© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

## CONTENTS

Acknowledgements ..... vii
Preface to the 2023 Edition ..... ix
I Is the universe infinite or is it just really big? ..... I
2 Infinity ..... 5
3 Newton, 300 years and Einstein ..... 16
4 Special relativity ..... 23
5 General relativity ..... 37
6 Quantum chance and choice ..... 50
7 Death and black holes ..... 63
8 Life and the big bang ..... 79
9 Beyond Einstein ..... 99
10 Adventures in Flatland and hyperspace ..... 104
I I Topology: links, locks, loops ..... 115
12 Through the looking glass ..... 13|
13 Wonderland in 3D ..... 141
14 Mirrors in the sky ..... 151
15 How the universe got its spots ..... 162
16 The ultimate prediction ..... 178
17 Scars of creation ..... 185
18 The shape of things to come ..... 194
Epilogue ..... 199
Index ..... 201

## I

## IS THE UNIVERSE INFINITE OR IS IT JUST REALLY BIG?

Some of the great mathematicians killed themselves. The lore is that their theories drove them mad, though I suspect they were just lonely, isolated by what they knew. Sometimes I feel the isolation. I'd like to describe what I can see from here, so you can look with me and ease the solitude, but I never feel like giving rousing speeches about billions of stars and the glory of the cosmos. When I can, I like to forget about maths and grants and science and journals and research and heroes.

Boltzmann is the one I remember most and his student Ehrenfest. Over a century ago the Viennese-born mathematician Ludwig Boltzmann (1844-1906) invented statistical mechanics, a powerful description of atomic behaviour based on probabilities. Opposition to his ideas was harsh and his moods were volatile. Despondent, fearing disintegration of his theories, he hanged himself in 1906. It wasn't his first suicide attempt, but it was his most successful. Paul Eherenfest (1880-1933) killed himself nearly thirty years later. I looked at their photos today and searched their eyes for depression and desperation. I didn't see them written there.

My curiosity about the madness of some mathematicians is morbid but harmless. I wonder if alienation and brushes with insanity are occupational hazards. The first mathematician we remember encouraged seclusion. The mysterious Greek visionary Pythagoras (about 569 BCabout 475 BC ) led a secretive, devout society fixated on numbers and triangles. His social order prospered in Italy millennia before labour would divide philosophy from science, mathematics from music. The Pythagoreans believed in the mystical meaning of numbers and developed a religion tending towards occult numerology. Their faith in the sanctity of numbers was shaken by their own perplexing mathematical

$$
\begin{aligned}
& \text { © Copyright, Princeton University Press. No part of this book may be } \\
& \text { distributed, posted, or reproduced in any form by digital or mechanical } \\
& \text { means without priow written permission of the publisher. }
\end{aligned}
$$

discoveries. A Pythagorean who broke his vow of secrecy and exposed the enigma of numbers that the group had uncovered was drowned for his sins. Pythagoras killed himself too. Persecution may have incited his suicide, from what little we know of a mostly lost history.

When I tell the stories of their suicide and mental illness, people always wonder if their fragility came from the nature of the knowledge the knowledge of nature. I think rather that they went mad from rejection. Their mathematical obsessions were all-encompassing and yet ethereal. They needed their colleagues beyond needing their approval. To be spurned by their peers meant death of their ideas. They needed to encrypt the meaning in others' thoughts and be assured their ideas would be perpetuated.

I can only write about those we've recorded and celebrated, if posthumously. Some great geniuses will be forgotten because their work will be forgotten. A bunch of trees falling in a forest fearing they make no sound. Most of us feel the need to implant our ideas at the very least in others' memories so they don't expire when our own memories become inadequate. No one wants to be the tree falling in the forest. But we all risk the obscurity ushered by forgetfulness and indifference.

