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Chapter One

Introduction

1.1 THE EINSTEIN-KLEIN-GORDON COUPLED SYSTEM

The Einstein field equations of General Relativity are a covariant geometric
system that connect the Ricci tensor of a Lorentzian metric g on a manifold M
to the energy-momentum tensor of the matter fields in the spacetime, according
to the equation

Gαβ = 8πTαβ . (1.1.1)

Here Gαβ = Rαβ − (1/2)Rgαβ is the Einstein tensor, where Rαβ is the Ricci
tensor, R is the scalar curvature, and Tαβ is the energy-momentum tensor of
the matter in the spacetime.

In this monograph we are concerned with the Einstein-Klein-Gordon coupled
system, which describes the coupled evolution of an unknown Lorentzian metric
g and a massive scalar field ψ. In this case the associated energy momentum
tensor Tαβ is given by

Tαβ := DαψDβψ −
1

2
gαβ

(
DµψDµψ + ψ2

)
, (1.1.2)

where D denotes covariant derivatives.
Our goal is to prove definitive results on the global stability of the flat space

among solutions of the Einstein-Klein-Gordon system. Our main theorems in
this monograph include:

(1) A proof of global regularity (in wave coordinates) of solutions of the
Einstein-Klein-Gordon coupled system, in the case of small, smooth, and local-
ized perturbations of the stationary Minkowski solution (g, ψ) = (m, 0);

(2) Precise asymptotics of the metric components and the Klein-Gordon field
as the time goes to infinity, including the construction of modified (nonlinear)
scattering profiles and quantitative bounds for convergence;

(3) Classical estimates on the solutions at null and timelike infinity, such as
bounds on the metric components, weak peeling estimates of the Riemann cur-
vature tensor, ADM and Bondi energy identities and estimates, and asymptotic
description of null and timelike geodesics.

The general plan is to work in a standard gauge (the classical wave co-
ordinates) and transform the geometric Einstein-Klein-Gordon system into a
coupled system of quasilinear wave and Klein-Gordon equations. We then an-
alyze this system in a framework inspired by the recent advances in the global
existence theory for quasilinear dispersive models, such as plasma models and
water waves.
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More precisely, we rely on a combination of energy estimates and Fourier
analysis. At a very general level one should think that energy estimates are
used, in combination with vector-fields, to control high regularity norms of the
solutions. The Fourier analysis is used, mostly in connection with normal forms,
analysis of resonant sets, and a special norm, to prove dispersion and decay in
lower regularity norms.

The method we present here incorporates Fourier analysis in a critical way.
Its main advantage over the classical physical space methods is the ability to
identify clearly resonant and non-resonant nonlinear quadratic interactions. We
can then use normal forms to dispose of the non-resonant interactions, and focus
our attention on a small number of resonant quadratic interactions. This leads
to very precise estimates.

In particular, some of our asymptotic results appear to be new even in the
much-studied case of the Einstein-vacuum equations (corresponding to ψ = 0)
mainly because we allow a large class of non-isotropic perturbations. Indeed,
our assumptions on the metric on the initial slice are weak, essentially of the
type

gαβ = mαβ + ε0O(〈x〉−1+), ∂gαβ = ε0O(〈x〉−2+).

These assumptions are consistent with non-isotropic decay, in the sense that we
do not assume that the metric has radial decay of the form M/r up to lower
order terms. Even with these weaker assumptions we are still able to derive
suitable asymptotics of the spacetime, such as weak peeling estimates for the
Riemann tensor, and construct a Bondi energy function.

1.1.1 Wave Coordinates and PDE Formulation of the Problem

The system of equations (1.1.1)–(1.1.2) is a geometric system, written in covari-
ant form. To analyze it quantitatively and state our main theorems we need to
fix a system of coordinates and reformulate our problem as a PDE problem.

We start by recalling some of the basic definitions and formulas of Lorentzian
geometry. At this stage, all the formulas are completely analogous to the Rie-
mannian case, hold in any dimension, and the computations can be performed
in local coordinates. A standard reference is the book of Wald [73]. Assume g
is a sufficiently smooth Lorentzian metric in a 4 dimensional open set O. We
assume that we are working in a system of coordinates x0, x1, x2, x3 in O. We
define the connection coefficients Γ and the covariant derivative D by

Γµαβ := g(∂µ,D∂β∂α) =
1

2
(∂αgβµ + ∂βgαµ − ∂µgαβ), (1.1.3)

where ∂µ := ∂xµ , µ ∈ {0, 1, 2, 3}. Thus

D∂α∂β = D∂β∂α = Γν αβ∂ν , Γν αβ := gµνΓµαβ , (1.1.4)

where gαβ is the inverse of the matrix gαβ , i.e., gαβgµβ = δαµ . For µ, ν ∈
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{0, 1, 2, 3} let

Γµ := gαβΓµαβ = gαβ∂αgβµ −
1

2
gαβ∂µgαβ , Γν := gµνΓµ. (1.1.5)

We record also the useful general identity

∂αgµν = −gµρgνλ∂αgρλ, (1.1.6)

and the Jacobi formula

∂α(log |g|) = gµν∂αgµν , α ∈ {0, 1, 2, 3}, (1.1.7)

where |g| denotes the determinant of the matrix gαβ in local coordinates.
Covariant derivatives can be calculated in local coordinates according to the

general formula

DαTβ1...βn = ∂αTβ1...βn −
n∑
j=1

Γν αβjTβ1...ν...βn , (1.1.8)

for any covariant tensor T . In particular, for any scalar function f

�gf = gαβDαDβf = �̃gf − Γν∂νf, (1.1.9)

where �̃g := gαβ∂α∂β denotes the reduced wave operator.
The Riemann curvature tensor measures commutation of covariant deriva-

tives according to the covariant formula

DαDβωµ −DβDαωµ = R ν
αβµ ων , (1.1.10)

for any form ω. The Riemann tensor R satisfies the symmetry properties

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ ,

Rαβµν + Rβµαν + Rµαβν = 0,
(1.1.11)

and the covariant Bianchi identities

DρRαβµν + DαRβρµν + DβRραµν = 0. (1.1.12)

Its components can be calculated in local coordinates in terms of the connection
coefficients according to the formula

R ρ
αβµ = −∂αΓρ βµ + ∂βΓραµ − ΓρανΓ

ν
βµ + Γρ βνΓ

ν
αµ. (1.1.13)

Therefore, the Ricci tensor Rαµ = gβρRαβµρ is given by the formula

Rαµ = −∂αΓρ ρµ + ∂ρΓ
ρ
αµ − Γρ ναΓν ρµ + Γρ ρνΓ

ν
αµ.



4

EKGRevised6x9 October 26, 2021 6.125x9.25

CHAPTER 1

Simple calculations using (1.1.3) and (1.1.5) show that the Ricci tensor is given
by

2Rαµ = −�̃ggαµ + ∂αΓµ + ∂µΓα + F≥2
αµ (g, ∂g), (1.1.14)

where F≥2
αβ (g, ∂g) is a quadratic semilinear expression,

F≥2
αβ (g, ∂g) =

1

2
gρµgνλ

{
∂νgρµ∂βgαλ + ∂νgρµ∂αgβλ − ∂νgρµ∂λgαβ

}
+ gρµgνλ

{
− ∂ρgµλ∂αgβν − ∂ρgµλ∂βgαν

+ ∂ρgµλ∂νgαβ + ∂αgρλ∂µgβν + ∂βgρλ∂µgαν
}

− 1

2
gρµgνλ(∂αgνµ + ∂νgαµ − ∂µgαν)(∂βgρλ + ∂ρgβλ − ∂λgβρ).

