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1 Introduction

Robots are increasingly leaving the confines of their highly structured and
carefully curated environments within cages on manufacturing floors, aca-
demic laboratories, and purposefully arranged warehouses. This robot relo-
cation is taking the robots to new places, where they are expected to operate
across long temporal and spatial scales. For example, in precision agriculture,
it is envisioned that robots will be persistently embedded in fields, tending to
individual plants by monitoring and meeting their fertilizer, pesticide, or wa-
ter needs [38, 381]. These agricultural robots will be present in the pastures
throughout the full growing cycle, i.e., over an entire season [23]. Simi-
larly, a number of environmental monitoring scenarios have been considered,
where robotic sensor nodes are monitoring aspects of a natural environment
[124, 392]. Examples include searching for the possibly extinct Ivory-billed
Woodpecker in the forests of Louisiana [386], employing underwater robots
for tracking marine pollution or the spread of invasive species [189, 407], or
for monitoring the effects of climate change on the polar ice caps [388].

1.1 Long-Duration Autonomy
The deployment of robots over truly long time-scales in unstructured envi-
ronments poses problems that are fundamentally different from those faced
by robots deployed in factories or other controlled settings, where operating

3
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Figure 1.1: Artist’s portrayal of a NASA Mars Exploration Rover [196].

conditions exhibit only limited variability, power is readily available, and
regularly scheduled maintenance routines ensure that minor technical prob-
lems do not accumulate to produce catastrophic failures. But, in long-duration
autonomy, robots face a whole new set of challenges [71, 392], and this
introductory chapter highlights some of the main themes and opportunities
associated with these challenges, as well as makes the initial connection to
ecology, i.e., to the tight coupling between animal (robot) and its habitat
(environment).

1.1.1 Lessons from Mars
When two Mars Exploration Rovers (MERs), MER-A and MER-B, landed on
Mars in January 2004, they were tasked with completing individual missions
spanning 90 Martian solar days, which corresponds to roughly 92.5 days on
Earth [390]. Better known by their other names, Spirit and Opportunity, these
rovers, as shown in Figure 1.1, managed to outlast their expected life spans by
a significant margin and participate in five missions over 6 years and 2 months
(Spirit) and a staggering 15 years and 1 month (Opportunity) [292].

Key to the longevity of these rovers was, of course, a great amount of
highly ruggedized hardware and electronics, coupled with carefully designed,
stress-tested, and clever engineering solutions. Additionally, the rovers had
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access to a virtually endless source of solar energy, and their solar arrays
could generate as much as 140W per Martian day. Despite the abundance of
energy, it was the power system that was expected to be the limiting factor in
terms of the duration of the mission, as rechargeable batteries degrade over
time and, as such, are no longer able to recharge to full capacity. But the real
danger to the power system was the frequent Martian dust storms that not
only would block the sunlight, but also accumulate dust on the solar panels,
rendering them increasingly ineffective [296].

So why were Spirit and Opportunity able to perform their tasks signifi-
cantly longer than expected? The answer was both simple and surprising. The
same winds that sometimes caused dust storms on Mars would other times
clean the solar panels by sweeping away dust [146]. These co-called “clean-
ing events” seem to have happened much more frequently than what NASA
originally expected. As a result, the solar arrays were kept largely dust-free,
and the life spans of the rovers were significantly extended—from less than a
year to 15 years, in the case of Opportunity.

An immediate lesson one can draw from this interplanetary dust removal
anecdote is that interactions between MERs and the environment proved to be
beneficial to the rovers. But, at the same time, it was ultimately environmental
factors that did the rovers in. Spirit got stuck in some particularly soft and
sticky Martian soil during the summer of 2009. Despite efforts to free the
rover, it was forced to reinvent itself as a stationary “science platform”—
a task it performed for almost a year until contact was lost in 2010 [421].
Opportunity, on the other hand, did indeed get caught in a massive dust storm
during the summer of 2018 that covered the solar panels so completely that it
never recovered [421].

