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Chapter One

Introduction

This monograph describes how our understanding of magnetic reconnection, a funda-
mental process in the universe, has developed from a classical concept based on magne-
tohydrodynamics (MHD) to a modern concept based on kinetic and two-fluid physics
theory, by which many phenomena observed in laboratory and space plasmas are now
explained.

1.1 CONCEPT OF MAGNETIC RECONNECTION
AND ITS DEVELOPMENT

Magnetic reconnection is a fundamental physical process in which magnetic-field-line
configuration changes its topology, leading to a new equilibrium state of lower mag-
netic energy. During this process, part of the magnetic energy is converted into the
kinetic energy of plasma through acceleration or heating of charged particles, which
is the most important aspect of magnetic reconnection. In astrophysical and laboratory
plasmas, magnetic reconnection occurs ubiquitously, rearranging the configuration of
magnetic field lines and simultaneously changing macroscopic quantities of plasmas
such as flow and temperature. Magnetic reconnection is seen in the evolution of solar
flares, coronal mass ejection, and in the interaction of solar winds with the earth’s mag-
netosphere. It is considered to occur in the formation of stars. It also occurs during the
self-organization process of current-carrying fusion plasmas.

In magnetic fusion devices, plasma is confined by the combined forces of internal
and external magnetic fields. Thus, the interaction of magnetic field lines with plasma
determines the confinement features of hot plasmas. In toroidal fusion devices, toroidal
currents are usually induced to heat the plasma and generate magnetic field config-
urations that effectively confine the hot fusion plasma by compressing pinch forces.
There is a remarkable feature common to these configurations: the plasmas constantly
tend to relax to a quiescent state through global magnetic self-organization processes in
which magnetic reconnection plays a key role. Understanding and controlling magnetic
reconnection in fusion devices is essential to creating a reliable fusion reactor core.

Magnetic fields can be found everywhere in the universe at all scales: in the earth’s
magnetosphere, in the solar corona, and on larger scales from the interstellar medium
to galaxy clusters. How are magnetic fields generated in the universe? How do they
determine the properties of plasmas? Understanding magnetic reconnection provides
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Figure 1.1. See Color Plate 1. Soft-X-ray picture from the TRACE satellite. [https:
/Iwww.solar-facts-and-advice.com/solar-flares.html]

a key to these fundamental questions about the universe. When magnetic energy sig-
nificantly exceeds the plasma’s kinetic or thermal energy, the magnetic energy tends
to be converted to kinetic energy through magnetic reconnection. When there is abun-
dant kinetic energy in a plasma with respect to magnetic energy, just like in the early
universe (W), > Wp), magnetic fields are considered to be generated through a con-
verse process, a dynamo mechanism in plasma. Even in this dynamo process, magnetic
reconnection often plays an important role.

Solar flares exhibit perhaps the clearest visual examples of magnetic reconnection
and have been investigated for many decades. Through soft-X-ray pictures, which are
considered to represent magnetic-field-line configurations of the solar atmosphere, we
can visualize illuminating examples of the global topology change of plasma configu-
rations (Tsuneta, 1996; Masuda et al., 1994; Gabriel et al., 1997; Golub et al., 1999;
Lin et al., 2003). As shown in TRACE satellite data (Golub et al., 1999; figure 1.1),
the topologies of soft-X-ray images are seen to change within a timescale of minutes
or hours in the solar atmosphere, in which the magnetic diffusion time for a typical
flare, based on the classical calculation for collisional diffusion, is estimated to be as
long as 1 million years. These observations suggest the presence of fast changes of
the global field-line topology, implying the existence of an anomalously fast magnetic
reconnection process. Giovanelli (1946) noted that the abundant magnetic field energy
in the chromosphere could be converted to electron kinetic energy during this process.
Although the theory of MHD was not used in his calculation and the evolution of the
sunspot field was treated as though it was a low-frequency wave, satellite measure-
ments later showed that his concept is indeed valid and can be applied to solar corona
reconnection.

