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1 ...........................................
From Microscopic to Macroscopic Behavior

We discuss the fundamental differences between microscopic and macroscopic
systems and discuss how the behavior of macroscopic systems is related to the
behavior of their microscopic constituents. We note that bouncing balls come to rest
and hot objects cool, and we use computer simulations to explore the qualitative
behavior of macroscopic systems.

1.1 Introduction

Macroscopic systems are systems of many electrons, atoms, molecules, photons, or
other constituents. Examples of familiar macroscopic objects include systems such
as the air in a room, a glass of water, a metal rod, and a rubber band—examples
of a gas, liquid, solid, and polymer, respectively. Less familiar macroscopic systems
include superconductors, cell membranes, the brain, the economy, and neutron stars.

The questions we ask about macroscopic systems differ in important ways from
the questions we ask about microscopic systems. For example, consider the air in
your room. Have you ever wondered about the trajectory of a particular molecule
in the air? Would knowing its trajectory be helpful in understanding the properties
of air? Examples of questions that we ask about macroscopic systems include the
following:

• How does the pressure of a gas depend on its temperature and the volume of
its container?

• How does a refrigerator work? How can we make it more efficient?
• Howmuch energy do we need to add to a kettle of water to change it to steam?

These questions are concerned with macroscopic properties, which describe the
entire system, such as pressure, volume, and temperature, and processes related to
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heating and work. These questions are relevant in thermodynamics, which provides
a framework for finding relations between the macroscopic properties of a system.
Thermodynamics is concerned only with macroscopic quantities and ignores the
microscopic variables that characterize individual molecules. For example, we will
find in Chapter 2 that understanding the maximum efficiency of a refrigerator does
not require a knowledge of the particular liquid used as the coolant. Many of the
applications of thermodynamics are to engines, for example, the internal combustion
engine and the steam turbine.

Another set of questions relates to understanding the behavior of macroscopic
systems starting from the atomic nature of matter:

• Why do the properties of water differ from those of steam, even though water
and steam consist of the same type of molecules?

• How and why does a liquid freeze into a particular crystalline structure?
• How do the properties of a system emerge from its constituents?

The laws of classical and quantum mechanics determine the behavior of molecules
at the microscopic level. The goal of statistical mechanics is to begin with the
microscopic laws of physics that govern the behavior of the constituents of the system
and to deduce the properties of the system as a whole. Statistical mechanics, which
we discuss in Chapters 4–9, is a bridge between the microscopic and macroscopic
worlds.

Another interesting set of questions about the behavior of macroscopic systems
includes the following:

• How fast does the current in a river have to be before the flow changes from
laminar to turbulent?

• What will the weather be tomorrow?
• What will the climate be in a decade?

These questions are also about macroscopic phenomena, but these questions
involve phenomena that are time dependent and more difficult to understand.
Although there has been progress in our understanding of turbulent flow and
hurricanes, it is much less advanced than our understanding of time-independent
systems. Also, note the different time scales involved in understanding weather
compared to climate. For this reason we will focus our attention on systems whose
macroscopic properties are independent of time. However, in Chapter 10, we will
consider several properties of systems in equilibrium or near equilibrium for which
the time is relevant.

1.2 Some Qualitative Observations

We begin by considering a glass of hot water. We know that, if we place the glass
into a large cold room, the hot water cools until its temperature equals that of the
room. This simple observation illustrates two important properties of macroscopic
systems—the importance of temperature and the arrow of time. Temperature is
familiar, because it is associated with the physiological sensations of hot and cold
and is important in our everyday experience.
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The existence of the direction or arrow of time raises many questions. Have you
ever observed a glass of water at room temperature spontaneously become hotter?
Why not? Is there a direction of time for a single particle? Newton’s second law
for a single particle, F=dp/dt, implies that the motion of particles is time-reversal
invariant; that is, Newton’s second law looks the same if the time t is replaced
by −t and the momentum p is replaced by −p. There is no direction of time at
the microscopic level. Yet if we drop a basketball onto a floor, we know that it
will bounce and eventually come to rest. Have you ever observed a ball at rest
spontaneously begin to bounce, and then bounce higher and higher? So based on
our everyday observations, we conclude that the behaviors of macroscopic bodies
and single particles are very different.

Unlike scientists of about a century or so ago, we know that macroscopic systems,
such as a glass of water and a basketball, consist of many molecules. Although the
intermolecular forces in water produce a complicated trajectory for each molecule,
the observable properties of water are easy to describe. If we prepare two glasses of
water under similar conditions, we know that the observable properties of the water
in each glass are indistinguishable, even though the motion of the individual particles
in the two glasses is very different.

If we take into account that the bouncing ball and the floor consist of molecules,
then we know that the total energy of the ball and the floor is conserved as the ball
bounces and eventually comes to rest. Why does the ball eventually come to rest?
You might be tempted to say the cause is “friction,” but friction is just a name for
an effective or phenomenological force.1 At the microscopic level, we know that the
fundamental forces associated with mass, charge, and the nucleus conserve the total
energy. Hence, if we include the energy of the molecules of the ball and the floor, the
total energy is conserved. Conservation of energy does not explain why the inverse
process, where the ball rises higher and higher with each bounce, does not occur. Such
a process also would conserve the total energy. So a more fundamental explanation is
that the ball comes to rest consistent with conservation of the total energy and with
some other principle of physics. We will learn that this principle is associated with
an increase in the entropy of the system. For now, entropy is just a name,2 and it is
important to understand that energy conservation is not sufficient to understand the
behavior of macroscopic systems.

Let us consider the ball bouncing on the floor again. Initially, the energy of the
ball is associated with the motion of its center of mass, and we say that the energy
is associated with one degree of freedom. After some time, the energy becomes
associated with the individual molecules near the surface of the ball and the floor,
and we say that the energy is now distributed over many degrees of freedom. If we
were to bounce the ball on the floor many times, the ball and the floor would each
feel warm. So we can hypothesize that energy has been transferred from one degree
of freedom to many degrees of freedom, while the total energy is conserved. Hence,
we conclude that the entropy is a measure of how the energy is distributed.

1We will use the word phenomenological often. It means a description of phenomena that is not derived
from first principles.
2As for most concepts in physics, the meaning of entropy in the context of thermodynamics and statistical
mechanics differs from its meaning as used by nonscientists.
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What other quantities are associated with macroscopic systems besides temper-
ature, energy, and entropy? We are already familiar with some of these quantities.
For example, we can measure the air pressure in a basketball and its volume. More
complicated quantities are the thermal conductivity of a solid and the viscosity of
oil. How are these macroscopic quantities related to each other and to the motion
of the individual constituent molecules? The answers to questions such as these will
take us through many chapters.

1.3 Doing Work and the Quality of Energy

We have observed that hot objects cool, and cool objects do not spontaneously
become hot; bouncing balls come to rest, and a stationary ball does not spon-
taneously begin to bounce. And although the total energy is conserved in these
processes, the distribution of energy changes in an irreversible manner. We also have
concluded that a new concept, the entropy, needs to be introduced to explain the
direction of change of the distribution of energy.

Now let us take a purely macroscopic viewpoint and discuss how we can arrive at
a similar qualitative conclusion about the asymmetry of nature. This viewpoint was
especially important historically because of the lack of a microscopic theory of matter
in the nineteenth century, when the laws of thermodynamics were being developed.

Consider the conversion of stored energy into heating a house or a glass of water.
The stored energy could be in the form of wood, coal, or vegetable oil, for example.
We know that this conversion is easy to do using simple methods, for example,
an open flame. We also know that if we rub our hands together, they will become
warmer. There is no theoretical limit to the efficiency at which we can convert stored
energy to energy used for heating an object.

What about the process of converting stored energy into work? Work, like many
of the other concepts that we have mentioned, is difficult to define. For now let us say
that doing work is equivalent to the raising of a weight. To be useful, we need to do
this conversion in a controlled manner and indefinitely. A single conversion of stored
energy into work, such as the explosion of dynamite, might demolish an unwanted
building, but this process cannot be done repeatedly with the same materials. It is
much more difficult to convert stored energy into work, and the discovery of ways to
do this conversion led to the Industrial Revolution. In contrast to the primitiveness
of an open flame, we have to build an engine to do this conversion.

Can we convert stored energy into useful work with 100% efficiency? We know
that some forms of stored energy are more useful than others. For example, why
do we burn natural gas and oil in power plants even though the atmosphere and
the oceans are vast reservoirs of energy? Can we mitigate global climate change
by extracting energy from the atmosphere to run a power plant? From the work
of Kelvin, Clausius, Carnot, and others, we know that we cannot convert stored
energy into work with 100% efficiency, and we must “waste” some of the energy.
At this point, it is easier to understand the reason for this necessary inefficiency by
microscopic arguments. For example, the energy in the gasoline of the fuel tank of
an automobile is associated with many molecules. The job of the automobile engine
is to transform this (potential) energy so that it is associated with only a few degrees
of freedom, that is, the rolling tires and gears. It is plausible that it is inefficient to
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transfer energy from many degrees of freedom to only a few. In contrast, the transfer
of energy from a few degrees of freedom (the firewood) to many degrees of freedom
(the air in your room) is relatively easy.

The importance of entropy, the direction of time, and the inefficiency of converting
stored energy into work are summarized in various statements of the second law of
thermodynamics.3 We will learn that the first law is a statement of conservation of
energy.

Suppose that we take some firewood and use it to “heat” a sealed room. Because
of energy conservation, the energy in the room plus the firewood is the same before
and after the firewood has been converted to ash. Which form of the energy is more
capable of doing work? You probably agree that the firewood is a more useful form of
energy than the “hot air” and ash that exists after the firewood is burned. Originally
the energywas stored in the form of chemical (potential) energy. Afterward the energy
is mostly associated with the motion of the molecules in the air. What has changed
is not the total energy, but its ability to do work. We will learn that an increase in
entropy is associated with a loss of ability to do work.

1.4 Thermal Equilibrium

So far we have discussed the behavior of macroscopic systems by appealing to our
everyday experience and simple observations. We now discuss some ways of simula-
ting the behavior of macroscopic systems. Although we cannot simulate a macro-
scopic system of 1023 particles, we will find that even small systems of the order
of 100 particles are sufficient to illustrate the qualitative behavior of macroscopic
systems.

We first discuss how we can simulate a gas consisting of molecules whose internal
structure can be ignored. Imagine a system of N particles in a closed container of
volume V, and suppose that the container is far from the influence of external forces
such as gravity. We will usually consider two-dimensional systems so that we can
easily visualize the motion of the particles.