(1.1.15)

We consider the Einstein field equations (1.1.1)–(1.1.2) for an unknown
spacetime (M,g); for simplicity, we drop the factor of 8π from the energy-
momentum tensor. The covariant Bianchi identities DαGαβ = 0 can be used to
derive an evolution equation for the massive scalar field ψ. The equation is

�gψ − ψ = 0. (1.1.16)

Therefore the main unknowns in the problem are the metric tensor g and the
scalar field ψ, which satisfy the covariant coupled equations (1.1.1) and (1.1.16).

To construct solutions we need to fix a system of coordinates. In this paper
we work in wave coordinates, which is the condition

Γα = −�gx
α ≡ 0 for α ∈ {0, 1, 2, 3}. (1.1.17)

Wave coordinates are known to be a good system of coordinates to prove global
stability at least in the Einstein-vacuum equations due to the work of Lindblad-
Rodnianski [63]. Our construction of global solutions of the Einstein-Klein-
Gordon system is based on the following proposition, which can be proved by
straightforward calculations.

Proposition 1.1. Assume g is a Lorentzian metric in a 4 dimensional open set
O, with induced covariant derivative D and Ricci curvature Rαβ, and ψ : O → R
is a scalar. Let x0, x1, x2, x3 denote a system of coordinates in O and let Γν be
defined as in (1.1.5).

(i) Assume that (g, ψ) satisfies the Einstein-Klein-Gordon system

Rαβ −DαψDβψ −
ψ2

2
gαβ = 0, �gψ − ψ = 0, (1.1.18)

in O. Assume also that Γµ ≡ 0 in O, µ ∈ {0, 1, 2, 3} (the harmonic gauge
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condition). Then

�̃ggαβ + 2∂αψ∂βψ + ψ2gαβ − F≥2
αβ (g, ∂g) = 0,

�̃gψ − ψ = 0,
(1.1.19)

where the quadratic semilinear terms F≥2
αβ (g, ∂g) are defined in (1.1.15) and

�̃g := gαβ∂α∂β denotes the reduced wave operator .
(ii) Conversely, assume that the equations (1.1.19) (the reduced Einstein-

Klein-Gordon system) hold in O. Then

Rαβ − ∂αψ∂βψ −
ψ2

2
gαβ −

1

2
(∂αΓβ + ∂βΓα) = 0,

�gψ − ψ + Γµ∂µψ = 0,

(1.1.20)

and the functions Γβ = gβνΓ
ν satisfy the reduced wave equations

�̃gΓβ = 2Γν∂νψ∂βψ + gρα[Γν ρα(∂νΓβ + ∂βΓν)

+ Γν ρβ(∂αΓν + ∂νΓα)] + ∂µΓν∂βgµν .
(1.1.21)

In particular, the pair (g, ψ) solves the Einstein-Klein-Gordon system (1.1.18)
if Γµ ≡ 0 in O.

Our basic strategy to construct global solutions of the Einstein-Klein-Gordon
system is to use Proposition 1.1. We construct first the pair (g, ψ) by solving
the reduced Einstein-Klein-Gordon system (1.1.19) (regarded as a quasilinear
Wave-Klein-Gordon system) in the domain R3× [0,∞). In addition, we arrange
that Γµ, ∂tΓµ vanish on the initial hypersurface, so they vanish in the entire
open domain, as a consequence of the wave equations (1.1.21). Therefore the
pair (g, ψ) solves the Einstein-Klein-Gordon system as desired.

In other words, the problem is reduced to constructing global solutions of the
quasilinear system (1.1.19) for initial data compatible with the wave coordinates
condition.

1.2 THE GLOBAL REGULARITY THEOREM

To state our global regularity theorem we introduce first several spaces of func-
tions on R3.

Definition 1.2. For a ≥ 0 let Ha denote the usual Sobolev spaces of index a
on R3. We define the Banach spaces Ha,b

Ω , a, b ∈ Z+, by the norms

‖f‖Ha,bΩ
:=

∑
|α|≤b

‖Ωαf‖Ha , (1.2.1)
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where Ωα = Ωα1
23 Ωα2

31 Ωα3
12 and Ωjk = xj∂k − xk∂j are the rotation vector-fields of

R3. We also define the weighted Sobolev spaces Ha,b
S,wa and Ha,b

S,kg by the norms

‖f‖Ha,bS,wa :=
∑

|β′|≤|β|≤b

‖xβ
′
∂βf‖Ha , ‖f‖Ha,bS,kg :=

∑
|β|,|β′|≤b

‖xβ
′
∂βf‖Ha ,

(1.2.2)

where xβ
′

= x
β′1
1 x

β′2
2 x

β′3
3 and ∂β := ∂β1

1 ∂β2

2 ∂β3

3 . Notice that Ha,b
S,kg ↪→ Ha,b

S,wa ↪→
Ha,b

Ω ↪→ Ha.

To implement the strategy described above and use Proposition 1.1 we need
to prescribe suitable initial data. Let Σ0 = {(x, t) ∈ R3 × [0,∞) : t = x0 =
0}. We assume that g, k are given symmetric tensors on Σ0, such that g is a
Riemannian metric on Σ0. We assume also that ψ0, ψ1 : Σ0 → R are given
initial data for the scalar field ψ.

We start by prescribing the metric components on Σ0,

gij = gij , g0i = 0, g00 = −1.

The conditions g00 = −1 and g0i = 0 hold only on the initial hypersurface
and are not propagated by the flow. They are imposed mostly for convenience
and do not play a significant role in the analysis. We also prescribe the time
derivative of the metric tensor,

∂tgij = −2kij ,

in such a way that k is the second fundamental form of the surface Σ0, k(X,Y ) =
−g(DXn, Y ), where n = ∂0 is the future-oriented unit normal vector-field on
Σ0. The conditions Γα = 0, α ∈ {0, 1, 2, 3}, can be used to determine the other
components of the initial data for the pair (g, ψ) on the hypersurface Σ0, which
are

gij = gij , g0i = gi0 = 0, g00 = −1,

∂tgij = −2kij , ∂tg00 = 2gijkij , ∂tgn0 = gij∂igjn −
1

2
gij∂ngij ,

ψ = ψ0, ∂tψ = ψ1.

(1.2.3)

The remaining restrictions ∂tΓα = 0 lead to the constraint equations. In
view of (1.1.20) the constraint equations are equivalent to the conditions Rα0−
(1/2)Rgα0 = Tα0, α ∈ {0, 1, 2, 3}, where Tαβ is as in (1.1.2). This leads to four
constraint equations

Dn(gijkij)− gijDjkin = ψ1Dnψ0, n ∈ {1, 2, 3},
R+ gijgmn(kijkmn − kimkjn) = ψ2

1 + gijDiψ0Djψ0 + ψ2
0 ,

(1.2.4)

where D denotes the covariant derivative induced by the metric g on Σ0, and R
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is the scalar curvature of the metric g on Σ0.
We are now ready to state our first main theorem, which concerns global

regularity of the system (1.1.19) for small initial data (gij , kij , ψ0, ψ1).