In the early days of plasma research, a powerful way of describing the plasma
dynamics was developed based on MHD, which treat plasma as a one-fluid element.
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MHD theory was built upon the foundation of hydrodynamics by implementing the
theory of electromagnetism. This MHD was found to be very effective, particularly
when the Lundquist number (which is defined as the ratio of the magnetic diffusion
time (= ;/,()L2 V4/n) to the crossing time of the Alfvén waves (=L/V4) in the region) is
high (S>> 1): S~ 10'? for a solar flare plasma of 10,000 km and S > 10° for tokamak
plasmas. In this situation, plasma dynamics can be formulated based on the principle
of flux freezing, namely that plasma always moves with magnetic field lines (as if it
is frozen to them) with no dissipation. We call this principle “ideal MHD” dynamics.
In ideal MHD, the plasma resistivity caused by collisions between electrons and ions
and the viscosity caused by like-particle collisions are neglected in most cases. On the
other hand, it was also realized that ideal MHD breaks down in a region of magnetic
reconnection because the flux freezing principle does not hold in reconnecting plas-
mas. In other words, magnetic reconnection, in which field lines change their topology
inducing magnetic energy dissipation at the reconnection layer, cannot be described by
ideal MHD.

How do magnetic field lines move around in plasmas and how do they reorganize?
Ideal MHD, developed in the early 1950s, describes the dynamics of highly conduc-
tive plasmas, where the electric field parallel to the magnetic field line, E), vanishes
(Sweet, 1958; Parker, 1957; Vasyliunas, 1975; Dungey, 1995). In this idealized model,
magnetic field lines always move with the plasma and remain intact and never break or
tear apart, as we will see in chapter 3 in detail. To consider the physical picture of this
situation more precisely, we can represent any magnetic field by a set of lines that fills
the system. The lines are tangent to the magnetic field and their density equals the field
strength. If the system is time dependent, the features of the lines are different at every
instant. If the plasma moving with the field lines is infinitely conducting, a physical
identity can be assigned to the lines. If the magnetic field lines move with the plasma,
they will continue to represent the magnetic field at any later time. This allows us to
picture the magnetic field clearly. The field thus consists of strings embedded in the
plasma which are neither created or destroyed. The magnetic force is represented by
imagining the strings to have longitudinal tension and transverse pressure. If the strings
are sharply bent, the curvature force replicates the magnetic tension force. If the lines
are put closer together and bunched in a region, there is a transverse force due to the
magnetic pressure force. Any plasma on a given line stays on that line as it moves, and
cannot move to another line. This is basically the flux freezing feature associated with
ideal MHD. We will revisit this concept later in detail in chapter 3.

Let’s consider two magnetic field lines that are approaching each other in a small
region of plasma. Outside this region, plasma fluid is frozen to field lines as described
by ideal MHD. When the two field lines approach very close at an angle in a nar-
row region (figure 1.2), the magnetic field gradient becomes large. This interaction of
magnetic field lines generates a current sheet due to Ampere’s law V x B = g j. We
note that since the presence of a current sheet requires different motions of electrons
and ions, strictly speaking this phenomenon cannot be described by single-fluid ideal
MHD theory. The exact treatment of this region requires two-fluid physics as described
in chapters 4 and 5. In MHD theory, we called this a diffusion region. In this area, the
field lines are not frozen to the plasma, and they lose their identity, break, and reconnect.
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Magnetic reconnection
(a)

/XX

Before reconnection After reconnection Plasma acceleration
and heating

Figure 1.2. Schematic view of magnetic reconnection. After reconnection, plasma heat-
ing and acceleration follow.

(b) y

\ Externally driven ﬂow/

Figure 1.3. Formation of current sheet by externally driven flow. [From Biskamp
(2000).]

After reconnection occurs, the two newly connected field lines accelerate plasma fluid
due to a tension force generated by the reconnection. This interaction of field lines leads
in most cases to a singular sheet of high current density in plasma where E| becomes
sufficiently large (E = E - B/B #0) to induce nonideal-MHD plasma behavior and to
cause the magnetic field lines to lose their connectivity and identity. This is why we
call it a diffusion region.