For simplicity, we assume that the motion of the particles is given by classical
mechanics, and hence we need to solve Newton’s second law for each particle.
To compute the total force on each particle, we have to specify the nature of the
interaction between the particles. We will assume that the force between any pair of
particles depends only on the distance between them. This assumption is applicable
to simple liquids, such as liquid argon, but not to water. We will also assume that
the particles are not charged. A potential that approximates the interaction between
a pair of neutral atoms or molecules is given by the Lennard-Jones potential4

u(r)=4ε
[(σ

r

)12 −
(σ
r

)6]
, (1.1)

3It is interesting that the second law of thermodynamics was conceived before the first law of thermo-
dynamics.
4This potential is named after John Lennard-Jones, 1894–1954, a theoretical chemist and physicist. The
Lennard-Jones potential is most appropriate for closed-shell systems, such as Ar or Kr.
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Figure 1.1. Plot of the Lennard-Jones potential u(r), where r is the distance between the
particles. The potential is characterized by a length σ and an energy ε.

where r is the distance between two particles. A plot of u(r) is shown in Figure 1.1.
The r−12 form of the repulsive part of the interaction was chosen for convenience and
has no fundamental significance. The attractive 1/r6 behavior at large r is the van der
Waals interaction.5 The force between any two particles is given by f (r)=−du/dr.

In macroscopic systems, the fraction of particles near the walls of the container
is negligibly small. In contrast, the number of particles that can be simulated is
typically 103–106. For these small systems, the fraction of particles near the walls
of the container would be significant, and the behavior of the system would be
dominated by surface effects. The most common way of minimizing surface effects
and to simulate more closely the properties of a macroscopic system is to use what
are known as toroidal boundary conditions. These boundary conditions are familiar
to computer game players. For example, a particle that exits the right edge of the
“box” reenters the box from the left side. In one dimension, this boundary condition
is equivalent to taking a piece of string and making it into a loop. In this way a
particle moving on the string never reaches the end (the surface).

Given the form of the interparticle potential, we can determine the total force on
each particle due to all the other particles in the system.We then use Newton’s second
law of motion to find the acceleration of each particle. Because the acceleration is
the second derivative of the position, we need to solve a second-order differential
equation for each particle (in each direction), given the initial position and velocity of
each particle. (For a two-dimensional system ofN particles, there are 2N differential
equations.) These differential equations are coupled, because the acceleration of one
particle depends on the positions of all the other particles. Although we cannot solve
the coupled differential equations analytically, we can use numerical methods to solve
them to a good approximation. This way of simulating gases, liquids, solids, and
biomolecules is called molecular dynamics.

In the following, we will explore some of the qualitative properties of macroscopic
systems by doing some simple simulations. Before you do the simulations, think

5The van der Waals interaction arises from an induced dipole-dipole effect. It is present in all molecules,
but is important only for the heavier noble gas atoms.
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about what you believe the results will be. In many cases the most valuable part
of the simulation is not the simulation itself, but the act of thinking about a concrete
model and its behavior.

Problem 1.1. Approach to equilibrium
Suppose that we divide a box into three equal parts and place N particles in the
middle third of the box.6 The particles are placed at random with the constraint that
no two particles can be closer than the length parameter σ . This constraint prevents
the initial force between any two particles from being too big, which would lead to
the breakdown of the numerical method used to solve the differential equations. The
velocity of each particle is assigned at random and then their velocities are shifted so
that the velocity of the center of mass is zero. At t=0, we remove the “walls” between
the three parts and watch the particles move according to Newton’s equations of
motion. We say that the removal of a wall corresponds to the removal of an internal
constraint. What do you think will happen?

Program ThreePartsMD implements this simulation. The program shows the
positions of the particles and plots the number of particles in the left (n1), center
(n2), and right (n3) part of the box as a function of time. The input parameter is N,
the number of particles initially in the center, so that n1 =0, n2 =N, and n3 =0 at
t=0.

(a) Does the system appear to show a direction of time for N=6?
(b) Does the system appear to show a direction of time for N=27? Choose

various values ofN that are multiples of 3 up toN=270. What is the nature
of the time dependence of n1, n2, and n3? Is the direction of time better
defined for larger N?

(c) To better understand the direction of time, make a video of the motion of
the positions of 270 particles starting from t=0. Run the simulation until
the particles are approximately equally divided between the three regions.
Then run the video both forward and backward. Can you tell by looking
at the video which direction is forward? Repeat for larger values of N.
Does your conclusion about the direction of time become more certain for
larger N?

(d) Repeat part (c) but start the video after the particles are distributed equally
among the three regions, say at t=20, as in Figure 1.2. Is the direction of
time more apparent? Repeat for various values of N.

(e) The time shown in the plots is in terms of σ(m/ε)1/2, where σ and ε are the
length and energy parameters of the Lennard-Jones potential in (1.1), and
m is the mass of a particle. Verify that this combination has units of time.
For argon, σ =3.4×10−10 m, ε=1.65×10−21 J, and m=6.69×10−26 kg.
What is the value of σ(m/ε)1/2 for argon? How much real time has elapsed
if the program shows that t=100?

(f) Program TwoPartsMD initially divides the box into two parts rather than
three. Run the program and verify that the simulation shows similar
qualitative behavior. Explain the use of toroidal boundary conditions.

6We divided the box into three parts so that the effects of the toroidal boundary conditions are not as
apparent as if we had initially confined the particles to one half of the box.
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Figure 1.2. Evolution of the number of particles in each third of the box for N=270. The
particles were initially restricted to the middle third of the box. Toroidal boundary conditions
are used in both directions. The initial velocities are assigned at random such that the center
of mass velocity is zero.

(g) Why does the system exhibit a direction of time when the motion of each
particle is time reversible?

(h) *After n1, n2, and n3 first become approximately equal for N=270, reverse
the velocities of all the particles and continue the simulation. Reversing
the velocities is equivalent to seeing the simulation go backward in time.
Do the particles return to the middle third of the box? Do the simulation
again, but let the system evolve longer before reversing the velocities. Are
your results any different? Are your results consistent with the fact that
Newton’s equations of motion are deterministic and time reversal invariant,
so that reversing the velocities should exactly retrace the original particle
trajectories? (See Section 1.7 for a discussion of the extreme sensitivity of the
trajectories to very small errors.) �

1.4.1 A probabilistic model
To gain some more insight into why there is a direction of time, we consider a simpler
model that shows similar behavior. Imagine a closed box that is divided into two parts
of equal areas. The left half initially contains N identical particles, and the right half
is empty. We then make a small hole in the wall between the two halves. Instead of
simulating this system by solving Newton’s equations for each particle, we adopt an
approach based on a probabilistic model. We assume that the system is so dilute that
the particles do not interact with one another. Hence, the probability per unit time
that a particle goes through the hole in the wall is the same for all particles regardless
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of the number of particles in either half. We also assume that the size of the hole is
such that only one particle can pass through in one unit of time.

One way to implement this model is to choose a particle at random and move it
to the other half. However, our interest is only in the number of particles on each
side, not on which particles are on each side. Hence, we need to know only n, the
number of particles on the left side; the number on the right side is N−n. Because
each particle has the same chance to go through the hole in the wall, the probability
per unit time that a particle moves from left to right equals the number of particles
on the left side divided by the total number of particles. That is, the probability of
a move from left to right is n/N. The algorithm for simulating the evolution of the
model is given by the following steps:

1. Generate a random number r from a uniformly distributed set of random
numbers in the interval 0≤ r<1.

2. If r≤ n/N, a particle is moved from left to right, that is, let n→ n−1;
otherwise, n→ n+1.

3. Increase the time by 1.

Program HoleInWall implements this algorithm and plots the evolution of n.

Problem 1.2. Hole in the wall

(a) Before you run the program, describe what you think will be the qualitative
behavior of n(t), the time dependence of the number of particles on the left
side of the box.

(b) Run the program, and describe the behavior of n(t) for various values of
N. Does the system approach equilibrium? How would you characterize
equilibrium? In what sense is equilibrium better defined as N is increased?
Does your definition of equilibrium depend on how the particles were initially
distributed between the two halves of the box?

(c) When the system is in equilibrium, does the number of particles on the left-
hand side remain a constant? If not, how would you describe the nature of
equilibrium?

(d) If N�32, does the system return to its initial state during the time you have
patience to watch the system?

(e) How does n, the average number of particles on the left-hand side, depend on
N after the system has reached equilibrium? The program computes various
averages from the time t=0. Why does such a calculation not yield the
correct equilibrium average values? Use the Zero Averages button to reset
the calculation of the averages.

(f) Define the quantity σ by the relation7

σ 2 = (�n)2 = (n− n)2. (1.2)

What does σ measure? What would be its value if n were constant? How
does σ depend on N? How does the ratio σ/n depend on N? We say that σ
is a measure of the fluctuations of n about its average, and σ/n is a measure
of the relative fluctuations of n. �

7This use of σ should not be confused with the length σ in the Lennard-Jones potential.
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TABLE 1.1
The four possible ways in which N=2 particles can be distributed between the two halves
of a box. The quantity W(n) is the number of microstates corresponding to the macroscopic
state characterized by n, the number of particles on the left-hand side. The probability P(n) of
macrostate n is calculated assuming that each microstate is equally likely.

Microstate n W(n) P(n)

L L 2 1 1/4

L R 1 2 1/2
R L

R R 0 1 1/4

From Problems 1.1 and 1.2we conclude that the average values of themacroscopic
quantities of interest will eventually become independent of time. We say that the
system has reached equilibrium, and the macroscopic quantities exhibit fluctuations
about their average values. We also learned that the relative fluctuations become
smaller as the number of particles is increased, and the details of the dynamics are
irrelevant to the general tendency of macroscopic systems to approach equilibrium.

How can we understand why the systems we have considered exhibit a direction
of time? There are two general approaches. One approach is to study the dynamics
of the system.8 A simpler way is to change the question and take advantage of the
fact that the equilibrium state of a macroscopic system is independent of time on
the average, and hence time is irrelevant in equilibrium. For the model considered
in Problem 1.2, we will see that counting the number of ways that the particles can
be distributed between the two halves of the box will help us understand the nature
of equilibrium. This approach does not tell us how long it takes the system to reach
equilibrium, but it will give us insight into why there is a direction of time.

1.4.2 Counting states
We call each distinct arrangement of the particles between the two halves of the box
amicrostate. ForN=2 the four possible microstates are shown in Table 1.1. Because
the halves are equivalent, a given particle is equally likely to be in either half when the
system is in equilibrium. Hence, for N=2 the probability of each microstate equals
1/4 when the system is in equilibrium.

From a macroscopic point of view, we do not care which particle is in which half
of the box, but only the number of particles on the left. Hence, the macroscopic state
or macrostate is specified by n. Are the three possible macrostates listed in Table 1.1
equally probable?

