmark paradigm caught on and became core to
applied machine learning research for decades to come. Indeed, machine
learning benchmarks were at the center of the most recent wave of progress on
deep learning. Chief among them was ImageNet, a large repository of images,
labeled by nouns of objects displayed in the images. A subset of roughly 1

million images belonging to 1,000 different object classes was the basis of the
ImageNet Large Scale Visual Recognition Challenge. Organized from 2010

until 2017, the competition became a striking showcase for performance of deep
learning methods for image classification.

Increases in computing power and volume of available data were key
driving factors for progress in the field. But machine learning benchmarks
did more than provide data. Benchmarks gave researchers a way to compare
results, share ideas, and organize communities. They implicitly specified a
problem description and a minimal interface contract for code. Benchmarks
also became a means of knowledge transfer between industry and academia.

The most recent wave of machine learning as pattern classification was so
successful, in fact, that it became the new artificial intelligence in the public
narrative of popular media. The technology reached entirely new levels of
commercial significance with companies competing fiercely over advances in
the space.

This new artificial intelligence had done away with the symbolic reasoning
of the McCarthy era. Instead, the central drivers of progress were widely
regarded as growing datasets, increasing compute resources, and more bench-
marks along with publicly available code to start from. Are those then the only
ingredients needed to secure the sustained success of machine learning in the
real world?

Prediction and action

Unknown outcomes often follow patterns found in past observations. But
what do we do with the patterns we find and the predictions we make? Like
Halley proposing his life table for annuity pricing, predictions only become
useful when they are acted upon. But going from patterns and predictions to
successful actions is a delicate task. How can we even anticipate the effect of a
hypothetical action when our actions now influence the data we observe and
value we accrue in the future?

One way to determine the effect of an action is experimentation: try it out
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8 Chapter 1

and see what happens. But there’s a lot more we can do if we can model the
situation more carefully. A model of the environment specifies how an action
changes the state of the world, and how in turn this state results in a gain
or loss of utility. We include some aspects of the environment explicitly as
variables in our model. Others we declare exogenous and model as noise in our
system.

The solution of how to take such models and turn them into plans of
action that maximize expected utility is a mathematical achievement of the
twentieth century. By and large, such problems can be solved by dynamic
programming. Initially formulated by Bellman in 1954, dynamic programming
poses optimization problems where at every time step, we observe data, take an
action, and pay a cost. By chaining these steps together in time, elaborate plans
can be made that remain optimal under considerable stochastic uncertainty.
These ideas revolutionized aerospace in the 1960s, and are still deployed in
infrastructure planning, supply chain management, and the landing of SpaceX
rockets. Dynamic programming remains one of the most important algorithmic
building blocks in the computer science toolkit.

Planning actions under uncertainty has also always been core to artificial
intelligence research, though initial proposals for sequential decision making in
AI were more inspired by neuroscience than operations research. In 1950-era AI,
the main motivating concept was one of reinforcement learning, which posited
that one should encourage taking actions that were successful in the past.
This reinforcement strategy led to impressive game-playing algorithms like
Samuel’s Checkers Agent circa 1959. Surprisingly, it wasn’t until the 1990s that
researchers realized that reinforcement learning methods were approximation
schemes for dynamic programming. Powered by this connection, a mix of
researchers from AI and operations research applied neural nets and function
approximation to simplify the approximate solution of dynamic programming
problems. The subsequent 30 years have led to impressive advances in rein-
forcement learning and approximate dynamic programming techniques for
playing games, such as Go, and in powering dexterous manipulation in robotic
systems.

Central to the reinforcement learning paradigm is understanding how to
balance learning about an environment and acting on it. This balance is a
nontrivial problem even in the case where actions do not lead to a change in
state. In the context of machine learning, experimentation in the form of taking
an action and observing its effect often goes by the name exploration. Exploration
reveals the payoff of an action, but it comes at the expense of not taking an
action that we already knew had a decent payoff. Thus, there is an inherent
trade-off between exploration and exploitation of previous actions. Though in
theory the optimal balance can be computed by dynamic programming, it is
more common to employ techniques from bandit optimization that are simple
and effective strategies to balance exploration and exploitation.
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Introduction 9

Not limited to experimentation, causality is a comprehensive conceptual
framework to reason about the effect of actions. Causal inference, in principle,
allows us to estimate the effect of hypothetical actions from observational data.
A growing technical repertoire of causal inference is taking various sciences
by storm, as witnessed in epidemiology, political science, policy, climate, and
development economics.

There are good reasons that many see causality as a promising avenue for
making machine learning methods more robust and reliable. Current state-of-
the-art predictive models remain surprisingly fragile to changes in the data.
Even small natural variations in a data-generating process can significantly
deteriorate performance. There is hope that tools from causality could lead to
machine learning methods that perform better under changing conditions.