As shown in two-dimensional geometry by figure 1.3, Dungey (1953) showed that
such a current sheet can indeed be formed in a plasma by the collapse of the magnetic
field near an X-type neutral point, and suggested that “lines of force can be broken
and rejoined in the current sheet.”” We note that if it were not for a plasma, this would
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Figure 1.4. Cross-section of the simplest model of the magnetosphere in the day and
night meridian. [From https://mms.gsfc.nasa.gov/science.html.]

not happen. Instead, the two opposing field lines would meet with an X-type cross-
ing of angle 90 degrees, satisfying the Maxwell equations in a vacuum, V x B =0
(because there is no current sheet) and V - B =0. This sheet in a plasma is called a
neutral sheet or a current sheet. As previously mentioned, it is often called a diffusion
region since magnetic field lines lose their connectivity, diffuse, and reconnect in the
sheet. When the field lines are reconnected, the topology of magnetic configuration
changes and j x B forces expel the plasma from the diffusion region and result in the
conversion of magnetic energy into kinetic energy. Thus, it is important to note that
while the topology of magnetic configurations changes by magnetic reconnection, the
conversion of magnetic energy to kinetic energy occurs at the same time and the plasma
gains energy. This is a very important aspect of magnetic reconnection, as mentioned
before.

An important example of flux freezing and magnetic reconnection in a space plasma
is shown in figure 1.4, illustrating a simplified two-dimensional schematic picture of
the solar-wind interaction with the earth’s magnetosphere. The plasma on the incoming
solar wind is embedded on solar-wind magnetic field lines that are separated from the
magnetospheric lines. In the ideal MHD picture, there is no way for the solar-wind
plasma and energetic particles to penetrate into the earth’s magnetosphere, owing to
the flux freezing principle. The solar wind is accordingly forced to move around the
magnetosphere and is blown downstream.

At the magnetopause, where the solar wind presses against the magnetic pressure
of the earth’s dipole field, the interacting region becomes very thin, and the motions of
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plasma particles, ions, and electrons are quite different with respect to the magnetic
fields of both sides and in the thin magnetic reconnection region. To describe this
type of reconnection layer, a more general theory than MHD is necessary for a proper
treatment of the neutral layer, that takes into account the different behaviors of electrons
and ions. Reconnection layers, such as those created in the magnetopause (Vasyliunas,
1975; Dungey, 1995; Kivelson and Russell, 1995), have thicknesses that are compa-
rable to the ion skin depth c¢/wp; (~50km). This situation leads to strong two-fluid
effects, especially the Hall effect, in which magnetized electrons flow perpendicular to
the magnetic fields in the neutral sheet. This effect induces a large reconnection electric
field at the reconnection region and is thus considered to be responsible for speeding up
the rate of reconnection, which is larger than the classical MHD rate (to be described
in chapter 5).

In such a situation, magnetic reconnection takes place at the front and the tail parts
of the magnetosphere, even if the plasma is truly infinitely conducting. Because of mag-
netic reconnection, some of the solar-wind lines break near the surface separating them
and they reconnect to lines in the magnetosphere, which also break. As a result, some
of the solar-wind lines end up attached to the magnetosphere, allowing the solar-wind
plasma to penetrate the magnetosphere. This process can be regarded as the converse
of flux freezing because of flux dissipation. Solar cosmic rays can also get into the
magnetosphere because of magnetic topology changes and are often measured.

How such physical processes occur and how fast line breaking takes place have
been the subjects of research for more than a half century. Thanks to recent collabora-
tive research using observations, experiments, and numerical and theoretical works, sig-
nificant progress has been made in understanding magnetic reconnection. Early work
based on elementary MHD physics demonstrated the possibility of reconnection, but
predicted reconnection rates that are too slow to explain the observations. As a result
of the application of more advanced physics that take into account two-fluid physics
and the kinetic effects of plasma particles, much insight has been obtained, and the
reasons why reconnection is so much faster than first theorized have become clearer. It
is essentially a partial breakdown of the remarkable property of flux freezing described
by ideal MHD.

Thus, magnetic reconnection in the magnetosphere is treated using the two-fluid
theory. It should be noted, however, that the flux freezing concept can still be applied in
a modified form to the two-fluid regime in which electrons are still magnetized but ions
are not. In this regime, magnetized electrons move with field lines for the most part, as
if the flux freezing principle works only for electron fluid. On the other hand, ions are
generally not magnetized and the different motions of electrons and ions can generate
electric field in the reconnection plane. They also induce a large Hall electric field in
the out-of-reconnection plane and as a result cause a fast reconnection as described in
chapter 5. The induced electric fields introduce a new strong mechanism of particle
acceleration and heating. This regime is sometimes called the electron-MHD regime.
The region in the center of the reconnection layer, where even electrons do not move
with field lines anymore and diffuse, is called the electron diffusion region. A good
part of this monograph is devoted to a description of the key dynamics of this unique
reconnection region.
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Figure 1.5. See Color Plate 1. Picture (time integrated) of controlled driven reconnec-
tion discharges in MRX and a flux plot from magnetic probes from an MRX movie.
The flux contours deduced by assuming toroidal symmetry are considered to represent
magnetic field lines without guide field. [https://mrx.pppl.gov/mrxmovies/Collisio
nal.mov]