Theorem 1.3. Let Σ0 := {(x, t) ∈ R4 : t = 0} and assume that (gij , kij , ψ0, ψ1)
is an initial data set on Σ0, satisfying the constraint equations (1.2.4) and the
smallness conditions

3∑
n=0

3∑
i,j=1

{∥∥ |∇|1/2+δ/4(gij − δij)
∥∥
H
N(n),n
S,wa

+ ‖ |∇|−1/2+δ/4kij‖HN(n),n
S,wa

}
+

3∑
n=0

{
‖〈∇〉ψ0‖HN(n),n

S,kg

+ ‖ψ1‖HN(n),n
S,kg

}
≤ ε0 ≤ ε.

(1.2.5)

Here N0 := 40, d := 10, δ := 10−10, N(0) := N0 + 16d, N(n) = N0 − nd for
n ≥ 1, ε is a small constant, and the operators |∇| and 〈∇〉 are defined by the
multipliers |ξ| and 〈ξ〉.

(i) Then the reduced Einstein-Klein-Gordon system

�̃ggαβ + 2∂αψ∂βψ + ψ2gαβ − F≥2
αβ (g, ∂g) = 0,

�̃gψ − ψ = 0,
(1.2.6)

admits a unique global solution (g, ψ) in M := {(x, t) ∈ R4 : t ≥ 0}, with

initial data (gij , kij , ψ0, ψ1) on Σ0 (as described in (1.2.3)). Here F≥2
αβ (g, ∂g)

are as in (1.1.15) and �̃g = gµν∂µ∂ν . The solution satisfies the harmonic
gauge conditions

0 = Γµ = gαβ∂αgβµ −
1

2
gαβ∂µgαβ , µ ∈ {0, 1, 2, 3} (1.2.7)

in M . Moreover, the metric g stays close and converges to the Minkowski metric
and ψ stays small and converges to 0 as t→∞ (in suitable norms).

(ii) In view of Proposition 1.1, the pair (g, ψ) is a global solution in M of
the Einstein-Klein-Gordon coupled system

Rαβ −DαψDβψ −
ψ2

2
gαβ = 0, �gψ − ψ = 0, (1.2.8)

with the prescribed initial data (gij , kij , ψ0, ψ1) on Σ0. In our geometric context,
globality means that all future directed timelike and null geodesics starting from
points in M extend forever with respect to their affine parametrization.

The proof of Theorem 1.3 is based on a complex bootstrap argument, involv-
ing energy estimates, vector-fields, Fourier analysis, and nonlinear scattering.
We summarize some of its main elements in subsection 1.3.1 below, and then
provide a more extensive outline of its proof in section 2.2.
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The global regularity conclusion of Theorem 1.3 is essentially a qualitative
statement, which can only be proved by a precise quantitative analysis of the
spacetime. In Chapter 7 we state and prove more precise theorems describing
our spacetime. These theorems include global quantitative control and nonlin-
ear scattering of the metric tensor and the Klein-Gordon field (Theorem 7.1),
pointwise decay estimates in the physical space (Theorem 7.2 and Lemma 7.4),
global control of timelike and null geodesics (Theorem 7.6), weak peeling es-
timates for the Riemann curvature tensor (Theorem 7.7 and Proposition 7.9),
and ADM and Bondi energy formulas (Proposition 7.11, Proposition 7.13, The-
orem 7.23, and Proposition 7.24). We will discuss some of these more precise
conclusions in section 1.3 below.

In the rest of this section we discuss previous related work and motivate
some of the assumptions on the initial data.

1.2.1 Global Stability Results in General Relativity

Global stability of physical solutions is an important topic in General Relativity.
For example, the global nonlinear stability of the Minkowski spacetime among
solutions of the Einstein-vacuum equation is a central theorem in the field,
due to Christodoulou-Klainerman [12]. See also the more recent extensions of
Klainerman-Nicolò [52], Lindblad-Rodnianski [62], Bieri and Zipser [6], Speck
[72], and Hintz-Vasy [33].

More recently, small data global regularity theorems have also been proved
for other coupled Einstein field equations. The Einstein-Klein-Gordon system
(the same system we analyze here) was considered recently by LeFloch-Ma [58],
who proved small data global regularity for restricted data, which agrees with a
Schwarzschild solution with small mass outside a compact set. A similar result
was announced by Wang [74].

Our main goals in this monograph are (1) to prove global nonlinear stability
for general unrestricted small initial data, and (2) to develop the full asymptotic
analysis of the spacetime. In particular, we answer the natural question, raised
in the physics literature by Okawa-Cardoso-Pani [66], of whether the Minkowski
solution is stable or unstable for small massive scalar field perturbations. A
similar global regularity result for general small data was announced recently
by LeFloch-Ma [59].

We also refer to the work by Fajman-Joudioux-Smulevici [19], Lindblad-
Taylor [64], and, more recently, Bigorgne-Fajman-Joudioux-Smulevici-Thalleron
[7] on the global stability of Einstein-Vlasov systems.

In a different direction, one can also raise the question of linear and nonlinear
stability of other physical solutions of the Einstein equations. Stability of the
Kerr family of solutions has been under intense study in recent years, first at
the linearized level (see, for example, [13, 30] and the references therein) and
more recently at the full nonlinear level (see [26, 32, 54]).

The stability of Kerr in the presence of a massive scalar field seems interesting
as well. Solutions to the Klein-Gordon equation in Kerr can grow exponentially



INTRODUCTION

EKGRevised6x9 October 26, 2021 6.125x9.25

9

even from smooth initial data, as shown in [70], and this phenomenon was used
by Chodosh and Shlapentokh-Rothman [10] to construct a curve of time-periodic
solutions of the Einstein-Klein-Gordon system bifurcating from (empty) Kerr
(see [31] for a prior numerical construction). Therefore a result on stability of
Kerr similar to our main theorem could only be possible, if at all, in a stronger
topology where this curve is not continuous (see also the discussion on the mini-
bosons in subsection 1.2.5 below).

1.2.1.1 Restricted initial data

One can often simplify considerably the global analysis of wave and Klein-
Gordon equations by considering initial data of compact support. The point
is that the solutions have the finite speed of propagation, thus remain sup-
ported inside a light cone, and one can use the hyperbolic foliation method and
its refinements (see [56] for a recent account) to analyze the evolution.

However, to implement this method one needs to first control the solution on
an initial hyperboloid (the “initial data”), so the method is restricted to the case
when one can establish such control. Due to the finite speed of propagation,
this is possible for compactly supported data (for systems of wave or Klein-
Gordon equations), or data that agrees with the Schwarzschild solution outside
a compact set (in the case of the Einstein equations).

The use of “restricted initial data” coupled with the hyperbolic foliation
method leads to significant simplifications of the global analysis, particularly at
the level of proving decay. In the context of the Einstein equations these ideas
have been used by many authors, such as Friedrich [21], Lindblad-Rodnianski
[62], Fajman-Joudioux-Smulevici [19], Lindblad-Taylor [64], LeFloch-Ma [58],
and Wang [74].