By necessity, the rovers were completely reliant on in situ solar energy,
which, in turn, carried implications for how the robots functioned. One of
the more striking manifestations of this dependence on sporadically present
sunshine was how slowly the two MERs moved. Opportunity, which was the
more peripatetic and well-traveled of the two rovers, had completed a full
marathon on Mars by March 23, 2015, which translates to a rather leisurely
finishing time of around 11 years and 2 months. The reason for this slow
and steady pace can be traced back to considerations about energy conser-
vation in conjunction with the need to stay away from trouble at all costs,
as it was impossible to rescue a MER after a catastrophic event. As a re-
sult, the planning algorithms used for the rovers were highly conservative in
terms of uncertainty management [74, 75, 257, 258]. Another way of phrasing
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this, using terminology borrowed from ecology, is that survival took precedent
over most other considerations, including any notions of performance-based
optimality.

The context in which this book is to be understood is that of long-duration
autonomy, and the tale of the two impressive Mars rovers, Spirit and Opportu-
nity, clearly highlights the two important themes of environmental interactions
and survivability.

• Interactions between robot and the environment in which it is de-
ployed play a key role in understanding design for long-duration
autonomy; and

• Survivability, i.e., the explicit focus on avoiding getting caught in
situations from which the robot cannot recover, takes precedent over
all other design considerations.

It should be pointed out that although the MERs were absolute robotic
marvels, and significantly advanced our understanding of robotics and au-
tonomy, their operations were not what one would strictly call fully “au-
tonomous.” Instead, the rovers employed what NASA dubbed “directed
autonomy,” where commands were transmitted once per day to the rovers. The
commands were encoded as event-driven sequences of motion commands that
the rovers parsed using on-board stereo-vision and path-planning algorithms
[50]. Despite this technicality, Spirit and Opportunity provide highly inspira-
tional examples of robots that succeeded at carrying out a series of complex,
long-duration missions over truly long time-scales.

1.1.2 Operations Beyond a Single Battery Charge
With the NASA Mars rovers as starting point, and using the key takeaways
from their story, we have a handful of promising themes for characterizing
and understanding long-duration autonomy. Perhaps the most important (and
obvious) observation is that the robots have to be deployed over long periods
of time for it to be considered “long-duration.” One does not, however, need
interplanetary travel to encounter situations where robots may be required to
be deployed over long time-scales. In fact, our homes are increasingly being
populated by household robots that are more or less in continuous operation,
using dedicated charging or waste deposit stations. Environmental robots are
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being deployed in terrestrial or aquatic ecosystems to monitor factors such as
plant growth, pollutants, wildfires, or climate trends, which may require the
robots to be deployed for entire seasons. Warehouse robots are expected to
perform fetch-and-carry operations; industrial robots are tasked with paint-
ing or welding; and mobile guide robots provide information to travelers in
airports, art aficionados in museums, or patients in hospitals—all without
taking breaks for maintenance or in other ways disrupting operations, e.g.,
[38, 187, 201, 381].

One way of defining long-duration autonomy is deployment beyond a sin-
gle battery charge (or tank of gas), and where the recharging (or refueling)
is part of the robot’s portfolio of responsibilities.1 Note that we phrased this
in terms of “deployment” rather than in terms of a long-duration “mission.”
The reason for this is that we need to allow for situations where the mission
may change, or where new missions may be requested. Spirit and Opportunity
were sent to Mars to perform a focused science mission, but as they outlasted
their expected life spans, they ended up performing in five different missions
with completely different science objectives [292]. Perhaps even more strik-
ing and interesting is the situation where the robots may be deployed without
any particular mission in mind at all. They are just asked to be present in an
environment, waiting to be recruited to do whatever tasks need doing, follow-
ing an autonomy-on-demand model, as opposed to a mission-centric view of
what the deployment is supposed to be about [128, 304].

Regardless of whether the deployment involves a single, protracted mis-
sion, a sequence of multiple missions, or no clear mission at all,2 two
conditions must be satisfied for it to be considered a long-duration deploy-
ment, namely the deployment must last longer than a single battery charge,
and the robot must be able to recharge itself.

• Beyond a Single Battery Charge: The scope of the deployment must
be such that it is impossible for the robot(s) to successfully satisfy the
requirements on a single battery charge; and

1We will use “battery” as shorthand for all sorts of different types of energy sources
unless the context requires that the particulars be explicitly called out.

2One can of course argue—perhaps even successfully so—that having no mission at
all is actually a mission in itself. As we will focus on “deployment” rather than “mission”
as the defining characteristic of long-duration autonomy, this conundrum does not really
matter for the developments in this book.
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• Autonomous Recharging: No human intervention can be required in
order for the energy sources to be replenished. Instead, the robot(s)
must achieve this autonomously.

