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Introduction

Learning Objectives

Having read this chapter, you should be able to

• Describe the central goals and fundamental concepts of statistics.
• Describe the difference between experimental and observational research with
regard to what can be inferred about causality.

• Explain how randomization provides the ability to make inferences about
causation.

What Is Statistical Thinking?

Statistical thinking is a way of understanding a complex world by describing it in relatively
simple terms that nonetheless capture essential aspects of its structure or function, and
that also provide us with some idea of how uncertain we are about that knowledge. The
foundations of statistical thinking comeprimarily frommathematics and statistics but also
from computer science, psychology, and other fields of study.

We can distinguish statistical thinking from other forms of thinking that are less likely
to describe the world accurately. In particular, human intuition frequently tries to answer
the same questions that we can answer using statistical thinking, but it often gets the an-
swer wrong. For example, in recent years most Americans have reported that they think
violent crime is worse in the current year compared to the previous year (Pew 2020).
However, a statistical analysis of the actual crime data showed that in fact violent crime
was steadily decreasing during that time. Intuition fails us because we rely on best guesses
(which psychologists refer to as heuristics) that can often get it wrong. For example, hu-
mans often judge the prevalence of some event (like violent crime) using an availability
heuristic—that is, how easily we can think of an example of violent crime. For this rea-
son, our judgments of increasing crime rates may be more reflective of increasing news
coverage, in spite of an actual decrease in the rate of crime. Statistical thinking provides us
with the tools tomore accurately understand theworld and overcome the biases of human
judgment.
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Dealing with Statistics Anxiety

Many people come to their first statistics class with a lot of trepidation and anxiety, espe-
cially once they hear that they will also have to learn to code in order to analyze data. In
my class, I give students a survey prior to the first session tomeasure their attitude toward
statistics, asking them to rate a number of statments on a scale of 1 (strongly disagree) to
7 (strongly agree). One of the items on the survey is “The thought of being enrolled in a
statistics course makes me nervous.” In a recent class, almost two-thirds of the students
responded with a 5 or higher, and about one-fourth of the students said they strongly
agreed with the statement. So if you feel nervous about starting to learn statistics, you are
not alone.

Anxiety feels uncomfortable, but psychology tells us that this kind of emotional arousal
can actually help us perform better onmany tasks, by focusing our attention. So if you start
to feel anxious about thematerial in this book, remind yourself thatmanyother readers are
feeling similarly, and that this emotional arousal could actually help cement the material
in your brain more effectively (even if it doesn’t seem like it!).

What Can Statistics Do for Us?

There are three major things that we can do with statistics:

• Describe: The world is complex and we often need to describe it in a simplified way
that we can understand.

• Decide: We often need to make decisions based on data, usually in the face of
uncertainty.

• Predict: We often wish to make predictions about new situations based on our
knowledge of previous situations.

Let’s look at an example of these in action, centered on a question that many of us are
interested in: How do we decide what’s healthy to eat? There are many different sources
of guidance: government dietary guidelines, diet books, and bloggers, just to name a few.
Let’s focus in on a specific question: Is saturated fat in our diet a bad thing?

One way that we might answer this question is common sense. If we eat fat, then it’s
going to turn straight into fat in our bodies, right? And we have all seen photos of arteries
clogged with fat, so eating fat is going to clog our arteries, right?

Another way that we might answer this question is by listening to authority figures.
The dietary guidelines from the US Food and Drug Administration have as one of their
key recommendations that “A healthy eating pattern limits saturated fats.” Youmight hope
that these guidelines would be based on good science, and in some cases they are; but as
Nina Teicholz (2014) outlined in her book Big Fat Surprise, this particular recommenda-
tion seems to be basedmore on the long-standing dogma of nutrition researchers than on
actual evidence.
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figure 1.1. A plot of data from the PURE study,
showing the relationship between death from any
cause and the relative intake of saturated fats and
carbohydrates.

