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Chapter One

Introduction

This chapter presents the motives, as well as a limited literature summary, for both
the applied and the theoretical control design problems that we pursue in this book.

1.1 STRING-ACTUATED MECHANISMS

In this section, we introduce four string-actuated mechanisms: mining cable eleva-
tors, deep-sea construction vessels (DCVs), unmanned aerial vehicles (UAVs), and
oil-drilling systems.

Mining Cable Elevators

In mining exploitation, a cable elevator, which is used to transport the cargo and
miners between the ground and the working platform underground, is an indispens-
able piece of equipment [99]. The mining cable elevator is a cable-actuated moving
load system. A common arrangement is a single-drum system [178]: a single-cable
mining elevator comprising a driving winding drum, a steel wire cable, a head
sheave, and a cage. The cable plays a vital role in mining elevators because its
advantages of low bending and torsional stiffness, resisting relatively large axial
loads, are helpful to heavy-load and large-depth transportation. However, the com-
pliance property, or stretching and contracting abilities of cables, tends to cause
mechanical vibrations, especially when the elevator is running at high speed, which
leads to tension oscillations and premature fatigue fracture [87, 88, 91]. Therefore,
the importance of suppressing the vibrations and tension oscillations cannot be
overestimated, for the safety of both personnel and profitability. The economical
and convenient way to suppress the vibrations is by designing an appropriate con-
trol input without modifying the original structure of the mining cable elevator.
In chapter 2, the control design for axial vibration suppression of a high-speed,
single-cable mining cable elevator is presented.

For operation at a greater depth, such as over 2000 m, and carrying a heavier
load, the single-cable elevator is not suitable. Because a very thick cable is required
to bear the heavy load, such a thick cable, at high bending, suffers from problems in
the winding on the winder drum. A dual-cable mining elevator [37], shown in figure
3.1 in chapter 3, is proposed to solve this problem, removing the requirement of a
very thick cable because two cables tow the cage. However, an imbalance problem,
such as cage roll, frequently appears in the dual-cable elevator [184], as shown in
figure 3.1, for which, taut cables are used as flexible guide rails because traditional
steel rails come with a high cost of manufacture and installation in deep mines.
Cage roll will increase the differences in oscillation tension between two cables and
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enlarge the oscillation amplitude of the tension, which accelerates premature fatigue
and requires inspections and costly repairs. One feasible arrangement to balance
the cage roll and suppress the vibrations and tension oscillations in cables of the
dual-cable mining elevator is to design and apply additional control forces through
actuators at floating head sheaves, as shown in figure 3.1. The control design for
suppressing of the axial vibrations and tension oscillations and balancing the cage
roll in a dual-cable mining elevator is presented in chapter 3.

In an actual operating environment, the cage is usually subject to uncertain
airflow disturbances. Additionally, the flexible guides, with their uncertain proper-
ties, may affect the smooth and steady running of the mining cable elevator. These
factors inspired the control designs in chapters 4 and 5.

Deep-Sea Construction Vessels

In deep-sea oil exploration, some equipment, such as a subsea manifold, a subsea
pump station, and a subsea distribution unit along with associated foundations,
flow lines and umbilicals, is installed at designated locations [167, 168] around the
drill center on the seafloor. The installation of the equipment is completed by a
DCV [168, 182] because the installation sites are located outside a radius of 45 m
from the floating drilling platform (see figure 2 in [168]) and cannot be accessed
by the huge floating drilling platform, which has limited access and mobility [168],
and because some of the equipment, such as flow lines and umbilicals, is installed in
advance to prepare to hook up the floating drilling platform when it arrives. A DCV
is shown in figure 6.1 in chapter 6, where the top of the cable is attached to a crane
on a vessel at the ocean surface, and the cable’s bottom is attached to equipment
to be installed at the sea floor. The traditional method in underwater installation
by DCVs is to regulate the vessel dynamics position and manipulate the crane to
obtain the desired heading for the payload [94]. Such a method is not suitable for
the deeper water construction in offshore oil drilling (more than 1000 m) because
the cable is very long when the payload is near the seabed, which would introduce
large cable oscillations [94, 182], causing a large offset between the payload and the
desired heading position of the crane—namely, the designated installation location.
In chapter 6, the control forces at the onboard crane are designed to reduce the
cable oscillations and then place the equipment in the target area on the sea floor.
In chapter 7, we employ a piecewise-constant control input that is more suitable for
the massive ship-mounted crane and compensate for delays in the transmission of
sensing signals from the seabed to the vessel on the ocean surface through acoustic
devices.

