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CHAPTER 1

Shells and the Questions of Biology

Few works of architecture can match the elegance and variety of the
shells of molluscs. Beauty is reason enough to appreciate and study
shells for their own sake, but shells offer much more. As molluscs
grow, they enlarge their shells little by little, and in doing so inscribe
in their shells a detailed record of the everyday events and unusual
circumstances that mark their lives. Moreover, the fossil record that
chronicles the history of life is replete with the shells of extinct spe-
cies. We can therefore learn about the conditions of life and death of
molluscs not just in our own world, but in the distant past. The sizes,
shapes, and textures of shells inform us about the way skeletons are
built and how animals respond to the hazards around them.

The molecular biologist Sidney Brenner once observed that there
are three fundamental questions we can ask about a biological struc-
ture.” How does it work? How is it built? How did it evolve? These
questions apply to structures at all levels of the organic hierarchy,
from proteins to cells to whole animals, populations, and ecosystems.

The first of Brenner’s questions is one of mechanics and effective-
ness of design. What is the relationship between structure and func-
tion, and how well does the structure work under given conditions?
What are the mechanical principles and the circumstances that dic-
tate the possibilities and limitations of adaptive design?

The second question deals with the rules of biological design. What
are the rules by which individual organisms develop and grow, and
how do they work? What limits do they impose on the diversity of
forms encountered in nature? How, and under what circumstances,
can change be brought about within the established pattern as de-
fined by the rules? What happens when the rules are broken or re-
laxed, and when can this occur?

The third line of inquiry is historical. All living and fossil species
trace their ancestry back to a single entity in the incredibly distant
past. What was the course of this evolution, and what factors were
important in charting it? To what extent does a species bear the stamp
of history, and how much do its characteristics reflect the conditions

" Horace F. Judson, The Eighth Day of Creation, Simon and Schuster, New York; p- 218.
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CHAPTER 1

in which it finds itself? When and how does evolutionary change
occur, and how is this change constrained by the rules of construction
and by the environment in which organisms live?

In the context of shells, these three fundamental questions can be
effectively framed in economic terms. We can think of shells as
houses. Construction, repair, and maintenance by the builder require
energy and time, the same currencies used for such other life func-
tions as feeding, locomotion, and reproduction. The energy and time
invested in shells depend on the supply of raw materials, the labor
costs of transforming these resources into a serviceable structure, and
the functional demands placed on the shell. For secondary shell-
dwellers, which generally cannot enlarge or repair their domiciles,
the quantity and quality of housing depend on the rate at which shells
enter the housing market and on the ways and rates of shell deteriora-
tion. The words “economics” and “ecology” are especially apt in this
context, for both are derived from the Greek ozkos, meaning house. In
short, the questions of biology can be phrased in terms of supply and
demand, benefits and costs, and innovation and regulation, all set
against a backdrop of environment and history.

Shells are, of course, more than houses. For many molluscs and
most secondary occupants, they are also vehicles, which are often spe-
cifically adapted to various modes of locomotion such as crawling,
leaping, swimming, and burrowing. Moreover, shells in some in-
stances function as traps for prey and would-be intruders, as offensive
weapons of attack, as signals for attracting mates, and even as green-
houses for culturing plant cells that help feed the animal. The various
functional demands are apt to be incompatible with each other. The
architecture of any one shell reflects not only the compromises
among these functional requirements, but also the costs of construc-
tion and maintenance, the rules governing growth, and the mark of
evolutionary ancestry. Just as the houses of people vary greatly from
place to place and over the course of history, so the shells of molluscs
bear the marks of geography and time. Costs of construction vary ac-
cording to geography and habitat; so do the kinds and abundances of
predators, the availability of food, the rate of growth, and any number
of other factors important in the lives of shell-bearers. Ecologists who
wish to understand how population sizes of living species are regu-
lated may be content to document these variations in the biosphere
today, but for the evolutionary biologist interested in chronicling the
economic history of life, it becomes essential to determine how costs,
benefits, and resources have varied over the course of geologic his-
tory, and to infer how the course of evolution has been influenced by
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SHELLS AND THE QUESTIONS OF BIOLOGY

the interplay between the everyday economic forces and the much
less frequent large-scale changes in climate and tectonics that have
affected the planet. Such evolutionary insights will be important in
attempts to forecast and manage biological change as humans extend
their control over the biosphere.

An economic treatment of biology is, of course, not new. Cost-ben-
efit analysis has pervaded much of the literature in evolutionary ecol-
ogy for the last 25 years. My approach, however, differs from that of
most others who have concerned themselves with the economy of
nature. The prevailing doctrine has been that organisms are opti-
mally designed to maximize the intake of resources while minimizing
costs and risks. If organisms fall short of the optimum, an appeal is
generally made to factors that are either unknown or unmeasured.
The underlying assumption is always that natural selection—the pro-
cess by which genes conferring higher survival or reproduction are
favored—produces the best design possible given the circumstances
in which a population lives.

I find this point of view profoundly antievolutionary. When indi-
vidual organisms vie for resources—mates, food, living quarters, safe
places, and the like—the winner is superior in some way to the loser,
as ultimately measured in survival and reproduction. Sometimes
being better means being very good indeed, but in other circum-
stances success is achievable with what, in absolute terms, appears to
be only a modest effort. By thinking of selection as favoring a better
organism rather than as favoring the best organism, we are at once
dismissing the notion of an adaptational ideal. Optimality implies
a directedness, even a purpose, for whose existence there is no
evidence whatever. Humans can think up strategies and tactics in
order to improve their lives or to enhance their own causes, but natu-
ral selection acts only in the here and now and is therefore funda-
mentally different from long-range purposeful planning. Evolution-
ary change can track environmental change but cannot forecast or
plan for it.