1.2 RECENT DEVELOPMENT AND PROGRESS OF UNDERSTANDING
MAGNETIC RECONNECTION

Progress in understanding the physics of magnetic reconnection has been made in three
research fields of the discipline in the past several decades: space and astrophysical
observations, theory and numerical simulations, and laboratory plasma experiments.
Space and astrophysical observations have provided much key suggestive evidence that
magnetic reconnection plays an important role in natural plasmas and have generated
strong motivation for fundamental research. Theory and numerical simulations provide
important analysis and insights to help break down the complex reconnection phenomena
into a set of fundamental key processes and to gain understanding of each process. Mag-
netic fusion plasma experiments provide examples of magnetic reconnection through
self-organization of the plasma configurations. Laboratory experiments dedicated to the
study of the fundamental reconnection physics can measure quantitatively the character-
istics of reconnection dynamics by monitoring the essential plasma parameters simul-
taneously at a large number of points in the reconnection region (Yamada et al., 2010).
Figure 1.5 presents an example of contours of magnetic flux which were deduced
from experimentally measured data using internal magnetic probes located at multiple
locations in the reconnection region of the Magnetic Reconnection Experiment (MRX;
Yamada et al., 1997a; Yamada, 1999). Dedicated laboratory experiments quantitatively
cross-check theoretically proposed physics mechanisms and models, and provide a
bridge between space observations and theoretical ideas, such as two-dimensional two-
fluid reconnection models, by generating a typical reconnection layer. On the other
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Figure 1.6. MMS satellite mission. Four satellites measure key components of local
plasma parameters to document the electron and ion dynamics. [From https://en.wiki
pedia.org/wiki/Magnetospheric_Multiscale_Mission.]

hand, space satellites can provide detailed data at selected points with simultaneous
multiple sophisticated diagnostics. Recent significant progress in data acquisition tech-
nologies has allowed us to directly compare the observed data from satellites and labo-
ratory experiments recently published (Yamada et al., 2018). In laboratory experiments,
even an evolution of magnetic field lines was able to be monitored with respect to time.
Remarkably, through this cross-cutting research, a new common picture of the two-
fluid magnetic reconnection layer has emerged, aided by numerical simulations mostly
performed in two-dimensional geometry. We use a significant part of this monograph
to describe the two-fluid physics mechanisms that have become clearer through our
cross-discipline studies.

In particular, a new cluster satellite system, called the Magnetospheric Multiscale
Satellite (MMS) was launched in March 2015. Their mission goal was to explore the
physics of magnetic reconnection in spatial scales extending down to the thin electron
skin depth. Figure 1.6 shows a graphic picture of four satellites that measure key com-
ponents of local plasma parameters to document the electron and ion dynamics. The
four spacecraft are placed at times in a tetrahedral configuration with a separation of
about 7-10km, or ~ 3-5 times the expected value of the electron skin depth at the mag-
netopause. Since the current sheet moves past the spacecraft at speeds of over 100 km/s,
resolving these fine-scale structures requires field measurements at a 1 ms cadence and
particle distribution function measurements at a 20 ms cadence, which is challenging
for a spacecraft mission.