1.2.2 Simplified Wave-Klein-Gordon Models

Our system (1.2.6) is complicated, but one can gain intuition by looking at
simpler models. For example, one can consider the simplified system

−�u = Aαβ∂αv∂βv +Dv2,

(−�+ 1)v = uBαβ∂α∂βv + Euv,
(1.2.9)

where u, v are real-valued functions, and Aαβ , Bαβ , D, and E are real constants.
This system was introduced by LeFloch-Ma [57] as a model for the full Einstein-
Klein-Gordon system (1.2.6). Intuitively, the deviation of the Lorentzian metric
g from the Minkowski metric is replaced by a scalar function u, and the massive
scalar field ψ is replaced by v. The system (1.2.9) has the same linear struc-
ture as the Einstein-Klein-Gordon system (1.2.6), but only keeps, schematically,
quadratic interactions that involve the massive scalar field; for simplicity, all the
quadratic interactions of the wave component with itself are neglected in this
model.
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Small data global regularity for the system (1.2.9) was proved by LeFloch-Ma
[57] in the case of compactly supported initial data (the restricted data case),
using the hyperbolic foliation method. For general small initial data, global
regularity was proved by the authors [38].

Global regularity of Wave-Klein-Gordon coupled systems in 3 dimensions is
a natural topic, motivated by physical models such as the Dirac-Klein-Gordon
equations, and had been investigated earlier by Georgiev [22] and Katayama
[44]. A similar system, the massive Maxwell-Klein-Gordon system, was analyzed
recently by Klainerman-Wang-Yang [55], who also proved global regularity for
general small initial data.

Coupled Wave-Klein-Gordon systems have also been considered in 2 dimen-
sions, where the decay is slower and the global analysis requires nonlinearities
with much more favorable structure (see, for example, Ifrim-Stingo [34] and the
references therein).

1.2.3 Small Data Global Regularity Results

The system (1.2.6) can be easily transformed into a quasilinear coupled system
of wave and Klein-Gordon equations. Indeed, let m denote the Minkowski metric
and write

gαβ = mαβ + hαβ , gαβ = mαβ + gαβ≥1, α, β ∈ {0, 1, 2, 3}.

It follows from (1.2.6) that the metric components hαβ satisfy the nonlinear
wave equations

(∂2
0 −∆)hαβ = N h

αβ := KGαβ + gµν≥1∂µ∂νhαβ − F
≥2
αβ (g, ∂g) (1.2.10)

where F≥2
αβ (g, ∂g) are the semilinear terms in (1.1.15) and KGαβ := 2∂αψ∂βψ+

ψ2(mαβ + hαβ). Moreover, the field ψ satisfies the quasilinear Klein-Gordon
equation

(∂2
0 −∆ + 1)ψ = Nψ := gµν≥1∂µ∂νψ. (1.2.11)

Therefore Theorem 1.3 can be regarded as a small data global regularity re-
sult for a quasilinear evolution system. Several important techniques have been
developed over the years in the study of such problems, starting with seminal
contributions of John, Klainerman, Shatah, Simon, Christodoulou, Alinhac, and
Delort [1, 2, 11, 12, 14, 15, 42, 43, 48, 49, 50, 51, 69, 71]. These include the
vector-field method, normal forms, and the isolation of null structures.

In the case of Einstein equations and other hyperbolic systems, most global
results have been proved mostly using the “physical space” framework, based on
pointwise spacetime estimates. This is well adapted to geometric backgrounds
with non-constant coefficients. The analysis is naturally carried out through
weighted estimates and relies heavily on the presence of symmetries (vector-
fields) that can be used to extract information about solutions. This is the
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main framework for many works on General Relativity, especially away from
Minkowski space and in vacuum or with electromagnetic and massless scalar-
fields, such as [6, 7, 12, 13, 19, 26, 52, 54, 58, 59, 62, 63, 64, 72].

1.2.3.1 Fourier analysis and the Z-norm method

In the last few years new ideas have emerged in the study of global solutions
of quasilinear evolutions, inspired mainly by the advances in semilinear theory.
The basic goal is to combine the classical energy and vector-fields methods with
refined analysis of the Duhamel formula, using the Fourier transform. This
starts by decomposing an unknown U into a superposition of elementary waves

U(x, t) =
1

(2π)d

∫
Rd
V̂ (ξ, t)ei[〈x,ξ〉−tΛ(ξ)]dξ, (1.2.12)

for some appropriate dispersion relation Λ. The main objective is then to un-
derstand quantitatively properties of the “linear profile” V during the evolution.

The main advantage of the Fourier transform method over physical space
methods is the ability to identify clearly resonant and non-resonant nonlinear
interactions, by decomposing the various waves as in (1.2.12) and examining
their interactions. One can then dispose of the non-resonant interactions (us-
ing, for example, normal forms), and concentrate on a small number of resonant
interactions. This is particularly important in low dimensions (like 1 or 2 di-
mension), when decay by itself cannot be enough to lead to global control of
solutions.

In semilinear dispersive and hyperbolic equations Fourier analysis is a central
tool that has led to major progress in the entire field. On the other hand,
in the context of quasilinear evolutions, Fourier analysis has only been used
more recently, starting essentially with the “method of spacetime resonances”
of Germain-Masmoudi-Shatah [24, 25] and Gustafson-Nakanishi-Tsai [29]. The
main difficulty in the quasilinear case is that the Duhamel formula cannot be
used exclusively to study the evolution, due to derivative loss, and one has to
rely also on energy estimates.

Our general philosophy, which we use in this monograph to prove Theorem
1.3, is to work both in the physical space, mainly to prove energy estimates (in-
cluding vector-fields), and in the Fourier space, mainly to investigate resonances
using the Duhamel formula and prove decay of the solutions in time. At the
implementation level, the analysis in the Fourier space is based on a choice of
a “Z-norm” to measure the size of the linear profiles dynamically in time. This
choice is very important, and one should think of it as analogous to the choice of
the “resolution norm” in the case of semilinear evolutions (the classical choices
being Strichartz norms or Xs,b norms). The key point is that the Z-norm has
to complement well the information coming from energy estimates.

The Z-norm method, with different choices of the norm itself, depending on
the problem, was used recently by the authors and their collaborators in several
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small data global regularity problems, for water waves and plasmas, such as
[16, 17, 27, 28, 35, 36, 37, 39, 40, 41, 46]. It is particularly well suited to the
study of systems with multiple characteristics, in which different components of
the system evolve according to different dispersion relations and have different
speeds of propagation, such as plasma models or the Einstein-Klein-Gordon
system (1.2.10)–(1.2.11). The point is that such systems tend to have fewer
joint symmetries, which complicates significantly the analysis in the physical
space, but the Fourier analysis method is much less sensitive to the presence of
symmetries.

1.2.4 Assumptions on the Initial Data

The precise form of the smallness assumptions (1.2.5) on the metric initial data
gij and kij is important. Indeed, in view of the positive mass theorem of Schoen-
Yau [68], one expects the metric components gij − δij to decay no faster than
M/〈x〉 and the second fundamental form k to decay no faster than M/〈x〉2,
where M � 1 is the mass. Capturing this type of decay, using L2-based norms,
is precisely the role of the homogeneous multipliers |∇|1/2+δ/4 and |∇|−1/2+δ/4

in (1.2.5). Notice that these multipliers are sharp, up to the δ/4 power.
Our assumptions on the metric are essentially of the type

gij = δij + ε0O(〈x〉−1+δ/4), kij = ε0O(〈x〉−2+δ/4) (1.2.13)

at time t = 0. These are less restrictive than the assumptions used sometimes
even in the vacuum case ψ ≡ 0—see, for example, [12, 52, 63]—in the sense that
the initial data is not assumed to agree with the Schwarzschild initial data up to
lower order terms. For maximal time foliations, our assumptions are, however,
more restrictive than the ones in Bieri’s work [6], but we are able to prove more
precise asymptotic bounds on the metric and the Riemann curvature tensor; see
section 1.3 below.