I admit I'm afraid sometimes that no one is listening. Many of our scientific publications, sometimes too formal or too obscure, are read by only a handful of people. I'm also guilty of a self-imposed separation. I know I've locked you out of my scientific life and it's where I spend most of my time. I know you don't want to be lectured with disciplined lessons on science. But I think you would want a sketch of the cosmos and our place in it. Do you want to know what I know? You're my last hope. I'm writing to you because I know you're curious but afraid to ask. Consider this a kind of diary from my social exile as a roaming scientist. An offering of little pieces of the little piece I have to offer.

I will make amends, start small, and answer a question you once asked me but I never answered. You asked me once: what's a universe? Or did you ask me: is a galaxy a universe? The great German philosopher and alleged obsessive Immanuel Kant (1724-1804) called them universes. All he could see of them were these smudges in the sky. I don't really know what he meant by calling them universes exactly, but it does conjure up an image of something vast and grand, and in spirit he was right. They are vast and grand, bright and brilliant, viciously crowded cities of stars. But universes they are not. They live in a universe, the same one as us. They go on galaxy after galaxy endlessly. Or do they? Is it

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher
> IS $\ddagger$ HE UNIVERSE INFINITE OR IS IT JUSTREALLY BIG?
endless? And here my troubles begin. This is my question. Is the universe infinite? And if the universe is finite, how can we make sense of a finite universe? When you asked me the question I thought I knew the answer: the universe is the whole thing. I'm only now beginning to realize the significance of the answer.

## 3 SEPTEMBER 1998

Warren keeps telling everyone we're going back to England, though, as you know, I never came from England. The decision is made. We're leaving California for England. Do I recount the move itself, the motivation, the decision? It doesn't matter why we moved, because the memory of why is paling with the wear. I do remember the yard sales on the steps of our place in San Francisco. All of my coveted stuff. My funny vinyl chairs and chrome tables, my wooden benches and chests of drawers. It's all gone. We sit out all day as the shade of the buildings is slowly invaded by the sun and we lean against the dirty steps with some reservation. Giant coffees come and go and we drink smoothies with bee pollen or super blue-green algae in homage to California as the neighbourhood parades past and my pile of stuff shifts and shrinks and slowly disappears. We roll up the cash with excitement, though it is never very much.