The order of topics in this book departs slightly from Brenner’s
sequence of questions, because it recapitulates the pathway by which
I came to the study of shells. From my earliest acquaintance with
shells in the Netherlands, I was drawn to the regularity of form that
even the simplest and most ordinary shells displayed. Having picked
up only empty shells, I saw them as abstract objects. The fact that
animals built them and inhabited them was unknown to me. The first
part of the book is therefore an exercise in geometry. From a descrip-
tion of shell form, I shall proceed to the rules of construction and
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CHAPTER 1

arrive at a model that explains some of the basic features of shell
architecture.

In the Netherlands I had become accustomed to the chalky and
rather sloppily ornamented clam shells that washed up in great profu-
sion on the North Sea beaches. Shortly after coming to the United
States, I had the great fortune to be in Mrs. Colberg’s fourth-grade
class in Dover, New Jersey. The windowsills of her classroom held a
display of the shells she had gathered on her travels to the west coast
of Florida. My first glimpse of these shells is deeply etched in memory.
Here were elegantly shaped clam and snail shells, many adorned with
neatly arranged ribs, knobs, and even spines. Not only were the shell
interiors impossibly smooth to the touch, but the olive and cowrie
shells were externally so polished that I was certain someone had
varnished them. The contrast with the drab chalky shells from the
Netherlands was remarkable. Why, I wondered, were warm-water
shells so much prettier than the northern shells? When a classmate
brought in some shells from the Philippines, which were even more
spectacular in their fine sculpture and odd shapes, my curiosity was
aroused even more. I resolved to begin collecting shells and to read as
much as I could find about them.

The geography of shell form has remained a matter of interest for
me ever since. It forms the point of departure for the rest of the book.
I begin by examining the economic costs of shell construction, and
proceed by asking how these costs vary with geography and habitat.
Next I review what we know about how shells work, and ask how the
factors with which shell-bearers must cope vary with latitude and
other geographic and habitat gradients. Differences in shell architec-
ture among molluscan assemblages from different oceans lead into
an exploration of how historical factors have conspired to make mol-
luscs and other animals in some parts of the world functionally more
specialized than in others. This inquiry, in turn, expands into an
architectural and functional history of molluscs from the time of the
first appearance of the group in the Early Cambrian, some 530 mil-
lion years ago, to the present. I close with some suggestions about
what we can learn about our own species from the lessons of the his-
tory of life.
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shape, 66-68

edge drilling, 107, 109, 131, 181

Egregia, 72

El Nino, 160
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Engina, 73
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episodic growth: in arthropods, 35-36; in
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escape response, 115-16
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family, defined, 10
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Io, 117

Isthmus of Panama, 157, 160-65
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larvae, 24, 147-48; dispersal of, 157, 159-
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lift, 69-70, 76

Lithophaga, 143

Littoraria, 45, 143

Littorina, 29, 45, 114, 147, 148, 169

lobsters, as shell breakers, 102, 103, 181

locomotor abilities, 100, 115-16, 165, 185,
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logarithmic spiral, 16-18, 17 departures
from, 27-31

Lopha, pl. 22
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Mactra, 107
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Malleus, 135

Margarites, 147

Melanella, 120
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Mitra, 141

Modiolus, 169
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Monotaxis, pl. 8
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Nodilittorina, 45, 65, 71
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nutrient availability: and growth rate, 28;
and differentdal extinction, 171-72
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sea level, changes in, 177,178, 179, 191
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180
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shell breaking, 94-97, 94, 101, 102-5,
108-9, 122, 129, 134, 161, 180-82, pl. &,
resistance to, 129-31, 132-33, 161-62

shell closure, hermetic, 114-15, 131, 139

shell coiling, 16-27; geometric variables
of, 18-21; tightness of, 19, 26, 43, 44,
126-27. See also coiling direction

shell curvature, 16, 19, 120

shell deposition, 27-28

shell deterioration, 50

shell dissolution, 45-49, 51

shell drilling, 48, 97, 105-8, 107, 122, 180.
See also edge drilling

shell folds, 31, 86, 87, 125-29

shell form, 16-21, 27-31, 43-45, 66-68,
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shell microstructure, 50-51
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shell resorption, 32-34, 34, 43-44, 66. See
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shell sculpture, 31, 85-87, 86, 87, 186; and
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117; and shell strength, 81

shell size, 71, 116-17

shell smoothness, 117-22, 120, 121, pls.
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shell spines, 32, 105, 117, 118, 119, 123,
140-42, 141, 142, pis. 20, 21

shell stability, 72-73, 124, 125
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shell weight, 51-52
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Tectura, 19, 114

Tectus, 18

temperate faunas, 166-70, 167, 168

temperature: and growth rate, 28; and
mineral availability, 41-42; and preda-
tion, 110-11; and secondary shell occu-
pants, 195; and shell dissolution, 45, 51

Terebellum, 30, 114

Terebra, pls. 16, 17

Terebrellina, 25

Thaisella, 117, 118
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