To date, the MMS mission has made many significant findings, identifying the
structure and the dynamics of the electron diffusion region both in the magnetopause
and the magnetotail reconnection layer. In the first phase of the MMS mission, the
dayside magnetosphere reconnection region was investigated. At the subsolar magne-
topause, where the solar-wind plasma meets the magnetospheric plasma, reconnection
is very asymmetric with an upstream plasma density larger than that of the magneto-
sphere by a factor of 10-20. Subsequently, the magnetic field strength is smaller by a
factor of 2 to 3. This asymmetric reconnection is of much interest and is often very
important for real physical situations in both space and astrophysical plasmas (Mozer
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Electron flows in MRX Evolution of measured quantities by MMS

100 (km)
2.4

117
4o
{03
-0.5

V, (10*km/s) V, (10*km/s) V, (10*km/s)

Figure 1.7. See Color Plate 1. Comparison of MRX and MMS data. Left: Measured
electron flow vectors in MRX (red arrows). Measured magnetic flux contours are shown
by blue lines. Right: (a) Approximate MMS trajectory through the electron diffusion
region of the magnetosphere. The trajectory is determined based on a comparative study
of MMS data and 2D numerical studies. (b)—(f) Time evolution of key components of
local plasma parameters showing that J | - E | becomes maximum at the electron diffu-
sion region (d). The electron velocity distributions in (f) show that they predominantly
flow in the Y-direction as shown in the MRX data. The documented MMS data are
remarkably consistent with the electron dynamics measured by MRX. [From Yamada
et al. (2018).]

and Pritchett, 2011). Recently, through a collaboration between MMS research and
MRX, the key physics of asymmetric reconnection have been intensively investigated
and illuminated (Yoo et al., 2017; Yamada et al., 2018).

Both in MRX and in the magnetopause plasmas, the length of the reconnection
layer was measured to be very similar, about 3 times the ion skin depth, indicating the
same physics mechanisms are at play. Taking advantage of this situation, the dynamics
and energetics of the magnetic reconnection layer were comparatively studied in the
context of two-fluid physics. Despite huge differences between the length scales of
the reconnection layers (2L ~30cm in MRX versus ~ 250 km in the magnetopause)
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and the ion skin depths (d; ~5-6 cm in MRX versus ~ 50 km in the magnetopause),
remarkably similar characteristics are observed regarding the dynamics of electrons
and ions, as well as energy deposition profiles and energy partitioning. Let us look into
common characteristics observed in MRX and MMS.

Figure 1.7 shows a comparison of MRX and MMS data sets in different formats.
Electron flow vectors (red arrows) measured in MRX show strong out-of-reconnection-
plane electron flows. Also, a strong energy deposition to electrons is measured to occur
through a large value of the j, - E quantity (Yamada et al., 2014) in MRX. Here it
should be noted that the uppercase letter J was used for electron current density in
the MMS data set, while lowercase j was used in the MRX data as well as in most
of this book. On the right, panels (a)—(f) show the time evolution of key components
of local plasma parameters, documenting the electron dynamics in the magnetopause.
These MMS data show a strong spike in the quantity j, - E when the satellite system
flies through the region just south of the X-point where reconnecting field lines meet
and reconnect. This observation is in remarkable agreement with the profile of electron
flow vectors measured on MRX as seen in the left-hand panel of figure 1.7. When the
energy deposition rate to electrons, j, - E, is decomposed into j,, - E| + jo E}, ie.,
separating the inner product into perpendicular and parallel components with respect
to the local magnetic field lines, j,, - E | is measured to be significantly larger than
Jei E) as shown in panel (d) of figure 1.7. In addition, the measured electron velocity
distributions in the three directions are consistent with the MRX data of electron flow
vectors shown on the left.

Further observational verifications of electrons’ motion frozen to field lines out-
side the electron diffusion region were made both in MRX (Yoo et al., 2013) and
MMS (Burch et al., 2016b), and excellent agreement was found between the dyna-
mics and energetics of electrons. This agreement demonstrates that the same two-
fluid mechanisms in two-dimensional analysis operate well in both systems, despite
vastly different scales (~ 10°), while various three-dimensional phenomena including
micro-fluctuations are expected to be involved. This will be discussed in more detail in
chapter 12.

1.3 MAJOR QUESTIONS

We address the following major questions, which have been studied intensively for the
past 30 years:

(1) Why is the reconnection rate so fast in collisionless conductive plasmas? What is a
scaling for the reconnection rate on collisionality?

(2) What are the mechanisms of magnetic reconnection in collisionless plasma? How
does two-fluid physics influence the dynamics and speed of local reconnection?
What determines the structure of the reconnection layer?

(3) How is magnetic energy converted to the kinetic energy of electrons and ion? In
what channel does the energy flow take place?
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(4) How do fluctuations and turbulence affect the reconnection dynamics or vice versa?
Which fluctuations are most relevant, how are they excited, and how do they deter-
mine the reconnection rate and influence the conversion of magnetic energy?