When it gets too cold or too dark we pack up and go back inside. I'm trying to finish a technical paper and sort through my ideas on infinity. For a long time I believed the universe was infinite. Which is to say, I just never questioned this assumption that the universe was infinite. But if I had given the question more attention, maybe I would have realized sooner. The universe is the three-dimensional space we live in and the time we watch pass on our clocks. It is our north and south, our east and west, our up and down. Our past and future. As far as the eye can see there appears to be no bound to our three spatial dimensions and we have no expectation for an end to time. The universe is inhabited by giant clusters of galaxies, each galaxy a conglomerate of a billion or a trillion stars. The Milky Way, our galaxy, has an unfathomably dense core of millions of stars with beautiful arms, a skeleton of stars, spiralling out from this core. The earth lives out in the sparsely populated arms orbiting the sun, an ordinary star, with our planetary companions. Our humble solar system. Here we are. A small planet, an ordinary star, a huge cosmos. But we're alive and we're sentient. Pooling our efforts and passing our secrets from generation to generation, we've lifted ourselves off this blue and green watersoaked rock to throw our vision far beyond the limitations of our eyes.

```
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

The universe is full of galaxies and their stars. Probably, hopefully, there is other life out there and background light and maybe some ripples in space. There are bright objects and dark objects. Things we can see and things we can't. Things we know about and things we don't. All of it. This glut of ingredients could carry on in every direction forever. Never ending. Just when you think you've seen the last of them, there's another galaxy and beyond that one another infinite number of galaxies. No infinity has ever been observed in nature. Nor is infinity tolerated in a scientific theory - except we keep assuming the universe itself is infinite.

It wouldn't be so bad if Einstein hadn't taught us better. And here the ideas collide so I'll just pour them out unfiltered. Space is not just an abstract notion but a mutable, evolving field. It can begin and end, be born and die. Space is curved, it is a geometry, and our experience of gravity, the pull of the earth and our orbit around the sun, is just a free fall along the curves in space. From this huge insight people realized the universe must be expanding. The space between the galaxies is actually stretching even if the galaxies themselves were otherwise to stay put. The universe is growing, ageing. And if it's expanding today, it must have been smaller once, in the sense that everything was once closer together, so close that everything was on top of each other, essentially in the same place, and before that it must not have been at all. The universe had a beginning. There was once nothing and now there is something. What sways me even more, if an ultimate theory of everything is found, a theory beyond Einstein's, then gravity and matter and energy are all ultimately different expressions of the same thing. We're all intrinsically of the same substance. The fabric of the universe is just a coherent weave from the same threads that make our bodies. How much more absurd it becomes to believe that the universe, space and time could possibly be infinite when all of us are finite.