We remark also that our assumptions (1.2.5) allow for non-isotropic initial
data, possibly with different “masses” in different directions. For the vacuum
case, initial data of this type, satisfying the constraint equations, have been
constructed recently by Carlotto-Schoen [9].

1.2.5 The Mini-bosons

A serious potential obstruction to small data global stability theorems is the
presence of non-decaying “small” solutions, such as small solitons. A remark-
able fact is that there are such small non-decaying solutions for the Einstein-
Klein-Gordon system, namely the so-called mini-boson stars. These are time-
periodic (therefore non-decaying) and spherically symmetric exact solutions of
the Einstein-Klein-Gordon system. They were discovered numerically by physi-
cists, such as Kaup [47], Friedberg-Lee-Pang [20] (see also [60]), and then con-
structed rigorously by Bizon-Wasserman [8].
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These mini-bosons can be thought of as arbitrarily small (hence the name) in
certain topologies, as explained in [8]. However, the mini-bosons (in particular
the Klein-Gordon component) are not small in the stronger topology we use
here, as described by (1.2.5), so we can thankfully avoid them in our analysis.

1.3 MAIN IDEAS AND FURTHER ASYMPTOTIC RESULTS

In this section we provide first a brief summary of some of the main ingredients
in the proof of the global nonlinear stability result in Theorem 1.3. Then, in
subsections 1.3.2–1.3.6 we present some of the additional theorems we prove in
Chapter 7, concerning the global geometry of our spacetime.

1.3.1 Global Nonlinear Stability

The classical mechanism to establish small data global regularity for quasilinear
dispersive and hyperbolic systems has two main components:

(1) Propagate control of energy functionals (high order Sobolev norms and
vector-fields);

(2) Prove dispersion/decay of the solution over time.
These are our basic goals here as well, as we investigate solutions of the

coupled Wave-Klein-Gordon system (1.2.10)–(1.2.11) in the variables hαβ and
ψ. As expected, our analysis also involves vector-fields, corresponding to the
natural symmetries of the linearized equations, namely the Lorentz vector-fields
Γa and the rotation vector-fields Ωab,

Γa := xa∂t + t∂a, Ωab := xa∂b − xb∂a, (1.3.1)

for a, b ∈ {1, 2, 3}. These vector-fields commute with both the wave operator
and the Klein-Gordon operator in the flat Minkowski space. We note that the
scaling vector-field S = t∂t+x ·∇x does not satisfy nice commutation properties
with the linearized system (due to the Klein-Gordon field), so we cannot use it
in our analysis.

The main objects we analyze in the proof of nonlinear stability are the nor-
malized solutions ULhαβ and ULψ and the associated linear profiles V Lhαβ and
V Lψ, defined by

ULhαβ (t) := ∂t(Lhαβ)(t)− iΛwa(Lhαβ)(t), V Lhαβ (t) := eitΛwaULhαβ (t),

ULψ(t) := ∂t(Lψ)(t)− iΛkg(Lψ)(t), V Lψ(t) := eitΛkgULψ(t),

(1.3.2)

where Λwa = |∇|, Λkg = 〈∇〉 =
√
|∇|2 + 1. Here L denotes differential opera-

tors obtained by applying up to three vector-fields Γa or Ωab, and these operators
are applied to the metric components hαβ and the field ψ.
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The complex-valued normalized solutions ULhαβ and ULψ capture both the
time derivatives (as the real part) and the spatial derivatives (as the imaginary
part) of the variables hαβ and ψ. The linear profiles V Lhαβ and V Lψ, which are
constructed by going forward in time along the nonlinear evolution, and then
going backwards in time along the linear flow, capture the cumulative effect of
the nonlinearity over time.

Our proof of global stability relies on controlling simultaneously three types
of norms, as part of a bootstrap argument:

(1) High order energy norms, involving Sobolev derivatives and the vector-
fields Γa and Ωab, with slow growth in time;

(2) Matching weighted estimates on the profiles V Lhαβ and V Lψ in Sobolev
spaces, again with slow growth in time;

(3) Sharp uniform in time estimates on the Klein-Gordon profile V ψ and on
some parts of the metric profiles V hαβ , in a suitable Z-norm to be defined.

We discuss these estimates in more detail in the rest of this subsection.

1.3.1.1 Energy estimates and weighted estimates on the profiles

The main energy estimates we prove as part of our bootstrap argument are∥∥(〈t〉|∇|≤1)δ/4|∇|−1/2ULhαβ (t)
∥∥
Hn(L) +

∥∥ULψ(t)
∥∥
Hn(L) . ε0〈t〉H(L)δ, (1.3.3)

for a suitable hierarchy of parameters n(L) and H(L) that depend on the dif-
ferential operator L. We remark that the energy estimates we prove for the
metric variables ULhαβ also contain significant information at low frequencies,
due to the operators |∇|−1/2 and |∇|≤1, which are connected to the natural
|x|−1+ decay of the metric components hαβ . The nonlinear propagation of the
low-frequency energy bounds is, in fact, the more subtle part of the argument.

The second component of our bootstrap argument consists of compatible
weighted estimates on the profiles V Lhαβ and V Lψ, of the form

2k/2(2k
−
〈t〉)δ/4‖Pk(xlV

Lhαβ )(t)‖L2

+ 2k
+

‖Pk(xlV
Lψ)(t)‖L2 . ε0〈t〉H

′(L)δ2−n
′(L)k+

,
(1.3.4)

for any k ∈ Z, l ∈ {1, 2, 3}, and differential operator L containing at most
two vector-fields Γa or Ωab. Here Pk denote Littlewood-Paley projections to
frequencies ≈ 2k and x+ = max(x, 0) and x− = min(x, 0) for any x ∈ R.

The energy estimates (1.3.3) and the weighted estimates (1.3.4) are com-
patible, at the level of the important parameters H(L), n(L), H ′(L), and n′(L)
that measure the slow growth in time and the Sobolev smoothness of the various
components.

The weighted estimates (1.3.4) imply almost optimal pointwise decay esti-
mates on the metric components and the Klein-Gordon field, with improved
decay at low and high frequencies, due to Lemma 3.9. We emphasize, however,
that weighted estimates on linear profiles are a lot stronger than pointwise de-
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cay estimates on solutions, and serve many other purposes. For example, space
localization of the linear profiles allows us to decompose the main variables both
in frequency and space, which leads to precise control in nonlinear estimates.

1.3.1.2 Weak null structure and decomposition of the metric tensor

The proof of the global stability theorem is involved, mainly because the non-
linearities N h

αβ and Nψ have complicated structure, both at the semilinear level

(for N h
αβ) and at the quasilinear level.

In particular, it is well known that the semilinear terms F≥2
αβ (g, ∂g) do not

have the classical null structure. They have, however, a remarkable weak null
structure in harmonic coordinates, which is still suitable for global analysis as
discovered by Lindblad-Rodnianski [62]. To identify and use this weak null
structure we need to decompose the tensor hαβ .

The standard way to decompose the metric tensor in General Relativity
is based on null frames (see, for instance, [12] or [62]). Here we use a different
decomposition of the metric tensor, reminiscent of the div-curl decomposition of
vector-fields in fluid models, which is connected to the classical work of Arnowitt-
Deser-Misner [3] on the Hamiltonian formulation of General Relativity. For us,
this decomposition has the advantage of being more compatible with the Fourier
transform and the vector-fields Ωab and Γa.