(5) How do reconnection features change as the size of the plasma system increases?
How are plasmoid structures formed and how do they influence the reconnection
rate?

(6) How is the local physics, which has been studied in great detail, connected to the
large global environment around the reconnection layer? How is the reconnection
layer generated in a global boundary of different sizes?

(7) Why does reconnection occur impulsively in most cases?

Keeping these questions in mind, we will study most of the significant modern exper-
imental findings and discoveries in magnetic reconnection research and discuss many
of the theoretical understandings to which they have led.

To begin, we review magnetic reconnection research and significant studies that
have continued up to the present time, beginning with the well-known seminal ideas of
Dungey, Sweet and Parker, and Petschek, based on MHD. While theory led the early
research progress in this area, more recent research has been dominated by experiments
and numerical simulations. Since the early work is fairly well known and presented in
textbooks, we focus on recent findings and developments of most significance. There
are a number of different views as to which physical processes are most important for
reconnection. While the relative importance of two-fluid processes of a laminar cur-
rent sheet versus three-dimensional fluctuation-induced effects of multiple reconnec-
tion sites or plasmoids are still debated, our goal is to provide a broad understanding of
different theories and observations.

One of the most important questions has been why reconnection occurs much faster
than predicted by classical MHD theory. During the past two dozen years, notable
progress in understanding the physics of this fast reconnection has been made. Exten-
sive theoretical and experimental work has established that two-fluid effects, resulting
from the fundamentally different behavior of ions and electrons, are important within
the critical layer where reconnection takes place. Two-fluid effects are considered to
facilitate the fast rate at which reconnection occurs in the magnetosphere, stellar flares,
and laboratory plasmas. Dedicated laboratory experiments and magnetospheric satellite
measurements show strikingly similar data in the profiles of magnetic fields and elec-
trostatic and magnetic fluctuations. Recent improvements in the understanding of the
role of reconnection in magnetic self-organization processes in laboratory and space—
terrestrial plasmas will also be covered in this monograph.

Despite the long history of reconnection research, how the conversion of magnetic
energy occurs remains a major unresolved problem in plasma physics. A good amount
of the recent studies on energy conversion are presented in the present monograph.
In the past several years, it has been realized that energy conversion in a laboratory
reconnection layer occurs in a much wider region than previously considered. The
mechanisms for energizing plasma particles in the reconnection layer are identified,
and a quantitative inventory of the converted energy is presented for the first time in
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a well-defined reconnection layer in a laboratory plasma study (Yamada et al., 2014,
2018). In this monograph, a new analytical study is considered for a key step toward
resolving one of the most important problems in reconnection physics.

A special effort is made to cover both the major experimental results and recent
space observations that have provided useful information on the physics of magnetic
reconnection over the past few decades. This book is quite different in emphasis from
recent review papers and books, which have emphasized theoretical aspects or results
from numerical simulations. Since the main objective of this book is not a review, many
fine works in this field are not covered because of space limitations, because of our
primary focus on recent experimental findings, and because of our intention to convey
my views to the readers.

Magnetic reconnection is a very popular subject in plasma physics. For some years,
the numbers of papers submitted to annual meetings of the Division of Plasma Physics
of the American Physical Society (APS) have exceeded 100 (out of 1,500-1,800 total
papers). To cover wider aspects of the physics of magnetic reconnection, I would like to
refer to the books by Priest and Forbes (2000), Biskamp (2000), Birn and Priest (2007),
thereviews Zweibel and Yamada (2009), Yamadaetal. (2010), and the collection of edited
reviews in Gonzalez and Parker (2016). Magnetic reconnection research covers plasmas
of many types, including weakly ionized, electron—positron pairs, and relativistic plas-
mas. The reader seeking special material should consult additional references including
Uzdensky (2011) for reconnection in relativistic or astrophysical environments and
Ji et al. (2022) for recent development of reconnection research in large systems.