It is worth pointing out that the first condition, which states that a single
battery charge is not sufficient, does not imply that clever power-management
is not desired or needed.3 On the contrary, power-management is certainly
playing an exceedingly important role in the successful deployment of robots
over long time-scales.

Once the robots are out in an environment for long periods of time, it
is quite natural to draw inspiration from other “systems” that are present in
environments over long time periods and need to “recharge,” namely animals.
This connection between animals and their habitats (ecology) and robots and
their environments (henceforth known as “robot ecology”) is indeed one of
the central themes of this book. To this end, a number of biological organisms
and habitats will be injected into the narrative in order to highlight and stress
particularly salient ecological principles.

1.1.3 On the Value of Slowness
As already hinted at, the impetus behind the NASA Mars rovers’ leisurely
pace can be traced back to two primary reasons, namely the need to take it
slow so as not to jeopardize the robots due to sudden or uncontrolled move-
ments, and the need to conserve energy. As the saying goes, “slow and steady
wins the race.” Even though it is rare to actually see a tortoise and a hare line
up and compete—if they did, the hare would most certainly win—the saying
would indicate that the hare also runs a much higher risk of having something
unforeseen happen to it due to its hasty outlook. Approaching new situations
in hazardous, or even hostile, environments in a careful and deliberate man-
ner is of particular importance when robots are supposed to be deployed over
long time-scales, without human intervention. For instance, one of the pri-
mary reasons why underwater robotics is so tricky is that it is very hard and
costly to recover malfunctioning or lost robots, e.g., [320, 367, 435]. Another
manifestation of this idea can be found in the area of safe learning, which is

3Energy (joules) is what is available to the animal/robot, while power (joules per sec-
ond, or watts) is the rate at which the energy is being delivered as work. So, “energy” will
refer to the total charge of the battery, while “power” to the rate at which the battery is
being drained.



—-1

—0

—+1

1.1 Long-Duration Autonomy 9

predicated on the observation that a careless exploration of all state-action
pairs can easily lead to the robot finding itself in disagreeable, and even
harmful, configurations [5, 28, 45, 426].

Arguably, the primary reason for being slow—among animals as well as
robots—is not to be cautious, but to conserve energy. As such, if the available
energy is limited, which it usually is in nature, embracing a slow lifestyle can
stretch the crucial energy resources further. For instance, arboreal folivores
inhabit the ecological niche of spending their lives in the trees (arboreal),
while sustaining themselves solely on leaves (folivore) [428]. This is a chal-
lenging strategy since in order to dwell productively among the trees, animals
typically must be small and nimble so as not to simply fall down due to
miscalculated leaps or broken branches. Now, contrast this arboreal size con-
straint with leaf-eating. Leaves are complicated foods in that they can be
both toxic and structurally protected. In fact, as plants cannot move around
in order to avoid their predators, they must come up with other means of
defending themselves, like with thorns or spikes, or by chemical means [207].
Additionally, the cellulose fibers in the plant cell-walls that provide structural
scaffolding to the leaves also make them hard to digest. As a result, animals
who consume nothing but leaves must have a sufficiently long digestive tract,
i.e., have a big enough gut, to break down these complicated foods [428]. The
arboreal folivore is thus faced with the opposing requirements of being big
enough to break down the food, yet small enough to live among the treetops.

What is the solution to this size dilemma faced by the arboreal folivores?
Animals that occupy this ecological niche, such as koalas, two-toed and three-
toed sloths, and some lemurs, all have roughly the same size, and they spend
the vast majority of their time just sitting there among the treetops, doing
nothing other than digesting their food. And when they do move, it is typically
happening at an exceedingly slow pace. In other words, slowness has become
a response to a severely energy-constrained existence. We will, throughout
this book, return to these low-energy lifestyle animals as wellsprings of inspi-
ration. In particular, the three-toed sloth will serve as a particularly suggestive
source, culminating in Chapter 8 with the design of the SlothBot, a preview
of which is shown in Figure 1.2.

For now, the takeaway from this initial discussion about power-
management and slowness is simply that when operating in an environment
where unlimited power is not available, and where the deployment specifica-
tions require the robot to function beyond a single battery charge, being slow
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Figure 1.2: The SlothBot—a slow and energy-aware robot developed to per-
form environmental monitoring tasks—traverses a cable suspended between
trees on Georgia Institute of Technology’s campus.

is part of the toolbox. In fact, slowness is one of the design principles that
separates long-duration autonomy from its short-duration counterpart.