More precisely, let Rj = |∇|−1∂j , j ∈ {1, 2, 3}, denote the Riesz transforms
on R3, and let

F := (1/2)[h00 +RjRkhjk], F := (1/2)[h00 −RjRkhjk],

ρ := Rjh0j , ωj :=∈jkl Rkh0l,

Ωj :=∈jkl RkRmhlm, ϑjk :=∈jmp∈knq RmRnhpq.
(1.3.5)

Geometrically, the variables F +F , ρ, and ω are linked to the lapse and the shift
vector, F − F and Ω are gauge components associated to spatial coordinates,
while ϑ corresponds to the (linearized) coordinate-free component of the spatial
metric (see Proposition 7.14). The metric tensor h can be recovered linearly
from the components F, F , ρ, ωj ,Ωj , ϑjk.

Our analysis shows that the components F, ωj ,Ωj , ϑjk satisfy good wave
equations, with all the quadratic semilinear terms having suitable null structure.
On the other hand, the components F and ρ (which are related elliptically due
to the harmonic gauge conditions) satisfy wave equations with some quadratic
semilinear terms with no null structure. However, these non-null quadratic
semilinear terms have the redeeming feature that they can be expressed only in
terms of the good components ϑjk.

This algebraic structure suggests that we should aim to prove that the good
components F, ωj ,Ωj , ϑjk do not grow during the evolution, in suitable norms
to be made precise. On the other hand, the components F , ρ, as well as all the
components Lhαβ and Lψ which contain some weighted vector-fields Ωab or Γa,
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should be allowed to grow in time slowly, at suitable rates to be determined. We
note that our vector-fields are adapted to the Minkowski geometry, containing
the coordinate functions xa and t, not to the true geometry of the spacetime;
thus it is expected that they can only be useful only up to 〈t〉0+ losses. At a
qualitative level, this is precisely what our final conclusions are.

1.3.1.3 Uniform bounds and the Z-norm

To prove uniform control on the good metric components F, ωj ,Ωj , ϑjk and the
field ψ we use what we call the Z-norm method : we define the special norms

‖f‖Zwa := sup
k∈Z

2N0k
+

2k
−(1+κ)‖P̂kf‖L∞ ,

‖f‖Zkg := sup
k∈Z

2N0k
+

2k
−(1/2−κ)‖P̂kf‖L∞ ,

(1.3.6)

where N0 = 40 and κ = 10−3. The last component of our bootstrap construction
involves uniform bounds of the form

‖V F (t)‖Zwa + ‖V ωa(t)‖Zwa + ‖V ϑab(t)‖Zwa + ‖V ψ(t)‖Zkg . ε0, (1.3.7)

for any t ∈ [0,∞) and a, b ∈ {1, 2, 3}, where the profiles V G are defined in as
(1.3.2),

UG(t) := ∂tG(t)− iΛwaG(t), V G(t) := eitΛwaUG(t), (1.3.8)

for G ∈ {F, ωa, ϑab}. The main point of the estimates (1.3.7) is the uniformity in
time, in particular allowing us to prove sharp ε0〈t〉−1 pointwise decay on some
components of the metric tensor.

The Z-norms defined in (1.3.6) measure the L∞ norm of solutions in the
Fourier space, with weights that are particularly important at low frequencies.
They cannot be propagated using energy estimates, since they are not L2-based
norms. We use instead the Duhamel formula, in the Fourier space, which leads
to derivative loss. Because of this the Z-norm bounds (1.3.7) are weaker than
the energy bounds (1.3.3) at very high frequencies. One should think of the
Z-norm bounds as effective at middle frequencies, say 〈t〉−1/2 . 2k . 〈t〉1/2.

1.3.2 Nonlinear Scattering

The global dynamics of solutions is complicated mainly because they do not
scatter linearly as t → ∞. This is due to the low frequencies of the metric
tensor in the quasilinear terms gµν≥1∂µ∂νhαβ and gµν≥1∂µ∂νψ, which create a long-
range perturbation.

To understand the asymptotic behavior of our spacetime we need to renor-
malize the profiles. More precisely, we define the wave phase correction (related
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to optical functions)

Θwa(ξ, t) :=

∫ t

0

{
hlow00 (sξ/Λwa(ξ), s)

Λwa(ξ)

2

+ hlow0j (sξ/Λwa(ξ), s)ξj + hlowjk (sξ/Λwa(ξ), s)
ξjξk

2Λwa(ξ)

}
ds

(1.3.9)

and the Klein-Gordon phase correction

Θkg(ξ, t) :=

∫ t

0

{
hlow00 (sξ/Λkg(ξ), s)

Λkg(ξ)

2

+ hlow0j (sξ/Λkg(ξ), s)ξj + hlowjk (sξ/Λkg(ξ), s)
ξjξk

2Λkg(ξ)

}
ds,

(1.3.10)

where hlowαβ are low frequency components of the metric tensor,

ĥlowαβ (ρ, s) := ϕ≤0(〈s〉p0ρ)ĥαβ(ρ, s), p0 := 0.68. (1.3.11)

The choice of p0, slightly bigger than 2/3, is important in the proof to justify the
correction. Geometrically, the two phase corrections Θwa and Θkg are obtained
by integrating suitable low frequency components of the metric tensor along the
characteristics of the wave and the Klein-Gordon linear flows.

The nonlinear profiles are obtained by multiplication in the Fourier space,

V̂ G∗ (ξ, t) := e−iΘwa(ξ,t)V̂ G(ξ, t), V̂ ψ∗ (ξ, t) := e−iΘkg(ξ,t)V̂ ψ(ξ, t), (1.3.12)

for G ∈ {F, ωa, ϑab}. Notice that ‖V G∗ ‖Zwa = ‖V G‖Zwa and ‖V ψ∗ ‖Zkg =

‖V ψ‖Zkg , since the phases Θwa and Θkg are real-valued. The point of this

construction is that the new nonlinear profiles V F∗ , V ωa∗ , V ϑab∗ , and V ψ∗ converge
as the time goes to infinity, i.e.,

‖V F∗ (t)− V F∞‖Zwa + ‖V ωa∗ (t)− V ωa∞ ‖Zwa + ‖V ϑab∗ (t)− V ϑab∞ ‖Zwa . ε0〈t〉−δ/2,
‖V ψ∗ (t)− V ψ∞‖Zkg . ε0〈t〉−δ/2,

(1.3.13)

where V F∞ , V
ωa
∞ , V ϑab∞ ∈ Zwa and V ψ∞ ∈ Zkg are the nonlinear scattering data.

These functions, in particular the components V ϑab∞ and V ψ∞, are important in
the asymptotic analysis of our spacetime. Chapter 5 is mainly concerned with
the proofs of the bounds (1.3.13).

1.3.3 Asymptotic Bounds and Causal Geodesics

Our core bootstrap argument relies on controlling the solution both in the phys-
ical space and in the Fourier space, as summarized above. However, after closing
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the main bootstrap argument, we can derive classical bounds on the solutions
in the physical space, without explicit use of the Fourier transform.