Finally, we might look at actual scientific research. Let’s start by looking at the
PURE study, which has examined diets and health outcomes (including death) in more
than 135,000 people from 18 different countries. In one of the analyses of this dataset
(Dehghan et al. 2017, published in the Lancet), the PURE investigators reported an
analysis of how intake of various classes of macronutrients (including saturated fats and
carbohydrates) was related to the likelihood of people dying during the time they partici-
pated in the study. Participants were followed for amedian of 7.4 years, meaning that half
of the people in the study were followed for less than 7.4 years and half were followed
for more than 7.4 years. Figure 1.1 plots some of the data from the study (extracted from
the publication), showing the relationship between the intake of both saturated fats and
carbohydrates and the risk of dying from any cause.

This plot is based on 10 numbers. To obtain these numbers, the researchers split the
groupof 135,335 study participants (whichwe call the sample) into five groups (quintiles)
after ordering them in terms of their intake of either of the nutrients; the first quintile
contains the 20% of people with the lowest intake, and the fifth quintile contains the 20%
with the highest intake. The researchers then computed howoften people in each of those
groups diedduring the time theywere being followed.Thefigure expresses this in termsof
the relative risk of dying in comparison to the lowest quintile: if this number is greater than
one, it means that people in the group aremore likely to die than are people in the lowest
quintile, whereas if it’s less than one, it means that people in the group are less likely to die.
The figure is pretty clear: people who ate more saturated fat were less likely to die during
the study, with the lowest death rate seen for people who were in the fourth quintile (that
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is, those who atemore fat than the lowest 60% but less than the top 20%). The opposite is
seen for carbohydrates; themore carbs a person ate, themore likely theywere todie during
the study. This example shows how we can use statistics to describe a complex dataset in
terms of amuch simpler set of numbers; if we had to look at the data fromeach of the study
participants at the same time, we would be overloaded with data and it would be hard to
see the pattern that emerges when they are described more simply.

The numbers in figure 1.1 seem to show that deaths decrease with saturated fat and in-
crease with carbohydrate intake, but we also know that there is a lot of uncertainty in the
data; there are some people who died early even though they ate a low-carb diet, and, sim-
ilarly, some people who ate a ton of carbs but lived to a ripe old age. Given this variability,
we want to decide whether the relationships we see in the data are large enough that we
wouldn’t expect them to occur randomly if there was not truly a relationship between diet
and longevity. Statistics provide us with the tools to make these kinds of decisions, and
often people from the outside view this as themain purpose of statistics. But as wewill see
throughout the book, this need for black-and-white decisions based on fuzzy evidence has
often led researchers astray.

Basedon thedata,wewould also like tobe able topredict futureoutcomes. For example,
a life insurance companymightwant tousedata about aparticular person’s intakeof fat and
carbohydrates to predict how long they are likely to live. An important aspect of prediction
is that it requires us to generalize from the data we already have to some other situation,
often in the future; if our conclusions were limited to the specific people in the study at
a particular time, then the study would not be very useful. In general, researchers must
assume that their particular sample is representative of a larger population, which requires
that they obtain the sample in a way that provides an unbiased picture of the population.
For example, if the PURE study had recruited all of its participants from religious sects
that practice vegetarianism, then we probably wouldn’t want to generalize the results to
people who follow different dietary standards.

The Big Ideas of Statistics

There are a number of very basic ideas that cut through nearly all aspects of statistical
thinking. Several of these are outlined by Stigler (2016) in his outstanding bookThe Seven
Pillars of Statistical Wisdom, which I have augmented here.