So this is what I'll tell you about from beginning to end. I've squeezed down all the facts into dense paragraphs, like the preliminary squeeze of an accordion. The subsequent filled notes will be sustained in later letters. You could say this is the story of the universe's topology, the branch of mathematics that governs finite spaces and an aspect of spacetime that Einstein overlooked. I don't know how this story will play itself out, but I'm curious to see how it goes. I'll try to tell you my reasons for believing the universe is finite, unpopular as they are in some scientific crowds, and why a few of us find ourselves at odds with the rest of our colleagues.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

\section*{INDEX}

3-sphere, 83

Abbott, Edwin Abbott, 107
absolute zero, 90
acronyms, 90
action, 64
Allen, Woody, 82, 113
Alpher, Ralph, 90-91
anteater, 176
anthropic principle, 160
antipodal maps, 171, 172, 175
Aristotle, 7
atoms, 58, 77, 80, 186

Bach, J. S., 190-91
badger, 176
Barrow, J., 7, 12-13, 86, 113, 117, 170, 171
Belinsky, Vladimir, 86, 94, 130
Bell, Jocelyn, 69
Berkeley, 12, 43, 165, 195
Best, L. A., 171
Best space, 144, 171-72
Bethe, Hans, 90-91
big bang, \(14,22,45-6,62,64,78\), 80-81, 84-5, 87, 91, 94-5, 99, 130, 155, 159, 168, 184, 196-7
and black holes, 86
chaotic, 63, 86, 94
geometry, 182
light from, 157, 177
black holes, 22, 44-5, 62, 64-5, 68, 72-8, 86, 99, 102
and big bang, 86
and chaos, 63
evaporation, 77
interiors of, 75-6
properties of, 75
and thermodynamics, 184, 186-7
and universes, 160
Bohr, Niels Henrik David, 58, 61, 163
Boltzmann, Ludwig, 1, 77, 186
bombs, 66-7, 71
Bond, J. R., 165
Bond, R., 117
Bragg, M., 55
Brandenberger, Robert, 182
branes, 182
Broglie, Louis Victor Pierre Raymond duc de, 55
Brouwer, Luitzen Egbbertus Jan, 13

Calabi-Yau manifolds, 182
calculus, 20

\section*{© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.}

Cambridge, 37, 69, 72
Canadian Institute for Theoretical Astrophysics, 117
Cantor, Georg Ferdinand Ludwig Phillip, 7, 8, 11, 12, 13, 36, 87
carbon, 71
cardinality, \(8,10 n\)
CERN, 44
chaos, \(22,63,64,86,117,166,186\), 187

Chinese, 69
Chomsky, Noam, 191, 192
Circle line, 66, 67
computer simulations, 166
continued fractional expansion, \(9 n\)
continuum, 13
Copenhagen Interpretation, 61
Copernicus, 16, 18, 21
Cornish, N., 63-4, 86, 117, 162, 167, 187
cosmic background radiation, 90 , \(92-4,96,155,157,158,163,167\), 169, 171
hot and cold spots in, 93-4, 155-6, \(163,164,165,176\); see also universe, spots of
cosmic expansion, 83
cosmic microwave background (CMB), 90
cosmological constant, 82, 94, 159

Dali, Salvador, 140, 193
Dehn's surgery, 145
depression, 1, 11, 24, 190
see also insanity; madness; mental illness
determinism, 21, 60-61, 99
Dicke, Robert, 91
dimensions, 104-14, 121, 123, 125-9, 132-7, 139-43, 146, 179-80, 182
extra, 179, 181, 182
see also fourth dimension
Doeleman, S., 192
Doroshkevich, Andrei, 91
double-slit experiment, 55
Duchamp, Marcel, 140
dynamics, 19
earth, \(6,16,17,18,41,44,64,79,81\)
orbit of, 26
eclipses, 45
Ede, Siân, 189 n
Eherenfest, Paul, 1, 61, 186
Einstein, Albert, 5, 15, 24, 27-30, \(34-6,41-4,62,74,76,78,85,87\), 99, 114, 158, 179, 196
and black holes, 74
equations, 66, 83, 86, 100, 105
and the expanding universe, 82,94
and gravity, 35, 38-40, 102
and insanity, 43
Nobel prize, 5, 54
principle of equivalence, 39
and quantum mechanics, 61
quantum theory of light, 54,55
theories of relativity, \(5,18-19,22\), \(27,29,35,36,42,48,51,54,134\)
theory of curved space, \(42,44-5\), 64, 100