We start with decay estimates in the physical space. Let

L := ∂t + ∂r, L := ∂t − ∂r, (1.3.14)

where r := |x| and ∂r := |x|−1xj∂j . Let

T := {L, r−1Ω12, r
−1Ω23, r

−1Ω31} (1.3.15)

denote the set of “good” vector-fields, tangential to the (Minkowski) light cones.
In Theorem 7.2 we prove that the metric components satisfy the bounds

|h(x, t)|+ 〈t+ r〉|∂V h(x, t)|+ 〈t− r〉|∂Lh(x, t)| . ε0〈t+ r〉2δ
′−1, (1.3.16)

in the manifold M := {(x, t) ∈ R3 × [0,∞)}, where r = |x|, V ∈ T , h ∈ {hαβ},
∂W := Wα∂α, and δ′ = 2000δ. The scalar field decays faster but with no
derivative improvement,

|ψ(x, t)|+ |∂0ψ(x, t)| . ε0〈t+ r〉δ
′/2−1〈r〉−1/2,

|∂bψ(x, t)| . ε0〈t+ r〉δ
′/2−3/2, b ∈ {1, 2, 3}.

(1.3.17)

Also, in Lemma 7.4 we show that the second order derivatives to the metric
satisfy the bounds

〈r〉2|∂V1
∂V2

h(x, t)|+ 〈t− r〉2|∂2
Lh(x, t)|

+ 〈t− r〉〈r〉|∂L∂V1
h(x, t)| . ε0〈r〉3δ

′−1,
(1.3.18)

in the region M ′ := {(x, t) ∈M : t ≥ 1, |x| ≥ 2−8t}, where V1, V2 ∈ T are good
vector-fields.

The pointwise bounds (1.3.16)–(1.3.18) are as expected, including the small
δ′ losses that are due to our weak assumptions (1.2.13) on the initial data. These
bounds follow mainly from the profile bounds (1.3.4) and linear estimates.

As an application, we can describe precisely the future-directed causal geo-
desics in our spacetime M . Indeed, in Theorem 7.6 we show that if p =
(p0, p1, p2, p3) is a point in M and v = vα∂α is a null or timelike vector at
p, normalized with v0 = 1, then there is a unique affinely parametrized global
geodesic curve γ : [0,∞)→M with

γ(0) = p = (p0, p1, p2, p3), γ̇(0) = v = (v0, v1, v2, v3).

Moreover, the geodesic curve γ becomes asymptotically parallel to a geodesic
line of the Minkowski space, i.e., there is a vector v∞ = (v0

∞, v
1
∞, v

2
∞, v

3
∞) such

that, for any s ∈ [0,∞),

|γ̇(s)− v∞| . ε0(1 + s)−1+6δ′ and |γ(s)− v∞s− p| . ε0(1 + s)6δ′ .
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1.3.4 Weak Peeling Estimates

These are classical estimates on asymptotically flat spacetimes, which assert,
essentially, that certain components of the Riemann curvature tensor have im-
proved decay compared to the general estimate |R| . ε0〈t + r〉−1+〈t − r〉−2.
The rate of decay is mainly determined by the signature of the component.

More precisely, we use the Minkowski frames (L,L, ea), where L,L are as in
(1.3.14) and ea ∈ Th := {r−1Ω12, r

−1Ω23, r
−1Ω31}, and assign signature +1 to

the vector-field L, −1 to the vector-field L, and 0 to the horizontal vector-fields
in Th. With e1, e2, e3, e4 ∈ Th, we define Sig(a) as the set of components of the
Riemann tensor of total signature a, so

Sig(−2) := {R(L, e1, L, e2)},
Sig(2) := {R(L, e1, L, e2)},

Sig(−1) := {R(L, e1, e2, e3),R(L,L,L, e1)},
Sig(1) := {R(L, e1, e2, e3),R(L,L, L, e1)},
Sig(0) := {R(e1, e2, e3, e4),R(L,L, e1, e2),R(L, e1, L, e2),R(L,L, L, L)}.

(1.3.19)

These components capture the entire curvature tensor, due to the symmetries
(1.1.11).

In Theorem 7.7 we prove that if Ψ(a) ∈ Sig(a), a ∈ {−2,−1, 1, 2}, then

|Ψ(−2)(x, t)| . ε0〈r〉7δ
′−1〈t− r〉−2,

|Ψ(−1)(x, t)| . ε0〈r〉7δ
′−2〈t− r〉−1,

|Ψ(2)(x, t)|+ |Ψ(1)(x, t)|+ |Ψ(0)(x, t)| . ε0〈r〉7δ
′−3,

(1.3.20)

in the region M ′ = {(x, t) ∈ M : t ≥ 1 and |x| ≥ 2−8t}. This holds in all cases
except if Ψ(0) is of the form R(L, e1, L, e2) ∈ Sig(0), in which case we can only
prove the weaker bounds

|R(L, e1, L, e2)(x, t)| . ε0〈r〉7δ
′−2〈t− r〉−1. (1.3.21)

Notice that we define our decomposition in terms of the Minkowski null pair
(L,L) instead of more canonical null frames (or tetrads) adapted to the metric
g (see, for example, [12], [52], [53]). This is not important however, since the
weak peeling estimates are invariant under natural changes of the frame of the
form (L,L, ea)→ (L′, L′, e′a), satisfying

|(L− L′)(x, t)|+ |(L− L′)(x, t)|+ |(ea − e′a)(x, t)| . r−1+2δ′ in M ′.

As we show in Proposition 7.9, one can in fact restore the full ε0〈r〉7δ
′−3 de-

cay of the component R(L′, e′1, L
′, e′2), provided that L′ is almost null, i.e.,

|g(L′, L′)(x, t)| . 〈r〉−2+4δ′ in M ′.
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The almost cubic decay we prove in (1.3.20)–(1.3.21) seems optimal in our
problem, for two reasons. First, the Ricci components themselves involve squares
of the massive field, and cannot decay better than 〈r〉−3+ in M ′. Moreover, the
almost cubic decay is also formally consistent with the weak peeling estimates
of Klainerman-Nicolò [53, Theorem 1.2 (b)] in the setting of our more general
metrics (formally, one would take γ = −1/2− and δ = 2+ with the notation in
[53], to match our decay assumptions (1.2.13) on the initial data; this range of
parameters is not allowed, however, in [53] as δ is assumed to be < 3/2).

1.3.5 The ADM Energy and the Linear Momentum

The ADM energy (or the ADM mass) measures the total deviation of our space-
time from the Minkowski solution. It is calculated according to the standard
formula (see, for example, [4])

EADM (t) :=
1

16π
lim
R→∞

∫
SR,t

(∂jgnj − ∂ngjj)
xn

|x|
dx, (1.3.22)

where the integration is over large (Euclidean) spheres SR,t ⊆ Σt = {(x, t) :
x ∈ R3} of radius R. In our case we show in Proposition 7.11 that the energy
EADM (t) = EADM is well defined and constant in time. Moreover, it is non-
negative and can be expressed in terms of the scattering profiles V ψ∞ and V ϑmn∞
(see (1.3.13)) according to the formula

EADM =
1

16π
‖V ψ∞‖2L2 +

1

64π

∑
m,n∈{1,2,3}

‖V ϑmn∞ ‖2L2 . (1.3.23)

We can also prove conservation of one other natural quantity, namely the
linear momentum. Let N denote the future unit normal vector-field to the
hypersurface Σt, let gab = gab denote the induced (Riemannian) metric on Σt,
and define the second fundamental form

kab := −g(D∂aN, ∂b) = g(N,D∂a∂b) = NαΓαab, a, b ∈ {1, 2, 3}.