Unmanned Aerial Vehicles

In addition to DCVs, the control design in chapter 6 can also be applied to unmanned
aerial vehicles (UAVs) used to aid delivery to dangerous and inaccessible areas,
such as to flood, earthquake, fire, and industrial disaster victims [70, 140]. Food
and first-aid kits are tied to the bottom of a cable, whose other end is attached to
the UAV. The swing/oscillation of the cable-payload may appear during the trans-
portation motion due to the properties of the cable and external disturbances, such
as wind, which may cause damage to the suspended object, the environment, and
the people nearby [70]. At the end of the transport motion, when the UAV arrives
at the location directly over the rescue site and is ready to land the aid supplies,
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the suspended object naturally continues to swing [140], which makes precisely
placing the aid supplies at the target position difficult. Therefore, rapid suppres-
sion of the oscillations of the cable and suspended object through a control force
provided by the rotor wings of the UAV is required. In addition to aid delivery
in disaster relief, UAV delivery is also used in some commercial cases to reduce
labor cost. For example, some companies use UAVs to transport cargo in store-
houses or lift and position building elements in architectural construction [191].
Some logistics companies have also begun to use UAVs to deliver packages in small
areas [70].

Oil Drilling

Oil-drilling systems used to drill deep boreholes for hydrocarbon exploration and
production often suffer severe vibrations, which can cause the premature failure of
drilling string components, damage to the borehole wall, and problems with precise
control [98]. The vibrations also cause significant wastage of drilling energy [53].
The suppression of vibrations in the oil-drilling system is thus required for the
economic interest and improvement of drilling performance [156].

There are three main types of vibration in oil-drilling systems [154]: vertical
vibration, also called the bit-bouncing phenomenon, lateral vibration due to an
out-of-balance drill string, which is called whirl motion, and torsional vibration,
which appears due to friction between the bit and the rock. This nonlinear torsional
interaction between the drill bit and the rock will cause the bit to slow down
and even stall while the rotary table is still in motion. Once enough energy is
accumulated, the bit will suddenly be released and start rotating at very high
speed before slowing down again [24], settling into a limit cycling motion. This
is called the stick-slip phenomenon. Several physical laws of bit-rock friction [156]
are used to roughly describe stick-slip behavior in the oil-drilling system, such as
the velocity-weakening law [31], the stiction plus Coulomb friction model [160], a
class of Karnopp model [38, 107, 136], and so on. The stick-slip oscillations lead to
instability from the lower end to travel up the drill string to the rotary table, which
results in distributed instabilities and is the primary cause of fatigue to the drill
collar connections as well as damage to the drill bit [154]. Therefore, suppressing
torsional vibrations (stick-slip oscillations) in the oil-drilling system is important.
In addition waves at the sea surface causing a heaving motion of the drilling rig [1]
in an offshore rotary oil-drilling system [186] introduce an external disturbance at
the bit, which is another instability source.

As will be seen in chapter 8, the designed control input at the rotary table
goes down from the rotating table, through the drill string, to the drill bit, to
eliminate the stick-slip instability and, as a result, reduce the oscillations of the
angular displacement and velocity of the drill bit.

1.2 HYPERBOLIC PDE-ODE SYSTEMS

The dynamics of the aforementioned string-actuated mechanisms are governed by
hyperbolic partial differential equation-ordinary differential equation (PDE-ODE)
systems. The design of controllers for such hyperbolic PDE-ODE systems requires
boundary control approaches because the control input can only be applied at one
end of the string in such mechanisms. In this section, we review boundary control
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of elementary wave PDE-ODE systems, as well as of a class of coupled first-order
hyperbolic PDE models, with the possible inclusion of an ODE in cascade with the
hyperbolic PDEs.

Wave PDE-ODE Systems

A wave PDE-ODE system serves as a basic model of a string-actuated mechanism
in which the wave PDE describes a vibrating string (without in-domain damping),
and the attached payload is modeled as an ODE. Classical results on backstepping
boundary control for wave PDEs with anti-damping terms in domain or on the
uncontrolled boundary are found in [121, 162, 165]. In the past decade, many results
on boundary control of wave PDE-ODE systems have been reported. The very
first result on boundary control of a wave PDE-ODE plant was presented in [114],
where the interconnection is of the Dirichlet type. Boundary control design for a
wave PDE-ODE cascade system with a Neumann-type interconnection was also
addressed in [170]. The boundary control problem was also tackled in [18, 28, 29]
for a wave PDE-nonlinear ODE system.