see also cosmological constant; light, speed of; relativity; space, curved; spacetime, curved
Einstein-Hilbert action, 64
electromagnetic radiation, 52-3
electromagnetism, 22, 25, 52-3, 62
electrons, 54, 56, 57, 58-9, 68, 69, 88, 89
electroweak theory, 62
elephant, 176
ellipses, 18-19, 45

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Ellis, G., 165
emergent properties (phenomena), 186, 188
energy, conservation of, 58
entropy, 184, 187
Escher, M. C., 140, 190-91, 192
Euclid, 46, 48
Eurocentrism, 21

Fagundes, H., 165
Fermilab, 50-51
Ferreira, P. 43-4, 154, 157, 194
Feynman, Richard, 112
Fibonacci sequences, 170
Fields medals, 117, 145
Flatland, 107-9, 112, 114, 132, 134
fourth dimension, 110-13
fractals, 86-7, 186
Freese, K., 51
Friedman, Alexander, 82-3, 93
fundamental forces, 62, 159, 179, 188
galaxies, 2, 3-4, 44, 73-4, 79-80, 94, \(149,154,155\)
formation of, 90, 186, 196-7
recession of, 82
Galileo Galilei, 7, 18-19, 20, 21, 68
Gamow, George, 90-91
Gasperis, G. de, 12, 170
gender, 88
geometry, 4, 5, 35-6, 42, 47, 101-102, 135, 140, 141, 143, 188
of big bang, 182
computer simulations, 166
distinction from topology, 119, 132n
Euclidean, 48
non-Euclidean, 46, 47-8, 143
Riemannian, 42, 139
of space, \(45,48,83,94,100,149\),

184
of spacetime, 44
of universe, \(97,136,156,157,173\)
giraffe, 176
gluons, 180
goat, 176
Gödel, Kurt, 190-91
golden mean (ratio), 9-10, 11
Gott III, J. R., 165
gravitation, 19, 20, 22, 35, 62
gravitational collapse, 67, 68, 72, 75
gravitational lensing, 155
gravitational waves (gravity waves), 74-5, 180, 183
gravitons, 180
gravity, 4, 16, 21-2, 34-5, 38-41, \(43-4,48,62,64,72,76-8,88\), 99-100, 160, 179, 181, 183, 187-8
loop quantum, 183-4
quantum, \(77,87,88,102,157,183\), 187, 188
Greene, Brian, 183
Gribbin, J., 55
Gris, Juan, 140
Grossmann, Marcel, 42
Guth, Alan, 94, 95

Halliwell, J., 67
handles, 120
Hawking, Stephen, 77, 86
Hawking-Penrose singularity theorems, 86, 99
Hawking radiation, 77
Heisenberg, Werner Karl, 56, 57, 58, 61
see also uncertainty principle
helium, 71, 89
Hermann, Robert, 90-91
Hewish, Anthony, 69

\section*{© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher}

Hilbert, David, 42, 64, 190
hippopotamus, 176
Hobbes, Thomas, 11
Hofstadter, D., 190-91
homogeneity, 83, 85, 93, 94
homosexuality, 24, 174
horizon, 73, 75, 99, 160
'How the Universe Got Its Spots', 171
Hubble, Edwin, 79, 82
expansion, 81
hydrogen, 71, 89
hyperbolic plane, 48
incompleteness theorems, 190
inertia, 19
infinity, 3, 4, 7-15, 36, 52-3, 77, 99, 103, 145
countable, \(8,10,11\)
in nature, \(10,13,76\)
uncountable, 11
inflation, 95-6, 158, 159
Inoue, K. Taro, 165
insanity, 24, 43
see also depression; madness; mental illness
interference, 55
Isham, C., 67, 157
isotropy, \(83,85,93,94\)

Jimenez, N., 118
Jung, C. G., 191, 192
Jupiter, 69

Kac, M., 162
Kaluza, Theodor Franz Eduard, 179
Kant, Immanuel., 2
Kelly, R., 118, 119
Kepler, Johannes, 18-21, 45, 68
Khalatnikov, Isaac Markovitch, 63, 85, 86, 94, 130, 137n

Kipling, Rudyard, 170
Klein, Oscar, 179
Klein bottle, 127, 129, 136, 138
Kolb, R., 88
Kötting, A., 189
Kronecker, Leopold, 11, 12, 13

Lachieze-Rey, M., 165
Landau, Lev Davidovich, 67-8
Lemaître, Georges, 83
leopard, 174, 176, 177
leptons, 180
level repulsion, \(187 n\)
Lifshitz, Evgeny, 85, 86, 94, 130
light, 27, 29-30, 44, 45, 47, 88-9, 91, 93, 128-29, 135, 186
bending of, 64-5, 72
from big bang, 157, 177
and black holes, 72-3, 75, 77
bound to space, 122
from opposite directions, 171
particulate nature of, 54-5, 89