We next consider N=4, for which there are 2×2×2×2=24 =16 microstates
(see Table 1.2). We assume as before that all microstates are equally probable in
equilibrium. We see from Table 1.2 that there is only one microstate with all particles
on the left, and the most probable macrostate is n=2.

For larger N the probability of the most probable macrostate with n=N/2 is
much greater than the macrostate with n=N, which has a probability of only

8The approach to equilibrium of the number of particles in the left half of the box in Problem 1.2 is
discussed in Section 1.14.1.
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TABLE 1.2
The 24 possible ways in which N=4 particles can be distributed between the two halves of a
box. The quantityW(n) is the number of microstates corresponding to the macroscopic state
characterized by n. The probability P(n) of macrostate n is calculated assuming that each
microstate is equally likely.

Microstate n W(n) P(n)

L L L L 4 1 1/16

R L L L 3

L R L L 3

L L R L 3

L L L R 3

4 4/16

R R L L 2

R L R L 2

R L L R 2

L R R L 2

L R L R 2

L L R R 2

6 6/16

R R R L 1

R R L R 1

R L R R 1

L R R R 1

4 4/16

R R R R 0 1 1/16

1/2N, corresponding to a single microstate. Hence, we conclude that the equilibrium
macrostate corresponds to the most probable state.

Problem 1.3. Counting microstates

(a) Calculate the number of possible microstates for each macrostate n forN=8
particles. What is the probability that n=8? What is the probability that
n=4? It is possible to count the number of microstates for each n by hand,
but because there are a total of 28 =256 microstates, counting this way is
tedious. An alternative is to determine the number of ways that n particles
out ofN can be in the left half of the box. Enumerate the possible microstates
for smaller values of N until you see a pattern.

(b) The macrostate with n=N/2 is much more probable than the macrostate
with n=N. Why? �
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1.4.3 Some qualitative observations
Approach to equilibrium. The macrostates that give us the least amount of informa-
tion about the associated microstates are the most probable. For example, suppose
that we wish to know where particle 1 is, given that N=4. If n=4, we know with
certainty that particle 1 is on the left. If n=3, the probability that particle 1 is on the
left is 3/4. And if n=2, we know only that particle 1 is on the left with probability
1/2. In this sense the macrostate n=2 is more random than macrostates n=4 and
n=3.

We also found from the simulations in Problems 1.1 and 1.2 that if an isolated
macroscopic system changes in time due to the removal of an internal constraint,
it tends to evolve from a less random to a more random state. Once the system
reaches its most random state, fluctuations corresponding to an appreciably nonuni-
form state are rare. These observations and our reasoning based on counting the
number of microstates corresponding to a particular macrostate leads us to conclude
that:

A system in a nonuniform macrostate will change in time on the average so as to approach
its most random macrostate where it is in equilibrium.

This conclusion is independent of the nature of the dynamics. Note that the
simulations in Problems 1.1 and 1.2 involved the dynamics, but our discussion of
the number of microstates corresponding to each macrostate did not involve the
dynamics in any way. Instead we counted (enumerated) the microstates and assigned
them equal probabilities, assuming that the system is isolated and in equilibrium.

In the simulations discussed in Problem 1.1, the total energy was conserved,
and hence the macroscopic quantity of interest that changed from the specially
prepared initial state to the most probable macrostate was not the total energy. What
macroscopic quantities changed besides the number of particles in each part of the
box? Based on our previous discussion, we can tentatively say that the quantity that
changed is the entropy. We conjecture that the entropy is associated with the number
of microstates associated with a given macrostate. If we make this association, we
conclude that the entropy is greater after the system has reached equilibrium than in
the system’s initial state.Moreover, if the systemwas initially prepared in amicrostate
such that n1 =n2 =n3 =N/3, the average values of n1 =n2 =n3 =N/3 and hence the
entropy would not change. Hence, we can conclude the following:

The entropy of an isolated system increases or remains the same when an internal constraint
is removed.

This statement is equivalent to the second law of thermodynamics. This identification
of the entropy is made explicit in Chapter 4.

As a result of the simulations that we have done and our discussions, we can
make some additional preliminary observations about the behavior of macroscopic
systems.

Fluctuations in equilibrium. Once a system reaches equilibrium, the macroscopic
quantities of interest are not independent of time, but exhibit fluctuations about
their average values. Only the average values of the macroscopic variables are



1.5 MEASURING THE PRESSURE AND TEMPERATURE • 13

independent of time in equilibrium.9 For example, in Problem 1.2 the number of par-
ticles n(t) changes with t, but its average value n does not. If N is large, fluctuations
corresponding to a very nonuniform distribution of the particles almost never occur,
and the relative fluctuations σ/n become smaller as N is increased.

History independence. The properties of equilibrium systems are independent of
their history. For example, the value of n in Problem 1.2 would be the same whether
we had started with n(t=0)=N or n(t=0)=0. In contrast, we are all products of
our history. One consequence of history independence is that we can ignore how a
system reached equilibrium.

Need for statistical approach. A macroscopic system can be described in detail
by specifying its microstate. Such a description corresponds to specifying all the
possible information. For a system of classical particles, a microstate corresponds
to specifying the position and velocity of each particle.

Suppose that we simulate a system of many particles and save the trajectories of
each particle as a function of time. What could we do with this information? If the
number of particles is 106 or more or if we ran the simulation long enough, we would
have a problem storing the data. Do we want to have a detailed description of the
motion of each particle? Would this data give us much insight into the macroscopic
behavior of the system? We conclude that the presence of a large number of particles
motivates us to adopt a statistical approach. In Section 1.7, we will discuss another
reason why a statistical approach is necessary.

We will find that the laws of thermodynamics depend on the fact that the number
of particles in macroscopic systems is enormous. A typical measure of this number
is the Avogadro number, which is approximately 6×1023, the number of atoms in a
mole. When there are so many particles, predictions of the average properties of the
system become meaningful, and deviations from the average behavior become less
important as the number of atoms is increased.

Equal a priori probabilities. In our analysis of the probability of each macrostate
in Problem 1.2, we assumed that each microstate is equally probable. That is, each
microstate of an isolated system occurs with equal probability if the system is in
equilibrium. We will make this assumption explicit in Chapter 4.

1.5 Measuring the Pressure and Temperature

The obvious macroscopic quantities that we can measure in our simulations of many
particles include the average kinetic and potential energies. We also know the number
of particles and the volume. From our everyday experience we know that there are

9Some of our general statements will be qualified in later chapters. Just because the macroscopic properties
of a system are time independent does not necessarily mean that it is in equilibrium. If a system is driven by
external forces or currents that are time independent, the observable macroscopic properties of the system
can be time independent, and the system is said to be in a steady state. For example, consider a metal bar
with one end in contact with a much larger system at temperature Thot and the other end in contact with
a much larger system at temperature Tcold. If Thot>Tcold, energy will be continually transported from
the “hot” end to the “cold” end, and the temperature gradient will not change on average. We discuss
this situation in Chapter 10.
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at least two other macroscopic variables that are relevant for a system of particles,
namely, the pressure and the temperature.

You are probably familiar with the concepts of force and pressure from courses in
mechanics. The force on a wall of a container is related to the rate of change of the
component of the total momentum perpendicular to the wall. Because the force on
the wall is proportional to the areaA of the wall, we define the pressure P as P=F/A.
The pressure is a scalar, because it is the same in all directions on the average.10

The number of particles that strike a wall of the box per second is huge. A pressure
gauge cannot distinguish between the individual frequent impacts but measures the
average force due to many impacts. In this book, we will discuss many examples
of the relation of the macroscopic properties of a system to an average of some
microscopic quantity.

Before we discuss the nature of temperature, consider the following questions.

Problem 1.4. Nature of temperature

(a) Summarize what you know about temperature. What reasons do you have
for thinking that it has something to do with energy?

(b) Discuss what happens to the temperature of a hot cup of coffee. What
happens, if anything, to the temperature of its surroundings?

(c) If you add energy to a pot of boiling water, does the temperature of the water
change? �

Although temperature and energy are related, they are not the same quantity. For
example, one way to increase the energy of a glass of water is to lift it. However, this
action would not affect the temperature of the water. Also, if we placed a glass of
water on a moving conveyor belt, the temperature of the water would not change.
So the temperature has nothing to do with the motion of the center of mass of the
system. We also know that temperature is a property associated with many particles.
It would be absurd to refer to the temperature of a single molecule.

The most fundamental property of temperature is not that it has something to do
with energy. More importantly, temperature is the quantity that becomes equal when
two systems are allowed to exchange energy with one another. In Problem 1.5, we
interpret the temperature from this point of view.

Problem 1.5. Identification of the temperature

(a) Use program ThermalContact to simulate two systems, A and B, of
particles that interact via the Lennard-Jones potential in (1.1). Both systems
are in a square box with linear dimension L=12. Toroidal boundary condi-
tions are not used, and the particles also interact with fixed particles (with
infinite mass) that make up the walls and the barrier between them. Initially,
the two systems are isolated from each other and from their surroundings.
We take NA =81, NB =64, εAA =1.0, σAA =1.0, εBB =1.5, σBB =1.2, εAB =
1.25, and σAB =1.1. Run the simulation and monitor the kinetic energy and
potential energy until each system appears to reach equilibrium. What is the

10Because most of our simulations are done using toroidal boundary conditions, we will use the relation
of the force to the virial, a mechanical quantity that involves all the particles in the system, not just those
colliding with a wall. See Gould, Tobochnik, and Christian, Chap. 8 or an advanced classical mechanics
text.
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average potential and kinetic energy of each system? Is the total energy of
each system constant (to within numerical error)?

(b) Remove the barrier and let the particles in the two systems interact with one
another. What quantity is exchanged between the two systems? (The volume
of each system is fixed.)

(c) After equilibrium has been established, compare the average kinetic and
potential energies of each system to their values before the two systems came
into contact.

(d) What quantity is the same in both systems after equilibrium has been
established? Are the average kinetic and potential energies the same? What
quantities would change if you doubled the number of particles and the area
of each system? Would the temperature change? Does it make more sense
to compare the average kinetic and potential energies or the average kinetic
and potential energies per particle? Do any other quantities become approx-
imately equal? What can you conclude about the possible identification of
the temperature in this system?
After the barrier has been removed, the average kinetic energy per particle

for both systems becomes equal. It is natural to assume that the temperature
is proportional to the average kinetic energy per particle, which is valid for
systems of particles for which quantum effects can be ignored.
You might have noticed that the final temperature is slightly higher than

the initial temperatures of each system. This behavior seems inconsistent
with what we observe in nature. That is, when two systems are placed in
thermal contact, the higher temperature decreases and the lower temperature
increases. The reason for this inconsistency with what we observe in nature
is that when we allow both sides of the system to interact in the simulation,
we have added the extra interaction energy to the composite system. �

From the simulations in Problem 1.5 you likely concluded that the temperature
is proportional to the average kinetic energy per particle. You might have known
about this relation already. We will learn in Chapter 6 that the proportionality of
the temperature to the average kinetic energy per particle holds only for a system
of particles whose kinetic energy is proportional to the square of its momentum or
velocity.