1.2 Survivability
The shortest path between two points through a space populated by obstacles
is obtained by moving as closely to the obstacles as possible [225, 237], as
shown in Figure 1.3. Similarly, the fastest way for a car to come to a complete
stop at a stop sign is maximal acceleration until the very last moment, and
then the driver should slam on the brakes right at the stop sign [230].

Although optimal (minimum distance and minimum time, respectively),
both of these strategies are problematic. What if the range-sensors used for
detecting obstacles were not properly calibrated? In that case, the robot would
hit rather than skirt the obstacles. Or, what if the model of the brake’s effect
on the car’s motion was slightly wrong? In that case, the car might end up
coming to a complete stop halfway through the intersection rather than at
the stop sign, with potentially lethal consequences. As shown in [120, 208],
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Figure 1.3: The shortest path through an environment typically runs as close as
possible to obstacles (the polygons in the figure), thus rendering it non-robust
to measurement errors [225, 236].

optimality and fragility are closely related concepts, meaning that optimal
solutions are typically non-robust (or fragile) with respect to various types of
disturbances, such as measurement or modeling errors. And, in long-duration
settings, this lack of robustness can be catastrophic.

1.2.1 Costs and Constraints
Consider the problem of trying to make a solar-powered robot go to a partic-
ularly sunny spot to recharge the batteries. There are two different ways of
achieving this objective. First, one can define a performance cost that eval-
uates how well the robot is progressing towards the goal location, e.g., by
letting the cost be given by the distance to the goal. We denote this cost by
Ccharge, and the controller should be chosen such that Ccharge is minimized,
either by incrementally moving against the gradient of the cost [251], or by
finding the overall best strategy that minimizes the cost, e.g., by employing
some path-planning method [225].

The second approach would instead be to define a constraint, abstractly
encoded as x ∈Gcharge, where x is the state of the robot, and where the con-
straint could say something like “the robot should always be able to make it
back to the charging station given the current energy levels.” The robot would
then be allowed to move freely as long as it did not violate the constraint.

Additionally, the purpose of deploying this robot is likely more than sim-
ply making it go and recharge. Instead, the robot is probably expected to
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perform some primary task, such as detecting interesting events, protecting
an area from intruders, or collecting Martian dust, and we let Ctask be the
cost that encodes how well (or poorly) this primary task is being performed.
The question then arises: How should one balance these two different and
potentially opposing requirements of recharging batteries and performing the
primary task? The answer to this question depends on the context in which
the overall mission is to be understood.

Consider, for example, the peculiar lifestyle exhibited by mayflies. Once
they are past their nymph stage, they have an extremely short life span—as
short as a few minutes for the female Dolania americana—and their single
focus as adults is reproduction [186, 223]. This strategy leaves them with
no need to feed and, as a result, they do not even have fully functioning
mouthparts. Classifying this as long-duration autonomy would be a stretch.
Similarly, if the robot, just like the mayflies, is supposed to execute the pri-
mary task and then be done, and the primary task can be completed with a
single battery charge, then one should just ignore the charging requirement
and solely minimize Ctask. One could call this approach the “short-duration
autonomy” approach, and it is how robotics algorithms are typically ap-
proached. But, as already discussed, a key attribute of long-duration autonomy
is that the robot should avoid catastrophic failures at nearly all costs since,
once it has failed, there is no recovery. And, getting stuck somewhere in a dark
corner of the deployment domain with completely depleted batteries certainly
counts as a mission-ending failure. Borrowing, once again, from ecology, this
translates to ensuring the survival of the robots.

With the notion of survival added to the mix, one approach could be to
impose scheduled behaviors, e.g., periodic visits to the charging stations, dur-
ing the execution of the primary task. The robot would thus switch between
minimizing Ctask and Ccharge in response to a power-management scheme,
e.g., [204, 374, 395]. But adhering to such fixed policies during execution
without regard to implications on achieving task goals is not ideal as the robot
would either solve the task it is supposed to solve, or recharge. But why not
do both?