Learning from Data

One way to think of statistics is as a set of tools that enable us to learn from data. In any
situation, we start with a set of ideas or hypotheses about what might be the case. In the
PURE study, the researchers may have started out with the expectation that eating more
fat would lead to higher death rates, given the prevailing negative dogma about saturated
fats. Later in the book we introduce the idea of prior knowledge, that is, the knowledge
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that we bring to a situation. This prior knowledge can vary in its strength, often based on
our level of experience; if I visit a restaurant for the first time, I am likely to have a weak
expectation of how good it will be, but if I visit a restaurant where I have eaten 10 times
before, my expectations will be much stronger. Similarly, if I look at a restaurant review
site and see that a restaurant’s average rating of four stars is based on only three reviews,
I will have a weaker expectation than I would if it were based on three hundred reviews.

Statistics provides us with a way to describe how new data can be best used to up-
date our beliefs, and in this way there are deep links between statistics and psychology.
In fact, many theories of human and animal learning from psychology are closely aligned
with ideas from the field ofmachine learning—a new field at the interface of statistics and
computer science that focuses on how to build computer algorithms that can learn from
experience. While statistics and machine learning often try to solve the same problems,
researchers from these fields frequently take very different approaches; the famous statis-
tician Leo Breiman (2001) once referred to them as “the two cultures” to reflect how
different their approaches can be. In this book, I try to blend the two cultures together
because both approaches provide useful tools for thinking about data.

Aggregation

Another way to think of statistics is as “the science of throwing away data.” In the example
of the PURE study above, we tookmore than 100,000 numbers and condensed them into
10. It is this kind of aggregation that is one of the most important concepts in statistics.
When it was first advanced, this idea was revolutionary: if we throw out all the details
about every one of the participants, then how can we be sure we aren’t missing something
important?

As we will see, statistics provides us with ways to characterize the structure of aggre-
gations of data, with theoretical foundations that explain why this usually works well.
However, it’s also important to keep in mind that aggregation can go too far, and later we
will encounter cases where a summary can provide a very misleading picture of the data
being summarized.

Uncertainty

The world is an uncertain place. We now know that cigarette smoking causes lung cancer,
but this causation is probabilistic: a 68-year-old man who smoked two packs a day for the
past 50 years and continues to smoke has a 15% (1 out of 7) risk of getting lung cancer,
which is much higher than the chance of lung cancer in a nonsmoker. However, it also
means that there will be many people who smoke their entire lives and never get lung
cancer. Statistics provides us with the tools to characterize uncertainty, to make decisions
under uncertainty, and to make predictions whose uncertainty we can quantify.

One often sees journalists write that scientific researchers have “proved” some hypoth-
esis. But statistical analysis can never “prove” a hypothesis, in the sense of demonstrating
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that it must be true (as one would in a logical or mathematical proof). Statistics can pro-
vide us with evidence, but it’s always tentative and subject to the uncertainty that is ever
present in the real world.

Sampling from a Population

The concept of aggregation implies that we can make useful insights by collapsing across
data—but howmuch data do we need? The idea of sampling says that we can summarize
an entire population based on just a small number of samples from the population, as long
as those samples are obtained in the right way. For example, the PURE study enrolled a
sample of about 135,000 people, but its goal was to provide insights about the billions of
humans who make up the population from which those people were sampled. As we al-
readydiscussed above, theway that the study sample is obtained is critical, as it determines
how broadly we can generalize the results. Another fundamental insight about sampling is
that, while larger samples are always better (in terms of their ability to accurately represent
the entire population), there are diminishing returns as the sample gets larger. In fact, the
rate at which the benefit of larger samples decreases follows a simple mathematical rule,
growing as the square root of the sample size, such that in order to double the precision of
our estimate we need to quadruple the size of our sample.