The relation between temperature and kinetic energy does not tell us why
temperature is the quantity that determines the direction of energy transfer when
two systems are in thermal contact. The temperature of an object is a measure of
how easy it is for the object to accept more energy when placed in thermal contact.
Low-temperature objects easily accept energy, and high-temperature objects easily
give up energy. When two objects are at the same temperature, they do not exchange
a net amount of energy.

How can we measure the temperature of a system? After all, in an experiment
we cannot directly measure the average kinetic energy per particle. Nevertheless,
there are many kinds of thermometers. These thermometers exchange energy with
the system of interest and have some physical property that changes in a way that
can be calibrated to yield the temperature. In Problem 1.6 we ask you to think
about the general characteristics of thermometers. We then consider a simple model
thermometer. We will discuss thermometers in more detail in Chapter 2.



16 • FROM MICROSCOPIC TO MACROSCOPIC BEHAVIOR

Problem 1.6. Thermometers

(a) Describe some of the thermometers with which you are familiar.
(b) On what physical principles do these thermometers operate?
(c) What requirements must a thermometer have to be useful? �

To gain more insight into the meaning of temperature, we consider a model
thermometer known as a “demon.” The demon is a special particle that carries a
sack of energy and exchanges energy with the system of interest by making a small
change in the system. If the change lowers the energy of the system, the demon puts
the extra energy in its sack. If the change would increase the energy of the system,
the demon gives the system the needed energy with the constraint that Ed, the energy
of the demon, must be nonnegative. The total energy of the demon and the system is
a constant.

The behavior of the demon is given by the following algorithm:

1. Choose a particle in the system at random and make a trial change in one of
its coordinates.

2. Compute �E, the change in the energy of the system due to the trial change.
3. If �E≤0, the system gives the surplus energy to the demon, Ed →Ed + |�E|,

and the trial change is accepted.
4. If �E>0 and the demon has sufficient energy (remember that Ed ≥ 0), then

the demon gives the necessary energy to the system, Ed →Ed −�E, and
the trial change is accepted. Otherwise, the trial change is rejected and the
microstate is not changed.

5. Repeat steps 1–4 many times.
6. Compute the averages of the quantities of interest once the system and the

demon have reached equilibrium.

We consider the consequences of these simple rules in Problem 1.7. The nature of
the demon is discussed further in Section 4.9.

Problem 1.7. The demon and the ideal gas
Program DemonIdealGas simulates a demon that exchanges energy with an ideal
gas of N particles in d spatial dimensions. Because the particles do not interact,
the only coordinate of interest is the velocity of the particles. The demon chooses a
particle at random and changes each component of its velocity by an amount chosen
at random between −� and +�. For simplicity, we set the initial demon energy Ed =
0 and the initial velocity of each particle equal to +v0x̂, where v0 = (2E0/mN)1/2.
E0 is the desired total energy of the system, and m is the mass of the particles. We
choose units such that m=1, and the energy and momentum are dimensionless (see
Section 1.12).

(a) Run the simulation using the default parametersN=40, E0 =40, and d=3.
Does the average energy of the demon approach a well-defined value after
a sufficient number of energy exchanges with the system? (One time unit is
equal to N trial changes.)

(b) What is Ed, the average energy of the demon, and E, the average energy of
the system? Compare the values of Ed and E/N.
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(c) FixN=40 and double the total energy of the system. (Remember that Ed =0
initially.) Compare the values of Ed and E/N. Consider other values of
N≥ 40 and E and determine the relation between Ed and E/N.11

(d) You have probably learned in other courses that the average energy of
an ideal gas in three dimensions is equal to E= 3

2NkT, where T is the
temperature of the gas, N is the number of particles, and k is a constant.
Our choice of dimensionless variables implies that we have chosen units
such that k=1. Use this relation for E to determine the temperature of the
ideal gas in parts parts (b) and (c). Is Ed proportional to the temperature of
the gas?

(e) ∗ Suppose that the energy-momentum relation of the particles is not ε=p2/2m,
but is ε= cp, where c is a constant (which we take to be 1). Consider various
values of N and E as you did in part (c). Is the dependence of Ed on E/N the
same as you found in part (c)? We will show in Problem 4.30 that Ed is still
proportional to the temperature.

(f) ∗ After the demon and the system have reached equilibrium, we can compute
the histogram H(Ed)�Ed, the number of times that the demon has energy
between Ed and Ed +�Ed. The bin width �Ed is chosen by the program.
The histogram is proportional to the probability p(Ed)�E that the demon
has energy between Ed and Ed +�E. What do you think is the dependence
of p(Ed) on Ed? Is the demon more likely to have zero or nonzero energy?

(g) ∗ Verify the exponential form, p(Ed)=Ae−βEd , where A and β are parameters.
How does the value of 1/β compare to the value of Ed? We will find that
the exponential form of p(Ed) is universal, that is, independent of the system
with which the demon exchanges energy, and that 1/β is proportional to the
temperature of the system.

(h) Discuss why the demon is an ideal thermometer. �

1.6 Work, Heating, and the First Law of Thermodynamics

As you watch the motion of the individual particles in a molecular dynamics simu-
lation, you will probably describe the motion as “random” in the sense of how we
use random in everyday speech. The motion of the individual molecules in a glass of
water exhibits similar motion. Suppose that we were to expose the water to a low
flame. In a simulation this process would roughly correspond to increasing the speed
of the particles when they hit a wall. We say that we have transferred energy to the
system incoherently, because each particle continues to move more or less at random.

In contrast, if we squeeze a plastic container of water, we do work on the system,
and the particles near the wall move coherently. So we can distinguish two different
ways of transferring energy to the system. Heating transfers energy incoherently and
doing work transfers energy coherently.

Let us again consider a molecular dynamics simulation and suppose that we have
increased the energy of the system by either compressing the system from a volume
Vi to Vf and doing work on it or by randomly increasing the speed of the particles

11Because there are finite-size effects that are order 1/N, it is desirable to consider N� 1. The trade-off
is that the simulation takes longer to run.
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that reach the walls of the container with a volume Vf . Roughly speaking, the first
way would initially increase the potential energy of interaction, and the second way
would initially increase the kinetic energy of the particles. If we increase the total
energy by the same amount, could you tell by looking at the particle trajectories
after equilibrium has been reestablished how the energy was increased? The answer
is no, because for a given total energy, volume, and number of particles, the kinetic
energy and the potential energy each have unique equilibrium values. We conclude
that the total energy of the gas can be changed by doing work on it or by heating it
or by both processes. This statement is equivalent to the first law of thermodynamics
and from the microscopic point of view is a statement of conservation of energy.

Our discussion implies that the phrase “adding heat” to a system makes no sense,
becausewe cannot distinguish “heat energy” frompotential energy andkinetic energy.
Nevertheless, we frequently use the word “heat” in everyday speech. For example,
we might say “Please turn on the heat” and “I need to heat my coffee.” We will avoid
such uses, and whenever possible avoid the use of “heat” as a noun. Why do we care?
Because there is no such thing as heat, and the words we use affect how we think.

1.7 *The Fundamental Need for a Statistical Approach

As discussed in Section 1.4, we compute the position and velocity of every particle in
a molecular dynamics simulation. Our disinterest in the trajectory of any particular
particle and the overwhelming amount of information that is generated motivates us
to develop a statistical approach.

We now discuss the more fundamental reason we must use probabilistic methods
to describe systems with more than a few particles. The reason is that for a wide
variety of conditions, even the most powerful supercomputer yields positions and
velocities that are meaningless! We will find that the trajectories in a system of many
particles depend sensitively on the initial conditions. Such a system is said to be
chaotic. This behavior forces us to take a statistical approach even for some systems
with as few as three particles.12

As an example, consider a system ofN=11 particles interacting with the Lennard-
Jones potential (see Program Chaos). The initial conditions are such that all the
particles have the same velocity vx(i)=1, vy(i)=0, and the particles are equally
spaced vertically, with x(i)=L/2 for i=1, . . . , 11 [see Figure 1.3(a)]. For these special
initial conditions, the particles will continue moving indefinitely in the x direction
(using toroidal boundary conditions).

We now stop the simulation and change the velocity of particle 6 so that vx(6)=
1.000001. What do you think will happen? In Figure 1.3(b), we show the positions
of the particles at t=8.0 after the change in velocity of particle 6. Note that the
positions of the particles are no longer equally spaced. A small change in the velocity
of one particle led to a big change in the trajectories of all the particles.

12The planetary system is not immune from chaos. For example, in 1012 years, Mercury may suffer a
close encounter with Venus or plunge into the Sun. However, we can predict the trajectories of the planets
for hundreds of thousands of years. See for example, M. Lecar, F. A. Franklin, and M. J. Holman, “Chaos
in the solar system,” Annu. Rev. Astron. Astrophys. 39, 581–631 (2001).
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(b)(a)

Figure 1.3. (a) A special initial condition for N=11 particles such that their motion remains
parallel indefinitely. (b) The positions of the particles shortly after a small change in vx(6)
from 1 to 1.000001.

*Problem 1.8. Irreversibility
Program Chaos simulates a system of N=11 particles with the special initial
condition shown in Figure 1.3(a).

(a) Perturb the velocity of particle 6, and confirm the qualitative results that we
have discussed.

(b) Stop the simulation at a time t after the perturbation, and reverse all the
velocities. Confirm that if t is sufficiently short, the particles will return
approximately to their initial state. What is the maximum value of t that
allows the particles to return to their initial positions if t is replaced by −t
(all velocities reversed)? �

An important property of chaotic systems is their extreme sensitivity to initial
conditions, that is, the trajectories of two identical systems starting with slightly
different initial conditions will diverge exponentially. For such systems we cannot
predict the positions and velocities of the particles very far into the future because
even the slightest error in our measurement of the initial conditions would make our
prediction incorrect if the elapsed time is sufficiently long. That is, we cannot answer
the question “Where is a particular particle at time t?” if t is sufficiently long. It
might be disturbing to realize that our answers are meaningless if we ask the wrong
questions.