However, causal inference is no panacea. There are no causal insights
without making substantive judgments about the problem that are not verifiable
from data alone. The reliance on hard earned substantive domain knowledge
stands in contrast with the nature of recent advances in machine learning that
largely did without it—and that was the point.

Chapter notes

Halley’s life table has been studied and discussed extensively; for an entry
point, see recent articles by Bellhouse2 and Ciecka,3 or the article by Pearson
and Pearson.4

Halley was not the first to create a life table. In fact, what Halley created is
more accurately called a population table. Instead, John Grount deserves credit
for the first life table in 1662 based on mortality records from London. Consid-
ered to be the founder of demography and an early epidemiologist, Grount’s
work was in many ways more detailed than Halley’s fleeting engagement with
Breslau’s population. However, to Grount’s disadvantage the mortality records
released in London at the time did not include the age of the deceased, thus
complicating the work significantly.

Mathematician de Moivre picked up Halley’s life table in 1725 and sharp-
ened the mathematical rigor of Halley’s idea. A few years earlier, de Moivre
had published the first textbook on probability theory called The Doctrine of
Chances: A Method of Calculating the Probability of Events in Play. Although de
Moivre lacked the notion of a probability distribution, his book introduced
an expression resembling the normal distribution as an approximation to the
binomial distribution, what was in effect the first central limit theorem. The
time of Halley coincides with the emergence of probability. Hacking’s book
provides much additional context, particularly relevant are Chapter 12 and 13.5

For the history of feedback, control, and computing before cybernetics, see
the excellent text by Mindell.6 For more on the cybernetics era itself, see the
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books by Kline7 and Heims.8 See Beniger9 for how the concepts of control and
communication and the technology from that era led to the modern information
society.

The prologue from the 1988 edition of Perceptrons by Minsky and Papert
presents a helpful historical perspective. The recent 2017 reprint of the same
book contains additional context and commentary in a foreword by Léon
Bottou.

Much of the first International Workshop on Machine Learning was com-
piled in an edited volume, which summarizes the motivations and perspectives
that seeded the field.10 Langley’s article provides helpful context on the state
of evaluation in machine learning in the 1980s and how the desire for better
metrics led to a renewed emphasis on pattern recognition.11 Similar calls
for better evaluation motivated the speech transcription program at DARPA,
leading to the TIMIT dataset, arguably the first machine learning benchmark
dataset.12, 13, 14

It is worth noting that the Parallel Distributed Processing Research Group
led by Rummelhart and McLeland actively worked on neural networks dur-
ing the 1980s and made extensive use of the rediscovered back-propagation
algorithm, an efficient algorithm for computing partial derivatives of a circuit.15

A recent article by Jordan provides an insightful perspective on how the
field came about and what challenges it still faces.16
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A/B test, 201

adaptive analyst, 157

adaptive tree, 158, 162

adaptivity, 156

adjustment estimator, 201

adjustment formula, 186, 201

admissible variable, 201

algorithmic stability, 109

analyst, 157

ATE, 199

average stability, 110

average treatment effect, 186, 199

backdoor criterion, 187

backpropagation, 130

bag of words, 54

bandits, 233

basis function, 57

Bayes’ rule, 18, 270

belief propagation, 228

Berkeley, 176

Berkson’s law, 184

Bernoulli, 269

bias, 164

boosting, 117

causal effect, 184, 186

causal forest, 205

causal graph, 182

causal model, 178

central limit theorem, 106

certainty equivalence, 231, 242

chain rule, 129, 132, 267

Chebyshev’s inequality, 107

class, 16

classifier, 30

collider, 184

common cause, 183

COMPAS, 29

competition, 144

concentration inequalities, 107

condition number, 77

conditional average treatment
effect, 205

conditional probability, 270

confounder, 183

confounding, 183, 186, 187, 199

confusion table, 20

consistency, 197

contextual bandits, 239

continuous control, 230

control, 229

control action, 214

control group, 191

convex function, 71

convexity, 71, 111, 136

convolution, 53

copyright, 166

counterfactual, 192, 194, 195

covariance, 269

data augmentation, 104

data generating process, 181, 200

datasheets, 169

deanonymization, 166
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decision, 30