An attempt at doing both would be to encode survivability as a per-
formance objective and somehow combine it with the other performance
goals. This could, for example, be done via scalarization, where the overall
performance cost would be given by a combination of the two costs, σCtask +
(1 − σ)Ccharge, for some σ ∈ [0, 1]. Alternatively, a so-called multi-objective
optimization approach could be used. In the former case, the primacy of sur-
vivability is not ensured unless σ = 0, raising the possibility of catastrophic
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failures in the opportunistic pursuit of short-term gain. In the latter case, none
of the available equilibrium or optimality concepts (e.g., Nash or Stackelberg
equilibria, or Pareto optimality) ensure survival, instead balancing, in one way
or another, the degree of survivability against other task performance criteria.
In short, these types of approaches fail to adequately recognize (or exploit)
the fact that surviving is a prerequisite to thriving in long-duration autonomy
applications.

As will be seen in subsequent chapters, it is indeed possible to focus on the
primary objective, yet ensure the survival of the robot. Constrained optimiza-
tion provides the appropriate semantics for describing such an outcome. In
other words, recognize the primary optimization or optimal control problem,
but add in constraints that ensure survival by letting the robot solve,

minimize Ctask

subject to x ∈Gsurvive,
(1.1)

where Gsurvive could be equal to Gcharge, or it could be a more general con-
straint that contains a number of other survival considerations as well, such as
avoiding collisions or staying connected to other robots [128]. This seems like
a highly promising way of abstractly capturing what long-duration autonomy
could be about.

1.2.2 Robots that Do (Almost) Nothing
A particularly pertinent choice of performance cost, Ctask, in the previous sec-
tion is to measure how much energy the robot is expending. In the absence of
additional constraints, the optimal strategy would thus be to simply let the
robot do nothing, i.e., to let the actuators exert no forces or torques on the sys-
tem, which takes us close to the strategy employed by the arboreal folivores
during long stretches of their existence. In fact, the conservation of energy
is central to virtually all living organisms and, according to [357], the “pur-
poseful expenditure of energy” is one key characteristic of what it means to
be alive. As such, an initial, biologically motivated (yet mathematically vague
and, for now, potentially ill-posed) attempt at formulating a design principle
for robot ecology would be to modify the constrained optimization problem
in Equation 1.1 to the following optimization problem,

do as little as possible
subject to x ∈Gsurvive.

(1.2)
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One way of interpreting this formulation is as extreme, existential nihilism—
the meaning of life is to expend as little energy as possible, while barely
subsisting. Although a bit depressing, it is entirely consistent with basic
ecological principles, where an animal’s behavior is understood in large part
through an energy-balance calculus [357].

Imagine now that a team of robots has been deployed in an environment,
and are prepared to perform whatever tasks might be asked of them. One
could call this setup autonomy-on-demand, and between tasks, the robots
should merely be present in the environment, not running out of energy,
and mostly do nothing. In such a scenario, the sloth is a good role model,
and conducting oneself according to the constrained optimization problem in
Equation 1.2 seems like a reasonable strategy. Once the robots are recruited
to perform some task, the corresponding performance cost, Ctask, can be in-
troduced, and the robot switches from the problem in Equation 1.2 to that in
Equation 1.1.

But, beyond doing nothing, what the autonomy-on-demand framework
suggests is the possibility of having robots with free time. The question then
becomes, what should these robots spend their time doing? There are indeed
opportunities afforded by being a robot of leisure. It could, for example, im-
prove its skills by learning and exploring better control policies. It could also
learn completely new skills. This is a bit more delicate as the robot is literally
tasked with doing nothing, and most of the machine learning apparatus re-
quires some sort of goal or reward against which the suitability of the control
actions can be evaluated. In the absence of such goals, one instead needs to
move towards a more “curiosity-driven” learning paradigm [217, 393, 416],
where the robot explores state-action pairs without a predefined, clear goal, or
where mismatches between actual and modeled effects are being pursued for
the purpose of getting more accurate models of the robot’s capabilities. But,
perhaps most importantly, interactions between environment and robot can be
better understood.

The interactions between robot and its habitat is imperative to the robot
ecology framework in that this coupling must be understood and leveraged in
order for the robot to successfully dwell in an environment over sustained pe-
riods of time. This is the topic of the next section, and an example is shown in
Figure 1.4, where a robot, using computer vision, must learn to discriminate
between objects according to their texture and color profiles. For instance,
the robot should learn to tell tall grass from boulders, as its ability to tra-
verse these “objects” is completely different. And, the only way to gauge the
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Figure 1.4: Based on an object’s texture and color properties, a robot must
learn which objects in the environment can be traversed and which cannot.