Suppose that a chaotic system evolves for a time t and all the velocities are reversed.
If the system is allowed to evolve for an additional time t, the system will not return
to its original state unless the velocities are specified with infinite precision. This lack
of practical reversibility is related to what we observe in macroscopic systems. If you
pour milk into a cup of coffee, the milk becomes uniformly distributed throughout
the cup. You will never see a cup of coffee spontaneously return to the state where all
the milk is at the surface, because the positions and velocities of the milk and coffee
molecules would need to have exactly the right values to allow the milk to return to
this very special state. This sensitivity to initial conditions provides the foundation
for the arrow of time.
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1.8 *Time and Ensemble Averages

Because of the sensitivity to initial conditions of the dynamics of many-particle
systems, the computed trajectories will not be exact. However, the computed
trajectories can be made consistent with the constraints of constant total energy
E, volume V, and number of particles N. Because of the assumption of equal
probabilities for the microstates of an isolated system, all trajectories consistent
with the constraints will contribute equally to the average values of macroscopic
quantities. Thus, the trajectories computed in a simulation are meaningful, even
though they are very different from the exact trajectories that would be calculated
with an infinite-precision computer.

Molecular dynamics simulations allow us to calculate a time average. If we do
a laboratory experiment to measure the temperature and pressure, our results also
would be equivalent to a time average. Because time is irrelevant for a system in
equilibrium, we can also calculate an ensemble average of various quantities. An
ensemble average is calculated at a given time by considering many identical systems
that satisfy the same known conditions.

An example might clarify the nature of the two types of averages. Suppose that we
want to determine the probability that the toss of a coin results in “heads.” We can
do a time average by taking one coin, tossing it in the air many times, and counting
the fraction of heads. In contrast, an ensemble average can be found by obtaining
many similar coins and tossing them into the air at one time.Wewill discuss ensemble
averages in Chapter 3.

It is reasonable to assume that the two types of averages are equivalent. This
equivalence is called the ergodic hypothesis. The term “hypothesis” might suggest
that the equivalence is not well accepted, but it reminds us that the equivalence has
been shown to be rigorously true in only a few cases. The sensitivity of the trajectories
of chaotic systems to initial conditions suggests that a classical system of particles
moving according to Newton’s equations of motion passes through many different
microstates corresponding to different sets of positions and velocities. This property
is called mixing, and it is essential for the validity of the ergodic hypothesis.

We conclude that macroscopic properties are averages over the microscopic
variables and give predictable values if the system is sufficiently large. One goal of
statistical mechanics is to determine these averages and give a microscopic basis for
the laws of thermodynamics. It is remarkable that these laws depend on the fact
that the microscopic dynamics of the constituents of the macroscopic systems we
encounter in our everyday experience are chaotic.

1.9 Phase Changes and Cooperative Effects

Most of our simulations of Lennard-Jones systems have so far been for dilute
gases. What do you think would happen if we made the density higher? Would
a system of interacting particles form a liquid or a solid if the temperature or the
density were chosen appropriately? The existence of different phases is explored in
Problem 1.9.
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Problem 1.9. Different phases

(a) Program LennardJonesMD simulates an isolated system of N particles
interacting via the Lennard-Jones potential. Choose N=144 and L=18 so
that the density ρ=N/L2 ≈0.44. The initial positions are chosen at random
except that no two particles are allowed to be closer than the length σ . Run
the simulation and satisfy yourself that this choice of density and resultant
total energy corresponds to a gas. What are your criteria?

(b) Slowly lower the total energy of the system. (The total energy is lowered by
rescaling the velocities of the particles.) If you are patient, you will be able to
observe “liquidlike” regions. How are they different from “gaslike” regions?

(c) If you decrease the total energy further, you will observe the system in a state
roughly corresponding to a solid. What are your criteria for a solid? Explain
why the solid that we obtain in this way will not be a perfect crystalline solid.

(d) Describe themotion of individual particles in the gas, liquid, and solid phases.
(e) Speculate on why a system of particles interacting via the Lennard-Jones

potential can exist in different phases. Is it necessary for the potential to
have an attractive part for the system to have a liquid phase? Is the attractive
part necessary for there to be a solid phase? Describe a simulation that would
help you answer this question. �

It is remarkable that a system with the same interparticle interaction can be in
different phases. At the microscopic level, the dynamics of the particles is governed by
the same equations of motion. What changes? How does a phase change occur at the
microscopic level? Why doesn’t a liquid crystallize immediately after its temperature
is lowered quickly? What happens when it does begin to crystallize? We will find
in later chapters that a phase change is an example of a cooperative effect. Familiar
examples of phase transitions are the freezing and boiling of water. Another example
with which you might be familiar is the loss of magnetism of nickel or iron above a
certain temperature (358◦C for nickel). Other examples of cooperative effects are the
occurrence of gridlock on a highway when the density of vehicles exceeds a certain
value, and the occurrence of an epidemic as a function of immune response and
population density.

1.10 Models of Matter

There are many models of interest in statistical mechanics, corresponding to the wide
range of macroscopic systems found in nature and made in the laboratory. So far we
have discussed a simple model of a classical gas and used the same model to simulate
a classical liquid and a solid.

One approach to understanding nature is to develop models that can be under-
stood theoretically but are rich enough to show the same qualitative features that
are observed in nature. We will emphasize models of this type in our discussions. In
some contexts these models can yield quantitative data that approximates data from
experiments. The models that we will consider include the following.
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1.10.1 The ideal gas
The simplest models of macroscopic systems are those for which there are no
interactions between the individual constituents of the system. For example, if a
system of particles is very dilute, collisions between the particles will be rare and
can be neglected under most circumstances. In the limit that the interactions between
the particles can be neglected completely, the system can be modeled as an ideal gas.
The ideal classical gas allows us to understand much about the behavior of dilute
gases, such as those in the Earth’s atmosphere. The quantum versions will be useful
in understanding blackbody radiation, electrons in metals, and the low temperature
behavior of crystalline solids.

The historical reason for the term “ideal” is that the neglect of interparticle
interactions allows us to do calculations analytically. However, the neglect of
interparticle interactions raises other issues. For example, how does an ideal gas reach
equilibrium if there are no collisions between the particles?

1.10.2 Interparticle potentials
A common form of the potential between two neutral atoms is the Lennard-Jones
potential given in (1.1) and Figure 1.1. This potential is the usual choice for studies
where the focus is on fundamental issues, rather than on the properties of a specific
material.

An even simpler interaction is purely repulsive and is given by

u(r)=
{

∞ (r≤ σ )
0 (r>σ ).

(1.3)

A system of particles interacting via (1.3) is called a system of hard spheres, hard
disks, or hard rods, depending on whether the spatial dimension is three, two, or one,
respectively. The properties of dense gases and liquids will be discussed in Chapter 8.

1.10.3 Lattice models
For another class of models, the particle positions are restricted to a lattice or grid and
the momenta of the particles are irrelevant. In the most popular model of this type,
the “particles” correspond to magnetic moments. At high temperatures the magnetic
moments are affected by external magnetic fields, but the interaction between the
moments can be neglected.

The simplest nontrivial lattice model that includes interactions is the Ising model,
the most important model in statistical mechanics. The model consists of magnetic
moments or spins which are located on the sites of a lattice such that each spin can
take on one of two values designated as up and down or ±1. The interaction energy
between two neighboring spins is −J if the two spins point in the same direction
and +J if they point in opposite directions. One reason for the importance of this
model is that it is one of the simplest to have a phase transition, in this case, a phase
transition between a ferromagnetic state and a paramagnetic state. The Ising model
is discussed in Chapter 5.
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We will focus on three classes of models—the ideal classical and quantum gas,
classical systems of interacting particles, and the Ising model. These models will be
used in many contexts to illustrate the ideas and techniques of statistical mechanics.

1.11 Importance of Simulations

Only simple models (such as the ideal gas) or special cases (such as the one- and two-
dimensional Ising models) can be solved exactly by analytical methods. Physicists
frequently use simple models. For example, ignoring air friction allows us to learn
much about the trajectory of a baseball in flight. However, if we want to understand
the trajectory of a curve ball, we need a model that includes the interactions of
a baseball with the air. The same is true in statistical mechanics. We can learn
much from simple models, but we need more complex models to understand certain
properties of materials. Usually, analytical calculations are insufficient to find the
consequences of more complex models, and computational tools are needed.

Statistical mechanics has grown in importance over the past several decades
because computers and new algorithms have made it possible to explore the behavior
of more complex systems. As our models become more realistic, it is likely that they
will require the computer for understanding many of their properties. Frequently the
goal of a simulation is to explore the qualitative behavior of a model, so that we
have a better idea of what type of theoretical analysis might be possible and what
type of laboratory experiments should be done. Simulations also allow us to compute
many quantities, some of which cannot be measured in a laboratory experiment.
Theory, experiment, and simulations each play an important and complementary
role in understanding nature.

Not only can we simulate reasonably realistic models, we also can study models
that are impossible to realize in the laboratory, but are useful for providing a deeper
theoretical understanding of real systems. For example, simulations of the Ising
model and systems of particles with the interaction in (1.3) in four, five, and six
dimensions have helped us understand the behavior of the three-dimensional system.

Simulations cannot replace laboratory experiments and are limited by the finite
size of the systems and by the short duration of our runs. For example, at present,
the longest simulations of simple liquids are for no more than 10−6 s.

1.12 Dimensionless Quantities

The different units used in science can be confusing. One reason is that sometimes
the original measurements were done before a good theoretical understanding was
achieved. For example, the calorie was created as a unit before it was understood
that heat transfer was a form of energy transfer. Even today we frequently become
confused using small calories and big calories and converting each to joules.

It is frequently convenient to use dimensionless quantities. These quantities can be
defined by taking the ratio of two quantities with the same units. For example, the
measure of the angle θ in radians is the ratio of the arc length s on a circle subtended
by the angle to the radius r of the circle: θ = s/r.
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It is also useful to have another quantity with the same dimensions to set the
scale. For example, if the speed v of a particle is close to the speed of light c, we
usually specify the speed as the ratio v/c. (You might recognize the notation β ≡ v/c.)
The use of dimensionless variables makes the relevant equations simpler and make
it easier to perform algebraic manipulations, thus reducing the chance of errors.
Another reason to use dimensionless variables is to make it easier to evaluate the
importance of quantities in making approximations. For example, if β�1, we know
that relativistic corrections are not needed in most contexts.

We will frequently consider the high and low temperature behavior of a thermal
system. What characterizes high temperature? To answer this question, we need to
find a typical energy ε in the system and consider the dimensionless ratio T̃≡kT/ε.
An example is the behavior of electrons in metals at room temperature. We will find
in Chapter 6 that it is convenient to choose ε to be the maximum kinetic energy of an
electron at zero (absolute) temperature. In quantum mechanics, no two electrons can
be in the same state, and hence ε is nonzero. In this case, if T̃�1, the temperature
of the system is low (even though the system is at room temperature).

Although T̃ is dimensionless, it is frequently convenient to call T̃ a temperature
and sometimes even to denote it by T, with the understanding that T is measured in
terms of ε. We have already done so in the context of Problems 1.5 and 1.7.