decision making, 26

decision rule, 16, 26, 30

deep reinforcement learning, 248

descent direction, 71

design, 200

detection theory, 30

differences in differences, 206

direct cause, 181

direct effect, 181

discount factor, 219

discrimination, 27

disparate impact, 28

disparate treatment, 28

do-operator, 180, 185

double machine learning, 204

downsampling, 54

dynamic programming, 213, 218

dynamical system, 214

eigenvalue, 266

empirical risk, 35

empirical risk minimization, 35, 36

ensemble, 117

ensembling, 157

estimation, 229, 272

exogenous factors, 181

expectation, 269

explaining away, 184

explicit regularization, 91

explore-then-commit, 235, 240

F1-score, 21

fairness, 28

false discovery rate, 21

false negative rate, 21

false positive rate, 21

feature, 49

filtering, 227

fork, 183

Fourier transform, 53, 64

Fragile Families Challenge, 172

Gaussian, 15, 60, 270

Gaussian kernel, 60, 64

generalization, 36, 273

generalization gap, 36, 99, 144, 159

generative model, 15

global minimizer, 70

gradient, 39, 266

gradient descent, 69

greedy algorithm, 241

harm, 164

heterogeneous treatment effect, 205

hidden Markov model, 228

hinge loss, 39, 75

histogram, 53

Hoeffding’s inequality, 107

holdout method, 144

human subjects, 50

i.i.d. assumption, 34, 45

ignorability, 197, 202

ILSVRC, 155

ImageNet, 154

implicit convexity, 70, 87

implicit regularization, 91

indirect cause, 183

individual treatment effect, 189

inference, 200

instrumental variables, 206

interference, 211

intervention, 184

Jacobian, 267

Kaggle, 144

Kalman filtering, 228

kernel, 57

kernel function, 58

kernel methods, 93

knowledge, 13, 178, 200, 210

label, 16

Ladder algorithm, 162

leaderboard, 153, 165

leaderboard error, 161
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leaderboard principle, 161

least squares, 76, 274

lifts, 56

likelihood function, 15

likelihood ratio, 18

likelihood ratio test, 18

linear function, 54, 222

linear quadratic regulator, 221, 248,
254

linear separator, 37

local minimizer, 70, 71

logistic loss, 75

logistic regression, 75

loss function, 16, 69, 74, 99, 111

LQR, 221, 223, 228, 229, 248

MAP, 20, 76

margin, 37, 38, 42, 92

margin bounds, 117

margin error, 117

margin mistake, 38

Markov decision process, 216

Markov’s inequality, 106

maximum a posteriori, 20, 76

MDP, 216

measurement, 50, 169

measurement construct, 50, 170

measurement procedure, 170

mediator, 183

minimizer, 70

minimum error rule, 12, 14

mistake bound, 42

MNIST, 151

model, 13, 178, 213

model parameters, 39

model predictive control, 223

model-error theorem, 250

MTurk, 154

multi-armed bandits, 233

Netflix Prize, 165

neural network, 57, 61, 101, 103

Neyman-Pearson, 22

NIST, 152

nonconvex, 89

nonlinearity, 61

observational methods, 210

observational study, 210

one-hot encoding, 52

optimal control, 215

optimism, 238

overfitting, 101, 145

overlap, 202

overparameterization, 56, 89, 100,
101, 103, 124, 129, 156

PAC, 232

parameter estimation, 272

parent, 181

perceptron, 46

perceptron algorithm, 38

plug-in estimator, 272

policy gradient, 246

policy iteration, 222

policy search, 244

polynomial kernel, 59

polynomials, 55

POMDP, 226–228, 256

pooling, 54

positive semidefinite, 59, 265

positivity, 202

posterior, 18, 20

potential outcomes, 189, 195, 202

pre-training, 155

precision, 21

prediction, 11, 14

predictor, 16, 35

privacy, 165

probability, 267

probability density, 14, 268

probability distribution, 13

probably approximately correct, 232

propensity score, 203

ProPublica, 29

Q-function, 218–220, 222
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Q-learning, 243

quadratic function, 55

quantization, 51

quasi-experiments, 206

Rademacher complexity, 116

random features, 63

random search, 247

randomized controlled trial, 191,
210

receiver operating characteristic, 22

rectified linear unit, 61

regression discontinuity, 206

regret, 232, 233

regularization, 40, 90, 104, 113

regularized ERM, 113

REINFORCE, 245

reinforcement learning, 213, 231

reliability, 171

ReLU, 61

representational harm, 164

representer theorem, 93

reward, 214

Riccati Equation, 222

ridge regression, 95

risk, 17, 35

ROC, 22

separation principle, 227

sequential decision making, 213

sigmoidal function, 61

spillover, 211

squared loss, 41, 76, 94

stability, 45, 92

state, 214

statistical model, 13, 14, 213

stochastic gradient method, 39, 78

structural causal model, 181

subgradient, 40

successive elimination, 237

summarization, 53

support vector machine, 75

surrogate loss, 41

SUTVA, 196, 211

tabular MDP, 220, 248

target variable, 170

Taylor series, 59

Taylor’s theorem, 266

template matching, 52

tensor, 51

Tikhonov regularization, 113

TIMIT, 146

translation, 53

treatment, 195, 199

treatment group, 191

true negative rate, 21

true positive rate, 21

UCB, 238

UCI, 148

unconfoundedness, 202

underfitting, 101

uniform convergence, 115

uniform stability, 111

unit, 194, 195, 211

universal approximation, 61

unobserved confounding, 187

upper confidence bound, 238

validity, 171, 210

value iteration, 222

VC dimension, 115

weight decay, 40, 113

word embedding, 165

WordNet, 154

zero-one loss, 41, 74
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