“traversability” of a particular type of object is to interact with it, e.g., to try
to drive through it without getting stuck [396].

1.3 Coupling Between Environment and Robot
As already discussed, survivability, i.e., the ability to avoid situations where
survival can no longer be ensured, can be naturally encoded as a constraint
rather than as a performance objective. This way of formulating survivabil-
ity is also consistent with ecological principles, where richness of behavior
is a direct function of environmental constraints [308, 357, 385], including
the abundance and distribution of resources, favorable microclimates, and the
prevalence of suitable mates or predators. Indeed, when ecologists study the
distribution of species and the composition of populations and communi-
ties, the environmental reality and the associated ecological constraints are
as important, if not more so, than any “goal-driven” behaviors [357, 385].

Based on this observation that constraints are fundamentally important to
animal behavior, one can thus ask if the constraint-based vantage point trans-
lates to effective control design principles for engineered systems as well. As
such, we will approach the design problem as one where the robots’ behav-
iors are mostly constraint-driven, such as avoiding collisions with obstacles
or other robots, or never completely depleting the batteries, as opposed to
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goal-driven. In fact, these types of constraints can be derived (albeit subject to
a slight robotic reinterpretation) from basic ecological principles. As ecology
is aimed at understanding the interaction of organisms with their environments
and with other organisms, this is a particularly fruitful metaphor also for
robots leaving the highly curated laboratory or factory settings, and entering
dynamic, unstructured, natural environments across long temporal and spatial
scales.

1.3.1 Ecosystems
As was discovered by the Mars rover team, the connection between robot
and environment was even more important for the longevity of the robots than
what was originally thought. Not only was the environment a source of energy,
it was an existential threat through dust build-up and soft and sticky sand. But
it also provided unexpected help when the Martian winds would swipe the
solar panels clean, thereby overcoming other, more adverse environmental
factors. What this anecdote tells us is that the robot and the environment it in-
habits should be thought of as a single system, which brings us within striking
distance of the idea of an ecosystem.

In the 1930s, a vibrant discussion took place among ecologists about the
proper way of thinking about these interconnections, and the term “ecosys-
tem” was coined by the British ecologist A. G. Tansley in 1935. He writes
[402]: “The more fundamental conception is, as it seems to me, the whole
system (in the sense of physics), including not only the organism-complex,
but also the whole complex of physical factors forming what we call the
environment of the biome—the habitat factors in the widest sense. Though
the organisms may claim our primary interest, when we are trying to think
fundamentally we cannot separate them from their special environment, with
which they form one physical system.” This way of thinking about organism
(animal/robot) and environment as part of the same system—not in a loose,
metaphorical sense but in a tight, physical sense—will prove to be a fruitful
way of approaching long-duration deployments. In fact, as animals and plants
live (literally) in a physical environment, their form and function must obey
the rules of the physical world [385].

An illustrative example of how form is determined by the physical en-
vironment is the size of the pores in avian eggshells. As gas is constantly
passing through the eggshell throughout the incubation period to deliver oxy-
gen and nutrients, the movement of the gas follows a diffusion process, which
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means that environmental factors such as altitude, temperature, and humidity
all matter to the type of egg (size of pores) the bird lays [357]. Similarly, rates
of processes (r) and animal dimensions (d) typically satisfy an “allometric”
relationship, r = adb, with b being the allometric constant [86]. For instance,
heart rate versus body mass has an allometric constant of b≈−0.2 among
mammals, while the metabolic rate vs. body mass has b≈ 0.7 [86, 357].
In other words, chipmunks have a higher heart rate but a lower metabolic
rate than elephants. And these environmentally informed form factors have
implications for the animals’ functions.

On the functional side, animals constantly move among so-called envi-
ronment patches as the environment changes, over days, months, and even
years [357, 385]. And, for the purpose of this book, functional considerations
will play a more prominent role than form considerations. That is not to say
that form does not matter—it does. Only that the focus of this book is on the
control design considerations when deploying robots over long time-scales,
i.e., hardware will play second fiddle to software.