speed of, 26, 27, 28, 30, 31, 32, 34, 35, 39, 66, 94, 97
wave theory of, 25-6, 27, 52-5
Linde, André, 159
loop quantum gravity, 183-4
loops, 128, 129, 130
Luminet, J.-P., 165
Lythgoe, M., 156, 189
madness, \(1,12,90\)
see also depression; insanity; mental illness
Magueijo, J, 67
Malevich, Kasimir Severinovich, 140
Manhattan project, 71
manifolds, 34, 103
Marx, Groucho, 119
mass, 40-41, 64-5, 66, 67, 83, 100
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
inertial, 34
mathematicians, \(1,11,12,38,42,115\), 116-18, 144-5
Maxwell, James Clerk, 22, 25, 27, 52-3

McNamara, P., 191
mental illness, 2, 8, 11, 13
see also depression; insanity; madness
Mercury, 18, 21, 45
Michelangelo, 43
Michelson and Morley, 26
Milky Way, 3, 74, 84
Minkowski, Hermann, 5, 42
Möbius strip, 127, 128, 136, 138, 144
Mondrian, Piet, 140
Monty Python, 113
moon, 17, 44
Moscow, 63, 124, 137, 147, 150
M-theory, 90, 181
Murray, J. D., 170, 174, 175
native Americans, 69
natural selection, 159, 160
neutrinos, 62,88
neutron stars, 68, 69, 72
neutrons, 59, 69
Newton, Isaac, 15-16, 18-19, 21, 25, \(27,29,35,38-9,42,66,72,88\), 102
alchemy, 24
homosexuality, 24
invention of calculus, 20
laws, 20, 24, 44
mental health, 24
see also gravity
Newton's constant, 88
Nobel prizes, 5, 54, 68, 69, 91, 117, 170
Novikov, Igor, 91
nuclear fusion, 66-7, 68, 71, 160
numbers:
irrational, 9-10, 11, 12
natural, 9-10, 11, 13
negative, 11
rational, 10, 11
numerology, 1
observers, 54-5, 56, 57, 112, 184
Olbers, Wilhelm, 152
Oliviera-Costa, A. de, 165
Oppenheimer, J. Robert, 74
Orwell, George, 7, 109, 110
oxygen, 71
pattern-based searches, 167
Patterson, J., 71
Peebles, James, 91
Penrose, Roger, 85-6
Penzias, Arno, 91
periodic table, 59
phenomenology, 28
photoelectric effect, 54
experiment, 54, 55
photons, 54, 55, 89, 102, 180
Pi ( \(\pi\) ), 9, 11
Picasso, Pablo, 140
Planck, Max Karl Ernst Ludwig, 53-4, 55

Planck time, 88
Planet of the Apes, 141
planets, 90, 157, 196-7
Pogosyan, D., 117, 165
probability wave, 56
protons, 59, 160
pulsars, 69
Pythagoreans, 1-2, 9, 12, 110
quanta (quantum particles), 14, 52, 54, 102, 187

\section*{© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without priow written permission of the publisher}
quantum theory (quantum mechanics), 21, 51-2, 54-62, \(76-8,100,102,180,184,187\), 196
geometry, 183-4
gravity, 77, 78, 87, 88, 102, 157, 183, 187, 188; see also loop quantum gravity
tunnelling, 58
quarks, \(62,88,180\)
quasars, 74
Quinn, M., 177

Randall, L., 87-8
relativity, 24, 28, 31, 32, 35, 43, 51, 77, 161
general, \(5,15,19,22,35-6,41-2\), \(45,48,54,64,76-7,81,85,88\), 98-9, 102, 112, 115, 127, 135, 181
special, 15, 22, 27-8, 30, 35, 38-9, 41-3, 54
Riemann, Georg Friedrich Bernhard, 42, 46
rigidity theorem, 146, 166
Robertson, Howard, 82-3
Roukema, B., 165
Rutherford, 58
satellites, \(90,93,116,156,160,167\), 172, 173, 177
COBE, 90, 93, 164, 165, 195
MAP, 90, 164, 168
Planck Surveyor, 90, 164, 168
Scannapieco, E., 12, 171, 172
Schramm, D., 51
Schrödinger equation, 57
Schwarzschild, Karl, 45, 64, 74
Scott, D., 165
Segal, Prof., 81

Silk, J., 12, 117, 154, 165, 171
singularities, \(72,73,76,85,86,99\), 102, 181
Slade, Henry, 113
Smolin, L., 55, 87, 159, 160, 177, 183, 188
Smoot, G., 195
social constructivism, 56
Sokolov, I., 117
Souradeep, T., 165
space, \(4,25,27,30,36,40-41,51,86\), 94, 183, 196
beginning of, 81
curvature of, 77, 157
curved, 4, 5, 22, 35-6, 40-42, 44, \(46,93,101,127,135,143,161\), 188
dimensions of, 103
fabric of, 76, 77
finite, 144, 186
flat, 47, 83, 84, 97, 132, 166n, 172