Coupled First-Order Hyperbolic PDEs

For the sake of greater clarity in control design and analysis, wave PDEs can be
converted to a class of heterodirectional coupled first-order hyperbolic PDE systems
via the Riemann transformations [26]. Especially when considering the in-domain
viscous damping terms describing the string material damping, there would exist
in-domain coupling in the resulting coupled first-order hyperbolic PDE systems
[147], which makes the control design more challenging. Some theoretical results
on boundary control of coupled first-order hyperbolic PDEs have emerged over
the last decade. The basic boundary stabilization problem of 2× 2 coupled linear
transport PDEs was addressed in [32, 177] by backstepping, based on which the
extended results on boundary control of these 2× 2 systems were presented in
[4, 39]. The sliding mode approach and the proportional integral (PI) controller
design applied to the control of such a 2× 2 system was also considered in [127] and
[173], respectively. Boundary control of the 2× 2 transport PDE system was further
extended to that of an n+1 system in [50]. For a more general coupled transport
PDE system where the number of PDEs in either direction is arbitrary, a boundary
stabilization law was first designed by backstepping in [96], which is a systematic
framework for control design for this class of systems, and other extended results
were proposed in [6, 14, 40, 41, 97]. In addition to the applications to string/cable
models, the boundary control design for coupled first-order hyperbolic PDEs has
also been applied to water-level dynamics [45, 47, 51, 143, 142] and traffic flow
[101, 194, 195, 197].

In the past five years, some results on the control of linear coupled hyper-
bolic PDEs cascaded with ODEs have also been reported. The first is [48], which
addressed the state-feedback stabilization of a general linear hyperbolic PDE-ODE
coupled system. The state-feedback boundary control design of a 2× 2 linear hyper-
bolic PDE-ODE coupled system with nonlocal terms was also dealt with in [169].
Based on the observer design, in [44] an output-feedback controller with anti-
collocated measurements was proposed to stabilize general linear heterodirectional
hyperbolic PDE-ODE systems with spatially varying coefficients.
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1.3 “SANDWICH” PDEs

In the results discussed in section 1.2, the control input enters the PDE boundary
directly, neglecting the inertia and dynamics of the actuator. However, in some
applications, actuator dynamics cannot be neglected, especially when the actuator
has its own considerable inertia. Incorporating the actuator dynamics into the con-
trol design of the string-actuated mechanisms modeled by hyperbolic PDE-ODE
systems gives rise to a more challenging problem: control of what we call sandwich
ODE-PDE-ODE systems.

The first backstepping state-feedback control design for sandwich hyperbolic
systems was proposed in [113], which considered a transport PDE-ODE system
with an integration (first-order ODE) at the input of the transport PDE. Also, the
control problem of an ODE with input delay and unmodeled bandwidth-limiting
actuator dynamics, which is represented by an ODE-transport PDE-ODE sys-
tem where the input ODE is first order, was addressed in [118]. The bound-
ary control design of a transport PDE sandwiched between two ODEs describing
actuator and sensor dynamics was also proposed in [8]. Regarding coupled trans-
port PDEs, state-feedback control of heterodirectional coupled transport PDEs
sandwiched between two ODEs was proposed in [151, 152, 183]. Adding observer
designs, output-feedback control of this type of sandwich systems was developed in
[43, 49, 180, 181]. Parameter identification of a drill string, modeled as a wave PDE
sandwich system from experimental boundary data, was studied in [150]. Regard-
ing other types of PDEs, boundary control of viscous Burgers PDE, heat PDE, and
n coupled parabolic PDE sandwich systems was also addressed in [130, 179] and
[42], respectively. A fairly complete theory for boundary control of sandwich hyper-
bolic PDEs is derived in chapters 9–12, including basic design, delay compensation,
event-triggered design, and design with nonlinearities.

1.4 ADVANCED BOUNDARY CONTROL OF

HYPERBOLIC PDEs

Apart from the basic boundary control designs mentioned in sections 1.3 and
1.2, in this section we review some extended results on disturbance attenuation,
adaptive control, delay compensation, and event-triggered control for hyperbolic
PDEs.