There are a number of situations where this idea of functional coupling
between robot and environment is not only useful, but crucial when deploy-
ing robots over long time-scales. The most apparent and covered situation
is the recharging of batteries using energy from the sun, meaning that the
robot must, every so often, find itself in a place with ample sunlight. In
other words, cave-dwelling robots must either surface every now and then
to bask in the sun, or they must rely on some other source of energy. How-
ever, energy harvesting does not provide the only beneficial coupling between
robot and environment. When aerial gliders or marine robots move through
their domains, updrafts and ocean currents, respectively, provide opportunistic
sources of low-cost mobility [6, 147, 373]. And passive walkers, e.g., [432],
only really function in worlds consisting solely of gentle downhill slopes—in
all directions.

1.3.2 Natural and Engineered Environments
So far, the discussion has been focused on natural environments. But, the im-
portance of harnessing the coupling between robot and its habitat is certainly
not diminished in engineered environments. Robots roaming around in ware-
houses or homes must not only be able to locate outlets, they must be equipped
with the proper hardware (e.g., plugs) to allow them to take advantage of the
available energy sources.
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From a mobility perspective, environment and hardware design go
hand-in-hand, and one reason why humanoid robots are deemed particularly
useful as companion robots in our homes is that our domestic environments
are already built for bipedal humanoids that are four- to six-feet tall, with
staircases that reward legged locomotion and doorknobs that are strategically
placed at certain heights. In other words, our homes are already superbly well-
suited for humanoid robots [156]. One does not, however, have to look to
the world of autonomous robots to see this phenomenon. For more famil-
iar and mundane vehicles, a carefully engineered environment is oftentimes
called for. Trains are extraordinarily well-positioned to take advantage of train
tracks, airplanes of airport runways, and cars of highways. We even some-
times modify animals to make them fit our engineered environments, such as
putting shoes on horses or electric collars on dogs.

As we will see in a later chapter, this idea of making slight modifications
to the environment for the explicit purpose of rendering the robots’ existences
more productive and safe will prove beneficial when deploying robots up in
the treetops in persistent environmental monitoring applications. Climbing,
as practiced by arboreal animals, is problematic from a safety point of view
in that a robot that falls out of a tree will probably not be able to continue
on with its mission. But, by stringing cables in the treetops, we can ensure
that the robots can dwell successfully in the tree canopies and remain safely
suspended, even when actuators fail or energy levels drop precipitously.

Regardless of whether the robots are to be deployed in jungles, on train-
tracks, or in kitchens, when the deployments transpire over long temporal
scales, unexpected things are inevitable [71]. The world is fundamentally a
messy place, and any attempt at enumerating all the possible things a robot
might encounter, in all but the most sterile environments, is doomed to fail.
As such, the strategies employed in long-duration settings must support adap-
tation to new situations. And they must achieve this while ensuring the robot’s
safety at all times and at (almost) all costs.

1.4 Summarizing and Looking Ahead
What this introductory chapter has done is paint a mood picture and describe
some of the challenges associated with long-duration autonomy. It also identi-
fied a collection of guiding principles that permeate the book and that illustrate
why long-duration autonomy, as compared to its short-duration counterpart,
is different from a control design vantage point.
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These principles combine together under the umbrella of Robot Ecology
as follows:

• The tight coupling between robot and environment is not only impor-
tant, it is absolutely crucial if the robots are to exhibit longevity;

• Survival is a prerequisite to thriving, i.e., rather than minimizing
performance-based costs, the control design should focus on ensuring
that various safety constraints are satisfied;

• Key among safety constraints is power-management since, if the
robot finds itself with depleted batteries without any ability to
recharge, it is game over;

• When the deployment takes place over truly long time periods, being
fast is oftentimes both energetically wasteful and dangerous, and the
robots should embrace a slow lifestyle; and

• Any attempt at enumerating everything the robot may encounter is
doomed to fail, and the ability to adapt to changing environmental
conditions and missions is a core attribute in long-duration autonomy.

The remainder of this book will take these casual observations and make
them more precise and mathematically well-defined. Part II of the book will
serve this purpose by establishing control barrier functions (CBFs) as the
proper framework for talking about robot survival using the constrained opti-
mization semantics. Once CBFs have been adequately introduced, they will be
drawn on to support persistified robot tasks, i.e., to modify nominal controllers
in order to extend the robots’ life spans indefinitely. The developed tools and
techniques will then be employed in Part III for long-duration deployments in
a number of different settings, with a particular focus on environmental mon-
itoring and conservation tasks. However, before these tools can be unleashed,
a more thorough discussion is needed of what robot survival actually entails,
and of how ecological principles can be put to use towards the overarching
theme of establishing a theory of robot ecology.
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