Another reason to use dimensionless quantities is that computers do not easily
manipulate very small or very large numbers. Thus, it is best that all quantities be
within a few orders of magnitude of 1. In addition, the use of dimensionless quantities
allows us to do a simulation or an analytical calculation that is valid for many
systems. To find the value of a quantity for a specific system, we just multiply the
dimensionless quantity by the relevant quantity that sets the scale for the system of
interest.

1.13 Summary

In principle, we have discussed most of the important concepts in thermodynamics
and statistical physics, but it will take you a while before you understand these
concepts in depth. Your understanding of these concepts and the methods of sta-
tistical and thermal physics will increase as you work with these concepts in different
contexts. However, there is no unifying equation such as Newton’s second law of
motion in mechanics, Maxwell’s equations in electrodynamics, and Schrödinger’s
equation in nonrelativistic quantum mechanics. The concepts are universal, but their
application to particular systems is not.

Thermodynamics might not seem to be as interesting to you when you first
encounter it. However, an understanding of thermodynamics is important in many
contexts, including societal issues such as the Industrial Revolution, global climate
change, and the development of alternative energy sources.

Thermodynamics and statistical mechanics have historically been applied to
gases, liquids, and solids. This application has been very fruitful and is one reason
that condensed matter physics, materials science, and chemical physics are rapidly
evolving and growing areas. Examples of new systems of interest include high temper-
ature superconductors, low dimensional magnets and conductors, composites, and
biomaterials. Scientists are also taking a new look at more traditional condensed
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systems, such as water and other liquids, liquid crystals, and polymers. In addition
to interest in macroscopic systems, there is growing interest is mesoscopic systems,
systems that are neither microscopic nor macroscopic, but are in between, that is,
between ∼102 and ∼106 particles.

The techniques and ideas of statistical mechanics are now being used outside
traditional condensed matter and chemical physics. The field theories of high energy
physics, especially lattice gauge theories, use the methods of statistical mechanics.
New methods of doing quantum mechanics convert calculations to path integrals
that are computed numerically using methods of statistical mechanics. Theories of
the early universe use ideas from thermal physics. For example, we speak about the
universe being quenched to a certain state in analogy to materials being quenched
from high to low temperatures. We already have seen that chaos provides an
underpinning for the need for probability in statistical mechanics. Conversely, many
of the techniques used in describing the properties of dynamical systems have been
borrowed from the theory of phase transitions, an important area of statistical
mechanics.

In recent years statistical mechanics has evolved into the more general field of
statistical physics. Examples of systems of interest in the latter area include earth-
quake faults, granular matter (for example, sand), neural networks, active matter
(for example, flocks of birds), porous media such as rocks, models of computing,
and the distribution of wealth in a society. Statistical physics is characterized more
by its techniques than by the problems that are of interest. This universal applicability
makes the techniques more difficult to understand, but makes the journey more
exciting.

1.14 Supplementary Notes
1.14.1 Approach to equilibrium
In Problem 1.2 we found that n(t), the number of particles on the left side of the box
at time t, decreases in time from its initial value to its equilibrium value in an almost
deterministic manner if N�1. It is instructive to derive the time dependence of n(t)
to show explicitly how chance can generate deterministic behavior.

We learned that, if we run the simulation once, n(t) will exhibit fluctuations and
not decay monotonically to equilibrium. Suppose that we do the simulation many
times and average the results of each run at a given time t. As discussed in Section 1.8,
this average is an ensemble average, which we will denote by n(t). If there are n(t)
particles on the left side after t moves, the change in n in the time interval �t is
given by

�n=
[−n(t)

N
+ N− n(t)

N

]
�t, (1.4)

where �t is the time between moves of a single particle from one side to the other.
Equation (1.4) is equivalent to assuming that the change in n in one time step is equal
to the probability that a particle is removed from the left plus the probability that it
is added to the left. (In the simulation we defined the time so that the time interval�t
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between changes in n(t) was equal to 1.) If we treat n and t as continuous variables
and take the limit �t→ 0, we have

�n
�t

→ dn
dt

=1− 2n(t)
N

. (1.5)

The solution of the differential equation (1.5) is

n(t)= N
2

[
1+ e−2t/N

]
, (1.6)

where we have used the initial condition n(t=0)=N. We see that n(t) decays
exponentially to its equilibrium value N/2. How does this form (1.6) compare to
your simulation results for various values of N?

From (1.6) we can define a relaxation time τ as the time it takes the difference
[n(t)−N/2] to decrease to 1/e of its initial value. Because τ =N/2, n(t) for large
N varies slowly, and we are justified in rewriting the difference equation (1.4) as a
differential equation.

Problem 1.10. Independence of initial conditions
Show that if the number of particles on the left-hand side of the box at t=0 is equal
to n(0) rather than N, the solution of (1.5) is

n(t)= N
2

− N
2

[
1− 2n(0)

N

]
e−2t/N. (1.7)

Note that n(t)→N/2 as t→ ∞ independent of the value of n(0). �

1.14.2 Mathematics refresher
As discussed in Section 1.13, there is no unifying equation in statistical mechanics
to be solved in a variety of contexts. For this reason we will use many mathematical
tools. Section 2.24.1 summarizes the mathematics of thermodynamics, which makes
much use of partial derivatives. The Appendix summarizes some of the mathematical
formulas and relations that we will use.

If you can do the following problems, you have a good background for much of
the mathematics that we will use in the following chapters.

Problem 1.11. Common derivatives
Calculate the derivative with respect to x of the following functions: ex, e3x, eax, ln x,
lnx2, ln 3x, ln 1/x, sinx, cos x, sin 3x, and cos 2x. �

Problem 1.12. Common integrals
Calculate the following integrals:

∫ 2

1

dx
2x2

,
∫ 2

1

dx
4x

,
∫ 2

1
e3x dx,

∫
x−γ dx. (1.8)

�
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Problem 1.13. Partial derivatives
Calculate the partial derivatives of x2 +xy+3y2 with respect to x and y. �

Problem 1.14. Taylor series approximations
Calculate the first three nonzero terms of the Taylor series approximations about
x=0 for the following functions:

eax, ln(1+x), (1+x)n, (1.9)

where a and n are constants. �

Vocabulary

thermodynamics, statistical mechanics
macroscopic system, microstate, macrostate
specially prepared state, most probable macrostate
equilibrium, fluctuations, relative fluctuations
thermal contact, temperature
sensitivity to initial conditions, chaos
models, computer simulations, molecular dynamics
dimensionless variables

Additional Problems
Problem 1.15. The dye is cast

(a) What would you observe if a small amount of black dye is placed in a glass
of water?

(b) Suppose that a video were taken of this process and the video run backward
without your knowledge. Would you be able to determine whether the video
was being run forward or backward?

(c) Suppose that you could watch a video of the motion of an individual ink
molecule. Would you be able to determine if the video was being shown
forward or backward? �

Problem 1.16. Fluid as metaphor
Why is “heat” treated as a fluid in everyday speech? After all, most people are not
familiar with the caloric theory of heat. �

Problem 1.17. Do molecules really move?
Cite evidence from your everyday experience that the molecules in a glass of water
or in the surrounding air are in seemingly endless random motion. �

Problem 1.18. Temperature
How do you know that two objects are at the same temperature? How do you know
that two bodies are at different temperatures? �

Problem 1.19. Time-reversal invariance
Show that Newton’s equations are time-reversal invariant. �
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Problem 1.20. Properties of macroscopic systems
Summarize your present understanding of the properties of macroscopic systems. �

Problem 1.21. What’s in a name?
Ask some of your friends why a ball falls when released above the Earth’s surface.
Then ask them what makes rolling balls come to rest. Are the answers of “gravity”
and “friction” satisfactory explanations? What would be a more fundamental
explanation for each phenomena? �

Problem 1.22. Randomness
What is your present understanding of the concept of “randomness”? Does “random
motion” imply that the motion occurs according to unknown rules? �

Problem 1.23. Meaning of abstract concepts
Write a paragraph on the meanings of the abstract concepts “energy” and “justice.”
[See Feynman, Leighton, and Sands, Vol. 1, Chap. 4, for a discussion of why it is
difficult to define such abstract concepts.] �

Problem 1.24. Bicycle pump
Suppose that the handle of a plastic bicycle pump is rapidly pushed inward. Predict
what happens to the temperature of the air inside the pump and explain your
reasoning. �

Problem 1.25. Granular matter
A box of glass beads is an example of a macroscopic system if the number of beads
is sufficiently large. In what ways is such a system different from the macroscopic
systems such as a glass of water that we have discussed in this chapter? �

Suggestions for Further Reading

P. W. Atkins, The Second Law, Scientific American Books (1984). A qualitative introduction
to the second law of thermodynamics and its implications.

Manfred Eigen and Ruthild Winkler,How the Principles of Nature Govern Chance, Princeton
University Press (1993).

Richard Feynman, R. B. Leighton, and M. Sands, Feynman Lectures on Physics, Addison-
Wesley (1964). Volume 1 discusses the nature of energy and work.

Martin Goldstein and Inge F. Goldstein,TheRefrigerator and theUniverse, Harvard University
Press (1993).

Harvey Gould, Jan Tobochnik, and Wolfgang Christian, An Introduction to Computer
Simulation Methods, 3rd ed., Addison-Wesley (2006). See Chap. 8 for a discussion of
molecular dynamics. This text can be freely downloaded from <compadre.org> and
purchased from Amazon.

Robert H. Romer, “Heat is not a noun,” Am. J. Phys. 69(2), 107–109 (2001). See also Art
Hobson, “The language of physics,” Am. J. Phys. 69(6), 634 (2001); David T. Brookes
and Eugenia Etkina, “Using conceptual metaphor and functional grammar to explore how
language used in physics affects student learning,” Phys. Rev. ST Phys. Educ. Res. 3(1),
010105-1–16 (2007).

A listing of many of the textbooks on statistical mechanics and thermodynamics can be found
at <www.compadre.org/stpbook/>. Some of our favorites are listed in the following. It is



SUGGEST IONS FOR FURTHER READING • 29

a good idea to look at several books while you are learning a subject. Sometimes the same
argument with slightly different wording can seem clearer.

Peter Atkins, The Laws of Thermodynamics: A Very Short Introduction, Oxford University
Press (2010).

Stephen Blundell and Katherine Blundell, Thermal Physics, 2nd ed., Oxford University Press
(2006).

Craig F. Bohren and Bruce A. Albrecht, Atmospheric Thermodynamics, Oxford University
Press (1998).

F. Mandl, Statistical Physics, 2nd ed., John Wiley & Sons (1988).
F. Reif, Statistical Physics, Vol. 5 of the Berkeley Physics Series, McGraw-Hill (1967). This
text was probably the first to make use of computer simulations to explain some of the
basic properties of macroscopic systems.