Causality and Statistics

The PURE study seemed to provide pretty strong evidence for a positive relationship be-
tween eating saturated fat and living longer, but this doesn’t tell us what we really want to
know: Ifwe eatmore saturated fat,will that causeus to live longer?This is becausewedon’t
know whether there is a direct causal relationship between eating saturated fat and living
longer. The data are consistent with such a relationship, but they are equally consistent
with some other factor causing both higher saturated fat and longer life. For example, one
might imagine that people who are richer eat more saturated fat and richer people tend
to live longer, but their longer life is not necessarily due to fat intake—it could instead be
due to better health care, reduced psychological stress, better food quality, or many other
factors. The PURE study investigators tried to account for these factors, but we can’t be
certain that their efforts completely removed the effects of other variables. The fact that
other factors may explain the relationship between saturated fat intake and death is an ex-
ample of why introductory statistics classes often teach that “correlation does not imply
causation,” though the renowned data visualization expert Edward Tufte has added, “but
it sure is a hint.”

Although observational research (like the PURE study) cannot conclusively demon-
strate causal relationships, we generally think that causation can be demonstrated using
studies that experimentally control and manipulate a specific factor. In medicine, such a
study is referred to as a randomized controlled trial (RCT). Let’s say thatwewanted to do an
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RCT to examine whether increasing saturated fat intake increases life span. To do this, we
would sample a group of people and then assign them to either a treatment group (which
would be told to increase their saturated fat intake) or a control group (whowould be told
to keep eating the same as before). It is essential that we assign the individuals to these
groups randomly. Otherwise, people who choose the treatment group might be different
in someway thanpeoplewhochoose the control group—for example, theymight bemore
likely to engage in other healthy behaviors as well. We would then follow the participants
over time and see howmany people in each group died. Because we randomized the par-
ticipants to treatment or control groups, we can be reasonably confident that there are no
other differences between the groups that would confound the treatment effect; however,
we still can’t be certain because sometimes randomization yields treatment groups versus
control groups that do vary in some important way. Researchers often try to address these
confounds using statistical analyses, but removing the influence of a confound from the
data can be very difficult.

A number of RCTs have examined the question of whether changing saturated fat in-
take results in better health and longer life. These trials have focused on reducing saturated
fat because of the strong dogma among nutrition researchers that saturated fat is deadly;
most of these researchers would have probably argued that it was not ethical to cause peo-
ple to eat more saturated fat! However, the RCTs have shown a very consistent pattern:
overall there is no appreciable effect on death rates of reducing saturated fat intake.

Suggested Reading

• The Seven Pillars of Statistical Wisdom, by Stephen Stigler. Stigler is one of the world’s
leading historians of statistics, and this book outlines what he sees as a number of the
foundataional ideas that underlie statistical thinking. His ideas strongly influenced the
basic ideas that are presented in this chapter.

• The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century, by
David Salsburg. This book provides a readable yet detailed overview of the history
of statistics, with a strong focus on amplifying the often overlooked contributions of
women in the history of statistics.

• Naked Statistics: Stripping the Dread from the Data, by CharlesWheelan. A very fun tour
of the main ideas of statistics.

Problems

1. Describe how statistics can be thought of as a set of tools for learning from data.
2. What does it mean to sample from a population, and why is this useful?
3. Describe the concept of a randomized controlled trial and outline the reason that we

think that such an experiment can provide information about the causal effect of a
treatment.

4. The three things that statistics can do for us are to _____, ______, and _____.



8 chapter 1

5. Early in the COVID-19 pandemic there was an observational study that reported
effectiveness of the drug hydroxycholoroquine in treating the disease. Subsequent ran-
domized controlled trials showed no effectiveness of the drug for treating the disease.
What might explain this discrepancy between observational results and randomized
controlled trials? Choose all that apply.
• There were systematic differences in the observational study between those pre-
scribed the drug and those who were prescribed other treatments.

• Randomization helps eliminate differences between the treatment and control
groups.

• The drug is more effective when the physician gives it to the right patients.
6. Match the following examples with the most appropriate concept from the following

list: aggregation, uncertainty, sampling.
• A researcher summarizes the scores of 10,000 people in a set of 12 numbers.
• A person smokes heavily for 70 years but remains perfectly healthy and fit.
• A researcher generalizes from a study of 1000 individuals to all humans.
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