Disturbance Rejection/Cancellation

Most research on disturbance rejection and adaptive cancellation for PDE sys-
tems focuses on disturbances collocated with control. Sliding mode control (SMC)
schemes designed for heat, Euler-Bernoulli beam, and Schrödinger equations with
boundary input disturbances were presented in [73, 76, 189]. The internal model
principle [63] on the basis of the estimation/cancellation strategy was utilized in
the beam equation [145]. For wave PDEs, adaptive disturbance cancellation was
used in the output-feedback asymptotic stabilization of one-dimensional wave equa-
tions subject to harmonic disturbances at the controlled end and at the mea-
sured output in [82, 83] and [81], respectively. By applying the active distur-
bance rejection control method introduced by Han [86] for ODEs, state-feedback
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or output-feedback control designs for wave PDEs with matched disturbances were
presented in [60, 74, 75, 80, 172, 198].

The task of rejection or adaptive cancellation of unmatched disturbances—that
is, the disturbances anti-collocated with the control input—is more difficult. While
several results for this task have been developed for ODE systems, such as those
found in [78, 129, 192] and so on, the literature is less ample in PDE systems, where
the disturbance is on the far (distal) end from the control input. A state-feedback
controller that practically stabilizes a Schrödinger equation-ODE cascade system in
the presence of an unmatched disturbance assumed to be small and measurable was
presented in [100]. An output-feedback controller was designed for output reference
tracking in a wave equation with an anti-collocated harmonic disturbance at a stable
damping boundary in [84]. The output regulation problem for a wave equation with
a harmonic anti-collocated disturbance at a free boundary was further dealt with
in [85]. In chapters 4, 5, and 8, the asymptotic rejection and adaptive cancellation
of unmatched disturbances in hyperbolic PDEs are proposed, respectively, along
with applications in the control of disturbed mining cable elevators and oil-drilling
systems.

Adaptive Control

Three traditional adaptive schemes for PDEs with uncertain parameters are the
Lyapunov design, the passivity-based design, and the swapping design [112, 124].
Using the three design methods initially developed for ODEs in [122], the same three
adaptive control approaches were proposed for parabolic PDEs in [123, 163, 164].
For adaptive control of hyperbolic PDEs, many results based on the three conven-
tional methods have also been achieved, as follows. In [24, 25, 26, 117], adaptive
control laws were presented for a one-dimensional wave PDE that had an actuator
on one boundary and an anti-damping instability with an unknown coefficient on the
other boundary. The first result on adaptive control of general first-order hyperbolic
partial integro-differential equations was proposed in [20]. An adaptive boundary
control design of coupled first-order hyperbolic PDEs with uncertain boundary and
spatially varying in-domain coefficients was developed in [5]. In [7], two adaptive
boundary controllers of coupled hyperbolic PDEs with unknown in-domain and
boundary parameters were proposed using identifier and swapping designs, respec-
tively. More adaptive control results of coupled first-order hyperbolic PDEs have
been collected in [9]. Adaptive control design methods for hyperbolic PDEs are
employed in chapters 5 and 8 to deal with parameter uncertainties in mining cable
elevator and oil-drilling systems. Also, an event-triggered adaptive controller is
proposed in chapter 13.

Recently, a new adaptive scheme using a regulation-triggered batch least-squares
identifier was introduced in [102, 104], which has some advantages over the tra-
ditional adaptive approaches, such as guaranteeing exponential regulation of the
states to zero as well as finite-time convergence of the estimates to the true values.
This method has been successfully applied in the adaptive control of a parabolic
PDE where the unknown parameters are the reaction coefficient and the high-
frequency gain [106]. Regarding hyperbolic PDEs, using a scalar least-squares iden-
tifier updated at a sequence of times with fixed intervals, backstepping adaptive
boundary control of a first-order hyperbolic PDE with an unknown transport speed
was proposed in [11]. In chapters 14 and 15, adaptive controllers based on batch
least-squares identifiers are designed for 2× 2 hyperbolic PDE-ODE systems where
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the transport speeds of both transport PDEs and the coefficients of the in-domain
couplings are unknown, respectively.

Delay Compensation

Time delays often exist in practical control systems and may destroy system sta-
bility [79]. For example, in a subsea installation by a DCV, sensor delays [94] exist
due to the fact that the sensor signal is transmitted over a large distance from the
seafloor to the vessel on the ocean surface, through a set of acoustic devices. Such
sensor signal transmission may result in information distortion or even make the
control system lose stability. Therefore, the time delay is a vital issue that should
be considered in the control design.