Then we define the linear momentum pa, a ∈ {1, 2, 3},

pa(t) :=
1

8π
lim
R→∞

∫
SR,t

πab
xb

|x|
dx, πab := kab − (trk)gab,

In Proposition 7.13 we prove that the functions pa are well defined and constant
in time. Moreover, we show that

∑
a∈{1,2,3} p2

a ≤ E2
ADM , so the ADM mass

MADM :=
(
E2
ADM −

∑
a∈{1,2,3} p2

a

)1/2 ≥ 0 is well defined.
We remark that the momentum pa vanishes in the case of metrics g that

agree with the Schwarzschild metric (including time derivatives) up to lower
order terms. In particular, it vanishes in the case of metrics considered in earlier
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work on the stability for the Einstein vacuum equations, such as [12, 52, 62].
However, in our non-isotropic case the linear momentum does not necessarily
vanish, and the quantities pa defined above are natural conserved quantities of
the evolution.

1.3.6 The Bondi Energy

To define a Bondi energy we have to be more careful. We would like to compute
integrals over large spheres as in (1.3.22), and then take the limit along outgoing
null cones towards null infinity. But the limit exists only if we account properly
for the geometry of the problem.

First we need to understand the bending of the light cones caused by the
long-range effect of the nonlinearity (i.e., the modified scattering). For this we
construct (in Lemma 7.19) an almost optical function u : M ′ → R, satisfying
the properties

u(x, t) = |x| − t+ ucor(x, t), gαβ∂αu∂βu = O(ε0〈r〉−2+6δ′). (1.3.24)

In addition, the correction ucor = O(ε0〈r〉3δ
′
) is close to Θwa/|x| (see (1.3.9))

near the light cone,∣∣∣ucor(x, t)− Θwa(x, t)

|x|

∣∣∣ . ε0〈r〉−1+3δ′(〈r〉0.68 + 〈t− |x|〉), (1.3.25)

if (x, t) ∈M ′,
∣∣t−|x|∣∣ ≤ t/10. Notice that we work with an approximate optical

condition gαβ∂αu∂βu = O(ε0〈r〉−2+6δ′) instead of the classical optical condition
gαβ∂αu∂βu = 0. This is mostly for convenience, since the weaker condition is
still good enough for our analysis and almost optical functions are much easier
to construct than exact optical functions.

For any t ≥ 1 we define the hypersurface Σt := {(x, t) ∈ M : x ∈ R3},
and let gjk = gjk denote the induced (Riemannian) metric on Σt. With u as
above, we define the modified spheres SuR,t := {x ∈ Σt : u(x, t) = R} and let

nj := ∂ju(gab∂au∂bu)−1/2 denote the unit vector-field normal to the spheres
SuR,t. For R ∈ R and t large (say t ≥ 2|R|+ 10) we define

EBondi(R) :=
1

16π
lim
t→∞

∫
SuR,t

gab(∂ahjb − ∂jhab)nj dσ, (1.3.26)

where dσ = dσ(g) is the surface measure induced by the metric g. Notice that
this definition is a more geometric version of the definition (1.3.22), in the sense
that the integration is with respect to the metric g. Geometrically, we fix R and
integrate on surfaces SuR,t that live on the “light cone” {u(x, t) = R}

In Theorem 7.23 we prove our main result: the limit in (1.3.26) exists, and
EBondi : R→ R is a well-defined increasing and continuous function on R, which
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increases from the Klein-Gordon energy EKG to the ADM energy EADM , i.e.,

lim
R→−∞

EBondi(R) = EKG :=
1

16π
‖V ψ∞‖2L2 , lim

R→∞
EBondi(R) = EADM .

(1.3.27)
The definition (1.3.26) of the Bondi energy is consistent with the general

heuristics in [73, Chapter 11] and with the definition in [67, Section 4.3.4].
It also has expected properties, like monotonicity, continuity, and satisfies the
limits (1.3.27).

However, it is not clear to us if this definition is identical to the definition
used by Klainerman-Nicolò [52, Chapter 8.5], starting from the Hawking mass.
In fact, at the level of generality of our metrics (1.2.13), it not even clear that
one can prove sharp r−3 pointwise decay on some of the signature 0 components
of the curvature tensor, which is one of the ingredients of the argument in [52].

We notice that the Klein-Gordon energy EKG is part of EBondi(R), for all
R ∈ R. This is consistent with the geometric intuition, since the matter travels
at speeds lower than the speed of light and accumulates at timelike infinity, not
at null infinity. We can further measure its radiation by taking limits along
timelike cones. Indeed, for α ∈ (0, 1) let

Ei+(α) :=
1

16π
lim
t→∞

∫
Sαt,t

(∂jhnj − ∂nhjj)
xn

|x|
dx, (1.3.28)

where the integration is over the Euclidean spheres Sαt,t ⊆ Σt of radius αt. In
Proposition 7.24 we prove that the limit in (1.3.28) exists, and Ei+ : (0, 1)→ R
is a well-defined continuous and increasing function, satisfying

lim
α→0

Ei+(α) = 0, lim
α→1

Ei+(α) = EKG. (1.3.29)

1.3.7 Organization

The rest of this monograph is organized as follows:
In Chapter 2 we introduce our main notations and definitions and state

precisely our main bootstrap Proposition 2.3. This proposition is the key quan-
titative result leading to global nonlinear stability, and its proof covers Chapters
3, 4, 5, and 6. Then we provide a detailed outline of the proof of this proposition,
describing at a conceptual level the entire construction and the main ingredients
of the proof.

In Chapter 3 we prove several important lemmas that are being used in
the rest of the analysis, such as Lemmas 3.4 and 3.6 on the structure and
bounds on quadratic resonances, Lemma 3.9 concerning linear estimates for
wave and Klein-Gordon evolutions, and Lemmas 3.10–3.12 concerning bilinear
estimates. Finally, we use these lemmas and the bootstrap hypothesis to prove
linear estimates on the solutions and the profiles, such as Lemmas 3.15 (localized
L2 bounds) and Lemma 3.16 (pointwise decay).
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In Chapter 4 we analyze our main nonlinearities LN h
αβ and LNψ at a fixed

time t. The main results in this chapter are Proposition 4.7 (localized L2, L∞,
and weighted L2 bounds on these nonlinearities), Lemmas 4.19–4.20 (identifi-
cation of the energy disposable nonlinear components), and Proposition 4.22
(decomposition of the main nonlinearities).

In Chapter 5 we prove the main bootstrap bounds (2.1.50) on the energy
functionals. We start from the decomposition in Proposition 4.22, perform ener-
gy estimates, and prove bounds on all the resulting spacetime integrals. The
main spacetime bounds are stated in Proposition 5.2, and are proved in the rest
of the chapter, using normal forms, null structures, angular decompositions, and
paradifferential calculus in some of the harder cases.

In Chapter 6 we first prove the main bootstrap bounds (2.1.51) (weighted
estimates on profiles) in Proposition 6.2, as a consequence of the improved energy
estimates and the nonlinear bounds in Proposition 4.7. Then we prove the main
bootstrap bounds (2.1.52) (the Z-norm estimates). This proof has several steps,
such as the renormalization procedures in (6.2.4)–(6.2.6) and (6.3.3)–(6.3.4), and
the estimates (6.2.14) and (6.3.16) showing boundedness and convergence of the
nonlinear profiles in suitable norms in the Fourier space.

In Chapter 7 we prove a full, quantitative version of our main global regular-
ity result (Theorem 7.1) as well as all the other consequences on the asymptotic
structure of our spacetimes, as described in detail in subsections 1.3.3–1.3.6
above.
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