F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill (1965). This classic
text is now published by Waveland Press. Our presentation owes a large debt to the two
books by Reif on statistical physics.

Daniel V. Schroeder, An Introduction to Thermal Physics, Addison-Wesley (2000).



Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

accessible microstates, 167–172, 174–178,
188, 192, 193

adiabatic process, 41, 42, 48–51, 56, 58–60,
65, 66

demagnetization, 227
expansion, 50, 58, 59
quasistatic, 47–49, 51, 56, 60, 66

anharmonic oscillator, 331
antiferromagnet, 200, 277, 278
approach to equilibrium, 7–9, 12, 25
argon, 5, 7, 373, 416, 482
arrow of time, 2, 3, 19
atmospheric pressure, 34
automobile engine, 96
Avogadro number, 13, 36, 353, 485

Bayes’ theorem, 119–123
false positives, 123
Let’s Make A Deal, 121, 122

Benford’s law, 163
Bernoulli numbers, 487
Bernoulli process, 124, 128
bicycle pump, 28, 43
binary alloy, 261
binomial distribution, 129–132, 134, 136,

144, 148, 157, 161, 162, 490
binomial theorem, 130
black holes, 100
blackbody radiation, 77, 79, 306–309
Boltzmann constant, 36, 188, 485
Boltzmann distribution, 152, 175, 176, 193,

194, 205, 206, 219, 262, 290, 345,
474

Boltzmann equation, 460, 462, 466,
478–480

Bose-Einstein condensation, 318, 321–323,
334, 338, 339

Boyle temperature, 380
Brownian motion, 453, 483

calorie, 43
canonical ensemble, 192–196, 200, 208,

213, 224, 225, 228, 262, 280, 283,
292, 304, 305, 344, 355, 480

carbon dioxide, 348
Carnot cycle, 58–60, 68
Carnot engine, 57–60
Carnot refrigerator, 61
central limit theorem, 140–144, 152,

154–156
chaos, 18, 19, 25
characteristic function, 152–155
chemical potential, 69, 75, 189, 205, 220,

262, 286, 304–306, 310, 321,
339–346, 363, 364, 368

demon, 366, 367
ideal Bose gas, 321
ideal Fermi gas, 314
ideal gas, 216, 286, 304
Widom insertion method, 345, 346

chemical reactions, 363–366
Clausius, Rudolf, 51

statement of second law, 52, 214
Clausius-Clapeyron equation, 349–352
coarse graining, 435
coefficient of performance, 61, 62
compressibility, 82, 358, 362

adiabatic, 100
equation, 414
isothermal, 77, 82, 100, 218, 323, 325,

362, 414, 415
relation, 404

conductivity, see thermal conductivity
connectedness length, 433
constant pressure ensemble, 219
continuity equation, 454
convolution integral, 154, 402, 410, 492
cooperative effects, 244, 274, 316, 347, 407
copper, 94, 311, 313



496 • INDEX

correlation function, see static correlation
function

correlation length, 233, 238, 243, 244, 275,
423, 424, 426, 432, 446

corresponding states, law of, 356
cosmic microwave background, 307
critical point, 243, 244, 248, 349, 355, 361,

420
α, 241, 243, 275
β, 242, 243, 421, 433
δ, 243, 421
η, 243, 424
γ , 243, 248, 362, 421, 432, 433
ν, 433, 436, 437
finite-size scaling, 275, 433
Ising model, 243
mean-field, 250
percolation, 433
scaling relations, 427–429

cumulant, 140, 153, 154, 381, 382
Curie law, 227
Curie-Weiss law, 248

Debye model, 316, 317, 338
Debye temperature, 317

Debye-Hückel theory, 406–409
decimation, see renormalization group

method
degenerate, 309, 336, 338
delta function, 410, 491
demon, 208
density of states, 178, 179, 187, 213, 216,

273, 299–302
diagrammatic expansion, 269, 270, 381,

383, 386–389, 397, 408
Ising model, 269, 270
ladder diagrams, 389
ring diagrams, 408

diatomic molecules, 291, 329, 330
diesel engine, 51
diffusion equation, 453, 454, 475
dimensionless quantities, 16, 17, 23, 24
Dirac delta function, 492
direct correlation function, 402, 408
discontinuous phase transition, 252, 256,

263
domain, 235, 238
Dulong and Petit, law of, 291, 317

efficiency, 4, 5, 52, 56–58, 60–63, 67,
97

Einstein relation, 471, 474

Einstein solid, 169, 177, 192, 209, 211, 315,
316, 341, 342

electron-volt, 486
ensemble, 20, 25, 115, 168
Enskog approximation, 461, 467
enthalpy, 45, 75, 77, 81, 84, 85, 99, 350,

365
enthalpythermodynamic potential, 99
of fusion, 351
of sublimation, 351
of vaporization, 351, 352
thermodynamic potential, 75

entropy, 3, 5, 12, 51, 53–56, 63, 64, 70, 77,
96, 98, 188–190, 197–200, 215, 341

black hole, 100
free expansion, 65
ideal gas, 71, 189, 306
information, 199
not a measure of disorder, 210
of mixing, 287, 288
quasistatic adiabatic process, 66
Sackur-Tetrode equation, 190
thermodynamic potential, 70

equal a priori probabilities, 168
equal area construction, 360
equation of state

Bose gas, 323, 334
Carnahan-Starling, 390, 391, 404
energy, 43
Fermi gas, 333
ideal gas, 36, 43, 44, 190, 283, 305
pressure, 35
van der Waals, 37, 44, 353, 356, 370,

380, 400
virial, 396, 404, 405
virial expansion, 379
Weeks-Chandler-Andersen, 401

equilibrium, 9–12
chemical, 363
diffusive, 69, 340, 341, 347
history independence, 13
mechanical, 69, 74, 347
thermal, 33, 54, 174, 193, 341, 347
thermodynamic, 55

equilibrium constant, 364
equipartition theorem, 217, 290, 291, 313,

329
ergodic hypothesis, 20
Euler-Maclaurin formula, 487
exact enumeration, 229, 231
extensive variable, 43, 45, 75, 99, 196, 286,

287, 315, 324, 378, 383, 385



INDEX • 497

factorial, 186, 489
Fermi energy, 310
Fermi gas

numerical solution, 493
Fermi integral, 493
Fermi momentum, 311
Fermi surface, 311
Fermi temperature, 311
Fermi-Dirac distribution, 298, 309, 310
Fick’s law, 454
first passage time, 162
fluctuation-dissipation theorem, 469, 471,

474
fluctuations, 9, 12, 13, 131–133, 195, 196,

213, 218, 226, 250, 253, 323–325,
338, 411, 414, 419, 421, 425, 469,
471, 472

Fourier transform, 152, 156, 402, 406, 409,
410, 413, 423, 490, 492

free expansion, 66, 82, 83
frustration, 277, 278
fundamental thermodynamic relation, 69,

70, 78, 197, 340

Gamma function, 186, 489
Gaussian distribution, 136, 140, 142,

148, 153, 156, 161, 162, 293, 477,
490

Gaussian integral, 282, 487
geometric series, 202, 272, 409
Gibbs distribution, 204, 367
Gibbs function, 74, 75, 77, 347, 349, 356,

358, 363, 365, 420
Gibbs paradox, 287–289
Gibbs-Duhem equation, 75, 358, 365
grand canonical ensemble, 192, 203, 263,

303, 414, 415
grand partition function, 204, 263
Green-Kubo relation

self-diffusion coefficient, 456, 478
thermal conductivity, 464
viscosity, 468

hard core interaction, 22, 373
hard disks, 22, 211, 373, 379, 390, 393,

398, 451–453, 456, 457, 460–462,
466

hard rods, 22, 373, 417
hard spheres, 22, 373, 379, 404, 457,

459–462, 466
harmonic oscillator, 169, 178, 179, 202,

203, 217, 290, 315, 330

heat as a fluid, 42
heat bath, 55
heat capacity, 44, 72, 82, 94, 195, 225

constant pressure, 45
constant volume, 45
Dulong and Petit, 291
ideal gas, 45

heat pump, 62
Heisenberg model, 266, 427
helium, 34, 318, 329, 369
Helmholtz function, 74, 76, 91, 92, 199,

211, 223, 224, 231, 243, 246, 249,
253, 324, 344, 356, 374, 378, 381,
383, 391, 399, 428

high temperature expansion, 268, 270, 382,
387, 388, 408

hypernetted-netted chain approximation,
405

hysteresis, 253

ice, 64
ice point, 35
ideal Bose gas, 299, 318, 321–323, 334

chemical potential, 321
finite, 334
numerical solution, 319
phase transition, 322

ideal classical gas, 22, 280
chemical potential, 286
entropy, 284, 286
equation of state, 283
Helmholtz function, 285
numerical solutions

finite size effects, 183
ideal Fermi gas, 309

chemical potential, 314, 333
ground state, 309
heat capacity, 328
low temperature, 312
two dimensions, 332

inspection paradox, 483
intensive variable, 43, 45
internal energy, 41, 43, 77
Ising model, 22, 208, 227, 229–254, 256,

257, 427
antiferromagnet, 200, 277
fully connected, 275
mean-field theory, 245–250
one dimension, 229–237, 259, 260

absence of phase transition, 238, 446
exact enumeration, 229
magnetization, 237
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Ising model (continued)
number of states, 218
simulation, 234

renormalization group method
one dimension, 439
two dimensions, 441

two dimensions, 239, 241–245, 252, 253
critical temperature, 239
Onsager solution, 228, 239, 241, 242,

250
phase diagram, 251
simulation, 244

isothermal compressibility, 355
isothermal expansion, 58–60, 67
isothermal susceptibility, 225

Joule-Thomson process, 84, 416

kinetic theory, 456, 462, 474
Kosterlitz-Thouless transition, 449

Lévy flight, 162
Lagrange’s method of undetermined

multipliers, 150–152
Landau potential, 76, 77, 99, 204, 303, 305,

309, 312, 318
thermodynamic potential, 76

Landau theory of phase transitions, 419–422
Landau-Ginzburg theory, 422–424
Langevin equation, 469, 471
latent heat, 351
lattice gas, 261–264
law of atmospheres, 330
law of large numbers, 114
law of mass action, 364
law of rectilinear diameters, 361
Le Châtelier’s principle, 366
Legendre transform, 89–91
Lennard-Jones potential, 5–7, 21, 22, 346,

372, 373, 376, 383, 393, 401, 416,
452, 456, 461, 464, 468, 482

linear response, 226, 423, 424, 471, 472
theory, 471–474, 480

liquid-gas transition, 427
long-range interactions, 380
low temperature expansion, 266–268

macroscopic occupation, 321
macrostate, 32, 167
magnetization, 225
maximum uncertainity, 168
maximum work, 66
Maxwell construction, 360