geometry of, \(45,48,83,94,100\), 149, 176, 184
limit to, 102
negatively curved, \(48,83,97,132 n\), \(139,143,145,146,166 n, 172\)
positively curved, 47, 83, 97, 132n, 143, 145
ripples in, 75
shape of, 100, 145, 146, 168, 176, 177, 187
smooth, 163
topology of, 160, 184
spacetime, \(33,36,44,46,48,72,82\), 99, 157, 180, 183-4, 188
contracted to a point, 80
curvature of, \(65,160,176\)
curved, 39-41, 43, 62, 64, 76, 78, 100, 183
diagrams, 112

> © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
equivalent to 'universe', 46
geometry of, 44
ripples in, 74, 93
Spergel, D., 162, 167
Stalin, 67, 68
Starkman, G., 117, 162, 167
Starobinsky, A., 165
stars, 65, 67-75, 81, 87, 152-3, 154, 157, 160, 196
collapsed, 65
death of, \(65,68,72,73\)
dense, 64
formation, 65, 67, 90, 196-7
see also black holes; neutron stars; supernovae; white dwarfs
statistical mechanics, 1
Stevens, D., 165
string theory, 179-84, 187
strong force, 62
suicide, \(1,2,175,186,191\)
Sumerians, 66
sun, \(16,17,18,25,41,44,45,52-3\), 64-5, 66
superfluidity, 68
supernovae, 68-9
surface of last scatter, \(167,168,169\), 174

Tavakol, R., 165
Theories of Everything (TOEs), 90, 179, 181, 183-4
thermodynamics, 184, 186-7
Thorne, K., 99
Thurston, William, 145, 146
Thurston space, 146, 173
tiling, 123, 132, 134-45, 168, 174
time, \(25,27,30,36,40-41,51,82\), 183, 196
beginning of, 81
closed loop, 196
compact, 196
curved, 44
as dimension, \(33,64,112\)
non-existence of, 33, 112
warped, 40
time of last scattering, 89, 163
topological lensing, 155
topology, 5, 14, 34, 48, 62, 64, 97, 101-103, 107, 111, 116-17, 120-23, 129, 134, 138, 140, 145-7, 149, 161, 172
distinction from geometry, 119, \(132 n\)
early measurements of, 165
of large dimensions, 114
of space, 160, 184
and string theory, 182
of the universe, \(4,63,102,115\), \(119,130,136,146,158,173,177\)
transfinite arithmetic, \(8,10 n, 36\)
Traweek, S., 24
triangles, 46-7, 48, 139, 172
Turing, Alan, 174-5, 191
twins, 30-32, 111, 126
Tyco Brahe, 17, 18, 21, 68
uncertainty principle, \(56,58,61,68\), 77, 93, 163
unification, 183
universe, \(48,51,76,79,83,94,101\), \(104,125,127,132,143,160,197\)
age of, 196
ageing, 4
beginning of, \(4,64,85,87-8,90\), 157
collapse of, 196
compact, 145, 163, 166
cooling, 89
curves of, 127, 135
early, \(62,86,89,95,163,183\)
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without priow written permission of the publisher
equivalent to spacetime, 46
evolution of, 64, 182
expanding, 4, 64, 79-80, 82, 83-5, 87, 89, 94, 97, 158, 196
expansion of, 180
extent of, 101
finite, \(3,4,7,14,48,83,98\), \(116-17,135,137,141,147,153\), \(156,158,161,163,165-6,168\), 171
flat or nearly flat, 158-9, 161, 165-6
geometry of, \(97,136,156,157,173\)
infinite, \(4,5,6,14,34,82,87,97-8\), 99, 102, 116-17, 135, 161
inflationary, 159
largest attributes of, 158
negatively curved, 158, 161, 166
observable, 159, 165
positively curved, 158, 161
properties of, 100
recollapse of, 97, 158
shape of, 46,115
smooth, 95-6, 158
spots of, 167, 171-4, 181; see also cosmic background radiation, hot and cold spots in
static, 82, 83
string theory predictions for, 179
topology of, \(4,63,102,115,119\), 130, 136, 146, 158, 173, 177
Uzan, J.-P., 165

Vafa, Cumrun, 182
van Eyck, Jan, 47
Venus, 68
vision, 67, 70

Walker, Arthur, 82-3
wave-particle duality, 52, 54-5, 187-8
weak force, 62
Weeks space, 146, 172, 173
Weeks, J., 144, 146, 147
Wheeler, John Archibald, 65, 75, 112
white dwarfs, 68,69
Wilde, Oscar, 91
Wilson, Robert, 91
wormholes, 64
zebra, 175, 176, 177
Zeno, 13-14```