Recently, boundary control designs for hyperbolic PDEs have been proposed
that take time delays into consideration. For example, delay-robust stabilizing
feedback control designs for coupled first-order hyperbolic PDEs were introduced
in [12, 13], achieving robustness to small delays in actuation. In order to com-
pensate arbitrarily long delays, a delay compensation technique was developed in
[116, 125], where the delay was captured as a transport PDE, and the original ODE
plant with a sensor delay was treated as an ODE-transport PDE cascaded system
in the controller and observer designs. The observer was built as a “full-order”
type, which estimates both the plant states and the sensor states, compared with
some classical results on delay-compensated observer designs [3, 27, 67], which only
estimate plant states—namely, observers of the “reduced-order” type. While com-
pensation for arbitrarily long delays by this technique are commonly available for
finite-dimensional systems, very few examples exist where such compensation has
been achieved for PDEs, including parabolic (reaction-diffusion) PDEs [108, 115].
Delay compensation for the wave PDEs with arbitrarily long delays is more complex
than that for reaction-diffusion PDEs. The primary reason is the second-order-in-
time character of the wave equation. In [119], by treating the delay as a transport
PDE and applying a backstepping design, a boundary controller was developed for
a wave PDE with compensation for an arbitrarily long input delay and with a guar-
antee of exponential stability for the closed-loop system. In chapter 10, we design a
delay-compensated control scheme for a sandwich hyperbolic PDE in the presence
of a sensor delay of arbitrary length by treating the delay as a transport PDE.

Event-Triggered Control

When implementing the designed PDE control laws in an actual mining cable ele-
vator, two challenges caused by high-frequency elements in the control law appear:
1) the massive actuator, comprising a hydraulic cylinder and head sheave, shown
in figure 11.1 in chapter 11, is incapable of supporting the high-frequency control
signal, and 2) the high-frequency components in the control input may in turn
become vibration sources for the cable. It is thus necessary to reduce the actuation
frequency and ensure the effective suppression of the vibrations in the mining cable
elevator. Designing sampling schemes to apply to the control input is a potential
solution. Designs of sampled-data control laws of parabolic and hyperbolic PDEs
were presented in [64, 105] and [35, 103], respectively. Compared with the peri-
odic sampled-data control, event-triggered control, where the input to the massive
actuator is changed only at the necessary times determined by an event-triggering
mechanism that acts by evaluating the operation of the elevator, is more feasible for
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the mining cable elevator from the point of view of energy saving. This motivates
us to design event-triggered PDE backstepping control laws.

Most of the current designs on event-triggering mechanisms are for ODE sys-
tems, such as those in [69, 93, 133, 159, 171]. Designs of event-based controls for
PDE systems are still rare in the existing literature. There exist results on the
distributed (in-domain) control of PDEs, such as [158, 193]. For boundary control,
an event-triggered feedback law was proposed for a reaction-diffusion PDE in [58].
For first-order linear hyperbolic PDEs with dissipativity boundary conditions, an
event-triggered boundary control law was originally proposed in [55, 56]. Further-
more, a state-feedback event-based boundary controller for a class of 2× 2 coupled
linear hyperbolic PDEs was designed in [57]. Based on the observer design, the
output-feedback event-triggered boundary control of 2× 2 coupled linear hyper-
bolic PDEs was developed in [54]. In chapter 11, an event-triggered backstepping
boundary control law is derived for a sandwich hyperbolic PDE, and an adaptive
event-triggered boundary controller is further developed in chapter 13.

1.5 NOTES

Frequently used notations in this book are given next, with more specialized nota-
tional conventions introduced in the coming chapters.

The partial derivatives and total derivatives are denoted as

fx(x, t)=
∂f

∂x
(x, t), ft(x, t)=

∂f

∂t
(x, t),

f ′(x)=
df(x)

dx
, ḟ(t)=

df(t)

dt
.

By Ck(A), where k≥ 1, we denote the class of continuous functions on A. The
single bars | · | denote the Euclidean norm for a finite-dimensional vector X(t). In
contrast, norms of functions (of x) are denoted by double bars. For u(x, t), x∈ [0, D],
by default, ‖ · ‖ denotes the L2-norm of a function of x, namely,

‖u(·, t)‖=

√∫ D

0

u(x, t)2dx,

and Sobolev norms such as H1[0, D] or even H2[0, D] are defined by

‖u(·, t)‖H1 =

√∫ D

0

u(x, t)2dx+

∫ D

0

ux(x, t)2dx,

‖u(·, t)‖H2 =

√∫ D

0

u(x, t)2dx+

∫ D

0

ux(x, t)2dx+

∫ D

0

uxx(x, t)2dx,

and the ∞-norm is denoted by

‖u(·, t)‖∞ = sup
x∈[0,D]

{|u(x, t)|}.
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