Maxwell relations, 79–81, 85, 89, 324
Maxwell speed distribution, 294
Maxwell velocity distribution, 292, 293, 330
Maxwell-Boltzmann distribution, 299, 303
Mayer function, 375, 376, 388, 389, 397,

416
mean collision time, 458, 459
mean distance between particles, 281
mean free path, 458, 459
mean spherical approximation, 405
mean square displacement, see random walk
mean-field theory, 245, 246, 248–250, 276,

419
Ginzburg criterion, 425, 426

metastable state, 349, 357
Metropolis algorithm

see Monte Carlo
Metropolis, 209

microcanonical ensemble, 169, 187, 188,
191, 192, 195, 196, 198, 208, 225

microstate, 13, 167
mobility, 471, 473, 474
molecular dynamics, 208, 393, 451–453,

456, 467, 478
moment generating function, 381
Monte Carlo, 133

demon, 16, 205–207, 366
generalized demon, 366
importance sampling, 209
integration, 158
Metropolis, 209, 234, 235, 244, 262, 273,

345, 448
sampling, 133
Wang-Landau, 253, 254, 256

neutron stars, 336
noninteracting spins, 124, 126, 167, 169,

177, 190, 223, 225–227
heat capacity, 225
magnetization, 226
susceptibility, 226

nucleation, 257, 258
critical droplet, 257

critical size, 259
number of states

simulation, 253–256
numerical solutions

Bose gas, 494
Fermi gas, 314, 493
finite size effects, 183
ideal Bose gas, 319
self-consistent equation, 246
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occupation number representation, 295,
296

one-component plasma, 406
Onsager’s regression hypothesis, 471, 472
order parameter, 243, 262, 362, 370, 419,

420, 425, 427, 430, 433
Ornstein-Zernike equation, 402–405
Otto cycle, 96

packing fraction, 390, 405
pair correlation function, 402
paramagnetism, 223
partial derivatives, 87, 89
partition function, 194, 200–203, 216–218

ideal classical gas, 289
ideal gas, 285
noninteracting spins, 224
one-dimensional Ising model, 231

Pauli exclusion principle, 296, 311
percolation, 429–437, 447

cluster, 429
cluster size distribution, 431
connectedness, 430
connectedness length, 432, 433, 436, 438,

447
critical exponents, 433
finite-size scaling, 433
order parameter, 430
renormalization group method, 434–438
scaling relations, 434
threshold, 434

Percus-Yevick equation, 403
perpetual motion machine, 52
perturbation theory of liquids, 398
phase coexistence, 347, 349–351, 353, 358,

359
phase transition, 346

continuous, 251, 256, 427, 429, 430
discontinuous, 251, 253
entropy driven, 210, 219
geometrical, 429, 430, 434

Planck constant, 485
Poisson distribution, 144–146, 325, 490
Potts model, 256, 274, 433
power law behavior, 164, 241, 243, 244,

247, 250, 262, 361, 421, 427, 434,
448

pressure, 14, 36, 68, 69, 189
ideal gas, 36
mechanical, 14
thermodynamic, 68, 69, 189

principle of least bias, 168

probability
addition rule, 108
Cauchy, 140
coherent bet, 113
degree of belief, 113
events, 107
information, 105, 113, 115
interpretation, 112
Lorentz, 140
mean, 110
moment, 111
multiplication rule, 108
normalization, 107, 109
rules, 107
sample space, 107
trial, 107

probability density
Cauchy, 140
exponential, 139
Gaussian, 134, 136, 140
log-normal, 149
Lorentz, 140, 143
uniform, 140

programs
Binomial, 130
BoseGasSum, 335
CentralLimitTheorem, 143
Chaos, 18, 19
ChemicalPotentialDemon, 367, 368
ChemicalPotentialEinstein Solid, 342
ChemicalPotentialMC, 346
CoinToss, 114
CountingStates, 183
DemonEinsteinSolid, 207
DemonIdealGas, 16, 206
EinsteinSolidEntropy, 175
EinsteinSolidMicrostates, 173, 177
Frustration, 277
HardDisksMD, 211, 393, 451–453, 457,

459, 460
HoleInWall, 9
Ising1d, 234
Ising2d, 244, 252, 257, 275
IsingAnitferromagnet, 277
IsingHysteresis, 253
IsingMeanField, 246, 249
IsingNumberOfStates, 256
LatticeGas, 263
LennardJonesMD, 21, 294, 393, 452,

456, 482
MCEinsteinSolid, 209
MCEstimation, 158
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programs (continued)
MultiplicativeProcess, 150
Percolation, 432
PercolationRG, 435
PottsNumberOfStates, 256
QuantumGasIntegral, 314, 319
RandomWalk1d, 133
RandomWalkContinuous, 139
SecondVirialCoefficient, 416
ThermalConductivity, 464
ThermalContact, 14
ThreePartsMD, 7
TwoPartsMD, 7
Viscosity, 468
XYModel, 448

quasistatic adiabatic process, 48, 49

radial distribution function, see static
correlation function g(r)

random additive process, 126, 142, 148,
149, 470

random multiplicative processes, 148
random walk, 128, 133, 142, 144, 160, 166,

254, 451–453, 456, 459, 482
Lévy flight, 162
mean square displacement, 451–453, 456,

459, 477, 482
variable step length, 137, 139

Rayleigh-Jeans law, 308
renormalization group method

decimation, 445–447
fixed points, 436, 439, 440, 444, 447
one-dimensional Ising model, 438–441
percolation, 434–438
two-dimensional Ising model, 441–444

reservoir, 52, 55, 63, 64, 72, 73, 96, 98,
192–194, 203, 205, 297

Riemann zeta function, 493

scale invariance, 244
self-diffusion coefficient, 453–456, 459–461,

470, 471, 473, 477, 478, 482
self-similarity, 434
semiclassical limit, 184, 186, 284
simulations

approach to equilibrium, 7, 9
canonical ensemble, 209, 234, 244, 262
central limit theorem, 143
chaos, 18
coin toss, 114
demon

Einstein solid, 207
ideal gas, 16, 206
lattice gas, 366

Einstein solid, 209, 342
hard disks, 211, 393, 451–453, 457, 459
importance, 23
Ising model

antiferromagnet, 277
one dimension, 234
two dimensions, 244, 252, 253, 256,

257, 275
lattice gas, 263
Lennard-Jones fluid, 21, 294, 393, 452,

456, 482
chemical potential, 346

microcanonical ensemble, 208
multiplicative process, 150
percolation, 432
Potts model, 256
random walk, 133, 139
thermal conductivity, 464
thermal contact, 14
viscosity, 468
XY model, 448

single particle density of states
electrons, 302
photons, 301

specific heat, 45, 243, 249, 421
copper, 94
glass, 46
water, 46

spinodal, 358
spinodal decomposition, 264
square well potential, 416
standard deviation, 111, 112, 143, 159,

173, 174, 325
standard deviation of the means, 144
standard temperature and pressure, 34
state function, 42, 88
static correlation function, 232–234, 391,

393–397, 400, 402–408, 411, 415,
424, 428

c(r), 402, 408
g(r), 391–395, 398, 400, 403–408,

410–412, 414, 415, 461
h(r), 402
spin-spin, 232, 233, 243, 274

static structure function S(k), 412–414
statistical mechanics, 2, 3, 20, 22, 23, 25,

26, 36, 109, 189, 228, 235, 239, 474
steam point, 35
Stefan-Boltzmann constant, 308
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Stefan-Boltzmann law, 309
Stirling’s approximation, 134, 135, 488,

489
sublimination, 349
superconductor, 427
superfluid, 427, 428
surface tension, 258
susceptibility, 243, 424
system, 31

boundary, 31
closed, 31
composite, 53
isolated, 12, 41, 169, 187
open, 31
surroundings, 31

Taylor series, 27, 134, 382, 486
temperature, 14

Celsius, 34
Centigrade, 35
Fahrenheit, 35
ideal gas, 55, 67
Kelvin, 34
thermodynamic, 54, 55, 57, 67, 68, 189,

191
thermal conductivity, 461, 462

computer simulation, 463
thermal de Broglie wavelength, 281, 309,

311, 323
thermal expansion coefficient, 77, 82, 85,

86
thermodynamic potential, 70, 72, 74–76,

79, 80, 89, 97, 99, 199, 263, 347
energy, 70
enthalpy, 75
entropy, 70
Gibbs function, 75
Helmholtz function, 74
Landau potential, 76

thermodynamic process, 37
adiabatic, 41, 42, 47, 48, 50
free expansion, 65
irreversible, 37, 63
isothermal, 39, 49, 50
quasistatic, 37
quasistatic adiabatic, 47–49, 56, 66

ideal gas, 48, 49, 51
reversible, 37, 53

thermodynamics
combined first and second laws, 69
first law, 18, 41
second law, 5, 12, 51

Clausius statement, 52, 55
engines, 55
Kelvin statement, 52

third law, 71
zeroth law, 33

thermometer, 16, 34, 346
demon, 16, 205, 206, 208
ideal gas, 34

time average, 20
Tonks gas, 417
toroidal boundary condition, 6, 8, 18, 218,

229, 235, 236, 267, 268, 270, 273,
439

transfer matrix, 235–237, 274
transport coefficient, 454, 456, 461, 472
triple point, 34, 35, 67, 93, 347, 348, 353
two state system, 201, 202, 204, 217, 218

uncertainty, 117, 118
universal gas constant, 485
universality, 427
upper critical dimension, 427

van der Waals
equation of state, 37, 44, 353, 380, 401

critical point, 355, 361
liquid-gas coexistence curve, 360
mean-field behavior, 361, 362

van der Waals interaction, 6
variance, 111, 112, 125, 126, 132, 133,

136, 139, 140, 143, 145, 154, 155,
162, 325

velocity autocorrelation function, 455, 456,
473, 474, 477, 482

virial, 14, 375
virial coefficients, 375, 389
B2, 379, 380, 416
B3, 409
hard spheres, 390

viscosity, 465–467
computer simulation, 467, 468

volume of a hypersphere, 186, 212

waiting time paradox, 458
wall

conducting, 33
water

critical point, 348
enthalpy of fusion, 351
enthalpy of vaporization, 352
specific volumes, 351
triple point, 348
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wealth exchange models, 475
white dwarf star, 336
Wien’s displacement law,

307
Wien’s law, 308
work, 4, 38

dependence on path, 40

quasistatic adiabatic process
ideal gas, 51

XY model, 427, 448
Kosterlitz-Thouless transition, 448

Zipf’s law, 163