An important perspective is that magnetic reconnection is influenced and deter-
mined both by local plasma dynamics in the reconnection region and global boundary
conditions. One major question is how large-scale systems generate local reconnection
structures through formation of current sheets—either spontaneously or via imposed
boundary conditions. In this regard, we will look into the question of how multiple
reconnection layers are formed in a large plasma system. When we consider a large
system in which reconnection takes place, we think all classical models do not sim-
ply apply, particularly when long global lengths are assumed for the current layers.
Recently, more research has been carried out on the formation process of current layers
in a larger system and has found that a current sheet often breaks up to form multi-
ple reconnection layers. It would be of great importance to develop and elucidate a
general theory of current layer formation in a highly nonsymmetric magnetic equilib-
rium such as is observed in the magnetopause or the sun. We will address magnetic
reconnection in the magnetopause where strong density asymmetry exists across the
reconnection layer. There may be mechanisms to generate multiple small-scale cur-
rent sheets in which field-line reconnection takes place with multiple X-lines. These
structures can often be small enough to decouple the motion of electrons from that of
ions in collisionless plasmas. These smaller-scale sheets can fluctuate, leading to faster
reconnection, and a large number of these layers should lead to a large energy release
as seen, for example, in the magnetosphere and the reversed field pinch (RFP) plasmas
for fusion research. In RFP plasmas, reconnection in multiple layers of flux surfaces
is observed to generate a significant magnetic self-organization of the global plasma,
invoking strong ion heating. While we expect that a theory from a first principle can
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lead us to a breakthrough for solving this problem, we have recently initiated a new
experimental effort to address this important issue (see chapter 14).

In this monograph, we describe the fundamental physics of magnetic reconnection
at work in laboratory and space plasmas, starting from concept, theory, and observa-
tions from space satellites, and also the most important progress in the research fronts.
With a brief review of the well-known work on its concept, together with the most
recent results in chapter 1, typical reconnection phenomena observed in space and lab-
oratory plasmas are presented in chapter 2, and important theoretical progress based
on MHD is described in chapter 3. A one-dimensional Harris sheet equilibrium with
kinetic physics is studied in chapter 4, referring to both early theoretical and exper-
imental results. In the area of local reconnection physics, many findings have been
made regarding two-fluid physics analysis and are related to the cause of fast reconnec-
tion. Chapter 5 describes the evolution of two-fluid physics and formulation. Profiles
of the reconnection layer, Hall currents, and the effects of a guide field, collisions, and
microturbulence are discussed in chapter 5 to understand the fundamental processes
in reconnection layers in both space and laboratory plasmas. In chapter 6, the primary
laboratory experiments of past and present times are described.

Chapters 7 and 8 are devoted to observation of magnetic reconnection in astrophys-
ical plasmas, in particular reconnection in solar flares, coronal mass ejection, reconnec-
tion in the Crab Nebula or supernova, and the dynamics of the magnetic reconnection
layer in the magnetosphere. Some readers may find chapter 8 to be too detailed and
hard to follow since I use specific wording and descriptions used in the space physics
community. Chapter 9 is devoted to magnetic self-organization in laboratory plasmas or
global reconnection phenomena. In chapter 10, we address extensively the energy flow
processes and present the mechanisms of energy conversion and partitioning, which
have been discovered in the recent few years. Furthermore, more accurate recent satel-
lite observations will be presented regarding magnetic reconnection and its energetics
in space astrophysical plasmas and those will also be covered in this book. Chapter
11 covers the most recent studies of the energy inventory in the reconnection layer.
In chapter 12, let us directly compare the dynamics and energetics of the asymmetric
reconnection layer observed both in the laboratory plasma of MRX and in the mag-
netopause by MMS and discuss our results in the context of two-fluid physics, aided
by simulations. In chapter 13 we consider how magnetic field is generated in the uni-
verse and how magnetic reconnection plays a role in the dynamo. Since the focus of
this monograph is two-fluid physics mechanisms, we mainly consider here the two-
fluid effects of dynamo action in fusion laboratory plasmas, after a brief introduction
to MHD dynamo theory. In chapter 14 we consider magnetic reconnection in large sys-
tems. In astrophysical plasmas, the ratio of global to kinetic scales is large and the ratio
of mean free path to plasma scales is small, thus MHD models are often considered to
be practical to treat space astrophysical phenomena. The appearance of multiple lay-
ers would become dominant, particularly in large three-dimensional plasma systems.
Readers who might find it difficult to follow the detailed technical description of results
in some chapters, such as 8 and 9, might be recommended to skip them and move on in
order to grasp the whole picture of magnetic reconnection.
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